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A CLASSIFICATION OF HOMOGENEOUS SURFACES 

A. T. HUCKLEBERRY AND E. L. LIVORNI 

Introduction. Throughout this paper a surface is a 2-dimensional 
(not necessarily compact) complex manifold. A surface X is homogeneous 
if a complex Lie group G of holomorphic transformations acts holo-
morphically and transitively on it. Concisely, X is homogeneous if it 
can be identified with the left coset space G/H, where if is a closed 
complex Lie subgroup of G. We emphasize that the assumption that G 
is a complex Lie group is an essential part of the definition. For example, 
the 2-dimensional ball B2 is certainly "homogeneous" in the sense that 
its automorphism group acts transitively. But it is impossible to realize 
B2 as a homogeneous space in the above sense. 

The purpose of this paper is to give a detailed classification of the 
homogeneous surfaces. We give explicit descriptions of all possibilities. 
It turns out that except for the complement of the quadric in P2 (which 
has the affine quadric as universal cover) every non-compact homo­
geneous surface can be realized as a G-equivariant fiber space over a 
homogeneous Riemann surface, and it is useful to describe the 2-dimen­
sional space in these terms. 

The list of compact homogeneous surfaces has been known for some 
time (see [13]), and is easily stated: If X is a compact homogeneous 
surface, then it is either P2, Pi X Pi, a torus, a homogeneous Hopf 
surface, or the product of an elliptic curve with Pi. 

A particular type of homogeneous surface is one which has a com-
pactification as a complex manifold to which the group action extends. 
More precisely, an almost homogeneous surface F is a compact surface 
whose automorphism group has an open orbit. This orbit turns out to 
be unique, and its complement is a proper analytic subvariety of V. In 
this sense the open orbit X has a nice compactification V. The almost 
homogeneous surfaces were classified by Potters [12]. Other than those 
which are homogeneous, V is one of the following: A Hopf surface with 
an abelian fundamental group; a topologically trivial Pi-bundle over an 
elliptic curve; a Hirzebruch surface, possibly blown up at particular 
points. It has been noted [4] that a noncompact pseudoconcave homo­
geneous surface is nothing more than a Hirzebruch surface with its 
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exceptional curve removed. This is not an immediate consequence of the 
definitions, because not all pseudoconcave surfaces can be compactified. 

We will now give a rough outline of our classification. Let X = G/H 
be a homogeneous surface. Let G = R XI 5 be a Levi-Malcev decom­
position of G (i.e. R is the radical of G and S is a semi-simple part). We 
show that if R acts transitively on X, then, except in the case of trivial 
products, there is a solvable group M which also acts transitively on X, 
and additionally M has discrete isotropy. Thus, in this case X = M/T, 
where T is discrete. If M is abelian, then except for trivial cases, the only 
non-compact examples arise when T is a lattice of rank 3. These are 
topologically trivial C*-bundles over elliptic curves, and conversely any 
such bundle space is such an M/T. There is a unique non-abelian simply-
connected group M of dimension 2. This group is easily described, and, 
except for trivial combinations of C, C*, and elliptic curves, the resulting 
homogeneous space M/T is either a bundle of elliptic curves over C* or 
a certain non trivial C* bundle over C*. These bundles can be described 
using the detailed list of such T given in [3]. It is interesting to note that 
the former are not compactificable as almost homogeneous spaces. 

If R does not act transitively, then, except for the case of a trivial C-
or C*-bundle over Pi, some orbit of S is open. In this case X is one of 
the following: the affine quadric, P2 minus a quadric curve, a positive 
line bundle over Pi, or any non-trivial C*-bundle over Pi. Conversely, 
each of these is homogeneous. 

Our paper is organized as follows: We gather the necessary definitions, 
preliminary facts, etc., in Section 1. In Section 2 we describe the group 
theoretically parallelizable case (i.e., M/T as above). The case in which 
the radical does not act transitively is treated in Section 3. In Section 4 
we handle the solvable case. We summarize our results in the last section. 

1. Preliminaries. If X is a complex manifold and G is a complex Lie 
group, then G is said to act holomorphically on X if there is a holomorphic 
map G X X-+X, (g, p) »-> g(p), so that g(h(p)) = gh(p) and e(p) = p 
for all p £ X, and for every g Ç G the map p—>g(p) is an automorphism 
of X. In this paper we restrict our attention to connected surfaces X with 
a connected complex Lie group G acting holomorphically and transitively. 
For p G X, the isotropy group Hp is defined as follows: 

HP: = {ge G\g(p) = p\. 

