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A CLASSIFICATION OF HOMOGENEOUS SURFACES
A. T. HUCKLEBERRY AND E. L. LIVORNI

Introduction. Throughout this paper a surface is a 2-dimensional
(not necessarily compact) complex manifold. A surface X is homogeneous
if a complex Lie group G of holomorphic transformations acts holo-
morphically and transitively on it. Concisely, X is homogeneous if it
can be identified with the left coset space G/H, where H is a closed
complex Lie subgroup of G. We emphasize that the assumption that G
is a complex Lie group is an essential part of the definition. For example,
the 2-dimensional ball B, is certainly ‘“homogeneous’’ in the sense that
its automorphism group acts transitively. But it is impossible to realize
B, as a homogeneous space in the above sense.

The purpose of this paper is to give a detailed classification of the
homogeneous surfaces. We give explicit descriptions of all possibilities.
It turns out that except for the complement of the quadric in P, (which
has the affine quadric as universal cover) every non-compact homo-
geneous surface can be realized as a G-equivariant fiber space over a
homogeneous Riemann surface, and it is useful to describe the 2-dimen-
sional space in these terms.

The list of compact homogeneous surfaces has been known for some
time (see [13]), and is easily stated: If X is a compact homogeneous
surface, then it is either P, P; X P;, a torus, a homogeneous Hopf
surface, or the product of an elliptic curve with P;.

A particular type of homogeneous surface is one which has a com-
pactification as a complex manifold to which the group action extends.
More precisely, an almost homogeneous surface V is a compact surface
whose automorphism group has an open orbit. This orbit turns out to
be unique, and its complement is a proper analytic subvariety of V. In
this sense the open orbit X has a nice compactification V. The almost
homogeneous surfaces were classified by Potters [12]. Other than those
which are homogeneous, V is one of the following: A Hopf surface with
an abelian fundamental group; a topologically trivial Pi-bundle over an
elliptic curve; a Hirzebruch surface, possibly blown up at particular
points. It has been noted [4] that a noncompact pseudoconcave homo-
geneous surface is nothing more than a Hirzebruch surface with its
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exceptional curve removed. This is not an immediate consequence of the
definitions, because not all pseudoconcave surfaces can be compactified.

We will now give a rough outline of our classification. Let X = G/H
be a homogeneous surface. Let G = R >0 .S be a Levi-Malcev decom-
position of G (i.e. R is the radical of G and S is a semi-simple part). We
show that if R acts transitively on X, then, except in the case of trivial
products, there is a solvable group M which also acts transitively on X,
and additionally M has discrete isotropy. Thus, in this case X = M/T,
where T is discrete. If A is abelian, then except for trivial cases, the only
non-compact examples arise when T is a lattice of rank 3. These are
topologically trivial C*-bundles over elliptic curves, and conversely any
such bundle space is such an 3/ /T'. There is a unique non-abelian simply-
connected group M of dimension 2. This group is easily described, and,
except for trivial combinations of G, C*, and elliptic curves, the resulting
homogeneous space M/ T is either a bundle of elliptic curves over G* or
a certain non trivial C* bundle over C*. These bundles can be described
using the detailed list of such I given in [3]. It is interesting to note that
the former are not compactificable as almost homogeneous spaces.

If R does not act transitively, then, except for the case of a trivial C-
or C*-bundle over P;, some orbit of S is open. In this case X is one of
the following: the affine quadric, P, minus a quadric curve, a positive
line bundle over Py, or any non-trivial C*-bundle over P;. Conversely,
each of these is homogeneous.

Our paper is organized as follows: We gather the necessary definitions,
preliminary facts, etc., in Section 1. In Section 2 we describe the group
theoretically parallelizable case (i.e., M/T as above). The case in which
the radical does not act transitively is treated in Section 3. In Section 4
we handle the solvable case. We summarize our results in the last section.

1. Preliminaries. If X is a complex manifold and G is a complex Lie
group, then G is said to act holomorphically on X if there is a holomorphic
map G X X — X, (g, p) — g(p), so that g(h(p)) = gh(p) and e(p) = p
for all p € X, and for every g € G the map p — g(p) is an automorphism
of X. In this paper we restrict our attention to connected surfaces X with
a connected complex Lie group G acting holomorphically and transitively.
For p € X, the isotropy group H, is defined as follows:

Hy: = {g € Glgp) = p}.

