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PROXIMAL ANALYSIS AND BOUNDARIES OF 
CLOSED SETS IN BANACH SPACE 

PART II: APPLICATIONS 

J. M. BORWEIN AND H. M. STROJWAS 

Introduction. This paper is a direct continuation of the article "Proximal 
analysis and boundaries of closed sets in Banach space, Part I: Theory", 
by the same authors. It is devoted to a detailed analysis of applications of 
the theory presented in the first part and of its limitations. 

5. Applications in geometry of normed spaces. Theorem 2.1 has important 
consequences for geometry of Banach spaces. We start the presentation with 
a discussion of density and existence of improper points (Definition 1.3) for 
closed sets in Banach spaces. Our considerations will be based on the "lim 
inf ' inclusions proven in the first part of our paper. 

Ti IEOREM 5.1. If C is a closed subset of a Banach space E, then the 
K-proper points of C are dense in the boundary of C. 

Proof If x is in the boundary of C, for each r > 0 we may find y £ C 
with \\y — 3c|| < r. Theorem 2.1 now shows that Kc(xr) ^ E for some 
xr e C with 

II* - * , l l ^ 2r . 
COROLLARY 5.1. ( [2] ) If C is a closed convex subset of a Banach space E, 

then the support points of C are dense in the boundary of C. 

Proof. Since for any convex set C and x G C we have 

Tc(x) = Kc(x) = Pc(x) = P(C - x) = WTc(x) 

= WKc(x) = WPc(x\ 

the /^-proper points of C at x, where Rc(x) is any one of the above cones, 
are exactly the support points. Apply Theorem 5.1 to finish the proof. 

COROLLARY 5.2. Suppose that C is a closed subset of a Banach space and 
that for all x e C 

d\\m mî(Rc(x') + x') c Kc(x) + A% 
x'-^X 

c 

as happens, if for all x G C 

lim inf Rc(x') c Kc(x). 
.Y'->A: 
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Then the R-proper points of C are dense in the boundary of C. 

Proof Use Theorem 5.1 and the corresponding definitions. 

Let us recall that a set C is called tangentially regular at x e C if 
Tc(x) = Kc(x). 

C O R O L L A R Y 5.3. If C is a closed subset of a Banach space E such that for 
all x e C, Kc(x) is convex (inparticular if C is tangentially regular at all its 
points), then the P-proper points of C are dense in the boundary of C. 

Proof. We have for all x E C 

Kc(x) = Pc(x) D lim inf Pc(x'). 
x'^X 

c 

Use Corollary 5.2 to complete the proof. 

C O R O L L A R Y 5.4. If C is a closed, boundedly relatively weakly compact 
subset of a Banach space E then the P-proper points of C are dense in the 
boundary of C. 

If in addition E has an equivalent Frechet differentiable and Kadec norm 
or if C is weakly compact and E has an equivalent Frechet norm, then the 
WP-proper points of C are dense in the boundary of C. 

Proof. Use Corollary 5.2 and Theorem 4.1, and then Corollary 5.2 and 
Theorem 3.4. 

C O R O L L A R Y 5.5. If C is a closed subset of a reflexive space then the 
WP-proper points of C are derfse in the boundary of C. 

If in addition the norm of E is Kadec and Frechet differentiable, then the 
B-proper points are dense in the boundary of C. 

Proof. The first statement follows from Corollary 5.4. Use Corollary 5.2 
and Theorem 3.1 to justify the last statement. 

We have formulated some assumptions on sets and spaces which 
guarantee the density (in particular existence) of improper points. We 
complete them with the following observations concerning the existence of 
/^-proper points. 

First let us recall that a Banach space E is said to have the 
Radon-Nikodym property if every closed and bounded convex subset of E 
is the closed convex hull of its strongly exposed points [11]. 

P R O P O S I T I O N 5.1. Let C be a subset of a (locally convex vector) space E, 
then any support point of C is a WP-proper point of C. 

Proof. Note that if x e C and x* e P are such that 

(JC*, c ~ x) g 0 for all c G C, 

then x* <= WP{)
c(x). 
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C O R O L L A R Y 5.6. If E is a Banach space with the Radon-Nikodym 
property, then every closed and bounded subset of E has a WP-proper 
point. 

Proof. Note that any strongly exposed point of œ C must belong to C. 
Thus if E has the Radon-Nikodym property then any closed and bounded 
subset of E has a support point. Proposition 5.1 completes the proof. 

