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Abstract. In this note we investigate the diophantine equation

xy � yx �
Y

ni!

where x and y are odd and greater than 1. We prove that this equation has no inte-
ger solutions.

1991 Mathematics Subject Classi®cation. 11D61, 11D72.

0. Introduction. We study the diophantine equation

xy � yx �
Y

ni!; �1�

when x and y are odd. The case xy even is less interesting since then both x and y are
even and the terms xy and yx have a large greatest common divisor.

The main tool of our study is a result on linear forms in two 2±adic logarithms,
due to M. Laurent and Y. Bugeaud. This result enables us to show that equation (1)
has only a ®nite number of solutions. More precisely, we ®rst get reasonable bounds
on x and y and then we have to ``®ll the gap''.

To solve the remaining computational problem was not at all trivial. For this
purpose, the elementary Proposition 1 below played an essential role in the sense
that it replaced a problem of quadratic cost by one of linear cost. Thus, the ver-
i®cation took a reasonable time.

Before proving Proposition 1 and using linear forms in 2±adic logarithms, we
gather a few elementary facts on factorials.

1. Preliminary results.

Lemma 1. For each positive integer n and any prime number p, we have

n

pÿ 1
ÿ log�n� 1�

log p
� vp�n!� � n

pÿ 1
:

Proof. See [1, Lemma 1].
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Corollary 1. For each positive integer n � 2, we have

n

3
� v2�n!� � n:

Proof. Notice ®rst that the function x 7! log�x�1�
x is non-increasing for x � 2.

Then, by Lemma 1 above, we see that the result is certainly true for n � 3. The
inequalities claimed are obvious for n � 2.

Lemma 2. Suppose that x and y are rational integers with 1 < x < y. Let
h � yÿ x. Then, for x � 2 one has

2y ÿ y2 � 2y
ÿ
1ÿ �y2ÿy=2�2� � 7

32 � 2y for y � 5;

while for x � 3 one has

xy ÿ yx > xy
ÿ
1ÿ �e=x�h�:

Proof. For x � 2, the result follows from the fact that the function y 7!y2ÿy=2 is
non-increasing for y � 3. For x � 3, we have

xy ÿ yx � xy
ÿ
1ÿ xÿh�y=x�x�

and

�y=x�x � exp
ÿ
x log�1� h=x�� < eh:

Lemma 3. For any rational integer n � 2, we have

3:69 �n=e�n � n! � 3:77 �n=2:5�n

and

n! � 2:83 �n=e��n�1� when n � 6:

Proof. We prove only the ®rst two inequalities. The proof of the last one is
similar. The proof follows from Stirling's formula

n! �
��������
2�n
p

e�=n �n=e�n with 0 < � < 1=6:

More precisely, the left inequality is a direct implication of this formula (for n � 3
and it can be directly veri®ed for n � 2) while the right inequality is implied by it for
n � 8 and an elementary veri®cation can be used for the remaining values of n. One
may notice that the minimum of the constant appearing on the left is reached for
n � 2, while the maximum of the constant appearing on the right is obtained for
n � 6.

Proposition 1. Let a and b be odd integers and let n � 1. Then, the equation
axy � byx � 0 �mod 2n� with x and y odd in Z=2nZ has exactly 2nÿ1 solutions.
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Proof. We proceed by induction on n. When n � 1, the result is trivial.
Suppose that the result is true for some n � 1 and consider an odd solution

�x; y� of the equation axy � byx � 0 �mod 2n�. Let us search for the solutions �x0; y0�
(mod 2n�1) with x0 � x �mod 2n� and y0 � y �mod 2n�. Equivalently, x0 � x� �t and
y0 � y� �t with �, � 2 f0; 1g and t � 2n � '�2n�1�. From Euler's theorem and from
the fact that both x and y are odd, it follows that

ax0y
0 � by0x

0 � ax0y � by0x �mod 2n�1�:

It now follows, by the binomial formula, that

ax0y � by0x � a�x� �t�y � b�y� �t�x � axy � byx � txy
ÿ
a�xyÿ2 � b�yxÿ2

�
� axy � byx � t�a�� b�� �mod 2n�1�:

If we put axy � byx � ut, we then get the congruence

u� a�� b� � 0 �mod 2�

which has, obviously, exactly two solutions.