The orbit map G — X, ¢ - ¢(p), realizes G as the total space of a holo-
morphic fiber bundle with base X and fiber H,. In this way, X is naturally
identified with the left coset space G/H.

The ineffectivity I of the G-action on X is defined by

I: = {g € Glg(p) = pallp € X},
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and is a normal subgroup of G. If I = {e} (resp. I° = {e}), we say that
G acts effectively (resp. almost effectively) on X. The group G/I (resp.
G/I°) acts effectively (resp. almost effectively) on X. Thus, by replacing
G with the quotient G/I, we may always assume that G acts effectively
on X. We note that the universal covering G of G also acts on X, and
hence from now on by replacing G with G, we always assume that G is
simply-connected and acts almost effectively on X.

Let G be as above then G possesses a unique maximal, connected,
normal, solvable subgroup R which is called the radical of G. The group
G is said to be semi-simple if R = {e}. The so-called Levi-Malcev Theorem
(see [2]) asserts the existence of a connected, closed (not necessarily
normal) semi-simple subgroup S of G so that G = R >1 S (i.e. G is the
semi-direct product of R with .S). This is called a Levi-Malcev decom-
position of G.

A Lie group G is said to act linearly on a subvariety X in P, via the
representation p: G — Aut,P,, if

p(G) C {L € AutP,|L(X) C X}.

If G is solvable, then p(G) stabilizes a full flag of subspaces P, = L, D
L,1 D ...D Lo, where L; is a linear, k-dimensional subspaces of P,
(i.e. p(g) (Ly) C Ly for all g € G). This is known as Lie’s Flag Theorem.

If g is the Lie algebra of G, then we have the adjoint representation ad:
G — GL(g). We assume that G and H are n- and k-dimensional respec-
tively. Thus the Lie algebra §) of H is a subalgebra of g and can therefore
be considered as a point ) in the Grassman manifold Gy, of k-dimen-
sional subspaces of g. Since ad(G) C GL(g), we have the natural action
of ad(G) on G, ,. The ad(G)-orbit of the point §) can be identified with
G/N,where N: = N(H") (i.e., the normalizer of the identity component
of H in G). Of course Gy, can be realized as a submanifold of some P,
(e.g. via the Pliicker embedding) so that the automorphisms of G; , are
restrictions of elements of Aut,P, which stabilize the embedded Gy ,,.
Thus we realize G acting linearly on G/N via the adjoint representation.
We further note that Ng(H°) D H, and consequently we have the
normalizer fibration G/H — G/N. There are two main advantages of
this fibration.

1) G acts linearly on the base;

2) The fiber N/H = N/H"/H/H0 is the quotient of a Lie group by a
discrete group (i.e. group theoretically parallelizable).
If the base G/N is compact, then it is easily seen to be rational (i.e. the
radical is contained in the normalizer, and it is realized as the quotient
of a semi-simple part of G, S, by a parabolic subgroup). For more details
about this and other discussion of the compact setting, we refer the
reader to [13] or [1]. Although the above ‘‘definition’” of a rational
homogeneous space may sound somewhat mysterious, we only need
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these in dimensions 1 and 2 where they are P, and P; X Py, P, respec-
tively.

2. The case of discrete isotropy. Throughout this section X = G/H,
where G is 2-dimensional and H is discrete. Since 7;(G) = 1, it follows
that either G = (C2?, +) or G = C? where the group structure is defined
by

(a,b)(@,b) = (a + a, e +b).

We will show that there is always a fibration G/H — G/J onto a homo-
geneous Riemann surface.

We begin by describing the case in which G is abelian. For our purposes
the only interesting case is when H is a lattice of rank 3.

TureoreM 1. (Abelian) Let X = G/H, where G = (C?, +) and H is a
lattice of rank 3, then X s naturally realizable as a topologically trivial,
homogeneous C*-bundle over an elliptic curve. Conversely, every topologically
trivial C*-bundle over an elliptic curve 1is such a G/H. This bundle is holo-
morphically trivial if and only if X possesses a non-constant analytic
function.

Proof. We identify G with C* and H = ((1,0), (0, 1), («, B))z. Let
R} = (H)g and let Cy be the maximal complex subspace of R};. Then

Cy = ((Im o, Im g))c.

