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Cointegrating polynomial regressions (CPRs) include deterministic variables,
integrated variables, and their powers as explanatory variables. Based on a novel
kernel-weighted limit result and a novel functional central limit theorem, this paper
shows that the fully modified ordinary least squares (FM-OLS) estimator of Phillips
and Hansen (1990, Review of Economic Studies 57, 99–125) is robust to being used
in CPRs. Being used in CPRs refers to a widespread empirical practice that treats the
integrated variables and their powers, incorrectly, as a vector of integrated variables
and uses textbook FM-OLS. Robustness means that this “formal” FM-OLS practice
leads to a zero mean Gaussian mixture limiting distribution that coincides with
the limiting distribution of the Wagner and Hong (2016, Econometric Theory 32,
1289–1315) application of the FM estimation principle to the CPR case. The only
restriction for this result to hold is that all integrated variables to power one
are included as regressors. Even though simulation results indicate performance
advantages of the Wagner and Hong (2016, Econometric Theory 32, 1289–1315)
estimator, partly even in large samples, the results of the paper give an asymptotic
foundation to “formal” FM-OLS and thus enlarge the usability of the Phillips and
Hansen (1990, Review of Economic Studies 57, 99–125) estimator implemented in
many software packages.
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2 OLIVER STYPKA ET AL.

1. INTRODUCTION

In several empirical literatures, including (most voluminously) the environmental
Kuznets curve (EKC) literature (for an early survey paper counting more than
100 refereed publications, see Yandle, Bhattarai, and Vijayaraghavan, 2004),1 the
material Kuznets curve literature (see, e. g., Grabarczyk et al., 2018), the intensity-
of-use literature (see, e. g., Malenbaum, 1978; Labson and Crompton, 1993), the
exchange rate target zone literature (see, e. g., Svensson, 1992; Darvas, 2008) or the
fiscal reaction function literature (for a recent contribution, see, e. g., Di Iorio and
Fachin, 2022), so-called cointegrating polynomial regression (CPR) models are
routinely employed, using here the terminology of Wagner and Hong (2016). These
are regression models that include deterministic variables, integrated variables, and
their powers as explanatory variables.2 As in the linear cointegration literature,
both regressor endogeneity and error serial correlation are allowed for in CPRs.

The simplest example of a CPR model is the quadratic formulation, which
is also the workhorse model in the EKC literature, that is, yt = xtβ1 + x2

t β2 +
ut = X′

tβ + ut, with xt = xt−1 + vt, Xt = [xt,x2
t ]′ and β = [β1,β2]′. Detailed

definitions and assumptions are given below in Section 2.1 and, for the heuristic
discussion here in the introduction, we furthermore ignore deterministic compo-
nents. A CPR model is probably the simplest case of a nonlinear cointegrating
relationship that is in fact linear in parameters and for which, hence, closed-
form solutions of, for example, modified least squares estimators, that allow for
asymptotic standard inference, are available. Wagner and Hong (2016) extend
the fully modified OLS (FM-OLS) estimator of Phillips and Hansen (1990) from
cointegrating linear relationships to cointegrating polynomial relationships and
dub the resultant estimator FM-CPR, for the example at hand given by β̂+ =(∑T

t=1 XtX′
t

)−1
(∑T

t=1 Xty+
t − �̂+

vu

(
T

2
∑T

t=1 xt

))
, with y+

t = yt −�xt�̂
−1
vv �̂vu =

yt − vt�̂
−1
vv �̂vu and �̂+

vu := �̂vu − �̂uv�̂
−1
vv �̂vu. The matrices � and �, partitioned

according to ut and vt denote the half long-run and long-run covariance matrices
of {[ut,vt]′}t∈Z, respectively, and �̂ and �̂ denote consistent estimators based
on [ût,vt]′, with ût denoting the OLS residuals. FM-type estimation relies upon
two transformations: First, the dependent variable yt is replaced by y+

t , with
this transformation being instrumental for removing endogeneity biases. Second,
the subtraction of an additive correction term, �̂+

vu[T,2
∑T

t=1 xt]′ in the example,
removes so-called second-order bias terms from the limiting distribution. Both
transformations together lead to a zero mean Gaussian mixture limiting distri-
bution of the FM-OLS estimator, which is the basis for asymptotic standard
inference. Why the Phillips and Hansen (1990) replacement of yt by y+

t is

1The term environmental Kuznets curve (EKC) refers by analogy to the inverted U-shaped relationship between
the level of economic development and the degree of inequality postulated by Simon Kuznets (1955) in his 1954
presidential address to the American Economic Association. Since the important early contribution of Grossman and
Krueger (1995) at the latest, the EKC literature has been rapidly expanding.
2Sadly Stefano Fachin, a very nice colleague and friend, passed away in early 2023. Given that he was an avid user
of CPR models and methods, this paper is also dedicated to him.
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CPRS: ROBUSTNESS OF FM-OLS 3

instrumental for removing endogeneity biases becomes clear from considering
the transformed regression model y+

t = X′
tβ + u+

t , in which, loosely speaking,
u+

t = ut − vt�̂
−1
vv �̂vu is asymptotically uncorrelated with the regressors Xt. More

precisely, it holds (when long-run covariance estimation is performed consistently)

that the scaled limit process Bu·v(r) = limT→∞ 1
T1/2

∑�rT�
t=1

(
ut − vt�̂

−1
vv �̂vu

)
=

Bu(r) − Bv(r)�−1
vv �vu, 0 ≤ r ≤ 1, is a Brownian motion that is uncorrelated

with—and thus independent of—the Brownian motion Bv(r) corresponding to xt.3

Importantly, the transformed error limit (partial sum) process Bu·v(r) is, due to
Gaussianity, also independent of the limit process corresponding to the regressor
x2

t , that is, to B2
v(r); in fact, Bu·v(r) is independent of any well-defined function

F(Bv(r)). Therefore, the Phillips and Hansen (1990) replacement of yt by y+
t

asymptotically addresses endogeneity issues not only in linear but also in nonlinear
cointegrating regression settings (for early discussions, see, e. g., Phillips, 1989,
1991a). The literature extending the Phillips and Hansen (1990) approach from
linear to nonlinear cointegration settings, of course, builds upon this fact; with early
contributions including Chang, Park, and Phillips (2001) and Park and Phillips
(1999, 2001) and more recent contributions including Chan and Wang (2015),
Ibragimov and Phillips (2008), or Liang et al. (2016). Whilst the transformation of
the dependent variable is invariant to the specification of the model, the additive
correction term, in the example considered �̂+

vu[T,2
∑T

t=1 xt]′, depends on the
specification of the model.4

In the empirical literature, in particular in the EKC literature, it has been
and is common practice to “formally” use the Phillips and Hansen (1990) FM-
OLS estimator by “interpreting,” in the example considered, the vector Xt not
as a vector composed of an integrated process and its square, but as a vector
of two (non-cointegrated) I(1) processes (for a discussion of this practice, see
Wagner, 2015) also rather than to use the FM-CPR estimator tailor-made for CPR
models.5 This leads to the “formal” FM-OLS estimator of β, given by β̂++ =