Corollary 2. Let n � 1. Then the equation xy ÿ yx � 0 �mod 2n� with x and y
odd in Z=2nZ has only the solutions �x; x� with x odd in Z=2nZ.

Proof. The 2nÿ1 pairs �x; x� are trivial solutions and, since the number of solu-
tions is exactly 2nÿ1, it follows that there can be no other ones.

Remarks.
(1) The above proposition (as well as its corollary) is true for some other mod-

uli. For example, it is true modulo 3 � 2n when x and y are subject to the condition
gcd�xy; 6� � 1.

(2) The proof of Proposition 1 can be adapted to imply the following stronger
result: Let a and b be odd integers and let c be an even integer. Then, for any positive
integer n, the equation axy � byx � c �mod 2n� with x and y odd in Z=2nZ has exactly
2nÿ1 solutions.

2. Application of 2-adic linear forms in two logarithms. Suppose that for two odd
integers x and y with y > x > 1 we have

� :� xy � yx � �
Yk
i�1

ni!:

From equation (1) and Lemma 1, we get that v2�xy � yx� � N=3, where N �P ni.
We now apply [1, Theorem 1]. With their notations, we have

p � 2; D � e � g � t � 1; vp��� � N=3

and
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�1 � y; �2 � x; b1 � x; b2 � y:

We take

A1 � y; A2 � x:

From [1, formula (2)], we have

vp��� � 2�KLÿ 1=2� � 2KLÿ 1 �2�

whenever K � 3 and L � 2 are integers such that

2K�Lÿ 1� log 2 > 3 log�KL� � �Kÿ 1� log b� 2L
�1
2
ÿ KL

6RS

�
�R log y� S log x� �3�

where

b � �Rÿ 1�y� �Sÿ 1�x
2

�YKÿ1
k�1

k!
�ÿ2=�K2ÿK�

and R and S are two positive integers such that K;L;R;S satisfy [1, inequalities (1)].

We distinguish two cases.

Case 1. x and y are multiplicatively independent.
We employ the method described in [1, Section 5.1]. Let

a1 � log y

log 2
; a2 � log x

log 2
:

We choose K � bkLa1a2c � 1 where k is a positive parameter. From [1, Lemma 13],
we know that

log b � log
b1
a2
� b2
a1

� �
ÿ 1

2
log kÿ log 2� 3

2
� log

�1� �����������
kÿ 1
p � ���

k
p

kÿ 1
: �4�

Using [1, Lemma 12], one may easily show that inequality (3) holds whenever

kL�Lÿ 1�a1a2 >3 log�kL2a1a2 � L�
2 log 2

� kLa1a2 log b

2 log 2
� 1

3

���
k
p

L2a1a2

� 2L3=2 ���������
a1a2
p
3

� L�a1 � a2�
3

:

�5�

(see [3] for detailed proof of the fact that inequality (5) implies inequality (3)).
In conclusion, from inequality (2), it follows that

N � 3�2bkLa1a2cL� 2Lÿ 1� �6�

whenever k and L are such that inequalities (4) and (5) are satis®ed.
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From an elementary argument and from Lemma 3, we getY
ni! � N! � 2:83 �N=e��N�1�:

Moreover, it follows, by Lemma 2, that j�j � xy
ÿ
1ÿ �e=3�2�. Hence, xy � 5:59 � j�j

and

y � log
ÿ
15:82 �N=e��N�1��

log x
: �7�

We ®rst use the above inequality and [2, Corollary 3] to get a rough upper bound on
y, namely y < 107. We then re®ne this estimate by using the full machinery of [2,
Theorem 1] to obtain

y < 3 � 106:

More precisely, we choose suitable values of k 2 �0:8; 1:2� and L 2 f25; 26; 27; 28g
and we solve inequalities (4), (5), (6) and (7).