We may assume that e¢;: = (1,0) and e;: = (Im @, Im 8) are indepen-
dent. In the basis {e, ez}, we have

H = ((1,0), (r1,72), (51, 52 + 1) )z,
wherer;, s, € R,7=1,2. Let 4 = ((1,0))c. Then

AH = {(z,nrs + m(s2s + 1))z € C,n,m € Z}

is a closed subgroup, and the fibration G/H — G/AH realizes X as a
C*-bundle over an elliptic curve given by the lattice

T = {nry + m(sy + i)|n,m € Z}

in the complex plane.

It is easy to check (see [10]) that the homogeneous G*-bundles over
tori are necessarily topologically trivial. Furthermore, since topologically
trivial bundles come from representations of the fundamental group of
the base into the circle, such a bundle over an elliptic curve is always C?
modulo a lattice of rank 3.

Although the last statement in the theorem can be proved without
reference to the group (see [6]), we find the following argument (which
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goes back to Remmert) more instructive. If f € @ (X), then, writing
H = {((1,0), (0, 1), (a, B) )z, it follows that f has a Fourier-Series.

f(z) = <Z A €Xp (272 (nz1 + m22)).
—o<n,m<co
If ¢pm #~ 0 for some n, m € Z, then, since f(z1 + «, 22 + 8) = f(21, 22), it
follows that na + mB = k € Z. Thus x: C2/H — C*, defined by

(21, 22) — exp (2wi(nz, + mzy)) on C2,

is a character. Since the exact sequence

0>T—CY/HXSC*—0

splits, the bundle is trivial. Thus, if X possesses a non-constant holo-
morphic function, then it is a product. The converse is obvious.

Remark. If X can be realized (even in the non-abelian case) as a
G-equivariant G-bundle over an elliptic curve 7', then the bundle comes
from a representation of 7,(7") into the translation group of C (see [8]).
If the bundle is non-trivial then, using the representation, one explicitly
realizes X as C? modulo a lattice of rank 2 (i.e. G* X C*).

We now consider the non-abelian case. Since dim G = 2, the following
is a simplified version of a remark in [7]. We include the proof for the
sake of completeness.

LEMMA. Let G be the simply-connected, non-abelian complex Lie group of
dimension 2, and let H be a discrete subgroup. Then there is a 1-dimensional
closed subgroup J of G which contains H.

Proof. If H is contained in the center Z¢; = {(2min, 0)|n € Z}, then
letting G’ be the commutator subgroup of G, Z¢. G’ = : J suffices. Thus
we may assume that H is not central. If H is abelian, then we consider
for each & € H the map ¢,: G — G, g — ghg~'h~'. Letting Z (k) be the
centralizer of % in G, we see that ¢,~1(e) = Z4(h). Since dim G — dim G’
= 1, it follows that

dimcZg(h) 2 1forall h € H.

But H is not central, and therefore some Z4(h) = : J is 1-dimensional.
Obviously J D H.

It is now enough to consider the case in which I': = H N G’ # {e}.
Note that G’ = C, and define \: G — Aut G’ = Aut G, by g — int,,
where int,(g’) = g~'g’g. We observe that the automorphisms of G’ which
stabilize T' form a discrete subgroup of Aut G’. Thus M(H) is closed, and
consequently J: = HZ;(G') = »'(N(H)) is a closed, 1-dimensional
subgroup.
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TureoreEM 2. (Non-abelian) Let X = G/H, where G s the non-abelian,
simply-connected complex Lie group of dimension 2, and where H is a
discrete subgroup. If X is not a product of homogeneous Riemann surfaces,
then G/H — G/G'H realizes X either as a bundle of elliptic curves over C*
or as a C* bundle over C*. There is only one possibility for the latter case:

T = ((ri,0), (0, 27))e.

In the former case H can be described in the following way.

Let T, = {(0, nwy + mws)|n, m € L}, where wiws™ = 7 € H, let k be a
fixed integer. Then H is one of the following:

1) {(nik,0), T,)¢, with the further condition that k is odd,

2) ((w/2)ik, 0), T,)q, with the further condition that = 1(mod SL:(Z)),
and k 1s odd;

3) ((wi/3)k,0), T'.) s, with the further condition that + = (1 + i/3/2)
mod (SLy(Z)), and either k = £ 1 (mod 6) or k = % 2 (mod 6).