The orbit map G —» X, g 1—> g(p), realizes G as the total space of a holo­
morphic fiber bundle with base X and fiber Hp. In this way, X is naturally 
identified with the left coset space G/H. 

The ineffectivity I of the G-action on X is defined by 

I- = {g€ G\g(p) = p a l l i e z } , 
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and is a normal subgroup of G.li I = {e} (resp. 1° = \e\), we say that 
G acts effectively (resp. almost effectively) on X. The group G/I (resp. 
G/I°) acts effectively (resp. almost effectively) on X. Thus, by replacing 
G with the quotient G/I, we may always assume that G acts effectively 
on X. We note that the universal covering G of G also acts on X, and 
hence from now on by replacing G with G, we always assume that G is 
simply-connected and acts almost effectively on X. 

Let G be as above then G possesses a unique maximal, connected, 
normal, solvable subgroup R which is called the radical of G. The group 
G is said to be semi-simple if R = {e}. The so-called Levi-Malcev Theorem 
(see [2]) asserts the existence of a connected, closed (not necessarily 
normal) semi-simple subgroup 5 of G so that G = R ><\ S (i.e. G is the 
semi-direct product of R with 5). This is called a Levi-Malcev decom­
position of G. 

A Lie group G is said to act linearly on a subvariety X in Pn via the 
representation p: G —» Aut^P^, if 

P(G) C { U Aut*Pn |LpO CX}. 

If G is solvable, then p(G) stabilizes a full flag of subspaces Pn = L.n D 
Ai-i D • • • D ^o, where Lk is a linear, ^-dimensional subspaces of Pre 

(i.e. p(g) (Lk) C £* for all gG G). This is known as Lie's Flag Theorem. 
If g is the Lie algebra of G, then we have the adjoint representation ad: 

G —> GL(g). We assume that G and if are n- and ^-dimensional respec­
tively. Thus the Lie algebra Î) of f i is a subalgebra of g and can therefore 
be considered as a point Ï) in the Grassman manifold Gk>n of ^-dimen­
sional subspaces of g. Since ad(G) C GZ(g), we have the natural action 
of ad(G) on Gk>n. The ad (G)-orbit of the point ï) can be identified with 
G/N, where N: = NG(H°) (i.e., the normalizer of the identity component 
of if in G). Of course Gki7l can be realized as a submanifold of some Pm 

(e.g. via the Pliicker embedding) so that the automorphisms of Gktn are 
restrictions of elements of Aut^Pm which stabilize the embedded Gk>n. 
Thus we realize G acting linearly on G/N via the adjoint representation. 
We further note that NG(H°) Z) H, and consequently wre have the 
normalizer fibration G/H —> G/N. There are two main advantages of 
this fibration. 

1) G acts linearly on the base; 
2) The fiber N/H = N/H°/H/H° is the quotient of a Lie group by a 

discrete group (i.e. group theoretically parallelizable). 
If the base G/N is compact, then it is easily seen to be rational (i.e. the 
radical is contained in the normalizer, and it is realized as the quotient 
of a semi-simple part of G, S, by a parabolic subgroup). For more details 
about this and other discussion of the compact setting, we refer the 
reader to [13] or [1]. Although the above "definition" of a rational 
homogeneous space may sound somewhat mysterious, we only need 
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these in dimensions 1 and 2 where they are Pi and Pi X Pi, P2 respec­
tively. 

2. The case of discrete isotropy. Throughout this section X = G/H, 
where G is 2-dimensional and H is discrete. Since TTI(G) = 1, it follows 
that either G = (C2, + ) or G = C2 where the group structure is defined 
by 

(a, b){a',bf) = (a + a', eab' + 6). 

We will show that there is always a fibration G/H —• G/J onto a homo­
geneous Riemann surface. 

We begin by describing the case in which G is abelian. For our purposes 
the only interesting case is when H is a lattice of rank 3. 

THEOREM 1. (Abelian) Let X = G/H, where G = (C2, + ) and H is a 
lattice of rank 3, then X is naturally realizable as a topologically trivial, 
homogeneous C*-bundle over an elliptic curve. Conversely, every topologically 
trivial C*-bundle over an elliptic curve is such a G/H. This bundle is holo-
morphically trivial if and only if X possesses a non-constant analytic 
function. 

Proof. We identify G with C2 and H = <(1, 0), (0, 1), (a, 0) ) z . Let 
R# = (H)R and let C# be the maximal complex subspace of R7/. Then 

GH = ((Im a, Im /3))c. 

