ON THE EQUATION $x^{y} \pm y^{x}=\prod n_{i}$!

FLORIAN LUCA
Department of Mathematics, Bielefeld University, 33501 Bielefeld, Germany
MAURICE MIGNOTTE and YVES ROY
Department of Mathematics, University Louis Pasteur, 67084 Strasbourg, France

(Received 6 November, 1998)

Abstract

In this note we investigate the diophantine equation $$
x^{y} \pm y^{x}=\prod n_{i}!
$$ where x and y are odd and greater than 1 . We prove that this equation has no integer solutions.

1991 Mathematics Subject Classification. 11D61, 11D72.
0. Introduction. We study the diophantine equation

$$
\begin{equation*}
x^{y} \pm y^{x}=\prod n_{i}!, \tag{1}
\end{equation*}
$$

when x and y are odd. The case $x y$ even is less interesting since then both x and y are even and the terms x^{y} and y^{x} have a large greatest common divisor.

The main tool of our study is a result on linear forms in two 2-adic logarithms, due to M. Laurent and Y. Bugeaud. This result enables us to show that equation (1) has only a finite number of solutions. More precisely, we first get reasonable bounds on x and y and then we have to "fill the gap".

To solve the remaining computational problem was not at all trivial. For this purpose, the elementary Proposition 1 below played an essential role in the sense that it replaced a problem of quadratic cost by one of linear cost. Thus, the verification took a reasonable time.

Before proving Proposition 1 and using linear forms in 2-adic logarithms, we gather a few elementary facts on factorials.

1. Preliminary results.

Lemma 1. For each positive integer n and any prime number p, we have

$$
\frac{n}{p-1}-\frac{\log (n+1)}{\log p} \leq v_{p}(n!) \leq \frac{n}{p-1} .
$$

Proof. See [1, Lemma 1].

Corollary 1. For each positive integer $n \geq 2$, we have

$$
\frac{n}{3} \leq v_{2}(n!) \leq n
$$

Proof. Notice first that the function $x \left\lvert\, \rightarrow \frac{\log (x+1)}{x}\right.$ is non-increasing for $x \geq 2$. Then, by Lemma 1 above, we see that the result is certainly true for $n \geq 3$. The inequalities claimed are obvious for $n=2$.

Lemma 2. Suppose that x and y are rational integers with $1<x<y$. Let $h=y-x$. Then, for $x=2$ one has

$$
2^{y}-y^{2}=2^{y}\left(1-\left(y 2^{-y / 2}\right)^{2}\right) \geq \frac{7}{32} \cdot 2^{y} \quad \text { for } \quad y \geq 5
$$

while for $x \geq 3$ one has

$$
x^{y}-y^{x}>x^{y}\left(1-(e / x)^{h}\right)
$$

Proof. For $x=2$, the result follows from the fact that the function $y \mid \rightarrow y 2^{-y / 2}$ is non-increasing for $y \geq 3$. For $x \geq 3$, we have

$$
x^{y}-y^{x}=x^{y}\left(1-x^{-h}(y / x)^{x}\right)
$$

and

$$
(y / x)^{x}=\exp (x \log (1+h / x))<e^{h} .
$$

Lemma 3. For any rational integer $n \geq 2$, we have

$$
3.69(n / e)^{n} \leq n!\leq 3.77(n / 2.5)^{n}
$$

and

$$
n!\leq 2.83(n / e)^{(n+1)} \quad \text { when } \quad n \geq 6
$$

Proof. We prove only the first two inequalities. The proof of the last one is similar. The proof follows from Stirling's formula

$$
n!=\sqrt{2 \pi n} e^{\theta / n}(n / e)^{n} \quad \text { with } \quad 0<\theta<1 / 6 .
$$

More precisely, the left inequality is a direct implication of this formula (for $n \geq 3$ and it can be directly verified for $n=2$) while the right inequality is implied by it for $n \geq 8$ and an elementary verification can be used for the remaining values of n. One may notice that the minimum of the constant appearing on the left is reached for $n=2$, while the maximum of the constant appearing on the right is obtained for $n=6$.

Proposition 1. Let a and b be odd integers and let $n \geq 1$. Then, the equation $a x^{y}+b y^{x} \equiv 0\left(\bmod 2^{n}\right)$ with x and y odd in $\mathbb{Z} / 2^{n} \mathbb{Z}$ has exactly 2^{n-1} solutions.