3The transformation also has a well-known (limit) Hilbert space interpretation discussed already in early work
by Peter C. B. Phillips (and co-authors); see Appendix C of the Supplementary Material for details in the CPR
context. Consider (either) for a fixed 0 < r ≤ 1 (or analogously, see Appendix C of the Supplementary Material, for
the interval 0 ≤ r ≤ 1) the population regression of Bu(r) on Bv(r), that is, Bu(r) = Bv(r)�[1](r) + Bu·v(r). Then
�[1](r) = (E(B2

v (r)))
−1

E(Bv(r)Bu(r)) = (r�vv)
−1(r�vu) = �−1

vv �vu, with Bu·v(r) by construction uncorrelated with
and thus independent of Bv(r). Thus, �̂−1

vv �̂vu can be interpreted—as is well-known—as a consistent estimator of the
population regression coefficient �[1](r).
4Denoting with G = diag(T−1,T−3/2) and with Bv(r) = [Bv(r),B2

v (r)]
′, it is well-known (see, e. g., Wagner and Hong,

2016, Prop. 1) that G−1
(
β̂+ −β

)
⇒

(∫ 1
0 Bv(r)Bv(r)′

)−1 ∫ 1
0 Bv(r)dBu·v(r), with Bv(r) and Bu·v(r), as discussed,

independent of each other. Since G−1 ∑T
t=1 Xtu

+
t ⇒ ∫ 1

0 Bv(r)dBu·v(r) + �+
vu[1,2

∫ 1
0 Bv(r)dr]′, the second-order

bias term �+
vu[1,2

∫ 1
0 Bv(r)dr]′ has to be asymptotically removed, which is asymptotically achieved by subtracting

�̂+
vu[T,2

∑T
t=1 xt]′ in the definition of the estimator, to arrive at a zero mean Gaussian mixture limiting distribution.

Details on the mechanics of the additive bias term removal of FM-CPR are contained, for example, in the proof of
Wagner and Hong (2016, Prop. 1).
5Based on the insights of Phillips and Hansen (1990), the appropriate label for FM-CPR should probably be FM-
OLS also in the CPR case. However, the label FM-OLS is reserved in this paper for the “formal” application of the
Phillips and Hansen (1990) estimator in CPRs. For brevity, we do not always carry the adjective “formal” along.
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(∑T
t=1 XtX′

t

)−1 (∑T
t=1 Xty++

t −T�̂+
wu

)
, with y++

t = yt − �Xt�̂
−1
ww�̂wu based on

wt = �Xt = [vt,2xtvt − v2
t ]′. Here, the second component of wt is, obviously, a

nonstationary process. This implies that �̂ww as well as �̂wu are, of course, not
estimators of underlying long-run covariances of stationary processes.

This paper shows that “formal” FM-OLS is robust to being used in CPRs, that
is, β̂++ has the same limiting distribution as the FM-CPR estimator β̂+. Some
aspects of the result are not surprising, in particular from the perspective of Hilbert
space geometry of the limiting experiment. However, the formal proof requires
two results: First, the asymptotic behavior of (properly scaled) formal long-run
covariance matrix estimators like �̂ww and �̂wu needs to be established (Theorem
2.7). Second, a functional central limit theorem involving the products of powers
of integrated processes with first differences of powers of integrated processes has
to be derived (Theorem 2.9). Note that these underlying theorems may serve as
important inputs or blueprints also, for example, for misspecification analysis of
nonlinear cointegrating relationships or for understanding the properties of Sieve
approximations to nonlinear cointegrating relationships, over and above being the
key ingredients for the FM-OLS robustness result presented in this paper.6

To illustrate the key ingredient for the robustness result, let us consider, similarly
to Footnote 4, the term

∑T
t=1 Xtu++

t , with u++
t = ut − w′

t�̂
−1
ww�̂wu, in some detail,

with GW = diag(1,T−1/2) and Ḃv(r) = [1,2Bv(r)]′, but with omitting additive bias
terms that are present in the limit (and whose asymptotic removal is discussed in
detail in Section 2.2) for brevity:

G−1
T∑

t=1

Xtu
++
t = G−1

T∑
t=1

Xtut −
(

G−1
T∑

t=1

Xtw
′
tGW

)(
GW�̂wwGW

)−1
GW�̂wu

⇒
∫ 1

0
Bv(r)dBu(r)−

∫ 1

0
Bv(r)dBv(r)

′
(

�vv

∫ 1

0
Ḃv(r)Ḃv(r)

′dr

)−1

�vu

∫ 1

0
Ḃv(r)

=
∫ 1

0
Bv(r)dBu(r)−

∫ 1

0
Bv(r)[dBv(r)dB2

v(r)]

[
�−1

vv �vu

0

]

=
∫ 1

0
Bv(r)dBu·v(r),

with the convergence results derived, for the general case, in Theorems 2.7 and
2.9. The key algebraic property underlying this result is that (

∫ 1
0 Ḃv(r)Ḃv(r)′dr)−1∫ 1

0 Ḃv(r) = [1,0]′, since the first element of Ḃv(r) = 1. This implies that the

second term in the third line above simplifies to
∫ 1

0 Bv(r)dBv(r)�−1
vv �̂vu and

thus—up to bias terms that are subtracted—identical limits of G−1 ∑T
t=1 Xtu++

t

and G−1 ∑T
t=1 Xtu+

t . Given the discussion concerning the FM transformation
above (in particular, in Footnote 3), this is not surprising from a limit Hilbert
space perspective: Consider, with full details given in Appendix C of the

6Another example where these results have already been fruitfully applied is Stypka and Wagner (2019), who analyze
the asymptotic behavior of Phillips (1987)-type unit root tests applied to polynomials of integrated processes.
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Supplementary Material, the population regression of Bu(r) on Bv(r), that is,
Bu(r) = Bv(r)�[1:2](r) + Bu·v(r). Gaussianity directly implies that �[1:2](r) =
[�−1

vv �vu,0]′ = [�[1](r),0]′. Thus, orthogonalization with respect to Bv(r) suffices
to achieve orthogonality (in fact independence) between the vector of powers
Bv(r) and Bu·v(r). There is, however, one subtle important point: In the case of
polynomials (of degree larger than one), a Hilbert space population regression
coefficient interpretation does not fully apply. To be more precise, in the
quadratic example, the population regression coefficient (here again considered
for fixed 0 < r ≤ 1 and with, by definition, a similar result for the interval
0 ≤ r ≤ 1) is defined as �[1:2](r) = (

E(Bv(r)Bv(r)′)
)−1

E(Bv(r)Bu·v(r)), with

E(Bv(r)Bv(r)′) =
[

r�vv 0
0 3r2�2

vv

]
and E(Bv(r)Bu·v(r)) = [r�vu,0]′. Due to

the algebraic structure of the result of Theorem 2.7, however, the product of
the inverse of �vv

∫ 1
0 Ḃv(r)Ḃv(r)′dr and �vu

∫ 1
0 Ḃv(r), which are both random,

is identical to the Hilbert space population regression coefficient, albeit neither
of the two terms equals the expected value terms defining the Hilbert space
population regression coefficient.7 Thus from a computational perspective, the
“formal” FM-OLS estimator can be interpreted as an estimator whose calculation
contains several asymptotically vanishing terms that are set to zero from the outset
when considering the FM-CPR estimator. Care has to be taken when testing for
cointegration based on the “formal” FM-OLS residuals using, for example, a
Shin (1994)-type test. Using the critical values of Shin (1994) for, to stick to the
example, two integrated regressors leads to asymptotically invalid inference, as
discussed also briefly at the end of Section 2.2. Correct critical values are provided,
for example, in Wagner (2023).

The simulation results, relegated to Appendix F of the Supplementary Material
due to space limitations, indicate that—as expected given the above discussion—
FM-CPR outperforms (“formal”) FM-OLS in finite samples. In the case of large
endogeneity and serial correlation, marked performance differences occur even
for large samples like T = 1,000; despite both estimators having the same limiting
distribution. In these cases, the presence of asymptotically superfluous quantities
in the FM-OLS estimator detrimentally impacts the performance of FM-OLS
compared to FM-CPR even in large samples. The performance advantages occur
in all considered dimensions, that is, estimator bias and RMSE, performance
of parameter hypothesis tests and performance of cointegration tests. In the
case of data with little or no endogeneity and serial correlation, the differences
between the estimators effectively vanish for the larger sample sizes (T = 1,000)
considered. The performance differences are particularly large for Shin (1994)-
type cointegration testing, also when the test statistic based on the FM-OLS
residuals is used in conjunction with the correct critical values.