We may assume that e\\ = (1,0) and e2: = (Im a, Im /3) are indepen­
dent. In the basis [eu ^2}, we have 

H = ((1,0), (rur2), (sus2 + i))z, 

where rj, sj G R, j = 1, 2. Let A = <( l ,0) ) c . Then 

AH = {(z, nr2 + m(s2 + i))\z G C, n, m G Zj 

is a closed subgroup, and the fibration G/H —> G/AH realizes X as a 
C*-bundle over an elliptic curve given by the lattice 

T = {nr2 + m(s2 + i)\n, m G Z) 

in the complex plane. 
It is easy to check (see [10]) that the homogeneous G*-bundles over 

tori are necessarily topologically trivial, Furthermore, since topologically 
trivial bundles come from representations of the fundamental group of 
the base into the circle, such a bundle over an elliptic curve is always C2 

modulo a lattice of rank 3. 
Although the last statement in the theorem can be proved without 

reference to the group (see [6]), we find the following argument (which 
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goes back to Remmert) more instructive. If / G Û(X), then, writing 
H = ((1, 0), (0, 1), (a, j3))z, it follows that / h a s a Fourier-Series. 

/(*) = X) «wexp (2iri(nzi + ms2)). 
—oo<«,m<oo 

If anm ^ 0 for some n, m G Z, then, since/(zi + a, z2 + P) = /(zi, 22). it 
follows that na + m/3 = k £ Z. Thus %: C2/i7 —> C*, defined by 

(zi, 22) —» exp (2iri(nzi + ws2)) on C2, 

is a character. Since the exact sequence 

o->r->c7ff-^c*->o 
splits, the bundle is trivial. Thus, if X possesses a non-constant holo-
morphic function, then it is a product. The converse is obvious. 

Remark. If X can be realized (even in the non-abelian case) as a 
G-equivariant C-bundle over an elliptic curve T, then the bundle comes 
from a representation of TTI(T) into the translation group of C (see [8]). 
If the bundle is non-trivial then, using the representation, one explicitly 
realizes X as C2 modulo a lattice of rank 2 (i.e. C* X C*). 

We now consider the non-abelian case. Since dim G = 2, the following 
is a simplified version of a remark in [7]. We include the proof for the 
sake of completeness. 

LEMMA. Let G be the simply-connected, non-abelian complex Lie group of 
dimension 2, and let H be a discrete subgroup. Then there is a 1-dimensional 
closed subgroup J of G which contains H. 

Proof. If H is contained in the center ZG = {(2irin, Q)\n G Z}, then 
letting G' be the commutator subgroup of G, ZG. G' = : /suffices. Thus 
we may assume that H is not central. If H is abelian, then we consider 
for each h G H the map çh: G —» G', g —» ghg~lh~l. Letting ZG(h) be the 
centralizer of h in G, we see that (fh~

l{e) — ZG(h). Since dim G — dim G' 
= 1, it follows that 

dimcZG(h) è 1 for all h G H. 

But H is not central, and therefore some ZG(h) = : / is 1-dimensional. 
Obviously / D H. 

It is now enough to consider the case in which T: = H C\ G' 7e \e). 
Note that G' = C, and define X: G -> Aut G' = AutC, by g -> int„ 
where int^(g') = g~lg'g. We observe that the automorphisms of G' which 
stabilize T form a discrete subgroup of Aut G'. Thus \(H) is closed, and 
consequently / : = HZG(Gf) = \ - 1( \ ( i iO) is a closed, 1-dimensional 
subgroup. 
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THEOREM 2. (Non-abelian) Let X = G/H, where G is the non-abelian, 
simply-connected complex Lie group of dimension 2, and where H is a 
discrete subgroup. If X is not a product of homogeneous Riemann surfaces, 
then G/H —> G/G'H realizes X either as a bundle of elliptic curves over C* 
or as a C* bundle over C*. There is only one possibility for the latter case: 

r = <(W,o), (o,2Ti))G. 

In the former case H can be described in the following way. 
Let TT = {(0, nœi + mùo2)\n, m £ Z}, where coico2

_1 = r £ H, let k be a 
fixed integer. Then H is one of the following: 

1) ((irik, 0), TT)G, with the further condition that k is odd, 
2) ((ir/2)ik,0), T T) G, with the further condition that T = i(mod SL2(Z)), 

and k is odd; 
3) ((wi/3)k, 0), TT)G, with the further condition that r = (1 + iy/Z/2) 

mod (SL2(Z)), and either k = ± 1 (mod 6) or k = ± 2 (mod 6). 

