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Localization in Categories of Complexes and
Unbounded Resolutions
Leovigildo Alonso Tarrı́o, Ana Jeremı́as López and Marı́a José Souto Salorio

Abstract. In this paper we show that for a Grothendieck category A and a complex E in C(A) there is an
associated localization endofunctor � in D(A). This means that � is idempotent (in a natural way) and that
the objects that go to 0 by � are those of the smallest localizing (= triangulated and stable for coproducts)
subcategory of D(A) that contains E. As applications, we construct K-injective resolutions for complexes of
objects of A and derive Brown representability for D(A) from the known result for D(R-mod), where R is a
ring with unit.

Introduction

One of the key results in stable homotopy theory is Bousfield’s localization, namely for a
homology theory E, there is an associated localization functor, i.e., an idempotent functor
which sends every spectrum to a E-local one, universally ([Bo1], [Bo2]). This can be con-
veniently expressed in the language of triangulated categories. Let HoSp denote the stable
homotopy category of spectra and identify E with the spectrum that represents it. The the-
orem says we have an equivalence between the full subcategory of E-local objects and the
quotient subcategory of HoSp by the localizing subcategory generated by E.

It has been clear for some time now that it is very fruitful to transport the results from
stable homotopy to homological algebra exploiting the similar structure that HoSp and
derived categories share, they are triangulated categories with a “model”, the categories
of CW-spectra and of complexes, respectively. It is also useful to study the problem of
localization in a derived category of sheaves over a space, because it gives information about
the geometry expressed by the initial category of sheaves. For instance, Neeman (see [N2])
has shown a relation between localizations in D(R) and subsets of Spec(R).

In this paper we show that the analogous localization theorem to Bousfield’s holds for
the derived category of an Abelian Grothendieck category A. We start with an interpreta-
tion of Bousfield’s kind of arguments in the derived category of a ring and then deduce the
theorem for D(A). Most of the interesting situations that arise in practice are categories of
this kind. We work in the unbounded derived category because our arguments rely in ex-
istence of arbitrary coproducts. As an application, we get unbounded injective resolutions
in this generality. To the best of our knowledge there is no published proof of this fact.

The first result of the existence of this kind of resolutions is Spaltenstein’s [Sp], who
works in the derived category of sheaves over a topological space. A short and elegant
proof in the derived category of modules over a ring was given by Bökstedt and Neeman
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[BN]. This proof was later used in some contexts where arbitrary (or at least countable)
products are exact, see [K] and [CtHK, appendix], but this assumption seldom holds in
categories of sheaves of modules. We have been informed by F. Morel that he also has a
proof of the result using Quillen’s model categories. Franke sent us the preprint [F] after
the localization theorem was obtained. In it, the existence of unbounded resolutions is
deduced from Brown representability. In our approach, Brown representability is obtained
as a consequence of localization.

Our proof uses some ideas of Neeman. In the paper [AJL, p. 2, footnote 1], it is asserted
one can get a simple proof of the fact using Gabriel-Popescu embedding theorem. The
subtle point is to extend the inclusion functor A → R-mod to derived categories. This
follows from the localization theorem (see Corollary 5.2).

We have tried to make the paper self-contained modulo standard facts about derived
categories. However, a reader just wanting to see a proof of the existence of K-injective
resolutions for complexes of objects in a Grothendieck category, could opt for reading the
statement of Proposition 4.5 and follow the next section up to Theorem 5.4. Alternatively,
a reader familiar with the Brown representability theorem of [N3] could follow an idea of
Neeman: read from the beginning of Section 5, give an alternative proof of Corollary 5.2 as
suggested in the remark after it and then continue again up to Theorem 5.4.

Next, we describe in some detail the contents of the paper. The first section is prelim-
inary and just sets up the general concepts of localization that are going to be used and
mostly well-known remarks. The reader is advised to skip it. In the second, we develop a
theory of homotopy limits for complexes. It may well agree with the simplicial one devel-
oped by Bousfield and Kan [BK] using the Dold-Kan correspondence [W, (8.4)], but we
are just doing here an exposition tailored to our needs. This also helps to streamline the
prerequisites. The key observation is Theorem 2.2 which establishes the agreement of the
usual limit of complexes with our homotopy construction.

The third section is devoted to proving Theorem 3.1 which states that the homotopical
direct limit of a family of complexes in a localizing subcategory L of D(A) belongs to L.
The proof goes by exhibiting a countable filtration of the homotopical direct limit and is
somehow inspired by the correction of Bousfield’s argument in [Bo2a].

In the next section we start recalling that if the generator of A is projective then un-
bounded projective resolutions exist in K(A), which includes the case A = R-mod. With
these tools, we are able to prove the localization theorem for the derived category of R-
modules (Proposition 4.5): a localizing subcategory generated by a set in D(R) defines a
localization functor.

Finally, in Section 5, we prove the theorem of existence of localization in the context of
derived categories (Theorem 5.7). We deduce it from the previous one, but we have had
to follow a somehow indirect path. We show that the Gabriel-Popescu embedding can be
extended to the derived category, showing that the derived category of a Grothendieck cat-
egory is a localization of the derived category of the category of modules over a ring. Then,
we show the existence of K-injective resolutions for complexes on a Grothendieck category
using the previous fact and the usual explicit construction for complexes of modules over a
ring (see [BN] and [Sp]). This allows us to prove the theorem of existence of localizations
in D(A). We give some examples that relate our theory to localizations in Abelian cate-
gories and show that there are localizations in D(A) that do not come from localizations
in A. The section ends with a proof of Brown representability, namely, every contravari-
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ant homological functor from D(A) that takes coproducts to products is representable. In
the proof we use that Brown representability holds for D(R) which was proved by Neeman
in [N3].

In our research we have benefited from conversations and hints by several people. Am-
non Neeman helped us a lot, specially sharing with us his ideas about K-injective resolu-
tions and his criticisms about a first version of this paper. J. L. Gómez Pardo helped us to
reach the right track about set-theoretic puzzlements. We thank Joe Lipman for his interest
and encouragement. We also benefited from remarks by Jeff Smith, Bernhard Keller, and
from several other people who attended our lectures while this work was being developed.

1 Preliminaries

Let T be a triangulated category. Following Adams and Bousfield, we define a localization
in T as a pair (�, η) where � : T→ T is a triangulated endofunctor, and η : 1 → � a natural
transformation such that �ηX = η�X for any X in T and η induces an isomorphism, �X ∼=
��X. We will make the usual abuse of notation and refer to � as a localization functor in
T, leaving implicit the natural transformation η. Such a localization functor determines a
subcategory of T, the (strictly) full subcategory whose objects are those X such that �X = 0.
The main problem we want to address is to what extent does this subcategory determine
�. To make this article reasonably self-contained, we will recall in this section some well-
known facts with mere sketches of proofs.