Proof. By the lemma, we have a fibration X = G/H — G/J whose base
is 1-dimensional. We assume that X is not a product of homogeneous
Riemann surfaces. Since G is non-abelian, X is not compact (Stokes’
Theorem).

If H is abelian then it acts, up to a conjugation, as a group of trans-
lations, therefore, in the case in which rank H is either 1 or 2, X is a
product.

The abelian subgroups of rank 3 are the following (see [3]):

(*) H, = ((27wik,d), T,), where k, d, and T, are as in the statement
of the theorem. Since f(z, w): = exp (2wiz) is H,-invariant, it follows
from Theorem 1 that X is a product. This in fact proves that the bundle
given by the lemma is trivial.

Hence the non-trivial bundles are given by the non-abelian discrete
subgroups. The classification of these is exactly the list in the statement
of the theorem (see [3]).

Remark. The non-trivial homogeneous elliptic curve bundles over C*
can not be compactified to almost homogeneous surfaces with the G-action
extending. This follows in an elementary way from the classification of
Potters’ (see [3] for details).

3. The non-solvable case. The purpose of this section is to prove
the theorem stated below. We begin with some notation. If X = G/H
and G = R > S is a Levi-Malcev decomposition of G, then, providing
Rp is closed for some p € X, we may consider the radical fibration, G/H
— G/RH. If G is an algebraic group and H is an algebraic subgroup, we
may consider a maximal fibration G/H — G/M, where M is a maximal
dimensional algebraic subgroup of G which contains H. We reserve this
language for algebraic groups.
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THEOREM. Let X = G/H be a non-compact homogeneous surface. Assume
that the radical R of G does not act transitively on X. Let G = R>] Sbea
Levi-Malcev decomposition of G. Then, unless X 1is a holomorphically
trivial G- or C*-bundle over Py, some S-orbit is open, and X 1is one of the
Sfollowing homogeneous surfaces:

1) A non-trivial C*-bundle over P, realized by the normalizer fibration
G/H — G/N;

2) A positive line bundle over P,, realized by the radical fibration
G/H — G/RH;

3) The affine quadric, which is an affine bundle over P, realized by a
maximal fibration G/H — G/ M.

4) The complement of the quadric curve in P, in which case H is maximal,
and G/H° is the affine quadric with H/H = Z,.

In all cases S = SLy(C), and in 3) and 4) R = {e}.

We note that the manifolds in 2) are just the Hirzebruch surfaces with
their exceptional curves removed. Furthermore, the affine quadric is the
only homogeneous affine bundle over P; which is not a line bundle. It is
of course a Stein submanifold of C3, and is realized as SL,(C) modulo
diagonal matrices.

The proof of the theorem follows from a sequence of three lemmas.

Recall that we always assume that G acts almost effectively on X and
that = (G) = 1.

LemMMA 1. Let X = G/H be a non-compact, homogeneous surface, and
assume that G is semi-simple. Then G = SLy(C), and H is an algebraic
subgroup of G. If H 1s not maximal and M is a maximal proper algebraic
subgroup of G which contains H, then M s parabolic, and the fibration

G/H — G/ M

realizes X as either a non-trivial C*- or affine bundle over Py. In the latter
case, X 1s the affine quadric, and H can be chosen to be the subgroup of
diagonal matrices. Every non-trivial C*-bundle over P, is homogeneous under
the action of SLy(C), with isotropy

(& *)
Hn'_(o g_n—19

where ¢, is an n-th root of unaity.

If H is maximal, then X 1is the complement of the quadric curve in P,
H/H® = Z,, and G/H" is the affine quadric.