Proof. By the lemma, we have a fibration X = G/H —> G/J whose base 
is 1-dimensional. We assume that X is not a product of homogeneous 
Riemann surfaces. Since G is non-abelian, X is not compact (Stokes' 
Theorem). 

If H is abelian then it acts, up to a conjugation, as a group of trans­
lations, therefore, in the case in which rank H is either 1 or 2, X is a 
product. 

The abelian subgroups of rank 3 are the following (see [3]): 

(*) HT = ((2wik, d), TT), where k, d, and TT are as in the statement 
of the theorem. Since f(z, w) : = exp (2iriz) is ^ - invar iant , it follows 
from Theorem 1 that X is a product. This in fact proves that the bundle 
given by the lemma is trivial. 

Hence the non-trivial bundles are given by the non-abelian discrete 
subgroups. The classification of these is exactly the list in the statement 
of the theorem (see [3]). 

Remark. The non-trivial homogeneous elliptic curve bundles over C* 
can not be compactified to almost homogeneous surfaces with the G-action 
extending. This follows in an elementary way from the classification of 
Potters' (see [3] for details). 

3. The non-solvable case. The purpose of this section is to prove 
the theorem stated below. We begin with some notation. If X = G/H 
and G = R X] 5 is a Levi-Mal ce v decomposition of G, then, providing 
Rp is closed for some p £ X, we may consider the radical fibration, G/H 
—» G/RH. If G is an algebraic group and H is an algebraic subgroup, we 
may consider a maximal fibration G/H —* G/M, where i f is a maximal 
dimensional algebraic subgroup of G which contains H. We reserve this 
language for algebraic groups. 
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THEOREM. Let X = G/H be a non-compact homogeneous surface. Assume 
that the radical R of G does not act transitively on X. Let G = Rxi S be a 
Levi-Malcev decomposition of G. Then, unless X is a holomorphically 
trivial C- or Q*-bundle over Pi, some S-orbit is open, and X is one of the 
following homogeneous surfaces: 

1) A non-trivial C*-bundle over Pi, realized by the normalizer fibration 
G/H -> G/N; 

2) A positive line bundle over Pi, realized by the radical fibration 
G/H -> G/RH; 

3) The affine quadric, which is an affine bundle over Pi realized by a 
maximal fibration G/H —» G/M. 

4) The complement of the quadric curve in P2, in which case H is maximal, 
and G/H° is the affine quadric with H/H° = Z2. 

In all cases 5 = SL2(C), and in 3) and 4) R = {e}. 
We note that the manifolds in 2) are just the Hirzebruch surfaces with 

their exceptional curves removed. Furthermore, the affine quadric is the 
only homogeneous affine bundle over Pi which is not a line bundle. It is 
of course a Stein submanifold of C3, and is realized as SL2(C) modulo 
diagonal matrices. 

The proof of the theorem follows from a sequence of three lemmas. 
Recall that we always assume that G acts almost effectively on X and 
that TTI(G) = 1. 

LEMMA 1. Let X = G/H be a non-compact, homogeneous surface, and 
assume that G is semi-simple. Then G = SL2(C), and H is an algebraic 
subgroup of G. If H is not maximal and M is a maximal proper algebraic 
subgroup of G which contains H, then M is parabolic, and the fibration 

G/H -> G/M 

realizes X as either a non-trivial C*- or affine bundle over Pi. In the latter 
case, X is the affine quadric, and H can be chosen to be the subgroup of 
diagonal matrices. Every non-trivial C*-bundle over Pi is homogeneous under 
the action of SL2(C), with isotropy 

where fn is an n-th root of unity. 
If H is maximal, then X is the complement of the quadric curve in P2, 

H/H° = Z2, and G/H° is the affine quadric. 

Proof. Since there are no semi-simple groups of dimension two, the base 
G/N of the normalizer fibration is at least 1-dimensional. We note that 
the only 1-dimensional homogeneous space of a semi-simple group is Pi. 
Thus, if dime G/N = 1, then the G/H —• G/N realizes X as a bundle 
over Pi, whose fiber is C* or C. We will describe these bundles later. 
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Realizing G as an algebraic group via the adjoint representation, we 
note that N is an algebraic subgroup. If dime G/N = 2, then, since H 
is an open subgroup of N, it is likewise an algebraic subgroup of G. In 
this case, we consider a maximal fibration G/H —» G/M, and note that 
either M is parabolic or G/M is Stein. (This is a consequence of the main 
theorem of [11] and, for example, Corollary 30.3 of [9].) If M is parabolic, 
then G/M ^ Pi, because, if G/M were 2-dimensional, then G/H ^ G/M 
(rational homogeneous spaces are simply-connected), and X would be 
compact. 