Lemma 1.1 Let X be an object of T, then �X = 0 if, and only if, Hom(X, �Y ) = 0, for every
Y in T.

Proof If �X = 0, it is enough to realize that any map X → �Y ∼= ��Y factors trough �X.
Conversely, the canonical map �X → ��X is 0 and an isomorphism, therefore �X = 0.

Proposition 1.2 The full subcategory L ⊂ T whose objects are those X such that �X = 0 is
triangulated and stable for coproducts, that is, whenever a coproduct of a family of such objects
exists in T is an object of L.

Proof It is clearly triangulated because � is a triangulated functor. Now, for every Y in T,
Hom(

⊕
Xi , �Y ) =

∏
Hom(Xi, �Y ); therefore if �Xi = 0 for every i, then �(

⊕
Xi) = 0.

Remark Suppose T has coproducts. If a triangulated subcategory L of T is closed for
coproducts of T, it is also closed for direct summands, we mean that if X ∈ L and X ∼=
X1 ⊕ X2 in T, then also X1 and X2 belong to L as follows from Eilenberg’s swindle1. But
this characterizes thick subcategories (Rickard’s criterion: see [Ri, Proposition 1.3]) and by
Verdier’s theory ([Ve]), the quotient category T/L is defined. Recall that the elements in

HomT/L(X,Y ) are diagrams X
s
← X ′

f
→ Y such that the vertex of the triangle with base s

is in L. A map like s will be called a L-quasi-isomorphism.

1X1 can be identified with the cone of the map
⊕

N X →
⊕

N X defined as the canonical projection X1 ⊕
(X2 ⊕ X1 ⊕ X2 ⊕ · · · )→ X2 ⊕ X1 ⊕ X2 ⊕ X1 ⊕ · · ·
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Definition A triangulated subcategory L of T closed for coproducts will be called a lo-
calizing subcategory. The full subcategory of T whose objects X are L-local, i.e. such that
Hom(Y,X) = 0 for every Y in L, will be denoted by L⊥.

If � is a localization functor, the full subcategory L ⊂ T whose objects are those X such
that �X = 0 is a localizing subcategory. We will call L the localizing subcategory associated
to �. As a consequence of Lemma 1.1, L⊥ agrees with the essential image of �.

Lemma 1.3 If L is a localizing subcategory, L⊥ is triangulated and stable for products, i.e.
whenever a product of objects of L⊥ exists in T, it belongs to L⊥.

Proof We see that the mapping cone of a map between objects in L⊥ is local considering
the long exact sequence associated to HomT(X,−), where X is in L. To show that a product∏

i∈I Yi belongs to L⊥ if every Yi does, it is enough to consider that Hom(X,
∏

Yi) =∏
Hom(X,Yi) and this last object is 0 if X belongs to L.

Lemma 1.4 Given two distinguished triangles and maps in T:

X
u

−−−−→ Y
v

−−−−→ Z
+

−−−−→

f

� g

�
X ′

u ′
−−−−→ Y ′

v ′
−−−−→ Z ′

+
−−−−→

such that u ′ ◦ f = g ◦ u, if Hom(X,Z ′[−1]) = 0, there is a unique way to complete it to a
map of triangles.

Proof Well-known, a written proof is in [BBD, (1.1.9)].

Lemma 1.5 Let T be a triangulated category, L a localizing subcategory, and Y ∈ L⊥. The
functor Q : T→ T/L induces an isomorphism:

HomT(X,Y ) 	 HomT/L

(
Q(X),Q(Y )

)
for every X ∈ T.

Proof See [Ve, Chap. 1, Section 2, no. 5-3] (or [BN, Lemma 2.9]).

The following proposition gives us a list of useful equivalent characterizations of local-
izations. They will be used to determine them in different contexts. Also, it shows the
consequences of the definition of localization for Verdier quotients by localizing subcate-
gories of T and the corresponding subcategories of local objects.

Proposition 1.6 Let T be a triangulated category and L a localizing subcategory. Denote
by i : L → T and j : L⊥ → T the canonical inclusions and by Q : T → T/L the quotient
functor. Let ⊥(L⊥) = {Z ∈ T/HomT(Z,Y ) = 0 for every Y ∈ L⊥}. The following are
equivalent:
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(i) There is a localization functor � whose associated localizing subcategory is L.
(ii) The functor Q possesses a right adjoint.
(iii) The composition Q j is an equivalence of categories.
(iv) The functor j possesses a left adjoint and ⊥(L⊥) = L.
(v) The functor i possesses a right adjoint.
(vi) For every M ∈ T there is a distinguished triangle

NM −→ M −→ BM
+
−→

such that NM ∈ L and BM ∈ L⊥.

Proof (i) ⇒ (ii). The functor � transforms L-quasi-isomorphisms into isomorphisms.

Therefore, by the universal property of Q, � factors as T
Q
→ T/L

R
→ T. The functor R

is right adjoint to Q. Indeed, η : id → � = RQ is the unit map. On the other hand, if
M ′ ∈ T/L, there is M ∈ T such that QM = M ′. Applying Q to the map M → �M we get
an isomorphism whose inverse is the desired map QRM ′ → M ′.

(ii)⇒ (iii). Let R : T/L → T be the right adjoint to Q; we have for X ∈ L and Y ∈ T
that

HomT(X,RQY ) 	 HomT/L(QX,QY ) = 0

then R factors as T/L
r
→ L⊥

j
→ T. The functors Q j and r are inverse equivalences. To

check this we have a chain of isomorphisms for every X,Y ∈ L⊥:

HomL⊥(X, rQ jY ) = HomT( jX,RQ jY )

∼= HomT/L(Q jX,Q jY )

∼= HomT( jX, jY )

= HomL⊥(X,Y )

where we use Lemma 1.5. For X ′ and Y ′ ∈ T/L such that QX = X ′ for a certain X ∈ T,
we have:

HomT/L(X ′,Q jrY ′) = HomT/L(QX,QRY ′)

∼= HomT(X,RY ′)

∼= HomT/L(QX,Y ′)

= HomT/L(X ′,Y ′)

(iii)⇒ (iv). Using again Lemma 1.5, denoting by r the quasi-inverse of Q j, we see that
rQ is left adjoint to j. Furthermore, given X ∈ ⊥(L⊥), for any Y ∈ T

HomT/L(QX,QY ) ∼= HomL⊥(rQX, rQY )

∼= HomT(X, jrQY ) = 0
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therefore QX = 0, i.e., X ∈ L.

