Glasgow Math. J. 42 (2000) 351-357. © Glasgow Mathematical Journal Trust 2000. Printed in the United Kingdom

ON THE EQUATION $x^{y} \pm y^{x} = \prod n_{i}!$

FLORIAN LUCA

Department of Mathematics, Bielefeld University, 33 501 Bielefeld, Germany

MAURICE MIGNOTTE and YVES ROY

Department of Mathematics, University Louis Pasteur, 67 084 Strasbourg, France

(Received 6 November, 1998)

Abstract. In this note we investigate the diophantine equation

$$x^{y} \pm y^{x} = \prod n_{i}!$$

where x and y are odd and greater than 1. We prove that this equation has no integer solutions.

1991 Mathematics Subject Classification. 11D61, 11D72.

0. Introduction. We study the diophantine equation

$$x^{y} \pm y^{x} = \prod n_{i}!, \tag{1}$$

when x and y are odd. The case xy even is less interesting since then both x and y are even and the terms x^y and y^x have a large greatest common divisor.

The main tool of our study is a result on linear forms in two 2–adic logarithms, due to M. Laurent and Y. Bugeaud. This result enables us to show that equation (1) has only a finite number of solutions. More precisely, we first get reasonable bounds on x and y and then we have to "fill the gap".

To solve the remaining computational problem was not at all trivial. For this purpose, the elementary Proposition 1 below played an essential role in the sense that it replaced a problem of quadratic cost by one of linear cost. Thus, the verification took a reasonable time.

Before proving Proposition 1 and using linear forms in 2-adic logarithms, we gather a few elementary facts on factorials.

1. Preliminary results.

LEMMA 1. For each positive integer n and any prime number p, we have

$$\frac{n}{p-1} - \frac{\log(n+1)}{\log p} \le v_p(n!) \le \frac{n}{p-1}.$$

Proof. See [1, Lemma 1].

352 FLORIAN LUCA, MAURICE MIGNOTTE AND YVES ROY

COROLLARY 1. For each positive integer $n \ge 2$, we have

$$\frac{n}{3} \le v_2(n!) \le n.$$

Proof. Notice first that the function $x \mapsto \frac{\log(x+1)}{x}$ is non-increasing for $x \ge 2$. Then, by Lemma 1 above, we see that the result is certainly true for $n \ge 3$. The inequalities claimed are obvious for n = 2.

LEMMA 2. Suppose that x and y are rational integers with 1 < x < y. Let h = y - x. Then, for x = 2 one has

$$2^{y} - y^{2} = 2^{y} (1 - (y2^{-y/2})^{2}) \ge \frac{7}{32} \cdot 2^{y}$$
 for $y \ge 5$,

while for $x \ge 3$ one has

$$x^{y} - y^{x} > x^{y} (1 - (e/x)^{h}).$$

Proof. For x = 2, the result follows from the fact that the function $y \mapsto y 2^{-y/2}$ is non-increasing for $y \ge 3$. For $x \ge 3$, we have

$$x^{y} - y^{x} = x^{y} (1 - x^{-h} (y/x)^{x})$$

and

$$(y/x)^{x} = \exp(x\log(1+h/x)) < e^{h}.$$

LEMMA 3. For any rational integer $n \ge 2$, we have

$$3.69 (n/e)^n \le n! \le 3.77 (n/2.5)^n$$

and

$$n! \le 2.83 (n/e)^{(n+1)}$$
 when $n \ge 6$.

Proof. We prove only the first two inequalities. The proof of the last one is similar. The proof follows from Stirling's formula

$$n! = \sqrt{2\pi n} e^{\theta/n} (n/e)^n \quad \text{with} \quad 0 < \theta < 1/6.$$

More precisely, the left inequality is a direct implication of this formula (for $n \ge 3$ and it can be directly verified for n = 2) while the right inequality is implied by it for $n \ge 8$ and an elementary verification can be used for the remaining values of n. One may notice that the minimum of the constant appearing on the left is reached for n = 2, while the maximum of the constant appearing on the right is obtained for n = 6.