Definition 5.1. A subset C of a (locally convex vector) space E is called 
compactly epi-Lipschitzian at x if there exist X, a neighbourhood of x, 
X > 0, a compact set K and U, a neighbourhood of zero, such that 

(5.1) X n C + tU c C + tK for a l l / e (0, A). 

If K may be chosen to be a one point set, then we say that C is 
epi-Lipschitzian at x. 

The following important result is due to Rockafellar [18]. 

P R O P O S I T I O N 5.2. If C is epi-Lipschitzian at x then 

int Tc(x) ^ 0 

and for any y e int Tc(x) there exist some X > 0, X and U, neighbourhoods 
of x and 0, respectively, for which (5.1) is satisfied with K = {y}. 

The properties of compactly epi-Lipschitzian sets are described in [6], 
where the following results are proven. 

P R O P O S I T I O N 5.3. If C is a closed subset of a Banach space E, x G C, 
then 

(i) C is compactly epi-Lipschitzian at x and 

int Tc(x) ^ 0 

if and only if C is epi-Lipschitzian at x. 
Moreover 

(ii) lim inf Kc(x) = Tc(x), 
x'-*X 

c 

whenever C is compactly epi-Lipschitzian at x. 

C O R O L L A R Y 5.7. If C is a closed subset of a Banach space E which is 
compactly epi-Lipschitzian at x Œ C, then Tc(x) = E if and only if x lies 
interior to C. 

Proof Use Proposition 5.3 (i) and Proposition 5.2. 

P R O P O S I T I O N 5.4. Suppose that C is a closed subset of a Banach space 
which is compactly epi-Lipschitzian at x G C and tangentially regular at x. 
If x lies in the boundary of C, then x is a P-proper point. 

https://doi.org/10.4153/CJM-1987-019-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-019-4


P R O X I M A L ANALYSIS 431 

Proof. As C is tangentially regular at x we have 

Tc(x) = Kc(x) = Pc(x). 

If x is in the boundary of C, Corollary 5.7 implies Tc(x) ¥- E, hence 
Pc(x) ¥= E and the proof is finished. 

COROLLARY 5.8. Suppose that C is a closed subset of a Banach space E 
which is compactly epi-Lipschitzian at x e C and such that 

lim inf Kc(x') = Kc{x). 
-*x 
c 

If x lies in the boundary of C, then x is a P-proper point of C. 

Proof. Under our assumptions C is tangentially regular at x on using 
Proposition 5.3 (ii), hence the conclusion follows from Proposition 5.4. 

The existence of improper points of C is related to the existence of 
nearest points in C. 

For any closed subset C of a normed space E, let 

Prox C : = {c G C\C is the nearest point of C to some z £ C). 

The following is an easy consequence of the definitions. 

PROPOSITION 5.5. Suppose C is a closed subset of a normed space E. Then 
x is a B-proper point of C if and only if x G Prox C. 

If || || is some norm on a space E let B^\x) denote the Bony tangent 
cone to C at x with respect to the norm || ||. Let JV be the set of 
all equivalent norms of E. 

PROPOSITION 5.6. If C is a subset of a normed space E, x e C then 

Proof. Inclusion 

follows from Proposition 1.1. So suppose that y £ Kc{x). Then 

(5.2) C n [x + [0, 2X)(y + 2eB) ] = {x} 

for some X > 0, e > 0. Let 

W := co{tB,y, -y) 

and set z : = x + Xy. Then x is the (unique) nearest point to z in || | |^. 
Indeed, 

x = x + Xy-Xy<Ez + XW, 
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while 

c n (z + XW) 

c C n (z - Ay + X co{0, >> + eB, 2y} ) 

c C n (JC + co{0, Xy + À6#, 2Ày} ) 

c C n (JC + [0, 2X](j; + 2 É £ ) ) = {x} 

on using (5.2). Thus 

C O R O L L A R Y 5.9. If C is a closed subset of a Banach space E, then there 
exists an equivalent norm on E in which C has a B-proper point. 

Proof. Apply Proposition 5.6 and Theorem 5.1. 

Definition 5.2. A closed subset of a normed space E is completely 
antiproximal if Prox C = 0 for all equivalent norms on E. 

C O R O L L A R Y 5.10. A Banach space contains no proper closed nonempty 
completely antiproximal subset. 

Proof Use Corollary 5.9 and Proposition 5.5. 

The question arises as to what can be said about the space if the norm in 
Corollary 5.9 may be chosen independently of the set C. The answer 
follows from the following theorem. 