(iv) ⇒ (v). Let j ′ : T → L⊥ be the left adjoint to j. We complete the unit of the
adjunction for X ∈ T to a distinguished triangle

X −→ jj ′X −→ N
w
−→ X[1].

If Y ∈ L⊥, we have that

HomT(X, jY ) ∼= HomL⊥( j ′X,Y ) ∼= HomT( jj ′X, jY ).

Therefore, applying HomT(−, jY ) to the previous triangle we see that HomT(N, jY ) = 0,
so N ∈ ⊥(L⊥) = L.

Now, using Lemma 1.4, there is a functor i ′ : T → L adjoint to i such that ii ′(X) =
N[−1], with counit ζ := −w[−1].

(v)⇒ (vi). Again, we have a triangle based on the counit of the adjunction:

ii ′M
ζ
−→ M −→ B −→ ii ′M[1].

For every X ∈ L, HomT(iX, ζ) is an isomorphism, which implies HomT(iX,B) = 0, and
B ∈ L⊥.

(vi)⇒ (i). Using again Lemma 1.4, the assignation M 
→ BM is functorial. We denote
this functor by �. It comes with a natural transformation η : idT → �. It follows from (vi)
that the objects X such that �X = 0 are precisely those of L. Moreover, an object Y is L-
local if, and only if, ηY is an isomorphism, so we deduce that �ηY = η�Y is an isomorphism
from � to �2.

The equivalence between (i) and (vi) was known to Bousfield and Adams and used
in [Bo1], the rest of the statements are taken from [Ve, Chap. 1, Section 2, no. 6].

A consequence of the previous result is that if we consider for a Bousfield localization �

the triangle N → X → �X
+
→, then the object N belongs to L and this assignment defines

by the previous result, a functor �a : T→ T giving us a functorial distinguished triangle:

�aX −→ X −→ �X
+
−→

with �aX ∈ L and �X ∈ L⊥.

Proposition 1.7 The definition above defines a natural transformation, ζ : �a → 1 whose
formal properties are dual to η’s.

Proof Left to the reader.
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2 Homotopy Limits of Complexes

From now on, A will be a Grothendieck category, that means A is an abelian category with
a generator U and exact (set-indexed) filtered direct limits. We will denote by C(A) the
category of complexes of objects of A, which is also a Grothendieck category. As usual K(A)
and D(A) denote the homotopy and derived categories of A, with their usual structure of
triangulated categories.

Our construction of homotopy limits will be based on the totalization of a certain
bicomplex naturally associated to a filtered directed diagram. We will fix first the con-
ventions that will be used about bicomplexes and totalization. A bicomplex in an ad-
ditive category will mean a “complex of complexes”, i.e., a family {B, d1, d2} such that

B is a bigraded object, dij
1 : Bij → Bi+1 j and dij

2 : Bij → Bij+1 such that d1 ◦ d1 = 0,
d2 ◦ d2 = 0 and d1 ◦ d2 = d2 ◦ d1, that is, differentials commute. With this convention,
the totalization complex is Tot(B)n :=

⊕
i+ j=n Bij , with differential defined by the formula

dn :=
∑

i+ j=n dij
1 + (−1)idij

2 (see [I, Section I.11], where morphisms and homotopies of
bicomplexes are also defined).

Next, let G = {Gs, µst/s, t ∈ Γ} be a filtered directed system in C(A). It is convenient
to introduce the following notation: given k > 0 and s ∈ Γ, W k

s is the set of chains in
the ordered set Γ of length k which start in s. A typical element of W k

s will be written
w = (s < s1 < · · · < sk). With this data, we construct a bicomplex B(G) =

(
B(G), d1, d2

)
.

For j, k ∈ Z define:

B(G)k j :=




0 if k > 0⊕
s∈Γ G j

s if k = 0⊕
s∈Γ,w∈W−k

s
G j

s,w if k < 0

where by G j
s,w we denote G j

s indexed by a (fixed) chain w of W−k
s . An “element” of G j

s,w (i.e.,

a map x : U → G j
s,w) will be denoted by (x; w) or (x; s < s1 < · · · < s−k). For k < 0 the

horizontal differential d1 is defined by the following formula:

dk j
1 (x; s < s1 < · · · < s−k) :=

(
µss1 (x); s1 < · · · < s−k

)
+
−k∑
i=1

(
(−1)ix; s < · · · < ši < · · · < s−k

)

where the symbol ši means that si is suppressed from the chain. If k ≥ 0 then d1 is clearly
0. We use the standard abuse of pretending we are dealing with actual elements, but the
conscientious reader could substitute this with maps from the generator U . It is easy but
tedious to check that d1◦d1 = 0. The vertical differential d2 is induced by the differential of
the complexes Gs, so it is obvious that d2◦d2 = 0. Finally, it can be seen that d1◦d2 = d2◦d1

using that the maps µst commute with d2.

Definition Let G = {Gs/s ∈ Γ} be a filtered direct system of complexes, we define the
homotopy direct limit of the system as the totalization of the bicomplex B(G), and we denote
it by holim

−−−→
s∈Γ

Gs.
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Our next task will be to justify the name of this construction, we will see that in fact that
it provides another means to compute the homology of the direct limit complex.

Lemma 2.1 Let F be a finite ordered set with maximum m. Let G = {Gs, µs,t/s, t ∈ F} be a
directed system in C(A). The complex Gm is homotopically equivalent to holim

−−−→
s∈F

Gs.

Proof The inclusion Gm → B(G)0 · =
⊕

s∈F Gs defines a canonical map ψ : Gm →
holim
−−−→

s∈F

Gs. Consider the map⊕s∈FGs → Gm defined by µsm in each component (by conven-

tion, µss = id). It gives us a map φ in the opposite direction. It is clear that φ ◦ ψ = id. On
the other hand, let us define a homotopy h of holim

−−−→
s∈F

Gs, by the following formula:

h j :
⊕

k≤0,s∈Γ,w∈W−k
s

G j−k
s,w −→

⊕
k≤0,s∈Γ,w∈W−k+1

s

G j−k
s,w

h j(x; s < s1 < · · · < s−k) =

{
0 if s−k = m

(−1)k(x; s < s1 < · · · < s−k < m) if s−k �= m.

By looking at each summand G j−k
s,w with w = (s < s1 < · · · < s−k), the reader can check

that ψφ− id = hd + dh, as required.

Remark The construction of the homotopy h is a generalization of the one that gives the
homotopy equivalence between the mapping cylinder of a map X → Y and Y . In fact,
taking as our direct system G0 = X and G1 = Y , our h is the usual homotopy, cf. [I, p. 25].