PROPOSITION 1. Let a and b be odd integers and let $n \ge 1$. Then, the equation $ax^y + by^x \equiv 0 \pmod{2^n}$ with x and y odd in $\mathbb{Z}/2^n\mathbb{Z}$ has exactly 2^{n-1} solutions.

Proof. We proceed by induction on *n*. When n = 1, the result is trivial.

Suppose that the result is true for some $n \ge 1$ and consider an odd solution (x, y) of the equation $ax^y + by^x \equiv 0 \pmod{2^n}$. Let us search for the solutions $(x', y') \pmod{2^{n+1}}$ with $x' \equiv x \pmod{2^n}$ and $y' \equiv y \pmod{2^n}$. Equivalently, $x' = x + \alpha t$ and $y' = y + \beta t$ with $\alpha, \beta \in \{0, 1\}$ and $t = 2^n = \varphi(2^{n+1})$. From Euler's theorem and from the fact that both x and y are odd, it follows that

$$ax'^{y'} + by'^{x'} \equiv ax'^{y} + by'^{x} \pmod{2^{n+1}}.$$

It now follows, by the binomial formula, that

$$ax^{y} + by^{x} = a(x + \alpha t)^{y} + b(y + \beta t)^{x} \equiv ax^{y} + by^{x} + txy(a\alpha x^{y-2} + b\beta y^{x-2})$$

$$\equiv ax^{y} + by^{x} + t(a\alpha + b\beta) \pmod{2^{n+1}}.$$

If we put $ax^{y} + by^{x} = ut$, we then get the congruence

$$u + a\alpha + b\beta \equiv 0 \pmod{2}$$

which has, obviously, exactly two solutions.

COROLLARY 2. Let $n \ge 1$. Then the equation $x^y - y^x \equiv 0 \pmod{2^n}$ with x and y odd in $\mathbb{Z}/2^n\mathbb{Z}$ has only the solutions (x, x) with x odd in $\mathbb{Z}/2^n\mathbb{Z}$.

Proof. The 2^{n-1} pairs (x, x) are trivial solutions and, since the number of solutions is exactly 2^{n-1} , it follows that there can be no other ones.

Remarks.

(1) The above proposition (as well as its corollary) is true for some other moduli. For example, it is true modulo $3 \cdot 2^n$ when x and y are subject to the condition gcd(xy, 6) = 1.

(2) The proof of Proposition 1 can be adapted to imply the following stronger result: Let a and b be odd integers and let c be an even integer. Then, for any positive integer n, the equation $ax^y + by^x \equiv c \pmod{2^n}$ with x and y odd in $\mathbb{Z}/2^n\mathbb{Z}$ has exactly 2^{n-1} solutions.

2. Application of 2-adic linear forms in two logarithms. Suppose that for two odd integers x and y with y > x > 1 we have

$$\Lambda := x^{\nu} \pm y^{x} = \pm \prod_{i=1}^{k} n_{i}!.$$

From equation (1) and Lemma 1, we get that $v_2(x^y \pm y^x) \ge N/3$, where $N = \sum n_i$. We now apply [1, Theorem 1]. With their notations, we have

$$p = 2$$
, $D = e = g = t = 1$, $v_p(\Lambda) \ge N/3$

and

 $\alpha_1 = y, \quad \alpha_2 = x, \quad b_1 = x, \quad b_2 = y.$

We take

 $A_1 = y, \quad A_2 = x.$

From [1, formula (2)], we have

$$v_p(\Lambda) \le 2(KL - 1/2) = 2KL - 1$$
 (2)

whenever $K \ge 3$ and $L \ge 2$ are integers such that

$$2K(L-1)\log 2 > 3\log(KL) + (K-1)\log b + 2L\left(\frac{1}{2} - \frac{KL}{6RS}\right)(R\log y + S\log x)$$
(3)

where

$$b = \frac{(R-1)y + (S-1)x}{2} \left(\prod_{k=1}^{K-1} k!\right)^{-2/(K^2 - K)}$$

and R and S are two positive integers such that K, L, R, S satisfy [1, inequalities (1)].