Proof. Since there are no semi-simple groups of dimension two, the base
G/ N of the normalizer fibration is at least 1-dimensional. We note that
the only 1-dimensional homogeneous space of a semi-simple group is P;.
Thus, if dim¢ G/N = 1, then the G/H — G/N realizes X as a bundle
over P;, whose fiber is C* or C. We will describe these bundles later.
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Realizing G as an algebraic group via the adjoint representation, we
note that N is an algebraic subgroup. If dim¢ G/N = 2, then, since H
is an open subgroup of N, it is likewise an algebraic subgroup of G. In
this case, we consider a maximal fibration G/H — G/M, and note that
either M is parabolic or G/ M is Stein. (This is a consequence of the main
theorem of [11] and, for example, Corollary 30.3 of [9].) If M is parabolic,
then G/ M = P, because, if G/ M were 2-dimensional, then G/H = G/ M
(rational homogeneous spaces are simply-connected), and X would be
compact.

If G/ M is Stein, then it is 2-dimensional, because a semi-simple group
can not act transitively on G or C*. Since G/H is a covering space of
G/ M, X is Stein, and, since N/H is finite it follows that G/N is Stein. The
semi-simple group G acts linearly on G/N, and thus G/N is Zariski open
in its closure V in P,. It is clear that G acts linearly on V. This action can
be lifted to a minimal ‘‘equivariant desingularization” V of V. (This is
easy in dimension two, see [4].) Thus ¥ is an almost homogeneous com-
pact surface, and G/N is an open subset of the open orbit of Aut,V. Since
G is semi-simple, the Albanese variety of V is O-dimensional. Further-
more V is algebraic, and consequently it is a rational surface (see [12]).

Unless V' = P,, the open orbit of Aut, V" is a bundle over P;. (In fact 7/
is a Hirzebruch surface [12]). This violates the maximality of M. Thus
it remains to consider the case when IV = P,. We note that a Stein
manifold of dimension greater than one has one ‘“‘end’ as a topological
space. Thus C: = P,\(G/N) is a connected curve. If G should fix a point
in Py, then we could blow it up, and obtain a Hirzebruch surface. This
again violates the maximality of M. Thus C is a non-singular rational
curve on which G acts transitively.

We note that C can not be a linear subspace of P, because the semi-
simple group would in this case have a fixed point p ¢ C. Now let I be
the ineffectivity of the G-action on C. Since [ fixes every point of C and
since C is not linear, I fixes every point of P,. Thus I is discrete. But
G/I = PSL,(C), hence G = SL,(C).

Now, G/H" is also Stein, and thus H° = L€, where L is a 1-dimen-
sional connected compact subgroup of SL,(C) (see [11]). Thus, by taking
the appropriate conjugate, we may assume that H° is the subgroup of
diagonal matrices. Thus G/H? is the affine quadric. But since H? is con-
tained in a Borel subgroup, it is not maximal and thus H is not connected.
An easy calculation shows that No(H®)/H® = Z,. Hence H = N ;(H"),
which is generated by

= (50)

and the group H°. In this case H is maximal, and X can be realized as
Po\{[z0:21:22]|202 + 212 + 222 = 0}.
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It remains to give more details in the case that H is not maximal.
Recall that we have shown that in this case G/H — G/ M realizes X as
a bundle over P; whose fiber is either C or C*. Since G is semi-simple, this
can not be the trivial bundle. Now, a given C*-bundle over P, is the
principal bundle of some power of hyperplane section bundle 5, n € Z\
{0}. Since the Picard variety of P, is trivial, the pullback of 5" by some
g € SLy(C) must be isomorphic to #™ itself. Thus the group of bundle
equivariant automorphisms of # acts transitively on the base (i.e. Py).
Call this complex Lie group G. We may assume that =;(G) = 1, and let
G = R>< S be a Levi-Malcev decomposition. Thus S acts transitively
on the base, and consequently .S = .5” X SLy(C) where S’ is some other
semi-simple group, and .S’ is the ineffectivity of S-action on P;. Since S’
acts on the fiber, we see that it is trivial, and thus S = SL,(C). The
orbits of SLy(C) in #™ are either 1- or 2-dimensional, and, since P; is
simply-connected, any 1-dimensional orbit is a section. If # > 0, then
we can compactify S by adding an o0 -section which may be blown
down to a point. The resulting variety is algebraic and SL.(C) acts
linearily on it, and fixes the point which corresponds to the o -section.
Thus SL,(C) fixes a ‘‘compiementary hyperplane”’ which cuts the variety
in a curve, and hence SL,(C) has a 1-dimensional obrit inS#”. If n < 0,
then the O-section of ™ is exceptional, and consequently is fixed by
SL,(C). Since ™ is not trivial, there are no other 1-dimensional orbits.
In summary, for all = € Z\{0}, the group SL,(C) has one open orbit
and one 1-dimensional orbit in #”. The open orbit is the associated
C*-bundle space, and hence every C*-bundle over P,, is homogeneous
under a SL(C) action. One can easily check that the isotropy can be
realized as in the statement of the lemma.