T H E O R E M 5.2. Let E be a Banach space. Then the following are 
equivalent. 

(i) There exists an equivalent norm on E for which the equality 
(inclusion) 

lim inf Bc(x') = Tc(x\ (lim inf Bc(x') c Tc(x) ) 
x'-*X x'-*X 

c c 

holds for any closed sets C, and x G C; 
(ii) there exists an equivalent norm on E for which, for any closed set C, 

B-proper points exist densely in the boundary of C; 
(iii) there exists an equivalent norm on E such that for any closed set C, 

Prox C is dense in the boundary of C; 
(iv) there exists an equivalent norm on E such that for any closed set C, 

Prox C is nonempty, 
(v) E is reflexive', 

(vi) there exists an equivalent norm on E, such that for each closed subset 
C of E, the set of those points which have a nearest point in C is dense 
in E. 

Proof, (v) implies (i) by Theorem 3.1 and (i) implies (ii) by Corollary 5.2. 
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Implications (ii) => (iii) =̂> (iv) are obvious. We prove that (iv) => (v). 
Assume that (iv) holds and consider E in the norm given by the 
assumption. Let x* G E*, \\X*\\ = 1. Put 

C := {x G E\(x*, x) = 0}. 

Then by (iv) there exist ~c G C and x £ C such that for any x G £, 
(x*, x) = 0 implies 

||x - x|| â He - x||. 

Thus C and the ball 3c 4- ||x — ~c\\B, where B is the closed unit ball in E, 
may be separated. Hence there exist 0 ^ j * G £* and a G R such that for 
any Z> G £, c G C 

(5.3) (;;*, x + ||x - c||6) S a ^ (y*, c). 

This is only possible if a = 0 and x* = Ay*, for some X ¥= 0. Thus from 
(5.3) we get 

(x*, x + ||x - c\\b) ^ 0 for all b G B, 

or 

(x*, - x + ||x - c\\b) â 0 for all 6 G B. 

Hence as (x*, c) = 0 and ||x*|| = 1 we get 

^ 1 = 1 or U-LZ£_) = i. 
V ' 113c- c|| / V ' | | j c - c | | / 

We conclude that any functional from E* attains its norm on a unit ball 
hence by an application of James' Theorem [12], E is reflexive. That is (v) 
holds, (v) implies (vi) by Proposition 3.3 and Proposition 3.4 and (vi) 
obviously implies (iv). The proof is complete. 

We leave for a while considerations related to the existence and the 
density of 7^-proper points of closed subsets of Banach spaces and we will 
return to this subject in the next section in connection with differentiabil­
ity and subdifferentiability properties of functions on Banach spaces. 

We now turn to the theory of starshaped sets which, as will be shown, is 
another area of possible applications of our main results. 

Let E be a normed space, C c E. 

Definition 5.3. We say x G C sees c in C if the line segment [x, c] is 
contained in C. 

We say C has a-visibility (in A c C) if every subset of C of cardinality a 
is simultaneously seen by some point c G C (a G A ). 

If C has A:-visibility (in A) for every natural number k we say C has 
finite visibility (in A). 
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Comparing Definition 2.1 and Definition 5.3 we see that C of 
cardinality a is starshaped if and only if C has «-visibility. 

Definition 5.4. A point c e Cis said to be a cone point of C if there is a 
nonzero x* e E* such that 

(x*, c) = sup{ (x*, x) \x sees c in C}. 

As the set of those JC'S which see c in C is contained in Pc(c) + c, any 
P-proper point of C is a cone point of C. 

Krasnoselski [13] showed that if C is a compact subset of R" and every 
n 4- 1 cone points of C can be seen by some point in C, then C is 
starshaped. 

We prove the following strengthening of Krasnoselski's result. 

THEOREM 5.3. Suppose that C is a norm-closed boundedly relatively 
weakly compact subset of a Banach space E. If there exists a bounded subset 
A of C such that for any finite number of P-proper points of C there is some 
point a in A which simultaneously sees them in C then 

star C n wcl A ¥* 0 

and C is starshaped. 
In particular, if C is a bounded closed subset of a reflexive space E and C 

has finite visibility, then C is starshaped. 

Proof. By Corollary 4.1 we get 

star C = Pi Pr(x) + x 

D n (Pr(x) + x) n wcl A 

3 n ((Pc(x) + x) n wclv4). 
x is P-proper 

Define 

^ ( J C ) : = (P c(x) + JC) n w c M , x e C. 