7Note for completeness that (in the considered example) E(�w̃w̃) = diag(�vv,2�2
vv) and E(�w̃u) = [�vu,0]′, leading

to (E(�w̃w̃))−1
E(�w̃u) also equal to [�−1

vv �vu,0]′ = �[1:2](r).
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The paper is organized as follows: Section 2 presents the setting, the assump-
tions, and the theoretical results. Section 3 briefly summarizes. The proofs of
the main theorems are relegated to Appendix A. Five additional appendices
are available in the Supplementary Material: Appendix B of the Supplementary
Material describes for completeness, and as reference point, the FM-CPR estimator
of Wagner and Hong (2016) for the case of one integrated regressor and its powers
considered in the main text. Appendix C of the Supplementary Material provides
a more detailed discussion of the main ingredients of the robustness result from
an asymptotic perspective. Appendix D of the Supplementary Material contains
the proofs of two auxiliary lemmas. Appendix E of the Supplementary Material
illustrates the necessary modifications of the main arguments of the proofs to cover
the case of multiple integrated regressors and their powers. Appendix F of the
Supplementary Material, as mentioned above, contains a selection of results from
a simulation study assessing the finite sample differences between FM-OLS and
FM-CPR and test statistics based upon them. Additional supplementary material
available upon request provides further simulation results.

We use the following notation: Definitional equality is signified by :=, equality

in distribution by
d=, weak convergence by ⇒ and convergence in probability

by
P→. With OP(1), oP(1), and oa.s.(1), we denote boundedness in probability,

convergence to zero in probability and convergence to zero almost surely. The
integer part of x ∈R is denoted by �x� and a diagonal matrix, with entries specified
throughout, by diag(·). For a vector x = (xi)i=1,...,n, we denote its Euclidean norm

with ‖x‖ := (∑n
i=1 x2

i

)1/2
. For a matrix A, the (i,j) element is denoted with A(i,j), its

jth column is labeled as A(·,j) and 0m×n denotes an (m × n) matrix with all entries
equal to zero. We use E to denote expectation and L to denote the backward-shift
operator, that is, L{xt}t∈Z = {xt−1}t∈Z. The first-difference operator is denoted with
�, that is, � := 1 − L. For two vector-valued continuous semi-martingales X(r),
Y(r), r ∈ [0,1], we define the quadratic covariation 〈X(r),Y(r)〉t

0 := X(t)Y(t)′ −
X(0)Y(0)′ − ∫ t

0 X(r)dY(r)′ − (
∫ t

0 Y(r)dX(r)′)′, t ∈ [0,1]. Brownian motions, with
covariance matrices specified in the context, are denoted by B(r) and standard
Brownian motions by W(r).

2. THEORY

2.1. Setup and Assumptions

We consider a CPR with only one integrated regressor and its powers:8

yt = D′
tδ +X′

tβ +ut, for t = 1, . . . ,T, (1)

8Not all consecutive powers of xt need to be included. In the multiple integrated regressor case, the included powers
of the integrated regressors may differ across integrated regressors. See Appendix E of the Supplementary Material
for a discussion of the required modifications to the mathematical arguments for extending the results of this paper
to the case of multiple integrated regressors and their powers.

What is, however, key for the robustness result for FM-OLS is that the integrated variable xt is itself included in
the regression, see also the discussion and illustrative example in (C.9) in Appendix C of the Supplementary Material.
The initial value x0 is allowed to be any well-defined OP(1) random variable.
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xt = xt−1 + vt, (2)

where yt is a scalar process, Dt ∈ R
q is a deterministic component, xt is a scalar

I(1) process and Xt := [xt,x2
t , . . . ,x

p
t ]′ ∈ R

p. Denoting with Zt := [D′
t,X

′
t]

′ ∈ R
q+p

the stacked regressor vector and with θ := [δ′,β ′]′ ∈ R
q+p the parameter vector,

Equation (1) can be rewritten more compactly as yt = Z′
tθ +ut for t = 1, . . . ,T . The

precise assumptions concerning the deterministic component Dt, the regressor xt,
and the errors ut are given next.

Assumption 2.1. For the deterministic component, there exists a sequence of
q×q scaling matrices GD = GD(T) and a q-dimensional vector of càdlàg functions
D(s), with 0 <

∫ s
0 D(z)D(z)′dz < ∞ for 0 < s ≤ 1, such that for 0 ≤ s ≤ 1 it holds

that limT→∞ T1/2GDD�sT� = D(s).

For the leading case of polynomial time trends, that is, Dt = [1,t,t2, . . . ,tq−1]′,
clearly GD = diag(T−1/2,T−3/2,T−5/2, . . . ,T−(q−1/2)) and D(s) = [1,s,s2, . . . ,

sq−1]′.9

Assumption 2.2. The processes {ut}t∈Z and {�xt}t∈Z = {vt}t∈Z are generated
as ut = Cu(L)ζt = ∑∞

j=0 cujζt−j and �xt = vt = Cv(L)εt = ∑∞
j=0 cvjεt−j, with∑∞

j=0 j|cuj| < ∞,
∑∞

j=0 j|cvj| < ∞ and Cv(1) 
= 0. Furthermore, we assume that
the process {ξ 0

t }t∈Z := {[ζt,εt]′}t∈Z is a sequence of independently and identically
distributed random variables with E(‖ξ 0

t ‖l) < ∞ for some l > max(8,4/(1−2b))

with 0 < b < 1/3 and positive definite covariance matrix �ξ0ξ0 .

The moment conditions and i.i.d. assumption stated in Assumption 2.2 are
stronger than in the corresponding Assumption 1 in Wagner and Hong (2016),
which only requires finite fourth (conditional) moments in a martingale difference
sequence framework. The strengthening allows us to draw upon some results
of Kasparis (2008).10 For univariate {xt}t∈Z, the assumption Cv(1) 
= 0 excludes
stationary {xt}t∈Z and has to be modified in the multivariate case to det(Cv(1)) 
=
0, that is, in the multivariate case (as, e. g., in the discussion in Appendix E
of the Supplementary Material), the vector process {xt}t∈Z is assumed to be
non-cointegrated. For long-run covariance estimation, we posit the following
assumptions concerning kernel and bandwidth.

Assumption 2.3. The kernel function k(·) satisfies:

1. k(0) = 1, k(·) is continuous at 0 and k̄(0) := supx≥0 |k(x)| < ∞.
2.

∫ ∞
0 k̄(x)dx < ∞, where k̄(x) := supy≥x |k(y)|.

9In the EKC literature, the deterministic component typically consists of an intercept and a linear trend, with the
latter intended to capture autonomous energy efficiency increases.
10Note that Kasparis (2008, Assumption 1(b), p. 1376) posits the condition l > min(8,4/(1 − 2b)). In the proof of
his Lemma A1, however, at different places moments of order 4/(1−2b) (p. 1391) and order 8 (p. 1395) are needed.
Thus, we think that the minimum should be replaced by the maximum. Since we rely upon similar arguments in the
proof of our Lemma A.3, we require moments of order max(8,4/(1−2b)).
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Assumption 2.4. The bandwidth parameter MT → ∞ fulfills MT = O(Tb), for
the same parameter b as in Assumption 2.2.