Note that the above argument shows that no semi-simple group acts
transitively on the line bundle space S, n € Z. So, in order to finish the
proof, we need only to classify the homogeneous C-bundles over P; which
are not line bundles. We observe that if X = G/H — G/M = P; is such
a fibration (for arbitrary G = R > .S), then S acts transitively on X.
Otherwise, a 1-dimensional S-orbit would be a section. Hence, a classi-
fication for semi-simple groups is enough for the general case.

If X = G/H—g G/M = P, is as above and G is semi-simple, then
G = G X SLy(C), where G is the ineffectivity of the G-action on P; =
G/ M. But G is semi-simple and acts on the fibers (i.e. C), and is therefore
trivial. Thus G = SL,(C). From the homotopy sequence, = (H) = Z.
From this, an easy calculation shows that H must be conjugate to the
group of diagonal matrices in SLy(C). Thus X is the affine quadric.

Remark. If n < 0, then the arguments above show that J£” is not
homogeneous. We note that if s € T'(P;, "), then translation by s (i.e.
p—p + s(x(p)) is a well-defined automorphism. Since SL,(C) acts
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transitively on the complement of a “‘O-section”, and since I'(Py, #™")
(0) for n > 0, it follows that.’#” is homogeneous for n > 0.

LEMMA 2. Let X = G/H be a non-compact homogeneous surface. Let
(*) G/H—G/N

be the normalizer fibration, and assume that G/N = P;. Let G = R>]1 S
be a Levi-Malcev decomposition of G. Then, unless (*) is a holomorphically
trivial C- or C*-bundle, S acts transitively on X.

Proof. 1f S does not act transitively, then it has at least one 1-dimen-
sional orbit in X, and in this case (*) is a line bundle. This will lead to a
contradiction. Let p be in a 1-dimensional S-orbit. We may assume that
the bundle is non-trivial, and consequently S acts transitively on the
complement of this orbit. We may assume that H is the isotropy group
at p, and letting F* be the fiber of (*) through p, IV is just the stabilizer
of F'in G. Since N normalizes H, it follows that H fixes every point in F.
But H D SN H = SN N, and the latter acts transitively on F\{p}.
This is the desired contradiction.

LemMMA 3. Let X = G/H be a non-compact homogeneous surface with
normalizer fibration G/H — G/N. Assume that the base G/N is 2-dimen-
stonal, and that the R-orbits in X are 1-dimensional. Let G = R > S be a
Levi-Malcev decomposition, and assume that S does not act transitively on X .
Then, unless X = C* X Py, H = N and the radical fibration G/H — G/RH
realizes X as a line bundle over P;.

Proof. Since G is acting linearly on G/N in P,, there exists an R-stable
flag, P, = L, D L,.1 D ... Lo = (p). If there exists a k so that
G/N C Li\Li—1 = C¥, then G/N is holomorphically separable. Since
every l-dimensional S-orbit is compact, and since the R-orbits are
1-dimensional, it follows that in this case .S would act transitively on
G/N. Then V = L, G/N is a 1-dimensional, closed subvariety of
G/N. Hence for p € 1V, it follows that Rp is closed. Thus all R-orbits are
closed, and we may consider the radical fibration G/H — G/RH. We may
assume X # C* X P,. Therefore the fiber RH/H is C, because S would
act transitively on a non-trivial G*-bundle. Since G/RH == P;, it follows
that 7;(X) = 1, and H = N. Furthermore, since .S must have a 1-
dimensional orbit in X, the radical fibration realizes X as a positive line
bundle. (See the above remark.)

Proof of the theorem. We consider the various cases of the normalizer
fibration. Since R doesn’t act transitively on X, it follows that X is not
group theoretically parallelizable. Hence the base G/N is either 1- or
2-dimensional. Lemma 3 and Lemma 1 handle the 2-dimensional case.