Note that 4̂ (x) is weakly compact for all x G C. Let S be any finite subset 
of P-proper points of C. Then, as we have assumed, we may find a ^ A 
with [a, s] c C for all s e S\ This in turn implies that # — s e ATc(s), 
therefore a e v4(s). This means that 

a G n yl(5) ^ 0 

and by the finite intersection property we conclude that 

N n c star CDwclA 
JC is P-proper 
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therefore 

star C ¥= 0. 

Thus C is starshaped and the proof is finished. 

COROLLARY 5.11. ( [5] ) E is reflexive if and only if every closed bounded 
subset of E with finite visibility is starshaped. 

Proof. Assume that E is reflexive. Then every closed bounded subset of 
E with finite visibility is starshaped by Theorem 5.3. If the unit ball of E is 
not weakly compact, then the construction of a closed and bounded subset 
of E with finite visibility but not starshape was shown in [5], which 
finishes the proof. 

Our next considered applications are related to the theory of vector 
fields and invariant flows, see [10] and [17], where additional details and 
references may be found. 

Let C be a subset of a space E and let A : C —> 2 be a multifunction on C 
with values in E. We will say that A is lowersemicontinuous (LSC) on C at x 
G Cif 

lim inf A(x') = A(x). 
x'^X 

c 

We will say that A is d-lowersemicontinuous (dLSC) on C at x e C if 

d lim inf A (xr) = A(x). 

c 

THEOREM 5.4. Let E be a normed space and let C be a closed subset of E. 
Suppose that V is a multifunction on C with values in E, which is LSC on C at 
all points of C. Consider the following statements. 

(i) V(x) c Tc(x) for all x e C 
(ii) V(x) c Kc(x) for all x e C. 

(hi) V(x) c Pc(x) for all x e C. 
(iv) V(x) c WTc(x) for all x G C 
(v) V(x) c WKc(x) for all x e C 

(vi) V(x) c WPc(x) for all x e C 
(vii) V(x) c Bc(x) for all x e C 
Then 
1) if E is a Banach space, (i) and (ii) are equivalent; 
2) if E is a reflexive Banach space, (i)-(vi) are equivalent; 
3) / / E is a reflexive Banach space and the norm of E is Frechet 

differentiable and Kadec, (i)-(vii) are equivalent; 
4) if C is weakly compact, E is a Banach space which may be given an 

equivalent smooth norm then (i)-(iii) are equivalent; 
5) / / C is weakly compact, E is a Banach space {which may be given an 

equivalent Frechet differ entiable norm), then (i)-(vi) are equivalent. 
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Proof. Note that if 

lim inf Rc(x') c Tc(x), x e C, and 
x'-»X 

c 

V(x') c Rc(x') for all x' e C 

then with our assumptions on F we have 

K(JC) = lim inf V{x') c lim inf # c (x ' ) c Tc(x), 
x'-*X x'-*X 

c c 

hence V(x) c Tc(x). 
This observation together with Theorem 1.1, Corollary 3.2, and 

Theorem 3.1 proves 1), 2), 3), respectively, and together with Theorem 3.4 
it proves 4) and 5). 

THEOREM 5.5. Let E be a Banach space and let C be a norm-closed 
boundedly relatively weakly compact subset of E. Suppose that V is a 
multifunction on C with values in E, such that if 

V(x) : = V(x) + x, x G C, 

//*£« V is dLSC on C at all points of C. With these assumptions (i)-(iii) of 
Theorem 5.4 are equivalent. 

If E may be given an equivalent Frechet differentiable and Kadec norm 
then (i)-(vi) are equivalent. 

Proof. Note that if 

d lim inf Rc(x') + xf c Tc(x) + JC, 

c 

x G C and K(V) c i?c(V) for all x' e C, then with our assumptions on K 
we have 

V(x) + x = d lim inf F(xr) + x' 
x'->X 

c 

c d lim inf # c O ' ) + x' c 7^(x) + JC. 

C 

Hence F(x) c Tc(x). 
This observation together with Theorem 4.1 implies the claimed 

equivalences. 

As an interesting application of Theorem 5.4 and Theorem 5.5 we 
present their consequences in the theory of pseudoconvexity. First 
we prove the following basic relations of this theory in Banach spaces. 
Pseudoconvexity was defined in Definition 1.2. 
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THEOREM 5.6. In a Banach space the closed convex sets coincide with the 
T-pseudoconvex and K-pseudoconvex sets. 