We distinguish two cases.

Case 1. x and y are multiplicatively independent. We employ the method described in [1, Section 5.1]. Let

$$a_1 = \frac{\log y}{\log 2}, \quad a_2 = \frac{\log x}{\log 2}.$$

We choose $K = \lfloor kLa_1a_2 \rfloor + 1$ where k is a positive parameter. From [1, Lemma 13], we know that

$$\log b \le \log \left(\frac{b_1}{a_2} + \frac{b_2}{a_1}\right) - \frac{1}{2}\log k - \log 2 + \frac{3}{2} + \log \frac{(1 + \sqrt{k-1})\sqrt{k}}{k-1}.$$
 (4)

Using [1, Lemma 12], one may easily show that inequality (3) holds whenever

$$kL(L-1)a_{1}a_{2} > 3\frac{\log(kL^{2}a_{1}a_{2}+L)}{2\log 2} + \frac{kLa_{1}a_{2}\log b}{2\log 2} + \frac{1}{3}\sqrt{k}L^{2}a_{1}a_{2} + \frac{2L^{3/2}\sqrt{a_{1}a_{2}}}{3} + \frac{L(a_{1}+a_{2})}{3}.$$
(5)

(see [3] for detailed proof of the fact that inequality (5) implies inequality (3)). In conclusion, from inequality (2), it follows that

$$N \le 3(2\lfloor kLa_1a_2 \rfloor L + 2L - 1) \tag{6}$$

whenever k and L are such that inequalities (4) and (5) are satisfied.

354

From an elementary argument and from Lemma 3, we get

$$\prod n_i! \le N! \le 2.83 \, (N/e)^{(N+1)}.$$

Moreover, it follows, by Lemma 2, that $|\Lambda| \ge x^{y} (1 - (e/3)^{2})$. Hence, $x^{y} \le 5.59 \cdot |\Lambda|$ and

$$y \le \frac{\log(15.82 (N/e)^{(N+1)})}{\log x}.$$
(7)

We first use the above inequality and [2, Corollary 3] to get a rough upper bound on y, namely $y < 10^7$. We then refine this estimate by using the full machinery of [2, Theorem 1] to obtain

$$y < 3 \cdot 10^{6}$$
.

More precisely, we choose suitable values of $k \in [0.8, 1.2]$ and $L \in \{25, 26, 27, 28\}$ and we solve inequalities (4), (5), (6) and (7).

Case 2. x and y are not multiplicatively independent.

Write $x^a = y^b$ for some coprime positive integers *a* and *b*. At least one of the integers *a* and *b*, say *a*, is odd. Now computing the order at which 2 appears in Λ is the same as computing the order at which 2 appears in

$$(x^{y})^{a} \pm (y^{x})^{a} = (x^{a})^{y} \pm y^{ax} = y^{by} \pm y^{ax} = z(y^{\epsilon(by-ax)} \pm 1),$$

where $z = y^{ax}$ or $z = -y^{by}$ according to whether $\epsilon = 1$ or $\epsilon = -1$. It follows that

$$v_2(\Lambda) \le \max(v_2(y+1), v_2(y-1)) + v_2(|ax-by|) < \log_2(y+1) + \log_2(y) + \log_2(\max(a, b)).$$

It now suffices to notice that $\max(a, b)$ is precisely the largest exponent at which some prime number appears in the prime factor decomposition of either x or y. In particular, $\max(a, b) \le \log_3(y)$. Hence,

$$v_2(\Lambda) < \log_2(y+1) + \log_2(y) + \log_2(\log_3(y)) < 3\log_2(y+1).$$

It follows, by Corollary 1, that $N < 9 \log_2(y+1)$. Combining this last inequality with inequality (7) we get y < 211.