If G/M is Stein, then it is 2-dimensional, because a semi-simple group 
can not act transitively on C or C*. Since G/H is a covering space of 
G/M, X is Stein, and, since N/H is finite it follows that G/N is Stein. The 
semi-simple group G acts linearly on G/N, and thus G/N is Zariski open 
in its closure V in Pw. It is clear that G acts linearly on V. This action can 
be lifted to a minimal "equivariant desingularization" V of V. (This is 
easy in dimension two, see [4].) Thus V is an almost homogeneous com­
pact surface, and G/N is an open subset of the open orbit of Aut^ V. Since 
G is semi-simple, the Albanese variety of V is 0-dimensional. Further­
more V is algebraic, and consequently it is a rational surface (see [12]). 

Unless V = P2, the open orbit of Aut^F is a bundle over Pi. (In fact V 
is a Hirzebruch surface [12]). This violates the maximality of M. Thus 
it remains to consider the case when V = P2. We note that a Stein 
manifold of dimension greater than one has one "end" as a topological 
space. Thus C: = P2\(G/7V) is a connected curve. If G should fix a point 
in P2, then we could blow it up, and obtain a Hirzebruch surface. This 
again violates the maximality of M. Thus C is a non-singular rational 
curve on which G acts transitively. 

We note that C can not be a linear subspace of P2, because the semi-
simple group would in this case have a fixed point p (t C. Now let / be 
the ineffectivity of the G-action on C. Since / fixes every point of C and 
since C is not linear, I fixes every point of P2. Thus I is discrete. But 
G/I ^ PSL2(C), hence G = SL2(C). 

Now, G/H° is also Stein, and thus H° = LG, where L is a 1-dimen-
sional connected compact subgroup of 5L2(C) (see [11]). Thus, by taking 
the appropriate conjugate, we may assume that H° is the subgroup of 
diagonal matrices. Thus G/H° is the affine quadric. But since H° is con­
tained in a Borel subgroup, it is not maximal and thus H is not connected. 
An easy calculation shows that NG(H°)/H° ^ Z2. Hence H = NG(H°), 
which is generated by 

' - ( - J O 
and the group H°. In this case H is maximal, and X can be realized as 

P2\{[zo:si:z2]|zo2 + zi2 + Z22 = 0}. 
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It remains to give more details in the case that H is not maximal. 
Recall that we have shown that in this case G/H —> G/M realizes X as 
a bundle over Pi whose fiber is either C or C*. Since G is semi-simple, this 
can not be the trivial bundle. Now, a given C*-bundle over Pi is the 
principal bundle of some power of hyperplane section bundle J4?n, n G Z \ 
{0}. Since the Picard variety of Pi is trivial, the pullback of J ^ n b y some 
g G 5X2(C) must be isomorphic X.offln itself. Thus the group of bundle 
equivariant automorphisms oi^fn acts transitively on the base (i.e. Pi) . 
Call this complex Lie group G. We may assume that wi(G) = 1, and let 
G = R X\ S be a Levi-Malcev decomposition. Thus S acts transitively 
on the base, and consequently S = S' X SL2(G) where S' is some other 
semi-simple group, and S' is the ineffectivity of 5-action on Pi. Since 5 ' 
acts on the fiber, we see that it is trivial, and thus S = SL2(C). The 
orbits of SL2(G) inJ$fn are either 1- or 2-dimensional, and, since Pi is 
simply-connected, any 1-dimensional orbit is a section. If n > 0, then 
we can compactify J$?n by adding an 00 -section which may be blown 
down to a point. The resulting variety is algebraic and SL2(C) acts 
linearily on it, and fixes the point which corresponds to the 00 -section. 
Thus SL2 (C) fixes a "complementary hyperplane" which cuts the variety 
in a curve, and hence SL2(C) has a 1-dimensional obrit in Jifn. If n < 0, 
then the 0-section of MPn is exceptional, and consequently is fixed by 
SL2(C). SinceJ4?n is not trivial, there are no other 1-dimensional orbits. 
In summary, for all n G Z\{0}, the group SL2(G) has one open orbit 
and one 1-dimensional orbit in Jti?n. The open orbit is the associated 
C*-bundle space, and hence every C*-bundle over Pi, is homogeneous 
under a SL(C) action. One can easily check that the isotropy can be 
realized as in the statement of the lemma. 