The bandwidth Assumption 2.4 implies limT→∞(M−1
T +T−1/3MT) = 0, whereas

Jansson (2002) assumes limT→∞(M−1
T + T−1/2MT) = 0, which corresponds to

MT = O(Tb), with 0 < b < 1/2. Thus, we require a tighter upper bound on the
bandwidth. This stems from the fact that in the asymptotic analysis of the “formal”
FM-OLS estimator kernel “long-run covariance” estimators involving (properly
scaled) powers of integrated processes need to be analyzed. To have uniform
notation for kernel-weighted sums irrespective of the properties of the sequences
considered, we use the following definition.

Definition 2.5. For two sequences {at}t=1,...,T and {bt}t=1,...,T , we define11

�̂ab :=
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

atb
′
t+h, (3)

neglecting the dependence on k(·), MT and the sample range 1, . . . ,T for brevity.
Furthermore, �̂ab := �̂ab + �̂′

ab − �̂ab, with �̂ab := 1
T

∑T
t=1 atb′

t. Based on these

quantities, we define �̂+
ab := �̂ab − �̂aa�̂

−1
aa �̂ab and ω̂a·b := �̂aa − �̂ab�̂

−1
bb �̂ba.

In case {at}t∈Z and {bt}t∈Z are jointly stationary processes with finite half long-
run covariance matrix �ab := ∑∞

h=0E(a0b′
h), then under appropriate assumptions

�̂ab is a consistent estimator of �ab, with a similar result holding for �ab :=
E(a0b′

0) and a fortiori for �ab := ∑∞
h=−∞E(a0b′

h).

Remark 2.6. Note that in our definition of �̂ab in (3) we use the bandwidth
MT (like, e. g., Phillips, 1995) rather than T − 1 (like, e. g., Jansson, 2002) as
upper bound of the summation over the index h. For truncated kernels, with
k(x) = 0 for |x| > 1, this is of course inconsequential. It can also be shown
(based on, e. g., Jansson, 2002) that for “standard” long-run covariance estimation
problems, consistency is not affected by the summation index choice, MT or T −1,
for untruncated kernels like the Quadratic Spectral kernel either. In our setting,
however, where we analyze the asymptotic behavior of �̂ quantities for (properly
scaled) nonstationary processes in Theorem 2.7, the summation bound is important
and our proof of Theorem 2.7 hinges upon summation only up to MT . More
specifically, we rely upon the summation bound MT in the proof of Lemma A.3,
which is related to Kasparis (2008, Lem. A1, pp. 1394–1396), who also uses MT

(in a slightly different context).

Assumption 2.2 implies that the process {ξt}t∈Z := {[ut,vt]′}t∈Z fulfills a func-
tional central limit theorem of the form

11The standard notation for half long-run covariance matrices is � and, therefore, we also use this letter. We are
confident that no confusion with the first difference operator, also labeled �, arises.
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1

T1/2

�rT�∑
t=1

ξt ⇒ B(r) =
[

Bu(r)
Bv(r)

]
= �

1/2
ξξ W(r), r ∈ [0,1], (4)

with the covariance matrix �ξξ > 0 of B(r) given by the long-run covariance matrix
of {ξt}t∈Z, that is,

�ξξ :=
[

�uu �uv

�vu �vv

]
=

∞∑
h=−∞

E(ξ0ξ
′
h). (5)

Later, we will also need the corresponding half long-run covariance matrix �ξξ :=∑∞
h=0E(ξ0ξ

′
h), partitioned similarly to �ξξ . As is well known, FM-type estimation

requires estimates of the half long-run and long-run covariances � and �. With
� = �+�′ −� holding by definition, we focus below on the estimation of � and
�. For actual calculations, the unobserved errors ut are furthermore replaced by
the OLS residuals ût from (1), that is, by ût := yt −Z′

t θ̂ with θ̂ := (Z′Z)−1Z′y. This
defines ξ̂t := [ût,vt]′.

2.2. FM-OLS in Cointegrating Polynomial Regressions

Performing “formal” FM-OLS estimation à la Phillips and Hansen (1990) of θ in
(1) amounts to (mis-)treating Xt = [xt, . . . ,x

p
t ]′ as p (non-cointegrated) integrated

regressors—rather than, as would be correct, as p consecutive powers of a single
integrated regressor. This “interpretation” implies that, instead of (1) and (2), one
considers:

yt = D′
tδ +X′

tβ +ut,

Xt = Xt−1 +wt,

which defines wt := �Xt as

wt =

⎡
⎢⎢⎢⎢⎢⎢⎣

�xt

�x2
t

�x3
t

...
�xp

t

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

vt

2xtvt − v2
t

3x2
t vt −3xtv2

t + v3
t

...

−∑p
k=1

(p
k

)
xp−k

t (−vt)
k

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

vt

2xtvt − v2
t

3x2
t vt −3xtv2

t
...

pxp−1
t vt − p(p−1)

2 xp−2
t v2

t

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6)

with � indicating that, for the subsequent asymptotic analysis, only the first two
terms in the (binomial) expansion of �xi

t, for i ≥ 2, are relevant; to be precise, only
the first term for Theorem 2.7 and the first two for Theorem 2.9.

The “formal” FM-OLS estimator of θ is defined as

θ̂++ := (Z′Z)−1(Z′y++ −A∗∗), (7)

with y++ := [y++
1 , . . . ,y++

T ]′, where y++
t := yt − �X′

t�̂
−1
ww�̂wu = yt − w′

t�̂
−1
ww�̂wu,

Z := [Z1, . . . ,ZT ]′, Zt := [D′
t,X

′
t]

′ and
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A∗∗ :=
[

0q×1

T�̂+
wu

]
=

[
0q×1

T(�̂wu − �̂ww�̂−1
ww�̂wu)

]
. (8)

With wt containing products of powers of the integrated process xt and of vt, �̂ww,
�̂wu, �̂ww, �̂wu, and �̂+

wu have to be interpreted in the sense of Definition 2.5.
Deriving the asymptotic distribution of θ̂++ defined in (7) crucially rests upon

understanding the asymptotic behavior of two quantities: (i) of the properly scaled
long-run covariance estimators, for example, �̂ww, derived in Theorem 2.7, and
(ii) of the properly scaled product Z′y++, respectively, after centering the properly
scaled product Z′u++, with u++ := [u++

1 , . . . ,u++
T ]′ and u++

t := ut − w′
t�̂

−1
ww�̂wu,

derived in Theorem 2.9.
The representation of wt in (6) indicates that the (re)scaling required to establish

convergence will require considering the process w̃t :=
[

vt,
�x2

t
T1/2 , . . . ,

�xp
t

T
p−1

2

]′
, that

is, w̃t = GWwt, with GW := diag(1,T−1/2, . . . ,T−(p−1)/2) instead of wt. Define
η̂t := [ût,w̃′

t]
′, with ût the OLS residuals from (1). The first theorem establishes

the asymptotic properties of the (formal) long-run covariance estimators.

Theorem 2.7. Let the data be generated by (1) and (2) under Assumptions 2.1
and 2.2 and let long-run covariance estimation be performed under Assumptions
2.3 and 2.4. Then, it holds for T → ∞ that

�̂ηη :=
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

η̂tη̂
′
t+h ⇒ �ηη :=

[
�uu �uv

∫ 1
0 Ḃv(r)′dr

�vu
∫ 1

0 Ḃv(r)dr �vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr

]
, (9)

with Ḃv(r) :=
[
1,2Bv(r), . . . ,pBp−1

v (r)
]′

. Furthermore, it holds for T → ∞ that

�̂ηη := 1

T

T∑
t=1

η̂tη̂
′
t ⇒ �ηη :=

[
�uu �uv

∫ 1
0 Ḃv(r)′dr

�vu
∫ 1

0 Ḃv(r)dr �vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr

]
. (10)

Combining the above two results leads to �̂ηη := �̂ηη +�̂′
ηη −�̂ηη ⇒ �ηη +�′

ηη −
�ηη =: �ηη, with

�ηη =
[

�uu �uv
∫ 1

0 Ḃv(r)′dr
�vu

∫ 1
0 Ḃv(r)dr �vv

∫ 1
0 Ḃv(r)Ḃv(r)′dr

]
= 〈B(r),B(r)〉1

0, (11)

where B(r) := [Bu(r),Bv(r)′]′ and Bv(r) := [Bv(r),B2
v(r), . . . ,B

p
v(r)]′.