A general (filtered) direct system is a direct limit of its finite subsystems with maximum.
One could tend to think that the previous statement generalizes by taking limits. Unfortu-
nately, the maps h are not compatible with this system because they point to the maximum
of F which is not “recognizable” inside a big limit diagram. However, they induce quasi-
isomorphisms that are indeed compatible with direct limits, because in our setting they are
exact, so we obtain:

Theorem 2.2 Let G = {Gs, µs,t/s, t ∈ Γ} be a directed system in C(A). There is a quasi-
isomorphism (i.e., an isomorphism in D(A))

φ : holim
−−−→

s∈Γ

Gs → lim
−→
s∈Γ

Gs.

Proof Denote by M(Γ) the set of finite subsets of Γ with maximum. It is a filtered set
ordered by inclusion. If F ∈ M(Γ), we denote by GF = {Gs/s ∈ F} the direct F-system
induced by G. Then

lim
−→

F∈M(Γ)

Tot
(
B(GF)

)
= Tot

(
B(G)
)
.
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By the previous proposition there is a map of complexes

φF : Tot
(
B(GF)

)
= holim
−−−→

s∈F

Gs → GmF ,

where mF = max(F), that is a quasi-isomorphism. The maps φF are compatible with
the system M(Γ) therefore, taking limits, we obtain that Tot

(
B(G)
)

is quasi-isomorphic to
lim
−→
s∈Γ

Gs.

3 Homotopy Limits and Localizing Subcategories

The main result of this section is the following:

Theorem 3.1 Let L be localizing subcategory of D(A), let Γ be a filtered ordered set and
{Gs/s ∈ Γ} be a directed system in C(A) such that Gs belongs to L for every s ∈ Γ. Then,

holim
−−−→

s∈Γ

Gs

also belongs to L.

We will decompose the proof in a series of intermediate results, maybe of independent
interest. We say that a map is semi-split whenever it is split as a map of graded objects.
We begin constructing a semi-split filtration of the totalization of a horizontally bounded-
above bicomplex.

Lemma 3.2 Let {B· ·, d1, d2} be a bicomplex in A such that Bi · = 0 for every i > i0. The
complex Tot(B· ·) has a semi-split, exhaustive, increasing filtration of complexes F·n such that
the successive quotients are F·n/F·n−1 = B−n ·[n]. By exhaustive we mean that:

lim
−→
n∈N

F·n = Tot(B· ·),

the limit taken, obviously, in C(A).

Proof After shifting, we may assume that i0 = 0. The only special use is made of this
integer is to have a place where to begin the induction. Let F·0 := B0 ·. We will construct the
filtration inductively. Suppose F·n is already constructed, together with a semi-split exact
sequence

F·n−1
µn−1
−−−−→ F·n

wn−−−−→ B−n ·[n].

It will be clear from the construction that this sequence comes from a standard triangle in
D(A) (i.e., one where the third object is the cone of the first map):

B−n ·[n− 1]
hn−1
−−−−→ F·n−1

µn−1
−−−−→ F·n

wn−−−−→ B−n ·[n].
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Denote by νn the usual splitting (as graded objects) of wn, and define hn as the following
composition:

B−n−1 ·[n]
d1[n]
−−−−→ B−n ·[n]

νn−−−−→ F·n.

Using that, by construction, F·n is the mapping cone of hn−1, this gives us an explicit expres-
sion for νn which allows us to check that hn is an actual map of complexes. Define F·n+1 as the
mapping cone of hn. This gives us the desired filtration. Indeed, as graded objects it is clear
that F·n is a subobject of Tot(B· ·) for every n ∈ N. By induction, we see that the canonical
inclusion ηn : F·n → Tot(B· ·) commutes with differentials, and moreover ηn = ηn+1 ◦µn, so

the limit makes also sense as complexes. As graded objects, F j
n =
⊕n

k=0 B−k j+k, therefore,

lim
−→
n∈N

F j
n =
⊕
k∈N

B−k j+k = Tot(B· ·) j ,

as it was claimed.

Remark This lemma was inspired by [Bo2a]. In this note, Bousfield repairs a mistake
in his construction of non-countable homotopy limits that appears in [Bo1] and [Bo2].
In line 10, he says “Thus C is a CW-spectrum with an increasing filtration . . . ” and this
was the clue to the statement of Lemma 3.2. The fact that homotopy limits cannot be
constructed from a single triangle makes its generalization difficult to general triangulated
categories, because totalizations might not exist and even if they exist, they might not be
unique. Of course the situation is easier in the countable case, where the construction can
be expressed by a single triangle (see [BN]).

3.3 We recall now a construction of countable direct limits due to Milnor. Suppose we
have a directed system {Gn/n ∈ N} in C(A). To give it, it is enough to know the maps
µn : Gn → Gn+1. Consider the maps 1− µn : Gn → Gn ⊕ Gn+1. They define a map:

⊕
n∈N

Gn −→
⊕
n∈N

Gn

which we denote symbolically as 1− µ. Its cokernel is clearly identified with lim
−→
n∈N

Gn.

Lemma 3.4 The map 1− µ is monic.

Proof Left to the reader.

Lemma 3.5 Let G = {Gn/n ∈ N} be a directed system in C(A). Let L be a localizing
subcategory of D(A). If Gn ∈ L, for every n ∈ N, then lim

−→
n∈N

Gn ∈ L.
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Proof Consider the Milnor exact sequence:

0→
⊕
n∈N

Gn
1−µ
−→
⊕
n∈N

Gn −→ lim
−→
n∈N

Gn → 0.

This gives us a distinguished triangle in D(A),

⊕
n∈N

Gn
1−µ
−→
⊕
n∈N

Gn −→ lim
−→
n∈N

Gn
+
→,

whence the conclusion.

Proof of Theorem 3.1 By definition,

holim
−−−→

s∈Γ

Gs = Tot
(
B(G)· ·

)
,

where B(G)· · is a bicomplex whose columns B(G)i · are direct sums of the objects in the
system, so they belong to L. By Lemma 3.2,

Tot
(
B(G)· ·

)
= lim
−→
n∈N

Fn,

where Fn is a the cone of a map from a (shift of a) column of B(G)· · to Fn−1, which belongs
to L by induction, therefore Fn ∈ L. We conclude by the previous result.

4 Localization in the Derived Category of a Ring and K-Projective Resolu-
tions

In this section we prove our main theorem for the case of (unbounded) derived categories
of modules. In the path to the proof we will show the existence of unbounded projective
resolutions whenever the base category A has a projective generator.