3. The computer verification.

(1) *The "+" case*.We first consider the equation

$$x^y + y^x \equiv 0 \pmod{2^k}$$

when x and y are odd, $1 < x < y < 3 \cdot 10^6$ and k is a large enough integer. More precisely, we used the algorithm described in the proof of Proposition 1 to write a

C-program which verified, in about 40 minutes, that there are only 3982 pairs (x, y) with x and y odd, $1 < x < y < 3 \cdot 10^6$ which verify the above congruence for k = 30. Then, a second program—written in Pari—proved in a few minutes that all these pairs satisfy $x^y + y^x \neq 0 \pmod{2^{40}}$. These computations prove the following proposition.

PROPOSITION 2^+ . Let x, y be odd integers, $1 < x < y < 3 \cdot 10^6$. Then

 $x^y + y^x \not\equiv 0 \pmod{2^{40}}.$

From the bound $N \le 3 \cdot v_2(\Lambda)$, we saw that $N \le 117$. This implied $x^y \le 117!$; hence, $y \le 403$. We ran again our C-program which told us that in this range $v_2(\Lambda) \le 17$. We now got $N \le 51$ and $y \le 138$. A second application of the C-program gave $v_2(\Lambda) \le 14$, which implied that $N \le 42$ and $y \le 107$. A third application of the C-program gave $v_2(\Lambda) \le 13$, which implied that $N \le 39$ and $y \le 97$. A fourth application of the C-program gave $v_2(\Lambda) \le 13$, which implied that $N \le 39$ and $y \le 97$. A fourth application of the C-program gave $v_2(\Lambda) \le 10$, which implied $N \le 39$ and $y \le 75$. Finally, we considered all the pairs (x, y) with x and y odd and $1 < x < y \le 75$ and we computed $P(x^y + y^x)$ where P(k) denotes the largest prime factor of k. It happens that, in this range, $P(x^y + y^x) \ge 239$ (thus $x^y + y^x$ cannot be a product of factorials because $P(\prod n_i!) \le P(N!) \le N \le 39$), except for the pair (x, y) = (3, 9). However, this last pair gives $x^y + y^x = 2^2 \times 3^6 \times 7$ which is, certainly, not a product of factorials.

(2) *The "-" case*.We now consider the equation

356

 $x^y - y^x \equiv 0 \pmod{2^k}.$

In this case, thanks to the Corollary of Proposition 1, we need no computation and we get at once the following result.

PROPOSITION 2⁻. Let x, y be odd integers, $1 < x < y < 3 \cdot 10^6$. Then

 $x^y - y^x \not\equiv 0 \pmod{2^{22}}.$

By an argument similar to the one employed in the "+" case, we get $N \le 3 \times 21$. Thus, $y \le \lfloor \log(5.59 \cdot 63!) / \log 3 \rfloor = 184$. Now the Corollary of Proposition 1 implies $x^y - y^x \ne 0 \pmod{2^8}$. Hence, $N \le 21$ and $y \le 42$. A further application of this argument gives $N \le 15$ and $y \le 27$. Then, a trivial verification achieves the goal: except for the pair (x, y) = (3, 9) we have $P(x^y - y^x) > 24$ whenever x and y are odd and $1 < x < y \le 27$. Since $3^9 - 9^3 = 2 \times 3^6 \times 13$ it follows, as in the previous case, that this number is not a product of factorials.

(3) Conclusion.

The above arguments prove the following result.

THEOREM. The diophantine equation

$$x^{y} \pm y^{x} = \pm \prod n_{i}!$$

has no odd solutions x and y with min(x, y) > 1.

ACKNOWLEDGEMENTS. We thank an anonymous referee for suggestions which greatly improved the quality of this paper.

REFERENCES

1. Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342.

2. M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995) 285-321.

3. F. Luca and M. Mignotte, On the equation $x^{\nu} + y^{x} = z^{2}$, manuscript, 1998. **4.** M. Mignotte, A corollary to a theorem of Laurent–Mignotte–Nesterenko, submitted.