Note that the above argument shows that no semi-simple group acts 
transitively on the line bundle space ^fn, n G Z. So, in order to finish the 
proof, we need only to classify the homogeneous C-bundles over Pi which 
are not line bundles. We observe that if X = G/H —» G/M ^ Pi is such 
a fibration (for arbitrary G = R X S), then 5 acts transitively on X. 
Otherwise, a 1-dimensional 5-orbit would be a section. Hence, a classi­
fication for semi-simple groups is enough for the general case. 

If X = G/H —» G/M = Pi is as above and G is semi-simple, then 
— ^ _ 

G = G X 5L2(C), where G is the ineffectivity of the G-action on Pi = 
G/M. But G is semi-simple and acts on the fibers (i.e. C), and is therefore 
trivial. Thus G = SL2(C). From the homotopy sequence, TTI(H) = Z. 
From this, an easy calculation shows that H must be conjugate to the 
group of diagonal matrices in SL2(C). Thus X is the affine quadric. 

Remark. If n < 0, then the arguments above show that Jl?n is not 
homogeneous. We note that if 5 G T(Pi, ^ifn), then translation by 5 (i.e. 
p -+p + s(w(p)) is a well-defined automorphism. Since SL2(C) acts 
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t ransit ively on the complement of a "O-sect ion", and since r ( P i , 3fn) ^ 

(0) for n > 0, it follows t ha t ffin is homogeneous for n > 0. 

LEMMA 2. Let X = G/H be a non-compact homogeneous surface. Let 

(*) G/H -> G/N 

be the normalizer fibration, and assume that G/N ~ P i . Let G = R X\ S 
be a Levi-Malcev decomposition of G. Then, unless (*) is a holomorphically 
trivial C- or C*-bundle, S acts transitively on X. 

Proof. If 5 does not act transit ively, then it has a t least one 1-dimen-
sional orbit in X, and in this case (*) is a line bundle. This will lead to a 
contradiction. Let p be in a 1-dimensional 5-orbit. We may assume t h a t 
the bundle is non-trivial, and consequently 5 acts t ransi t ively on the 
complement of this orbit. We may assume t h a t H is the isotropy group 
a t p, and lett ing F be the fiber of (*) through p, N is jus t the stabilizer 
of F in G. Since N normalizes H, it follows t h a t H fixes every point in F. 
But HZ)Sr^H = Sr\N, and the la t ter acts t ransi t ively on F\{p]. 
This is the desired contradict ion. 

LEMMA 3. Let X = G/H be a non-compact homogeneous surface with 
normalizer fibration G/H —> G/N. Assume that the base G/N is 2-dimen-
sional, and that the R-orbits in X are 1-dimensional. Let G = R >< S be a 
Levi-Malcev decomposition, and assume that S does not act transitively on X. 
Then, unless X = C* X Pi, H = N and the radical fibration G/H —> G/RH 
realizes X as a line bundle over P i . 

Proof. Since G is acting linearly on G/N in Pn, there exists an i n s t ab l e 
flag, P„ = Ln D Ln-\ D • • • D L0 = (p). If there exists a k so t ha t 
G/N C Lk\Lk-i = C*, then G/N is holomorphically separable. Since 
every 1-dimensional 5-orbit is compact , and since the i^-orbits are 
1-dimensional, it follows t ha t in this case 5 would act t ransi t ively on 
G/N. Then V = Lk C\ G/N is a 1-dimensional, closed subvar ie ty of 
G/N. Hence for p G V, it follows t h a t Rp is closed. T h u s all i?-orbits are 
closed, and we may consider the radical fibration G/H —> G/RH. W e may 
assume X 9^ C* X Pi . Therefore the fiber RH/H is C, because S would 
act t ransit ively on a non-trivial C*-bundle. Since G/RH = P i , it follows 
t ha t TTI(X) = 1, and H = N. Fur thermore , since 5 mus t have a 1-
dimensional orbit in X, the radical fibration realizes X as a positive line 
bundle. (See the above remark.) 

Proof of the theorem. We consider the various cases of the normalizer 
fibration. Since R doesn ' t act t ransit ively on X, it follows t h a t X is not 
group theoretically parallelizable. Hence the base G/N is ei ther 1- or 
2-dimensional. Lemma 3 and Lemma 1 handle the 2-dimensional case. 