Let us fix some terminology. We continue to denote by A a Grothendieck category,
K(A) and D(A) its homotopic and derived categories, respectively. Let U be a generator of
A. Denote by Z the full triangulated subcategory of K(A) whose objects are acyclic com-
plexes. It is a thick subcategory (i.e., stable for direct summands) whose Verdier quotient
is precisely K(A)/Z = D(A). The subcategory Z is clearly localizing because coproducts
are exact in A. A Z-quasi-isomorphism is called, as usual, a quasi-isomorphism. We call
the local objects for Z, K-injective complexes, we refer to [BN] and [Sp] for their elemen-
tary properties. Also we call the Z-colocal objects K-projectives. By Z-colocal we mean
a complex P such that HomK(A)(P,X) = 0 for every X in Z. As a consequence, the full
subcategory of K-projective complexes of K(A) is a localizing subcategory.

We begin with some lemmas.

Lemma 4.1 Let E be an object of a triangulated category T with coproducts. Let L be the
smallest localizing subcategory that contains E. The group HomT(E[ j],B) = 0 for every j ∈ Z
if, and only if, B is L-local.
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Proof The “if” part is trivial. Let us prove the “only if” part. Suppose that B ∈ T is
such that HomT(E[ j],B) = 0 for every j ∈ Z, we have to show that HomT(X,B) = 0
for every X ∈ L. Define S as the full subcategory of L whose objects X are such that
HomT(X[ j],B) = 0, for every j ∈ Z. S is clearly stable for shiftings and if two objects of
a distinguished triangle are in S, so does the third, by the long exact sequence. Finally, if
{Xi/i ∈ I} is a family of objects of S,

⊕
i∈I Xi is in S, because

HomT

(⊕
i∈I

Xi[ j],B
)
	
∏
i∈I

HomT(Xi[ j],B) = 0.

By hypothesis, E belongs to S, therefore S = L.

Lemma 4.2 With the previous notations, let L the smallest localizing subcategory of K(A)
containing U , then L⊥ ⊂ Z. If moreover U is projective (in A), then L⊥ = Z.

Proof Given a complex (F, d) of A, we have a canonical isomorphism

HomC(A)(U [−i], F)
∼
−→ HomA

(
U , ker(di)

)
(i ∈ Z)

which carries null-homotopic morphisms to maps U → ker(di) that factor through Fi−1.
Therefore, if F ∈ L⊥ all these maps are 0, so F has to be exact because U is a generator.

Conversely, suppose further F acyclic and U a projective object, then the map

HomA(U , Fi−1)−→HomA

(
U , ker(di)

)
is onto for every i ∈ Z, which implies HomK(A)(U [−i], F) = 0.

Proposition 4.3 If U is a projective object of A, then every complex has a K-projective res-
olution. In other words, there is a localization functor such that the associated localizing sub-
category is the full subcategory of K-projective complexes.

Proof Let L the smallest localizing subcategory of K(A) containing U . A bounded above
complex all of whose objects are direct sums of U is easily seen to be K-projective, therefore
by the well-known step-by-step process to every bounded above complex, we are able to
construct a K-projective resolution. Let M be any object of K(A). Let M≤n denote the
truncation of M on the level n from above. For every n ∈ N, there is quasi-isomorphism
gn : Pn

∼
→ M≤n, where Pn is K-projective. The canonical map M≤n→M≤n+1 induces a map

Pn→Pn+1, so {Pn}n∈N is a countable direct system of complexes. Consider an induced map
of triangles in K(A):

⊕
n∈N Pn

1−µ
−−−−→

⊕
n∈N Pn −−−−→ P

+
−−−−→

g

� g

� f

�⊕
n∈N M≤n 1−µ

−−−−→
⊕

n∈N M≤n −−−−→ M
+

−−−−→

.
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Every Pn is in L, therefore
⊕

n∈N Pn ∈ L and P ∈ L. It is clear that f is a quasi-
isomorphism because so is g. Furthermore, the canonical map of complexes h : M →
lim
−→
n∈N

M≤n = M is a quasi-isomorphism. So M sits in a triangle:

P
h◦ f
−→ M−→B −→ P[1]

where P is K-projective and B is an acyclic complex.

Remark If A = R-mod, then the ring R is a projective small generator of A, so the
previous result is a slight generalization of the well-known theorem on the existence of
K-projective resolutions of complexes of R-modules. Our proof follows the standard one
as in [BN]. Observe that K-projective resolutions are the acyclization functor associated
to the localization with respect to Z. It has also been remarked by Keller and Weibel that
old-fashioned Cartan-Eilenberg resolutions also work due to the exactness of coproducts
for modules.

Now we will prove Bousfield localization for derived categories of modules, as a first
step towards the general Theorem 5.7 for arbitrary Grothendieck categories. Let R be a
ring. Denote by R-mod the category of left R-modules. As usual, we abbreviate C(R-mod),
K(R-mod) and D(R-mod), by C(R), K(R) and D(R). We denote by QR : K(R)→ D(R) the
canonical functor.

4.4 We recall that an ordinal can be identified with a well-ordered set and that a cardinal
is a minimum of equipotent ordinals. An ordinal is regular if, as an ordered set, every
proper cofinal well-ordered subset is a strictly smaller ordinal. A cardinal is regular if its
associated ordinal is. A key fact we will use is Hausdorff ’s theorem: A successor cardinal is
regular. See [L, 3.11 Proposition, p. 135]. This is the set-theoretic key point in the proof
of the next result, and also in [Bo1], [Bo2] and the proof of the existence of K-injective
resolutions for sheaves in [Sp]. In these references it is used without mention. It should be
emphasized that Hausdorff ’s theorem follows simply from the axiom of choice and does
not depend on “exotic” big cardinal axioms.

Proposition 4.5 Let E ∈ C(R) and L the smallest localizing subcategory of D(R) containing
E. Then, there exists a localization functor � in D(R) such that �(X) = 0 ⇐⇒ X ∈ L.

Proof First, we can assume that E is K-projective by Proposition 4.3. Therefore, for
k ∈ Z every E[k] will also be K-projective and HomD(R)(E[k],X) 	 HomK(R)(E[k],X)
for X ∈ C(R), i.e., maps from E[k] in the derived category are represented by actual maps
of complexes.

Now, by Proposition 1.6, it is enough, for any M ∈ D(R), to construct a distinguished
triangle

NM −→ M −→ BM
+
−→

such that NM ∈ L and BM is L-local. Let I be a well-ordered set. We will construct, by
transfinite induction, successive “approximations” of BM . More precisely, for every s ∈ I
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we will construct a complex Bs and for s ≤ t ∈ I a semi-split monomorphism of complexes
µst : Bs → Bt such that:

(i) {Bs, µst/s, t ∈ I} is a directed system in C(R).
(ii) If f ∈ HomC(R)(E[k],Bs) and s < t , then µst ◦ f is homotopic to zero.