Note that, by definition, the upper 2×2 blocks of these limits correspond to the
half long-run covariance matrix, the covariance matrix and the long-run covariance
matrix of {ξt}t∈Z.12

12Considering the re-scaled process w̃t implies that the formal (half) long-run covariance estimators, for example,
�̂ηη , converge without further scaling. If one wants to instead highlight the necessary re-scaling of the formal long-run

https://doi.org/10.1017/S0266466624000033 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000033


CPRS: ROBUSTNESS OF FM-OLS 11

Remark 2.8. The kernel-weighted sum result established in Theorem 2.7 is
related to an early result of Phillips (1991b). Upon some approximations detailed
in the proof and considering here the case of several integrated regressors (see
Appendix E of the Supplementary Material for details and notation), a typi-

cal element of �̂w̃w̃ is given by
∑MT

h=0 k
(

h
MT

)
1
T

∑T−h
t=1

dkx
dk−1
kt

T(dk−1)/2

dlx
dl−1
l,t+h

T(dl−1)/2 vktvl,t+h +
oP(1) ⇒ �vkvl dkdl

∫ 1
0 Bdk−1

vk (r)Bdl−1
vl (r)dr, with xkt and xlt two integrated regressors.

Phillips (1991b) considers spectral estimation of cointegrating linear relation-
ships. The spectral estimator, based on (formal) spectral density estimators at
frequency zero, involves kernel-weighted sums of products of integrated pro-
cesses as well as of products of integrated and stationary processes, see (A.
11) to (A. 13) in the appendix of Phillips (1991b). Using our notation and
considering half long-run covariance estimation, Phillips (1991b) shows that∑MT

h=0 k
(

h
MT

)
1
T

∑T−h
t=1

xkt
T1/2

xl,t+h

T1/2 ⇒ ∫ 1
0 k(r)dr

∫ 1
0 Bk(r)Bl(r)dr.

To derive the asymptotic distribution of properly scaled Z′u++, define the
scaling matrix G := diag(GD,GX) with GD as in Assumption 2.1 and GX :=
diag(T−1,T−3/2, . . . ,T−(p+1)/2):

GZ′u++ = GZ′(u−W�̂−1
ww�̂wu) (12)

= GZ′u−GZ′W�̂−1
ww�̂wu

= GZ′u−GZ′WGWG−1
W �̂−1

wwG−1
W GW�̂wu

= GZ′u−GZ′W̃�̂−1
w̃w̃�̂w̃u,

with u := [u1, . . . ,uT ]′, W := [w1, . . . ,wT ]′, and W̃ = [w̃1, . . . ,w̃T ]′ := WGW . The
asymptotic behavior of GZ′u is well understood (see, e. g., (A.3) in the proof
of Proposition 1 in Wagner and Hong, 2016). Since the asymptotic behavior of
�̂w̃w̃ and �̂w̃u has been derived in Theorem 2.7, the only term that remains to be
investigated is GZ′WGW = GZ′W̃.13

Theorem 2.9. Under Assumptions 2.1 and 2.2, it holds for T → ∞ that

GZ′W̃ ⇒
∫ 1

0
J(r)dBv(r)

′ +
[

0q×p

�vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr

]
(13)

=
∫ 1

0
J(r)dBv(r)

′ +
[

0q×p

�vv�
−1
vv 〈Bv(r),Bv(r)〉1

0

]
,

with J(r) := [D(r)′,Bv(r)′]′.

covariance estimators by considering wt itself, the first result of Theorem 2.7, for example, can trivially be rewritten
by defining ξ̂∗

t := [ût,w′
t]

′ and HW := diag(1,GW ). Then it holds that HW �̂ξ∗ξ∗ HW ⇒ �ηη .
13Note that the asymptotic behavior of the first column of the result in Theorem 2.9, that is, the limit of GZ′v, with
v := [v1, . . . ,vT ]′, corresponding to the first component vt of w̃t (similar to the limit of GZ′u), is also already known,
compare, for example, Wagner and Hong (2016, p. 1312).
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Remark 2.10. The above result generalizes the usual functional central limit
theorem applied in unit root and cointegration analysis, for example, 1

T

∑T
t=1 xtvt ⇒∫ 1

0 Bv(r)dBv(r)+�vv in cointegrating linear regressions, in two ways. The first is
the consideration of nonlinear functions—in the present paper polynomials—of
integrated processes as integrands. Nonlinear functions of integrated processes as
integrands are by now, of course, standard in the nonlinear cointegrating regression
literature (see, e. g., the references in Wagner and Hong, 2016). The second
generalization is much less common in the unit root and cointegration context:
The integrator, usually dBv(r), is replaced (in this paper) by the vector composed of
dBj

v(r), j = 1, . . . ,p, that is, by dBv(r) = [dBv(r),dB2
v(r), . . . ,dBp

v(r)]′. Since Bv(r)
is a continuous semi-martingale, stochastic integration with respect to dBv(r) is
well defined.14 The proof of Theorem 2.9 shows that this result follows from the
fact that, asymptotically, only the first two terms in the binomial representation
of wt given in (6) matter. These two terms are related asymptotically to the first
two formal derivative vectors of Bv(r), see (A.11)–(A.13) in Appendix A, which
allows deriving the result using Itô’s Lemma. The arguments are also illustrated in
Appendix C of the Supplementary Material in (C.6) and (C.7).

We have now collected the necessary ingredients to establish the robustness
result for the “formal” FM-OLS estimator θ̂++.

Proposition 2.11. Let the data be generated by (1) under Assumptions 2.1
and 2.2. Furthermore, let long-run covariance estimation be performed under
Assumptions 2.3 and 2.4. Then, it holds for T → ∞ that

G−1(θ̂++ − θ) ⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r), (14)

with Bu·v(r) := Bu(r) − Bv(r)�−1
vv �vu a Brownian motion with variance ωu·v :=

�uu −�uv�
−1
vv �vu. Therefore, the FM-OLS estimator and the FM-CPR estimator

of Wagner and Hong (2016), see (B.3) in Appendix B of the Supplementary
Material, have the same limiting distribution.

Remark 2.12. Two aspects are worth mentioning in relation to the above result:
First, to establish robustness of FM-OLS, a weaker version of the result in Theorem
2.9 would be sufficient, that is, it would be sufficient to derive the limiting
distribution of the first column of GZ′W̃ and show that all other columns are OP(1).

This stems from the fact that �̂−1
w̃w̃�̂w̃u

P→ [�−1
vv �vu,0′

p−1]′. The full version of the
result of Theorem 2.9 is, for example, needed in Appendix C of the Supplementary
Material, where we consider FM-OLS in an example of a CPR where the regressor
xt itself is not included and FM-OLS does not lead to a zero mean Gaussian mixture

14Thus, the generalization consists, for polynomials in this paper and ignoring the additive bias term, in arriving
at

∫ 1
0 F(Bv(r))dF(Bv(r)) instead of, as usual in the cointegration literature, at

∫ 1
0 F(Bv(r))dBv(r), with F(Bv(r)) =

[Bv(r), . . . ,B
p
v (r)]′ = Bv(r).
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limiting distribution, see (C.9). Second, for the additive correction term A∗∗ defined
in (8), it holds even when xt is not included as regressor and thus Ḃv(r) does not
contain the element 1, that GA∗+ ⇒ �+

vu[01×q,
∫ 1

0 Ḃv(r)′dr]′.