Suppose G/N = C, C*. Then 5 fixes every point of G/N, and therefore 
acts on the fiber N/H. Bu t N/H =̂  P i . Hence 5 fixes every point of the 
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fiber, and consequently S = {e\, contrary to assumption. Thus G/N is 
compact, and G/N ~ Pi. Applying Lemma 2 and Lemma 1, the proof 
is finished. 

4. The solvable case. The purpose of this section is to prove the 
following: 

THEOREM. Let X = G/H be a non-compact homogeneous surface, and 
assume that G is solvable. Then X is either a product of homogeneous Rie-
mann surfaces, or there exists a 2-dimensional solvable group G which acts 
transitively on X. 

(A detailed description of this group theoretically parallelizable 
situation is given in Section 2.) 

The proof goes roughly as follows: If G' acts transitively, then the 
methods of [5] are sufficient. If G' C H, then X is an abelian group (an 
easy case). The main difficulties arise when the G'-orbits are 1-dimen-
sional. But in this case G' is abelian (see Lemma 2). Using this informa­
tion, and considering the fibration G/H —» G/NG(H C\ G'), the proof is 
completed by elementary arguments. 

We begin with two lemmas. 

LEMMA 1. If X = G/H is a non-compact homogeneous surface, H is not 
discrete, G is nilpotent, then either H° D G' or X is a product of homo­
geneous Riemann surfaces. 

Proof. We note that N = NG(H°) is connected, and dimc^V > 
d i m c ^ [5]. Thus G/N is simply-connected and is at most 1-dimensional. 
If N = G, then H° < G. Since G/H° is both 2-dimensional and nilpotent, 
it is abelian. Thus H° D G. If dimcG/N = 1, then G/N = C. In this 
case the bundle G/H —-> G/N is trivial and X is a product. 

LEMMA 2. Let X = G/H be a non-compact homogeneous surface, and 
assume that G is solvable. If the orbits of the commutator subgroup G' are 
1-dimensional, then G' is abelian. 

Proof. Let p £ X, and note that the orbit G'p is either C or C*. Let 
G" be the commutator subgroup of G'. If H: = {g £ G'\g(p) = £>},then, 
since G" is connected and the inefïectivity is discrete, it is enough to show 
that G" C H. If Ha = a for all q^G'p, then H is ineffective and G'/îï 
is an abelian group. Thus H Z) G". If Hq is open for some q G G'p, and 
I'. = {g G G'\g{q) = q}, then every element ol I C\ H fixes two points 
of G'p. Thus I r\ H is ineffective, and G'/I C\ H is a nilpotent Lie group 
of dimension 2. Since the only non-abelian group of this dimension is not 
nilpotent, G'/I H H is abelian, and therefore G" C I ^ H C H. 

Proof of the theorem. The proof is by induction on dimcG. If dimcG = 2, 
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then let G = G. We now assume that dimcG = n > 2 and consider the 
fibration 

G/H^G/NG(HnGf). 
We only need the case where Gv' = G,/G/ H H. Since the abelian case 
is clear, it follows from Lemma 1 that we may assume that the G'-orbits 
are 1-dimensional. Thus, by Lemma 2, G' is abelian and G/NG(H C\ G) 
is at most 1-dimensional. We complete the proof by considering two 
cases, depending on the dimension of the base. 

Suppose that àimcG/NG(HC\ Gf) = l.UG'fMI = H°,thenH° < G. 
In this case G: = G/H° is the desired group, and thus we assume that 
Gf r\ H is a proper subgroup of Gr. We note that 

NG(G' r\HY = (G'H)o. 

Consider the exact sequence 

0 -> G' -> G ̂  G/G' = (Cn, + ) -> 0. 

Thus <p (H°) is 1-codimensional. We pick a (closed, normal) complementary 
subgroup B C G/G''. Thus G: = <p~l(B) is a closed, normal subgroup of 
G. Since the orbit of G of the point in G/H which corresponds to the coset 
H is open, and since G <\ G, it follows that G acts transitively on G/H. If 
dimcG < dimcG, then the proof follows by induction. If G = G, then 
G/G' is 1-dimensional. But in this case <p(H°) = {0}. Thus H° C G', and 
NG{HC\ G')° = G'. Let g, g' and f) be the Lie algebras of G, G', and H 
respectively. Let a = (a)c be a 1-dimensional subspace of g which has 
non-trivial image in g/g'. Define the map / a : g' —» gr by x: —> [a, x]. Let 
x0 be an eigenvector for fa (i.e. [a, x0] = Xx0). Then g: = (a, x0)c is a 
Lie subalgebra of g with corresponding (2-dimensional) group G. 