Proof. We proceed by induction on n. When $n=1$, the result is trivial.
Suppose that the result is true for some $n \geq 1$ and consider an odd solution (x, y) of the equation $a x^{y}+b y^{x} \equiv 0\left(\bmod 2^{n}\right)$. Let us search for the solutions $\left(x^{\prime}, y^{\prime}\right)$ $\left(\bmod 2^{n+1}\right)$ with $x^{\prime} \equiv x\left(\bmod 2^{n}\right)$ and $y^{\prime} \equiv y\left(\bmod 2^{n}\right)$. Equivalently, $x^{\prime}=x+\alpha t$ and $y^{\prime}=y+\beta t$ with $\alpha, \beta \in\{0,1\}$ and $t=2^{n}=\varphi\left(2^{n+1}\right)$. From Euler's theorem and from the fact that both x and y are odd, it follows that

$$
a x^{\prime y^{\prime}}+b y^{\prime x^{\prime}} \equiv a x^{\prime y}+b y^{\prime x}\left(\bmod 2^{n+1}\right) .
$$

It now follows, by the binomial formula, that

$$
\begin{aligned}
a x^{\prime y}+b y^{\prime x}=a(x+\alpha t)^{y}+b(y+\beta t)^{x} & \equiv a x^{y}+b y^{x}+t x y\left(a \alpha x^{y-2}+b \beta y^{x-2}\right) \\
& \equiv a x^{y}+b y^{x}+t(a \alpha+b \beta)\left(\bmod 2^{n+1}\right) .
\end{aligned}
$$

If we put $a x^{y}+b y^{x}=u t$, we then get the congruence

$$
u+a \alpha+b \beta \equiv 0(\bmod 2)
$$

which has, obviously, exactly two solutions.
Corollary 2. Let $n \geq 1$. Then the equation $x^{y}-y^{x} \equiv 0\left(\bmod 2^{n}\right)$ with x and y odd in $\mathbb{Z} / 2^{n} \mathbb{Z}$ has only the solutions (x, x) with x odd in $\mathbb{Z} / 2^{n} \mathbb{Z}$.

Proof. The 2^{n-1} pairs (x, x) are trivial solutions and, since the number of solutions is exactly 2^{n-1}, it follows that there can be no other ones.

Remarks.

(1) The above proposition (as well as its corollary) is true for some other moduli. For example, it is true modulo $3 \cdot 2^{n}$ when x and y are subject to the condition $\operatorname{gcd}(x y, 6)=1$.
(2) The proof of Proposition 1 can be adapted to imply the following stronger result: Let a and b be odd integers and let c be an even integer. Then, for any positive integer n, the equation $a x^{y}+b y^{x} \equiv c\left(\bmod 2^{n}\right)$ with x and y odd in $\mathbb{Z} / 2^{n} \mathbb{Z}$ has exactly 2^{n-1} solutions.
2. Application of 2-adic linear forms in two logarithms. Suppose that for two odd integers x and y with $y>x>1$ we have

$$
\Lambda:=x^{y} \pm y^{x}= \pm \prod_{i=1}^{k} n_{i}!
$$

From equation (1) and Lemma 1, we get that $v_{2}\left(x^{y} \pm y^{x}\right) \geq N / 3$, where $N=\sum n_{i}$. We now apply [1, Theorem 1]. With their notations, we have

$$
p=2, \quad D=e=g=t=1, \quad v_{p}(\Lambda) \geq N / 3
$$

and

$$
\alpha_{1}=y, \quad \alpha_{2}=x, \quad b_{1}=x, \quad b_{2}=y .
$$

We take

$$
A_{1}=y, \quad A_{2}=x .
$$

From [1, formula (2)], we have

$$
\begin{equation*}
v_{p}(\Lambda) \leq 2(K L-1 / 2)=2 K L-1 \tag{2}
\end{equation*}
$$

whenever $K \geq 3$ and $L \geq 2$ are integers such that

$$
\begin{equation*}
2 K(L-1) \log 2>3 \log (K L)+(K-1) \log b+2 L\left(\frac{1}{2}-\frac{K L}{6 R S}\right)(R \log y+S \log x) \tag{3}
\end{equation*}
$$