Suppose G/N = G, C*. Then S fixes every point of G/N, and therefore
acts on the fiber N/H. But N/H # P,. Hence S fixes every point of the
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fiber, and consequently S = {e}, contrary to assumption. Thus G/N is
compact, and G/N =< P;. Applying Lemma 2 and Lemma 1, the proof
is finished.

4. The solvable case. The purpose of this section is to prove the
following:

THEOREM. Let X = G/H be a non-compact homogeneous surface, and
assume that G 1s solvable. Then X s etther a product of homogeneous Rie-
mann surfaces, or there exists a 2-dimensional solvable group G which acts
transitively on X.

(A detailed description of this group theoretically parallelizable
situation is given in Section 2.)

The proof goes roughly as follows: If G’ acts transitively, then the
methods of [5] are sufficient. If G’ C H, then X is an abelian group (an
easy case). The main difficulties arise when the G’-orbits are 1-dimen-
sional. But in this case G’ is abelian (see Lemma 2). Using this informa-
tion, and considering the fibration G/H — G/N¢(H M G’), the proof is
completed by elementary arguments.

We begin with two lemmas.

LemMma 1. If X = G/H is a non-compact homogeneous surface, H is not
discrete, G is nilpotent, then either H° O G’ or X is a product of homo-
geneous Riemann surfaces.

Proof. We note that N = Ng(H?) is connected, and dimc¢N >
dimcH [5]. Thus G/N is simply-connected and is at most 1-dimensional.
If N =G, then H* < G. Since G/H" is both 2-dimensional and nilpotent,
it is abelian. Thus H® D G’. If dimcG/N = 1, then G/N = C. In this
case the bundle G/H — G/N is trivial and X is a product.

LEMMA 2. Let X = G/H be a non-compact homogeneous surface, and
assume that G is solvable. If the orbits of the commutator subgroup G’ are
1-dimensional, then G’ is abelian.

Proof. Let p € X, and note that the orbit G’p is either G or C*. Let
G" be the commutator subgroup of G'. If H: = {g € G'|g(p) = p}, then,
since G"’ is connected and the ineffectivity is discrete, it is enough to show
that G C H. If Hq = ¢ for all ¢ € G’p, then H is ineffective and G’/H
is an abelian group. Thus H D G”. If Hgq is open for some ¢ € G’p, and
I: = {g € G'|g(q) = q}, then every element of I N H fixes two points
of G’p. Thus I N H is ineffective, and G’/I M H is a nilpotent Lie group
of dimension 2. Since the only non-abelian group of this dimension is not
nilpotent, G’/I M H is abelian, and therefore G C I N HCAH.

Proof of the theorem. The proof is by induction on dim¢G. If dimeG = 2,

https://doi.org/10.4153/CJM-1981-084-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-084-x

1108 A. T. HUCKLEBERRY AND E. L. LIVORNI

then let G = G. We now assume that dim¢G = # > 2 and consider the
fibration

G/HS G/Ng(H N G).

We only need the case where G, = G'/G’ M H. Since the abelian case
is clear, it follows from Lemma 1 that we may assume that the G’-orbits
are 1-dimensional. Thus, by Lemma 2, G’ is abelian and G/N¢(H M G)
is at most 1-dimensional. We complete the proof by considering two
cases, depending on the dimension of the base.

Suppose that dimcG/No(HMNG') = 1. If G H = HY then H° G G.
In this case G: = G/H" is the desired group, and thus we assume that
G’ M H is a proper subgroup of G’. We note that

Ne(G N H) = (GH)".
Consider the exact sequence

0-G—-G5G/6 = ([C", +)—0.

Thus ¢ (H?) is 1-codimensional. We pick a (closed, normal) complementary
subgroup B C G/G’. Thus G: = ¢~1(B) is a closed, normal subgroup of
G. Since the orbit of G of the point in G/H which corresponds to the coset
H is open, and since G <1 G, it follows that G acts transitively on G/H. If
dimcG < dimeG, then the proof follows by induction. If G = G, then
G/G’ is 1-dimensional. But in this case ¢ (H?) = {0}. Thus H° C G’, and
Ne(HMNG')® = G'. Let g, ¢’ and § be the Lie algebras of G, G’, and H
respectively. Let a = (a)c be a 1-dimensional subspace of g which has
non-trivial image in g/g’. Define the map f,: ¢’ — ¢’ by x: — [a, x]. Let
xy be an eigenvector for f, (i.e. [a, x¢] = N\xy). Then §: = (@, x¢)c is a
Lie subalgebra of g with corresponding (2-dimensional) group G.