Upon establishing that the scalar formal long-run variance estimator ω̂u·w :=
�̂uu − �̂uw�̂−1

ww�̂wu also converges to ωu·v, included for brevity in the proof of
Proposition 2.11, the result in Proposition 2.11 implies that the Wald-type test
statistic (compare Proposition 2 of Wagner and Hong, 2016) for the null hypothesis
Rθ = r, that is,15

T++
W :=

(
Rθ̂++ − r

)′ [
ω̂u·wR(Z′Z)−1R′]−1

(
Rθ̂++ − r

)′
, (15)

is (under the constraints on R discussed in Wagner and Hong, 2016) asymptotically
chi-square distributed under the null hypothesis. The result also implies that the
Shin (1994)-type test for the null hypothesis of cointegration, that is,

CT++ := 1

Tω̂u·w

T∑
t=1

⎛
⎝ 1

T1/2

t∑
j=1

û++
j

⎞
⎠

2

, (16)

with û++
t := yt − Z′

t θ̂
++, converges under the null hypothesis to the limiting

distribution given in Wagner and Hong (2016, Prop. 5).
When using the Shin (1994)-type test statistic CT++ one has to be careful to

use the correct critical values corresponding to the (specification-dependent) limit
process (as discussed and tabulated in Wagner, 2023), see, for example, (B.5) and
(B.6) in Appendix B of the Supplementary Material. In relation to the quadratic
example without deterministic components discussed in the introduction, the dif-
ferences in the critical values stem from considering either JW(r) = [W1(r),W2(r)]′
with two independent standard Brownian motions W1(r) and W2(r), leading to the
(for the CPR case) incorrect Shin (1994) critical values, or JW(r) = [W(r),W(r)2]′
with standard Brownian motion W(r), leading to the correct Wagner (2023) critical
values. Table 1 (see the upper left block for Dt = ∅ and p = 2 for the example from
the introduction) illustrates that these differences become the more pronounced the
more complex the CPR model is. Thus, using the FM-OLS residuals in conjunction
with the Shin (1994) critical values leads to invalid inference with respect to the
null hypothesis of cointegration even asymptotically.

3. SUMMARY

The paper has shown that the textbook FM-OLS estimator of Phillips and Hansen
(1990) is robust to being used in CPRs. Using FM-OLS in CPRs refers to a
widespread practice in the empirical literature to treat all integrated variables and
their powers, incorrectly, as a vector of integrated variables and to use textbook

15An analogous result also holds for the LM-type test statistic considered in Wagner and Hong (2016, Prop. 4) in the
context of specification testing.
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Table 1. Critical values for the Shin (1994, Table 1) test for p integrated
regressors and for the CT test for cointegration in the single integrated regressor
CPR model of degree p from Wagner (2023, Table 6). The three block-columns
correspond to the cases without deterministic component (Dt = ∅), with intercept
only (Dt = 1) and with intercept and linear trend (Dt = [1,t]′).

Dt = ∅ Dt = 1 Dt = [1,t]′

α 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Two integrated regressors/quadratic specification (p = 2)

Shin 0.624 0.895 1.623 0.163 0.221 0.380 0.081 0.101 0.150

CT 0.664 0.947 1.712 0.213 0.293 0.504 0.086 0.106 0.157

Panel B: Three integrated regressors/cubic specification (p = 3)

Shin 0.475 0.682 1.305 0.121 0.159 0.271 0.069 0.085 0.126

CT 0.561 0.804 1.473 0.204 0.281 0.490 0.081 0.101 0.150

FM-OLS accordingly. Robustness means that this “formal” FM-OLS practice
leads to a zero mean Gaussian mixture limiting distribution that coincides with
the limiting distribution of the Wagner and Hong (2016) application of the FM
estimation principle to the CPR case.

From a limit Hilbert space geometry perspective, this result is not surprising,
since in order to arrive at a zero mean Gaussian mixture limiting distribution, all
that is required is to ensure a zero long-run covariance between the (modified)
errors and the errors generating the integrated regressors. In the words of Phillips
(1991a) “...what is important in estimation and inference in cointegrated systems,
at least as far as ensuring the applicability of local asymptotic mixed normality
theory, is not the precise form of the specification but the information concerning
the presence of unit roots that is employed in estimation.” Nevertheless, to put
this observation to work in the CPR context requires to establish two novel limit
results. Theorem 2.7 establishes the asymptotic behavior of kernel-weighted sums
involving first differences of powers of integrated processes. Theorem 2.9 derives
a functional central limit theorem involving products of powers of integrated
processes with first differences of powers of integrated processes. The combination
of the two results, where in particular the algebraic structure of the result of
Theorem 2.7 that mimics the limit Hilbert space projection geometry is key, leads
to the robustness result for the “formal” FM-OLS estimator.

APPENDIX A. Proofs of the Main Results

The proofs of Theorems 2.7 and 2.9 rely upon three lemmas that we state first: Lemma A.1
is identical to Kasparis (2008, Lem. A1(i)) and Lemmas A.2 and A.3 draw upon some ideas
used in the proof of Kasparis (2008, Lem. A1). Appendix D of the Supplementary Material
contains proofs of Lemmas A.2 and A.3.
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Lemma A.1. Under Assumption 2.2, it holds for 0 ≤ b < 1/3 that

sup
r∈[0,1]

T−1/2
Tb∑

h=0

|v�rT�+h| = oa.s.(1). (A.1)

Lemma A.2. Under Assumptions 2.2–2.4, it holds for all integers 0 ≤ p and 1 ≤ q that∣∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

(
xt

T1/2

)p [(
xt+h

T1/2

)q
−

(
xt

T1/2

)q]
vtvt+h

∣∣∣∣∣∣ = oP(1). (A.2)

Lemma A.3. Under Assumptions 2.2–2.4, it holds for all integers 0 ≤ p that∣∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

(
xt

T1/2

)p (
vtvt+h −E[vtvt+h]

)∣∣∣∣∣∣ = oP(1). (A.3)

Proof of Theorem 2.7. The proof proceeds in two steps: First, the results are shown for
the infeasible estimators �̃ηη and �̃ηη that are computed from ηt := [ut,w̃′

t]
′ rather than

from η̂t. Thereafter, it will be shown that the results continue to hold when ut is replaced by
ût. Clearly, it suffices to discuss the result for �̂ηη, the result for �̂ηη follows analogously,
but more easily, as it deals with the h = 0 term only.

First, the (1,1) element of �̃ηη is given by
(
�̃ηη

)
(1,1)

= ∑MT
h=0 k

(
h

MT

)
1
T

∑T−h
t=1 utut+h.

For the first and second columns (and rows), that is, for:

(
�̃ηη

)
(i+1,1)

=
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

�xi
t

T
i−1

2

ut+h,

(
�̃ηη

)
(i+1,2)

=
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

�xi
t

T
i−1

2

vt+h,

for i = 1, . . . ,p, exactly the same arguments apply due to the assumptions on {ut}t∈Z and
{vt}t∈Z. Therefore, it is sufficient in the subsequent discussion to consider the lower right

p×p block of the estimator �̃ηη, which is given by �̃w̃w̃ = ∑MT
h=0 k

(
h

MT

)
1
T

∑T−h
t=1 w̃tw̃′

t+h.

Note that

�xi
t

T(i−1)/2
= − 1

T(i−1)/2

i∑
k=1

(
i

k

)
xi−k

t (−vt)
k

= i

(
xt

T1/2

)i−1
vt −

i∑
k=2

(
i

k

)
(−1)k

(
xt

T1/2

)i−k (
vt

T1/2

)k−2 v2
t

T1/2
.