Case 2. x and y are not multiplicatively independent.
Write xa � yb for some coprime positive integers a and b. At least one of the

integers a and b, say a, is odd. Now computing the order at which 2 appears in � is
the same as computing the order at which 2 appears in

�xy�a � �yx�a � �xa�y � yax � yby � yax � z�y��byÿax� � 1�;

where z � yax or z � ÿyby according to whether � � 1 or � � ÿ1. It follows that

v2��� � max�v2�y� 1�; v2�yÿ 1�� � v2�jaxÿ byj�
< log2�y� 1� � log2�y� � log2�max�a; b��:

It now su�ces to notice that max�a; b� is precisely the largest exponent at which
some prime number appears in the prime factor decomposition of either x or y. In
particular, max�a; b� � log3�y�. Hence,

v2��� < log2�y� 1� � log2�y� � log2�log3�y�� < 3 log2�y� 1�:

It follows, by Corollary 1, that N < 9 log2�y� 1�. Combining this last inequality
with inequality (7) we get y < 211.

3. The computer veri®cation.
(1) The ``�'' case.
We ®rst consider the equation

xy � yx � 0 �mod 2k�

when x and y are odd, 1 < x < y < 3 � 106 and k is a large enough integer. More
precisely, we used the algorithm described in the proof of Proposition 1 to write a
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C-program which veri®ed, in about 40 minutes, that there are only 3982 pairs �x; y�
with x and y odd, 1 < x < y < 3 � 106 which verify the above congruence for k � 30.
Then, a second programÐwritten in PariÐproved in a few minutes that all these pairs
satisfy xy � yx 6� 0 �mod 240�. These computations prove the following proposition.

Proposition 2�. Let x, y be odd integers, 1 < x < y < 3 � 106. Then

xy � yx 6� 0 �mod 240�:

From the bound N � 3 � v2���, we saw that N � 117. This implied xy � 117!; hence,
y � 403. We ran again our C-program which told us that in this range v2��� � 17.
We now got N � 51 and y � 138. A second application of the C-program gave
v2��� � 14, which implied that N � 42 and y � 107. A third application of the C-
program gave v2��� � 13, which implied that N � 39 and y � 97. A fourth applica-
tion of the C-program gave v2��� � 10, which implied N � 39 and y � 75. Finally,
we considered all the pairs �x; y� with x and y odd and 1 < x < y � 75 and we
computed P�xy � yx� where P�k� denotes the largest prime factor of k. It happens
that, in this range, P�xy � yx� � 239 (thus xy � yx cannot be a product of factorials
because P�Q ni!� � P�N!� � N � 39), except for the pair �x; y� � �3; 9�. However, this
last pair gives xy � yx � 22 � 36 � 7 which is, certainly, not a product of factorials.

(2) The ``ÿ'' case.
We now consider the equation

xy ÿ yx � 0 �mod 2k�:
In this case, thanks to the Corollary of Proposition 1, we need no computation and
we get at once the following result.

Proposition 2ÿ. Let x, y be odd integers, 1 < x < y < 3 � 106. Then

xy ÿ yx 6� 0 �mod 222�:

By an argument similar to the one employed in the ``+'' case, we get N � 3� 21.
Thus, y � blog�5:59 � 63!�= log 3c � 184. Now the Corollary of Proposition 1 implies
xy ÿ yx 6� 0 �mod 28�. Hence, N � 21 and y � 42. A further application of this
argument gives N � 15 and y � 27. Then, a trivial veri®cation achieves the goal:
except for the pair �x; y� � �3; 9� we have P�xy ÿ yx� > 24 whenever x and y are odd
and 1 < x < y � 27. Since 39 ÿ 93 � 2� 36 � 13 it follows, as in the previous case,
that this number is not a product of factorials.

(3) Conclusion.
The above arguments prove the following result.

Theorem. The diophantine equation

xy � yx � �
Y

ni!

has no odd solutions x and y with min�x; y� > 1.
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