Proof. If C is .K-pseudoconvex we have 

C a n KAx) + x. 

By Corollary 2.1 we have 

C c n Tr(x) + x c star C, 

which shows that C = star C. This means that C is convex and so 
T-pseudoconvex. 

COROLLARY 5.12. Let C be a closed subset of a norme d space E. Then any 
one of the following assumptions l)-6) imply that the equivalence: 

C is R-pseudoconvex if and only if C is convex, 

holds', 
1) E is a Banach space and Tc(x) c Rc(x) c Kc(x) for all x e C, 
2) £ is a reflexive Banach space and 

Tc(x) c Rc(x) c WPc(x) for all x e C, 

3) E is a reflexive Banach space with a Frechet differentiable, Kadec norm 
and 

Tc(x) c Rc(x) c Bc(x) for all x <E C, 

4) C w weakly compact, E is a Banach space which has un equivalent 
Frechet norm and 

Tc(x) c Rc(x) c WPc(x) for all x G C, 

5) C w boundedly relatively weakly compact, E is a Banach space and 

Tc(x) c Rc(x) c Pc(x) for all x e C, 

6) C w boundedly relatively weakly compact, E is a Banach space which 
has an equivalent Frechet, Kadec norm and 

Tc(x) c Rc(x) c WPc(x) for all x G C. 

Proo/. Note that if we define V(x) : = C — x, x G C, then F is LSC on 
C at all points of C. Use Theorem 5.4 and Theorem 5.6 to prove l)-4). 
5) and 6) follow from Theorem 5.6 and Theorem 5.5 as V = C is obviously 
dLSC on C at all points of C. 

Theorem 5.6 and Corollary 5.12 complete results of [5], [4] and [3]. 

6. Differentiability and subdifferentiability. Let E be a locally convex 
topological vector space and let / be an extended real-valued function 
on E. 

For 
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x e dom / : = {JC e E\ \f(x) | < oo}, 

y e E, t e (0, oo) and i * G F define 

„ . / (* + ty) -f(x) , 
t 

Let us recall that JC* e £ is said to be the Gateaux derivative of f at 
x e d o m / i f for all y e £ 

(6.1) lim r(/,.y) - 0. 

If the convergence in (6.1) is uniform in y on all sequentially compact 
(bounded) sets, we say that x* is the Hadamard (Frechet) derivative off 
at x. If such an x* exists we say / is Gateaux (Hadamard, Frechet) 
differentiable at x. (See [21] for details.) 

We generalize these definitions as follows. 

Definition 6.1. JC* G E* is said to be a Gateaux subderivative of f at 
x <E d o m / i f for all y e E 

(6.2) lim rmn{r(t, y), 0} = 0. 

If the convergence in (6.2) is uniform in y on all sequentially compact 
(bounded) sets, we say that x* is a Hadamard (Frechet) subderivative of 
f at x. 

If E is considered in its weak topology then a corresponding Hadamard 
subderivative of f at x e dom / will be called a weak Hadamard 
subderivative o f / a t JC. 

The set of all Hadamard (weak Hadamard, Frechet, Gateaux) 
subderivatives of / at JC G dom / will be called the Hadamard (weak 
Hadamard, Frechet, Gateaux) subdifferential of f at x. It will be denoted 
by 

dHf(x)(dmif(x), dFf(x), dGf(x)). 
If x £ dom / all the subdifferentials of / at x are empty, by 

convention. 
We will say t h a t / i s Hadamard (weakly Hadamard, Gateaux, Frechet) 

subdifferentiable at JC whenever the corresponding subdifferential is not 
empty. 

As an easy consequence of the definitions we obtain the following 
relations. 

PROPOSITION 6.1. For any locally convex topological vector space E, any 
function f on E, and x Œ. E the following inclusions always hold 

dFf(x) c dWHf(x) c dHf(x) c dGf(x). 
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(i) If E is a reflexive Banach space then 

dFf(x) = dmif(x)-

(ii) if E is finite dimensional then 

dFf(x) = 3"/(*); 
(iii) / / weakly convergent sequences converge in E (in particular if 

E : = l](S)) then 

dHf(x) = dWHf(x); 

(iv) if f is Lipschitz on some neighbourhood of x then 

dHf(x) = dGf(x). 

The following characterizations are easy to obtain. 