Lemma A.1 shows that supr∈[0,1] T−1/2v�rT� = oa.s.(1). Additionally, supr∈[0,1] T−1/2

|x�rT�| ≤ C + oa.s.(1). Convergence of E[T−1/2v2�rT�] = T−1/2�vv → 0 for all r ∈
[0,1] implies that �xi

t
T(i−1)/2 = i

(
xt

T1/2

)i−1
vt + OP(T−1/2). The kernel is bounded and

MT = o(T1/3) by assumption, hence �̃w̃w̃ = ∑MT
h=0 k

(
h

MT

)
1
T

∑T−h
t=1 Ẋt,T Ẋ′

t+h,T vtvt+h +
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oP(1), where Ẋt,T := GW Ẋt, with Ẋt := [1, . . . ,pxp−1
t ]′. Clearly, the upper left ele-

ment of the above term converges in probability to �vv. Lemma A.2 implies that

�̃w̃w̃ = ∑MT
h=0 k

(
h

MT

)
1
T

∑T−h
t=1 Ẋt,T Ẋ′

t,T vtvt+h + oP(1) and Lemma A.3 establishes

that �̃w̃w̃ = ∑MT
h=0 k

(
h

MT

)
E[v0vh] 1

T
∑T−h

t=1 Ẋt,T Ẋ′
t,T + oP(1). Next, similar arguments

as in the proof of Jansson (2002, Lem. 6) imply that 1
T

∑MT
h=0

∣∣∣k(
h

MT

)∣∣∣ |E[v0vh]|h =
o(1). In combination with (D.1) in Appendix D of the Supplementary Material,∑MT

h=0 k
(

h
MT

)
E[v0vh] 1

T
∑T

t=T−h+1 Ẋt,T Ẋ′
t,T = oP(1) can be established. From this,

�̃w̃w̃ =
(∑MT

h=0 k
(

h
MT

)
E[v0vh]

)(
1
T

∑T
t=1 Ẋt,T Ẋ′

t,T

)
+ oP(1) follows. Convergence of

the first term follows immediately, that is,
∑MT

h=0 k
(

h
MT

)
E[v0vh] → �vv. Using Slutsky’s

Theorem this establishes that �̃w̃w̃ ⇒ �vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr.
It remains to show that the result can be expressed in terms of quadratic covariation.

Given that the elements of the vector process B(r) are powers of Brownian motions, the
process is a continuous semi-martingale and thus its quadratic covariation is well defined.
We partition its quadratic covariation matrix as follows:

〈B(r),B(r)〉1
0 =

[ 〈Bu(r),Bu(r)〉1
0 〈Bu(r),Bv(r)〉1

0

〈Bv(r),Bu(r)〉1
0 〈Bv(r),Bv(r)〉1

0

]
. (A.4)

Due to symmetry, only three blocks have to be considered. It is well known (almost
by definition) that 〈Bu(r),Bu(r)〉1

0 = �uu and it thus remains to consider the blocks
involving Bv(r). We start with the lower diagonal block of �ηη, shown above to equal

�vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr. The elements of this matrix are given by

�vvij
∫ 1

0
Bi+j−2

v (r)dr, i,j = 1, . . . ,p. (A.5)

Now consider the definition of the quadratic covariation given at the end of the introduction,
that is,

〈Bv(r),Bv(r)〉1
0 = Bv(1)Bv(1)′ −

∫ 1

0
Bv(r)dBv(r)

′ −
(∫ 1

0
Bv(r)dBv(r)

′
)′

. (A.6)

Using Itô’s Lemma, for example, in the formulation given in Le Gall (2016, Thm. 5.10, p.
113), establishes Bv(r) = ∫ r

0 Ḃv(s)dBv(s)+ �vv
2

∫ r
0 B̈v(s)ds, with B̈v(r) := [0,2, . . . ,p(p −

1)Bp−2
v (r)]′. Substituting this into (A.6) leads to

〈Bv(r),Bv(r)〉1
0 = Bv(1) Bv(1)′ −

∫ 1

0

(
Bv(r)Ḃv(r)

′ + Ḃv(r)Bv(r)
′)dBv(r) (A.7)

− �vv

2

∫ 1

0

(
Bv(r) B̈v(r)

′ + B̈v(r)Bv(r)
′)dr.

The (i,j) element, i,j = 1, . . . ,p, of (A.7) is given by

Bi+j
v (1)− (i+ j)

∫ 1

0
Bi+j−1

v (r)dBv(r)− �vv

2
(i(i−1)+ j(j−1))

∫ 1

0
Bi+j−2

v (r)dr. (A.8)
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Using Itô’s Lemma once again, that is, Bi+j
v (1)−(i+ j)

∫ 1
0 Bi+j−1

v (r)dBv(r) = �vv
2 (i+ j)(i+

j−1)
∫ 1

0 Bi+j−2
v (r)dr, shows, after simplifying terms, equality of the (i,j) elements in (A.5)

and (A.8).
Now consider the off-diagonal block to show equality of �uv

∫ 1
0 Ḃv(r)′dr and

〈Bu(r),Bv(r)〉1
0. The definition of Bu·v(r) implies 〈Bu(r),Bv(r)〉1

0 = 〈Bu·v(r),Bv(r)〉1
0 +

〈Bv(r),Bv(r)〉1
0�−1

vv �vu, with the first term on the right-hand side above shown to be zero
below. For the second term, the result now immediately follows from above since Bv(r)

is the first element of Bv(r), thus 〈Bv(r),Bv(r)〉1
0�−1

vv �vu = �vv
∫ 1

0 Ḃv(r)′dr�−1
vv �vu =

�vu
∫ 1

0 Ḃv(r)′dr. To complete the proof, it remains to show that 〈Bu·v(r),Bv(r)〉1
0 = 0.

Consider the ith element, i = 1, . . . ,p, using Itô’s Lemma to arrive at the second equality
below:

〈Bu·v(r),Bi
v(r)〉1

0 = Bu·v(1)Bi
v(1)−

∫ 1

0
Bu·v(r)dBi

v(r)−
∫ 1

0
Bi

v(r)dBu·v(r) (A.9)

= Bu·v(1)Bi
v(1)− i

∫ 1

0
Bu·v(r)Bi−1

v (r)dBv(r)

− �vv

2
i(i−1)

∫ 1

0
Bu·v(r)Bi−2

v (r)dr −
∫ 1

0
Bi

v(r)dBu·v(r).

Finally, using once again Itô’s Lemma in the formulation of Le Gall (2016, Thm. 5.10, p.
113), with F(x,y) = xyi and the fact that the quadratic covariation of independent Brownian
motions is zero (see, e.g., Proposition 4.16, p. 88 in Le Gall, 2016) show that Bu·v(1)Bi

v(1) =∫ 1
0 Bi

v(r)dBu·v(r) + i
∫ 1

0 Bu·v(r)Bi−1
v (r)dBv(r) + �vv

2 i(i − 1)
∫ 1

0 Bu·v(r)Bi−2
v (r)dr, which

upon combining terms establishes the postulated zero quadratic covariation.
This finishes the proof for the infeasible estimators and it remains to show that the results

continue to hold with ût in place of ut. The OLS residuals are given by ût = ut − Z′
t(θ̂ −

θ), with θ̂ denoting the OLS estimator of the parameters in (1). In analogy to the above
derivations, consider the term

�̂uw̃ =
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ûtw̃t+h

=
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

utw̃t+h −
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z′
t(θ̂ − θ)w̃t+h.