Let 0 be the minimum of I, we define B0 := M.
If s ∈ I has a predecessor s − 1, suppose by induction that Bs−1 is already constructed.

Take Ωs−1 :=
⋃

k∈Z HomC(R)(E[k],Bs−1), and let αs−1 :
⊕
Ωs−1

E[k]→ Bs−1 be the map of
complexes given by the universal property of the coproduct. We define µs−1s : Bs−1 → Bs

as the semi-split monomorphism given by the canonical distinguished triangle:

⊕
Ωs−1

E[k]
αs−1
−−−−→ Bs−1

µs−1s
−−−−→ Bs −−−−→

(⊕
Ωs−1

E[k]
)

[1],

where Bs is the cone of αs−1. For any i < s, let µis := µs−1s ◦ µis−1, which is again a semi-
split monomorphism. If f ∈ HomC(R)(E[k],Bi), and i < s, then µis ◦ f is homotopic to
zero by construction if i = s− 1, and by the inductive hypothesis if i < s− 1.

If s ∈ I has no predecessor, take

Bs := lim
−→
i<s

Bi and for i < s, µis = lim
−→

i< j<s

µij .

Both limits taken, of course, as objects and maps in C(R). Again, it is clear that it satisfies
the needed conditions.

Now we fix I as a set of ordinals. Let γ be the least ordinal such that #(γ) >
#
⋃

p∈Z HomC(R)(R[p], E) and let I be the set of ordinals strictly smaller than γ. We claim
that it is enough to take BM = Bγ . Indeed, let us check first that BM is L-local. By
Lemma 4.1 it is enough to see that HomD(R)(E[k],BM) = HomK(R)(E[k],BM) = 0, for
each k ∈ Z. Let g : E[k] → BM be a map of complexes, let us show that g is homotopic to
zero. Define B ′i by the following cartesian square

B ′i
µ ′iγ

−−−−→ Im(g)� �
Bi

µiγ
−−−−→ BM

and µ ′is : B ′i → B ′s with i < s, by the universal property of the cartesian square. We have
defined a new directed system {B ′s , µ

′
st/s, t ∈ I} such that:

lim
−→
i<s

B ′i = lim
−→
i<s

(
Bi ∩ Im(g)

)
= BM ∩ Im(g) = Im(g)

where in the middle identification we have used that C(R) is a Grothendieck category. We
claim that there is an index s0 < γ such that

lim
−→
i<s

B ′i = B ′s0
.
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To see this by reductio ad absurdum, suppose that for every s ∈ I, there is a t > s such that
µ ′st is not an epimorphism. Define sets Js := {r ≥ s/µ ′rr+1 is not an epimorphism}. Each Js

is not empty, so J := J0 is a cofinal subset of I, but then #( J) = #(γ), because γ is a regular
ordinal. On the other hand, we can define a map

φ : J →
⋃
p∈Z

HomC(R)

(
R[p], Im(g)

)

by φ(s) = µ ′s+1γ ◦ hs where hs is a map from R[p] to B ′s+1 (an element) that does not factor
through B ′s . The map φ is injective, therefore,

#( J) ≤ #
(⋃

p∈Z

HomC(R)

(
R[p], Im(g)

))
< #(γ).

The last inequality holds because Im(g) is a quotient of E[k]. The fact that #( J) < #(γ) is a
contradiction by Hausdorff ’s theorem (see 4.4). Thus, there is a s0 ∈ I such that µ ′s0γ

is an
isomorphism and then g factors through µs0γ , therefore it is homotopic to zero.

Finally, let us study the third object in the triangle defined by the map M → BM . For
every i < γ, insert µ0i in the distinguished triangle

Ni −→ M
µ0i−→ Bi −→ Ni[1].(1)

We can take Ni[1] = Coker(µ0i) (taken in C(R)). So, in the distinguished triangle

NM −→ M
µ0γ
−→ BM −→ NM[1]

we have NM = lim
−→
i<γ

Ni , where for s < t the transition maps Ns → Nt of this system

are induced by µst : Bs → Bt . To finish the proof we have to prove that NM ∈ L. By
Theorem 2.2 and Theorem 3.1 it is enough to see that Ni ∈ L for every i ∈ I.

First, N0 = 0, so it is trivially in L. If i has a predecessor, consider the triangles like (1)
whose second maps are µ0i−1 and µ0i . Consider also the distinguished triangle:⊕

Ωi−1

E[k] −→ Bi−1
µi−1i
−→ Bi −→

(⊕
Ωi−1

E[k]
)

[1].

We have µi−1i ◦ µ0i−1 = µ0i , then the octahedral axiom gives us a distinguished triangle

Ni−1−→Ni −→
⊕
Ωi−1

E[k] −→ Ni−1[1],

where Ni−1 and
⊕
Ωi−1

E[k] belong to L, the first by induction hypothesis and the second
by its form. This implies Ni is also in L. Finally, if i has no predecessor, Ni is a limit of
complexes Ns that belong to L by induction. Applying Theorem 2.2 we have that

holim
−−−→

s<i

Ns 	 lim
−→
s<i

Ns

and by Theorem 3.1, the homotopy limit belongs to L, so we reach the desired conclusion.

https://doi.org/10.4153/CJM-2000-010-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-010-4


240 L. Alonso, A. Jeremı́as and M. J. Souto

5 Localization in D(A) and K-Injective Resolutions

In this section we will extend Gabriel-Popescu embedding to derived categories. We will
obtain as a consequence the existence of K-injective resolutions for complexes in a Gro-
thendieck category and the existence of localizations in its derived category.

By Gabriel-Popescu embedding ([GP], see also [St, Chap. X, Theorem 4.1], there is a
ring R (namely, EndA(U ) where U is a generator of A), such that A is a quotient (in
the sense of Abelian categories) of R-mod by the thick subcategory of torsion objects of a
hereditary torsion theory. This means there is a couple of functors

R-mod
a
�

i
A(2)

where a is an exact functor and i is left-exact full, faithful and right adjoint to a. The objects
that are sent to zero by a are called torsion objects. This situation extends immediately to
homotopy categories

K(R)
a
�

i
K(A).

Because of this, K(A) is identified with a calculus of fractions of K(R).
We need to transport (2) to the derived category situation. The extension of the functor

a is clear, by exactness. Let us denote this extension by a : D(R) → D(A). Let LA the full
subcategory of D(R) whose objects are {X ∈ D(R)/aX = 0}. The extension of i will be
constructed using the previous results. (See 1.6, (i)⇔ (ii).)