where

$$
b=\frac{(R-1) y+(S-1) x}{2}\left(\prod_{k=1}^{K-1} k!\right)^{-2 /\left(K^{2}-K\right)}
$$

and R and S are two positive integers such that K, L, R, S satisfy [1, inequalities (1)].
We distinguish two cases.
Case 1. x and y are multiplicatively independent.
We employ the method described in [1, Section 5.1]. Let

$$
a_{1}=\frac{\log y}{\log 2}, \quad a_{2}=\frac{\log x}{\log 2}
$$

We choose $K=\left\lfloor k L a_{1} a_{2}\right\rfloor+1$ where k is a positive parameter. From [1, Lemma 13], we know that

$$
\begin{equation*}
\log b \leq \log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)-\frac{1}{2} \log k-\log 2+\frac{3}{2}+\log \frac{(1+\sqrt{k-1}) \sqrt{k}}{k-1} . \tag{4}
\end{equation*}
$$

Using [1, Lemma 12], one may easily show that inequality (3) holds whenever

$$
\begin{align*}
k L(L-1) a_{1} a_{2}> & 3 \frac{\log \left(k L^{2} a_{1} a_{2}+L\right)}{2 \log 2}+\frac{k L a_{1} a_{2} \log b}{2 \log 2}+\frac{1}{3} \sqrt{k} L^{2} a_{1} a_{2} \tag{5}\\
& +\frac{2 L^{3 / 2} \sqrt{a_{1} a_{2}}}{3}+\frac{L\left(a_{1}+a_{2}\right)}{3} .
\end{align*}
$$

(see [3] for detailed proof of the fact that inequality (5) implies inequality (3)).
In conclusion, from inequality (2), it follows that

$$
\begin{equation*}
N \leq 3\left(2\left\lfloor k L a_{1} a_{2}\right\rfloor L+2 L-1\right) \tag{6}
\end{equation*}
$$

whenever k and L are such that inequalities (4) and (5) are satisfied.

From an elementary argument and from Lemma 3, we get

$$
\prod n_{i}!\leq N!\leq 2.83(N / e)^{(N+1)}
$$

Moreover, it follows, by Lemma 2, that $|\Lambda| \geq x^{y}\left(1-(e / 3)^{2}\right)$. Hence, $x^{y} \leq 5.59 \cdot|\Lambda|$ and

$$
\begin{equation*}
y \leq \frac{\log \left(15.82(N / e)^{(N+1)}\right)}{\log x} \tag{7}
\end{equation*}
$$

We first use the above inequality and [2, Corollary 3] to get a rough upper bound on y, namely $y<10^{7}$. We then refine this estimate by using the full machinery of [2, Theorem 1] to obtain

$$
y<3 \cdot 10^{6} .
$$

More precisely, we choose suitable values of $k \in[0.8,1.2]$ and $L \in\{25,26,27,28\}$ and we solve inequalities (4), (5), (6) and (7).

Case 2. x and y are not multiplicatively independent.
Write $x^{a}=y^{b}$ for some coprime positive integers a and b. At least one of the integers a and b, say a, is odd. Now computing the order at which 2 appears in Λ is the same as computing the order at which 2 appears in

$$
\left(x^{y}\right)^{a} \pm\left(y^{x}\right)^{a}=\left(x^{a}\right)^{y} \pm y^{a x}=y^{b y} \pm y^{a x}=z\left(y^{\epsilon(b y-a x)} \pm 1\right)
$$

where $z=y^{a x}$ or $z=-y^{b y}$ according to whether $\epsilon=1$ or $\epsilon=-1$. It follows that

$$
\begin{aligned}
v_{2}(\Lambda) & \leq \max \left(v_{2}(y+1), v_{2}(y-1)\right)+v_{2}(|a x-b y|) \\
& <\log _{2}(y+1)+\log _{2}(y)+\log _{2}(\max (a, b))
\end{aligned}
$$

It now suffices to notice that $\max (a, b)$ is precisely the largest exponent at which some prime number appears in the prime factor decomposition of either x or y. In particular, $\max (a, b) \leq \log _{3}(y)$. Hence,

$$
v_{2}(\Lambda)<\log _{2}(y+1)+\log _{2}(y)+\log _{2}\left(\log _{3}(y)\right)<3 \log _{2}(y+1) .
$$

It follows, by Corollary 1 , that $N<9 \log _{2}(y+1)$. Combining this last inequality with inequality (7) we get $y<211$.