Let b be the Lie algebra of H°. Since G acts almost effectively on X, it
follows that MN,cead(g)(h) = {0}. Thus there exist g € G with
xo ¢ ad(g)(h). Thus the 1-parameter group corresponding to x, acting
on the point ¢: = g(p) has 1-dimensional orbit in the fiber at ¢. Since
Ne(G' N H)® = G’, and since a has non-trivial projection in g/g’, the
l-parameter group corresponding to a acts transitively on the base
G/N ¢(G' ™ H). Thus Gq is open.

We must now do some detailed analysis in order to show that, when
X is not realizable by this fibration as a product, G acts transitively. If
the base of G/H — G/N¢(H M G) is G, then the bundle is trivial. Thus
we may assume that the base is C* or an elliptic curve.

We point out that if this fibration realizes X as a C-bundle over an
elliptic curve 7', then either it is trivial or G acts transitively. To show
this we first note that if G fixes a point in 7', then it fixes every point in 7.
But for some ¢ € X, Ggq is open. Thus G acts transitively on 7', and the
restriction of the fibration realizes Gg as a C- or C*-bundle over 7. Thus
it is enough to show in the latter case the original bundle is trivial. It is
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easy to check that X\Gy is itself a homogeneous one to one cover of 7',
and is therefore a section which we consider as the O-section. Since every
homogeneous C*-bundle over 7 is topologically trivial, the original
fibration realizes X as a topologically trivial line bundle over 7". Since X
is homogeneous, this bundle is analytically trivial (we can move the
O-section).

We now show that if the fiber of G/H — G/N¢(H M G’) is either C*
or an elliptic curve, and the base B is likewise, then G acts transitively.
As above, we note that G acts transitively on B. Letting g be as above,
and F the fiber through g, it follows that the orbit of ¢ via the stabilizer
of Fin G is open in F. Since F is either C* or an elliptic curve, this orbit
is the entire fiber, and therefore Gg = X.

Suppose that G = Ng(H M G'). We begin by showing that in this
case dimcG’ = 1. Note first that HN G’ <« G and H N\ G’ C H. Thus
HMN G is ineffective on X, and is consequently discrete. Since
G'p =G /HNG is l-dimensional, it follows that dimcG = 1. It
remains to construct G in this case.

Since 71(G) = 1, it follows that G/G’ = (C*, +). We note that
dimgH = n — 1. Letting ¢: G — G/G’ be the quotient map, we see that
¢ (H?) is a proper subgroup of (C", 4+). Let A be a 1-dimensional closed
(normal) subgroup of G/G’ which is transversal to ¢(H°) at {0}. Then
G: = ¢71(4) is a normal, closed subgroup of G. By construction Gp is
open. Thus G acts transitively on X.

5. Concluding remarks. Although the proof of the classification is
complete, for the convenience of the reader we put the pieces together
in one place. In Section 2 we classify the non-compact homogeneous
surfaces X = G/H when dim¢G = 2. (See Theorem 2.1, 2.2.) In Section
3 we provide a list of such X = G/H when the radical of G does not act
transitively (see Theorem 3.1). Finally, in Section 4 we point out that
if X is not a product of homogeneous Riemann surfaces, and a solvable
complex Lie group G acts transitively on X, then there is a 2-dimensional
solvable group G which also acts transitively. Thus we may refer to
Section 2.

In summary, a complete list of non-compact homogeneous surfaces is
the following: 1) Products of homogeneous Riemann surfaces; 2) Those
surfaces which appear in Theorem 3.1; 3) Topologically trivial C*-
bundles over elliptic curves (which are not analytically trivial); 4) Non-
trivial elliptic curve bundles over C* or a certain C*-bundle over C*
which is in fact a complexification of the Klein bottle. These are given
by the non-abelian groups in Theorem 2.2.

In closing, we note that carrying out a similar project for 3-dimensional
homogeneous manifolds would be much more difficult, because the group
SL.(C) would play a big role in the case of discrete isotropy.
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