Proposition 5.1 There is a subset of the class of objects of D(R) such that the smallest local-
izing subcategory of D(R) that contains them is LA. This identifies D(A) with the subcategory
of LA-local objects and the associated localization functor factors through a.

Proof The subcategory LA is localizing and D(A) is identified with the quotient category
D(R)/LA. Indeed, let us show that D(A) satisfies the “universal” property that charac-
terizes D(R)/LA. Let b : D(R) → T be a functor that sends to zero the objects in LA.

The composed functor K(R)
QR−→ D(R)

b
→ T factors through a : K(R) → K(A) giv-

ing a functor b : K(A) → T. Let B be an acyclic complex in K(A). Then we see that
b(B) = b(aiB) = bQRi(B) = 0. The last identification follows from QRi(B) ∈ LA, because
its homologies are torsion.

Let us show now that the localizing subcategory LA of D(R) is generated by a set. Let
β := max{#(R),ℵ0}. A complex of R-modules (E·, d·) belongs to the set L if it satisfies the
following properties:

(i) E j = 0, if j > 0.
(ii) E0 = R.
(iii) E j =

⊕
I j

R, where #(I j) ≤ β, if j < 0.

(iv) aH j(X) = 0, ∀ j ∈ Z, i.e., its homologies are torsion.
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Let L0 the smallest localizing subcategory of D(R) that contains L. Let us show that LA =
L0. It is clear that L0 ⊂ LA. Let us see the opposite inclusion. By Proposition 4.5 given
M ∈ LA there is a distinguished triangle in D(R):

M0 −→ M −→ M ′−→M0[1]

where M0 ∈ L0 and M ′ ∈ L⊥0 . Observe that M and M0 ∈ LA, therefore M ′ ∈ LA. It
is enough to see that M ′ is acyclic which implies M 	 M0 ∈ L0. Suppose then that M ′ is
not acyclic, after shifting we will take H0(M ′) �= 0. But M ′ ∈ LA, therefore there exists
an ideal a in R, with a(R/a) = 0 and a non-zero R-linear map g : R/a→ H0(M ′), because
the subcategory of R-mod whose objects go to 0 by a is generated by the quotients R/a

(cf. [St, Chap. VI, Proposition 3.6]. Using g, we will construct a non zero map in D(R)
from a complex in L to M ′. But this is impossible, so M ′ has to be acyclic. Indeed, being R
projective the map g extends as:

a −−−−→ R −−−−→ R/a

g0

� g ′
� g

�
Im(d−1) −−−−→ ker(d0) −−−−→ H0(M ′)

(3)

denoting by d· the differential of M ′. Let P0 := R and f 0 be the composition: R
g ′

→
ker(d0) ↪→ M ′0. We will construct a complex (P·, d·P) in L with a map f : P → M ′ induc-
tively. Suppose everything given up to level j ≤ 0 such that for k with j < k < 0, every
Pk =

⊕
Ik

R, where #(Ik) ≤ β. Construct the diagram

C j −−−−→ ker(d j
P) −−−−→ P j

g j

� � f j

�
Im(d j−1) −−−−→ ker(d j) −−−−→ M ′ j

for j < 0 in such a way that C j makes the left square cartesian. For j = 0 take (3). We have

that a
(
ker(d j

P)/C j

)
= 0 because ker(d j

P)/C j is a submodule of H j(M ′) which is torsion
by assumption. Observe that #(C j) ≤ #(P j) ≤ β, therefore there is a set I j−1 such that
#(I j−1) ≤ #(C j) and an epimorphism p j−1 :

⊕
I j−1

R � C j . The module P j−1 :=
⊕

I j−1
R

is projective so we have a map f j−1 fitting in a commutative diagram

P j−1 p j−1
−−−−→ C j

f j−1

� g j

�
M ′ j−1 −−−−→ Im(d j−1)

.

Let d j−1
P be the composition P j−1 � C j → P j . Now it is clear that P belongs to L. Also, f

is a map of complexes such that H0( f ) = g �= 0 contradicting HomD(R)(P,M ′) = 0.

Corollary 5.2 The functor a : D(R)→ D(A) possesses a right adjoint, which we denote by i.
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Remark There is another approach to the proof of this fact due to Neeman. It uses the
Brown representability theorem [N3, Theorem 4.1]. Note that D(R) is compactly generated
(by R), and the functor a preserves coproducts, so it has a right adjoint. However, you need
to know in advance that D(A) has “small hom-sets” which it is not obvious a priori. In our
line of argument, we obtain this fact later as a consequence (see Corollary 5.6).

Proposition 5.3 The canonical functor QR : K(R) → D(R) has a right adjoint. In other
words: every complex of modules over a ring has a K-injective resolution.

Proof The proof is a dualization of that of Proposition 4.3 so we only sketch it. Every
bounded below complex has a resolution by a bounded below complex of injective R-
modules, which is clearly K-injective. In general, given X ∈ C(R), for every n ∈ N, denote
by X≥n the truncation of X on the level n from below and by gn : X≥−n ∼→ In a K-injective
resolution. We get a countable inverse system of K-injective complexes {In}n∈N. We have a
diagram of distinguished triangles

X −−−−→
∏

n∈N X≥−n 1−s
−−−−→

∏
n∈N X≥−n +

−−−−→

f

� g

� g

�
I −−−−→

∏
n∈N In

1−s
−−−−→

∏
n∈N In

+
−−−−→

.

The map g =
∏

n∈N gn is a product of quasi-isomorphisms, therefore a quasi-isomorphism
because products are exact in R-mod. So the map f is a quasi-isomorphism. Observe that

X = lim
←−
n∈N

X≥−n.

And so there is a morphism X →
∏

n∈N X≥−n that composed with 1 − s is 0. Therefore,
there is an induced map h : X → X which is a quasi-isomorphism because the system is
Mittag-Leffler. This gives us a triangle in K(R)

N−→X
f◦h
−→ I −→ P[1].

where I is K-injective and N is an acyclic complex.

Remark The existence of K-injective resolutions of complexes of modules over a ring is
well known (see [BN, Proposition 2.12]). We have reproduced the proof of Propositions 4.3
and 5.3 here for the convenience of the reader.

The previous discussion can be summarized in a diagram of functors:

K(R)
QR−−−−→ D(R)

a

� a
�

K(A)
QA−−−−→ D(A)

where QR, a and a have right adjoints, by Proposition 5.3, trivially and Corollary 5.2, re-
spectively.
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Theorem 5.4 The canonical functor QA : K(A) → D(A) has a right adjoint. In other
words: every complex of objects of a Grothendieck category has a K-injective resolution.