3. The computer verification.

(1) The "+" case

We first consider the equation

$$
x^{y}+y^{x} \equiv 0\left(\bmod 2^{k}\right)
$$

when x and y are odd, $1<x<y<3 \cdot 10^{6}$ and k is a large enough integer. More precisely, we used the algorithm described in the proof of Proposition 1 to write a

C-program which verified, in about 40 minutes, that there are only 3982 pairs (x, y) with x and y odd, $1<x<y<3 \cdot 10^{6}$ which verify the above congruence for $k=30$. Then, a second program-written in Pari-proved in a few minutes that all these pairs satisfy $x^{y}+y^{x} \not \equiv 0\left(\bmod 2^{40}\right)$. These computations prove the following proposition.

Proposition 2^{+}. Let x, y be odd integers, $1<x<y<3 \cdot 10^{6}$. Then

$$
x^{y}+y^{x} \not \equiv 0\left(\bmod 2^{40}\right)
$$

From the bound $N \leq 3 \cdot v_{2}(\Lambda)$, we saw that $N \leq 117$. This implied $x^{y} \leq 117$!; hence, $y \leq 403$. We ran again our C-program which told us that in this range $v_{2}(\Lambda) \leq 17$. We now got $N \leq 51$ and $y \leq 138$. A second application of the C-program gave $v_{2}(\Lambda) \leq 14$, which implied that $N \leq 42$ and $y \leq 107$. A third application of the Cprogram gave $v_{2}(\Lambda) \leq 13$, which implied that $N \leq 39$ and $y \leq 97$. A fourth application of the C-program gave $v_{2}(\Lambda) \leq 10$, which implied $N \leq 39$ and $y \leq 75$. Finally, we considered all the pairs (x, y) with x and y odd and $1<x<y \leq 75$ and we computed $P\left(x^{y}+y^{x}\right)$ where $P(k)$ denotes the largest prime factor of k. It happens that, in this range, $P\left(x^{y}+y^{x}\right) \geq 239$ (thus $x^{y}+y^{x}$ cannot be a product of factorials because $\left.P\left(\prod n_{i}!\right) \leq P(N!) \leq N \leq 39\right)$, except for the pair $(x, y)=(3,9)$. However, this last pair gives $x^{y}+y^{x}=2^{2} \times 3^{6} \times 7$ which is, certainly, not a product of factorials.
(2) The "-" case

We now consider the equation

$$
x^{y}-y^{x} \equiv 0\left(\bmod 2^{k}\right) .
$$

In this case, thanks to the Corollary of Proposition 1, we need no computation and we get at once the following result.

Proposition 2^{-}. Let x, y be odd integers, $1<x<y<3 \cdot 10^{6}$. Then

$$
x^{y}-y^{x} \not \equiv 0\left(\bmod 2^{22}\right)
$$

By an argument similar to the one employed in the " + " case, we get $N \leq 3 \times 21$. Thus, $y \leq\lfloor\log (5.59 \cdot 63!) / \log 3\rfloor=184$. Now the Corollary of Proposition 1 implies $x^{y}-y^{x} \not \equiv 0\left(\bmod 2^{8}\right)$. Hence, $N \leq 21$ and $y \leq 42$. A further application of this argument gives $N \leq 15$ and $y \leq 27$. Then, a trivial verification achieves the goal: except for the pair $(x, y)=(3,9)$ we have $P\left(x^{y}-y^{x}\right)>24$ whenever x and y are odd and $1<x<y \leq 27$. Since $3^{9}-9^{3}=2 \times 3^{6} \times 13$ it follows, as in the previous case, that this number is not a product of factorials.

(3) Conclusion.

The above arguments prove the following result.
Theorem. The diophantine equation

$$
x^{y} \pm y^{x}= \pm \prod n_{i}!
$$

has no odd solutions x and y with $\min (x, y)>1$.

Acknowledgements. We thank an anonymous referee for suggestions which greatly improved the quality of this paper.

REFERENCES

1. Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342.
2. M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995) 285-321.
3. F. Luca and M. Mignotte, On the equation $x^{y}+y^{x}=z^{2}$, manuscript, 1998.
4. M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko, submitted.