Let t) be the Lie algebra of H°. Since G acts almost effectively on X, it 
follows that DgtG ad(g)(1)) = {0}. Thus there exist g £ G with 
Xo (2 ad (g)(1)). Thus the 1-parameter group corresponding to x0 acting 
on the point q: = g(p) has 1-dimensional orbit in the fiber at q. Since 
NG(G' C\ H)° = G', and since a has non-trivial projection in g/g', the 
1-parameter group corresponding to a acts transitively on the base 
G/NG{G' C\ H). Thus Gq is open. 

We must now do some detailed analysis in order to show that, when 
X is not realizable by this fibration as a product, G acts transitively. If 
the base of G/H -» G/NG(H H G) is C, then the bundle is trivial. Thus 
we may assume that the base is C* or an elliptic curve. 

We point out that if this fibration realizes X as a C-bundle over an 
elliptic curve T, then either it is trivial or G acts transitively. To show 
this we first note that if G fixes a point in T, then it fixes every point in T. 
But for some q 6 X, Gq is open. Thus G acts transitively on T, and the 
restriction of the fibration realizes Gq as a C- or C*-bundle over T. Thus 
it is enough to show in the latter case the original bundle is trivial. It is 
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easy to check t ha t X\Gq is itself a homogeneous one to one cover of T, 
and is therefore a section which we consider as the O-section. Since every 
homogeneous C*-bundle over T is topologically trivial, the original 
fibration realizes X as a topologically trivial line bundle over T. Since X 
is homogeneous, this bundle is analytically trivial (we can move the 
O-section). 

We now show tha t if the fiber of G/H -> G/NG(HC\ G') is ei ther C* 
or an elliptic curve, and the base B is likewise, then G acts transitively. 
As above, we note t ha t G acts transitively on B. Let t ing q be as above, 
and F the fiber through q, it follows t ha t the orbit of q via the stabilizer 
of F in G is open in F. Since F is either C* or an elliptic curve, this orbit 
is the entire fiber, and therefore Gq = X. 

Suppose tha t G = NG(H C\ Gr). We begin by showing tha t in this 
case dimcG' = 1. Note first t ha t H C\ G' < G and H H G' C H. T h u s 
H C\ G' is ineffective on X, and is consequently discrete. Since 
G'p — G'/HC\G' is 1-dimensional, it follows t ha t dimcG' = 1. I t 
remains to construct G in this case. 

Since 7Ti(G) = 1, it follows tha t G/G' = (Cw, + ) . We note t ha t 
dimc^7 = n — 1. Let t ing tp: G —> GIG' be the quotient map, we see tha t 
<p(H°) is a proper subgroup of (Gn, + ) . Let A be a 1-dimensional closed 
(normal) subgroup of G/G' which is transversal to <p(H°) a t {0}. Then 
G: = (p~1(A) is a normal, closed subgroup of G. By construction Gp is 
open. T h u s G acts transitively on X. 

5. C o n c l u d i n g remarks . Although the proof of the classification is 
complete, for the convenience of the reader we put the pieces together 
in one place. In Section 2 we classify the non-compact homogeneous 
surfaces X = G/H when dimcG = 2. (See Theorem 2.1, 2.2.) In Section 
3 we provide a list of such X = G/H when the radical of G does not act 
transit ively (see Theorem 3.1). Finally, in Section 4 we point out t ha t 
if X is not a product of homogeneous Riemann surfaces, and a solvable 
complex Lie group G acts transitively on X, then there is a 2-dimensional 
solvable group G which also acts transitively. Thus we may refer to 
Section 2. 

In summary, a complete list of non-compact homogeneous surfaces is 
the following: 1) Products of homogeneous Riemann surfaces; 2) Those 
surfaces which appear in Theorem 3.1; 3) Topologically trivial C*-
bundles over elliptic curves (which are not analytically trivial) ; 4) Non-
trivial elliptic curve bundles over C* or a certain C*-bundle over C* 
which is in fact a complexification of the Klein bott le. These are given 
by the non-abelian groups in Theorem 2.2. 

In closing, we note t ha t carrying out a similar project for 3-dimensional 
homogeneous manifolds would be much more difficult, because the group 
SX2(C) would play a big role in the case of discrete isotropy. 
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