Proof Consider the functors

K(R)
a
−→ K(A)

QA−→ D(A).

Both a and QA ◦ a = a ◦ QR have right adjoints by the previous discussion. Moreover,
the functor a identifies K(A) as a calculus of fractions of K(R) by the discussion preceding
Proposition 5.1. So we are in position to apply the next lemma.

Lemma 5.5 Let T, K and D be categories with functors Q : T → K and Q ′ : K → D. Sup-
pose that Q identifies the category K as a calculus of fractions of T. If G = Q ′ ◦ Q has a right
adjoint k : D→ T, then so does Q ′, and it is I := Q ◦ k.

Proof First of all, note that if u : Z1 → Z2 is a map in T such that Q(u) is an isomorphism
in K, then for Y ∈ D

HomT(Z2, kY )
u∗
−→ HomT(Z1, kY )

is an isomorphism, by the commutativity of the diagram:

HomT(Z2, kY )
u∗

−−−−→ HomT(Z1, kY )

�

� �

�
HomD(GZ2,Y )

G(u)∗
−−−−→
∼

HomD(GZ2,Y )

.

Therefore Q induces natural isomorphisms

HomT(Z, kY )
u∗
−→ HomK(QZ,QkY ),

for every Z ∈ T, Y ∈ D. Let now X ∈ K and X0 ∈ T such that QX0 = X. For any Y ∈ D
the natural composed isomorphism

HomD(Q ′X,Y ) = HomD(Q ′QX0,Y )

= HomD(GX0,Y )

∼= HomT(X0, kY )

∼= HomK(QX0,QkY )

= HomK(X, IY )

gives us the desired adjunction isomorphism.
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Remark The existence of K-injective resolutions implies that a functor from K(A) has a
right derived functor. Observe that the functor i of Corollary 5.2 is the right derived functor
of i : K(A)→ K(R).

This result shows that there is a localization functor in K(A) whose associated localizing
subcategory are the acyclic complexes, Z. The result would not follow from a generalization
of Theorem 5.7 for homotopy categories because already for K(R), Z is not generated by a
set as is explained in the forthcoming book by Neeman [N4].

Corollary 5.6 If A is a Grothendieck category, its derived category, D(A), has “small hom-
sets”.

Proof Let X,Y ∈ K(A), denote by Q : K(A) → D(A) the canonical functor and by I its
right adjoint. Then:

HomD(A)(QX,QY ) ∼= HomK(A)(X, IQY )

and this last “hom” is clearly a set.

Remark The general construction does not guarantee that homs in a derived category
are sets rather than classes. This problem is addressed for derived categories of modules,
presheaves and sheaves in [W, Proposition 10.4.4]. It can be shown directly, but it is an
easy consequence of the previous theorem. The question is sometimes referred to as “the
existence of the derived category”.

Theorem 5.7 Let E be a complex in D(A). Let L be the smallest localizing subcategory of
D(A) that contains E. There exists a localization functor � such that �(X) = 0 ⇐⇒ X ∈ L.

Proof By Proposition 1.6 it is enough to construct for every M ∈ D(A) a distinguished
triangle

N −→ M −→ B
+
−→

such that N ∈ L and B ∈ L⊥. By Proposition 5.1, there is a localizing subcategory of D(R)
that we denote by LA generated by a set of complexes, which after taking the coproduct
of all of its objects we can suppose is formed by a single object F, such that D(R)/LA

is identified with D(A). Take the notation as in Corollary 5.2 and let L ′ be the smallest
localizing subcategory of D(R) containing {i(E), F}. Then, by Proposition 4.5, for each
M ∈ D(A), there is a distinguished triangle in D(R)

N0 −→ i(M) −→ B0
+
−→,

such that N0 ∈ L ′ and B0 ∈ L ′
⊥. Applying the functor a, we get a distinguished triangle

in D(A)

aN0 −→ M −→ aB0
+
−→
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where aN0 ∈ L. Let us check that aB0 ∈ L⊥. Let j ∈ Z

HomD(A)(E[ j], aB0) = HomD(A)(aiE[ j], aB0)

= HomD(R)(iE[ j], iaB0)

	 HomD(R)(iE[ j],B0)

= 0

where the first equality holds because aiE = E, the third isomorphism because iaB0 	 B0

being B0 LA-local, and the last equality because B0 is L ′-local.

Example Let X be a noetherian separated scheme. Let Z be a closed subscheme of X and
i : X \ Z → X the associated embedding. The functor F 
→ i∗i∗F defines an idempotent
endofunctor in D(OX-Qco), namely Ri∗i∗F. This is an example of a Bousfield localization
that comes from right derivation from a localization in the corresponding abelian category.
Not all localizations come up this way, though. Consider the functor defined by F 
→
RQLΛZF. It is shown in [AJL, end of Remark (0.4)(a)], that it defines a localization in
D(OX-Qco) and it is clear that, in general, it does not come from a localization in OX-Qco.

As a final application we show how to get Brown’s representability theorem for D(A)
with A a Grothendieck category, using our results and the fact that the theorem holds for
D(R) as proved by Neeman. Denote by Ab the category of abelian groups. Recall that a
functor T→ Ab where T is a triangulated category is called homological if it takes triangles
to exact sequences.

Theorem 5.8 Let H : D(A) → Abop be a (contravariant) homological functor that takes
coproducts in D(A) to products in Ab. Then H is representable.

Proof If A = R-mod, the result follows from [N3, Theorem 3.1] as we have already re-
marked that D(R) is compactly generated. In general consider the composition:

D(R)
a
−→ D(A)

H
−→ Abop.

The functor a preserves coproducts and is triangulated, so H ◦ a is a homological functor
and it is representable by the previous remark. Let E ∈ D(R) be the representing object, i.e.,
for every Y ∈ D(R), (H ◦ a)(Y ) 	 HomD(R)(Y, E). The object E is LA-local. If Y ′ ∈ LA,
then a(Y ′) = 0 and therefore, HomD(R)(Y ′, E) 	 (H ◦ a)(Y ′) = 0. As a consequence,
ia(E) 	 E.

Now we claim that the functor H is represented by a(E). Indeed, let X ∈ D(A), then
X = ai(X) and we have the following chain of isomorphisms:
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HomD(A)(X, aE) = HomD(A)(aiX, aE)

= HomD(R)(iX, iaE)

	 HomD(R)(iX, E)

	 (H ◦ a)(iX)

= H(X).

Corollary 5.9 Let T be a triangulated category (with “small hom-sets”) and F : D(A) → T
a triangulated functor that preserves coproducts. Then F has a right adjoint.

Proof The proof is formal and the same as [N3, Theorem 4.1].
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