The first term has already been shown to converge in distribution to �uw̃. Therefore, it
remains to show that the second term is oP(1). Similar arguments as above imply that

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z′
t(θ̂ − θ)w̃t+h (A.10)

= (θ̂ − θ)′G−1
MT∑
h=0

k

(
h

MT

)
1

T3/2

T−h∑
t=1

T1/2GZtẊt+h,T vt+h +oP(1)

= (θ̂ − θ)′G−1
MT∑
h=0

k

(
h

MT

)
1

T3/2

T∑
t=1

T1/2GZtẊt,T vt +oP(1),
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with G := diag(GD,GX), with GD as in Assumption 2.1 and GX := diag(T−1,T−3/2, . . . ,

T−(p+1)/2). Since G(θ̂ − θ) = OP(1) and
MT∑
h=0

k
(

h
MT

)
1

T3/2

∑T
t=1 T1/2GZtẊt,T vt =

OP(T−1), the quantity given in (A.10) is oP(1). This implies that �̂uw̃ =
MT∑
h=0

k
(

h
MT

)
1
T

∑T−h
t=1 utw̃t+h +oP(1), from which the claim follows. �

Proof of Theorem 2.9. Consider GX
T∑

t=1
Xt�X′

tGW and define Ẍt := [0,2, . . . ,p(p −

1)xp−2
t ]′. Using this notation, it is straightforward to show that

GX

T∑
t=1

Xt�X′
tGW = GX

T∑
t=1

XtẊ
′
tvtGW −GX

T∑
t=1

XtẌ
′
t
v2

t
2

GW +oP(1). (A.11)

Invoking similar arguments as in Wagner and Hong (2016, Prop. 1), formulated slightly
differently here to more directly be able to use Itô’s Lemma below, shows for the first term
on the right-hand side above that

GX

T∑
t=1

XtẊ
′
tvtGW ⇒

∫ 1

0
Bv(r)Ḃv(r)

′dBv(r)

+�vv

∫ 1

0
Ḃv(r)Ḃv(r)

′dr +�vv

∫ 1

0
Bv(r)B̈v(r)

′dr. (A.12)

Using Lemma A.3 and the continuous mapping theorem, it moreover follows that

GX

T∑
t=1

XtẌ
′
tv

2
t GW ⇒ �vv

∫ 1

0
Bv(r)B̈v(r)

′dr. (A.13)

Combining (A.12) and (A.13) leads to

GX

T∑
t=1

Xt�X′
tGW ⇒

∫ 1

0
Bv(r)Ḃv(r)

′dBv(r)+ �vv

2

∫ 1

0
Bv(r)B̈v(r)

′dr (A.14)

+�vv

∫ 1

0
Ḃv(r)Ḃv(r)

′dr.

Using Itô’s Lemma shows that the sum of the first two terms on the right-hand side of (A.14)
equals

∫ 1
0 Bv(r)dBv(r)′. With respect to the third term, Theorem 2.7 shows that it is equal

to 〈Bv(r),Bv(r)〉1
0 up to the constant �vv�

−1
vv .

It remains to consider GX
T∑

t=1
Dt�X′

tGW ⇒ ∫ 1
0 D(r)Ḃv(r)′dBv(r) + �vv

2

∫ 1
0 D(r)

B̈v(r)′dr = ∫ 1
0 D(r)dBv(r)′. The convergence result follows from similar considerations

as above and the equality follows again from Itô’s Lemma. �
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Proof of Proposition 2.11. Consider the two terms given in the last line of (12). The
proof of Wagner and Hong (2016, Prop. 1) establishes that

GZ′u ⇒
∫ 1

0
J(r)dBu(r)+�vu

[
0q×1∫ 1

0 Ḃv(r)dr

]
. (A.15)

The asymptotic behavior of GZ′W̃ has been established in Theorem 2.9. The first column
of this limit, corresponding to the first component vt of w̃t, is given by

GZ′v ⇒
∫ 1

0
J(r)dBv(r)+�vv

[
0q×1∫ 1

0 Ḃv(r)dr

]
, (A.16)

which is also a well-known result, compare again Wagner and Hong (2016, Prop. 1).
It is important to note that only the first column of (the limit of) GZ′v is required (and

it would be sufficient to show that the other columns are OP(1)) to establish the robustness
result. This follows from the structure of the limit of �̂−1

w̃w̃�̂w̃u, which follows directly from

the results obtained in Theorem 2.7, that is, �̂w̃w̃ ⇒ �vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr and �̂w̃u ⇒
�vu

∫ 1
0 Ḃv(r)dr. With, as in the considered case, the first element of Ḃv(r) equal to 1, it

follows that the first column of
∫ 1

0 Ḃv(r)Ḃv(r)′dr is equal to
∫ 1

0 Ḃv(r)dr, which immediately
implies that

�̂−1
w̃w̃�̂w̃u

P→
[

�−1
vv �vu

0(p−1)×1

]
. (A.17)

Combining Theorem 2.9 with (A.17) yields

GZ′W̃�̂−1
w̃w̃�̂w̃u ⇒

(∫ 1

0
J(r)dBv(r)

′ +
[

0q×p

�vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr

])
�−1

vv �vu

[
1

0(p−1)×1

]

=
∫ 1

0
J(r)dBv(r)�

−1
vv �vu +�vv�

−1
vv �vu

[
0q×1∫ 1

0 Ḃv(r)dr

]
. (A.18)

It remains to consider

GA∗∗ =
[

0q×1

�̂+
w̃u

]
=

[
0q×1

�̂w̃u − �̂w̃w̃�̂1
w̃w̃�̂w̃u

]
(A.19)

⇒
[

0q×1

�vu
∫ 1

0 Ḃv(r)dr −�vv
∫ 1

0 Ḃv(r)Ḃv(r)′dr
(
�vv

∫ 1
0 Ḃv(r)Ḃv(r)′dr

)−1
�vu

∫ 1
0 Ḃv(r)dr

]

=
[

0q×1(
�vu −�vv�

−1
vv �vu

)∫ 1
0 Ḃv(r)dr

]
= �+

vu

[
0q×1∫ 1

0 Ḃv(r)dr

]
,

with this result holding also in the case no (and thus also not the first) element of Ḃv(r)
being equal to 1. Combining the results leads to the following limit of GZ′u++ −GA∗∗:

GZ′u−GZ′W̃�̂−1
w̃w̃�̂w̃u −

[
0q×1
�̂+

w̃u

]
(A.20)

⇒
∫ 1

0
J(r)dBu(r)+�vu

[
0q×1∫ 1

0 Ḃv(r)dr

]
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−
∫ 1

0
J(r)dBv(r)�

−1
vv �vu −�vv�

−1
vv �vu

[
0q×1∫ 1

0 Ḃv(r)dr

]
−�+

vu

[
0q×1∫ 1

0 Ḃv(r)dr

]

=
∫ 1

0
J(r)dBu·v(r),

with the last line following from the definition of Bu·v(r).
To complete the arguments required for the results in this paper, it only remains to show

that ω̂u·w P→ ωu·v, which also follows from Theorem 2.7:

ω̂u·w = �̂uu − �̂uw�̂−1
ww�̂wu = �̂uu − �̂uw̃�̂−1

w̃w̃�̂w̃u (A.21)

⇒ �uu −�uv

∫ 1

0
Ḃv(r)

′dr

(
�vv

∫ 1

0
Ḃv(r)Ḃv(r)

′dr

)−1

�vu

∫ 1

0
Ḃv(r)dr

= �uu −�uv�
−1
vv �vu = ωu·v,

since
∫ 1

0 Ḃv(r)′dr
(∫ 1

0 Ḃv(r)Ḃv(r)′dr
)−1 ∫ 1

0 Ḃv(r)dr = 1 also follows from the first element

of Ḃv(r) being equal to 1. �
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