PROPOSITION 6.2. (i) x* is the (weak) Hadamard subderivative off at 
x e domfifand only if for all (weakly) convergent sequences yn in E and all 
sequences tn I 0 we have 

liminf r(tn,yn) è 0; 
n—*oo 

(ii) JC* is the Frechet subderivative off at x e domfifand only if for all 
bounded sequences yn in E and all sequences tn | 0 we have 

lim inir(tn9yn) ^ 0, 
n—*oo 

(iii) JC* is the Gateaux subderivative off at x G. domfifand only if for all 
sequences tn I 0 and y e E we have 

lim inf r(tn, y) ^ 0. 

Definition 6.2. Let x e domfy <E E. Then 

/ (x; jy) : = inf lim inf 
t„i0 n->oo tn 

y • J(x + QQ -f(x) 
= lim inf , 

J (x\ y) : = mf lim inf — , 

t„io 

f™(x; y) : - inf lim inf /<* + ' ^ > - / < * > , 

v„-*y 
tnlQ 
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(where yn —» y means yn converges to y weakly), will be called respectively 
the Gateaux, the Hadamard, the weak Hadamard directional subderivative 
off at x with respect to y. 

As an obvious consequence of Proposition 6.2 and Definition 6.2 we 
obtain the following characterization. 

PROPOSITION 6.3. (i) JC* is a Gateaux subderivative of fat x if and only if 

fG(x\y) ^ (x*,y) for ally G E; 

(ii) x* is a Hadamard subderivative offat x if and only if 

fH(x;y) ^ (x*,y) for all y G E; 

(iii) x* is a weak Hadamard subderivative offat x if and only if 

fwu{x\y) ^ (x*,y) for ally G E. 

Note that the following equivalent formulations of Definition 6.2 
hold. 

PROPOSITION 6.4. Let x G dom/ , y G E. Then 
( i ) / (x; y) = inf{r G R| (_y, r) is the limit of some sequence 

Ç\c„ - ( * , / ( * ) ) ) 

with tn I 0 and cn in the epigraph off}; 

( i i ) / (x; j;) = inf{r G R| (_y, r) is the weak limit of some sequence 

t~\c„ - (x,f(x))) 

with tn I 0 and cn in the epigraph off}; 

( i i i ) / (x; y) = inf{r G R\for some sequence tn I 0, the sequence 

(* , / ( * ) ) + tn(y,r) 

lies in the epigraph off}. 

Proof We give a proof of (i). The proofs of (ii) and (iii) are 
analogous. 

Suppose that x G d o m / lîfH(x; y) = +oo, then it is easy to see that 
the infimum in (i) is taken over the empty set and as such it is equal to 
+ oo. Therefore (i) holds in this case. 

Assume now that / / 7 (x; y) ¥= +oo. Suppose that 

(6.3) fH(x; y) < r. 

Then there exist sequences yn converging to y and tn \ 0 such that 

/ ( * + tnyn) < + ° ° and 
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/ " ( * ; y) ^ lim tn
 X (f(x + tnyn) - f(x) ) < r, 

n—->oo 

where the limit above is finite or equals — oo. Let 

zn:= x + t„y„, 

y„ := max{/(z„), f(x) + r , / } , 

Then the sequence c/7 lies in the epigraph o f / a n d 

(y,r) = lim Ç\cn ~ ( * , / ( * ) ) ) . 

Denoting the right-hand side of (i) by d we see that d ^ r, which by (6.3) 
implies 

(6.4) d^f"{x;y). 

This argument also shows that the set on the right-hand side of (i) is 
nonempty whenever/ (x; y) < +oo. So suppose that r' is in this set and 
let 

(y,r') = lim f~\dn - ( * , / ( * ) ) ) , 
A?—»CO 

where 

Put.y„ := f„~\z'„ - x), then 

/ " ( * ; >>) â lim inf ^ ' ( / ( x + t'„y„) - f(x) ) 

g lim ^"'(y/, - / ( * ) ) = /•'. 

Hence 

/ 7 W ) ^ 4 
which together with (6.4) finishes the proof of (i). 

We will be mostly interested in the case of normed spaces. The 
following observations will be helpful. If E is normed, then 

y (JC; j>) = lim inf , 
v'—v t 

and if / is locally Lipschitz around x then fH(x; •) is continuous. 
Furthermore, this is a consequence of Eberlein-Smulian theorem [12] that 
if E is normed, then x* is the weak Hadamard subderivative of /a t x if and 
only if the convergence in (6.2) is uniform in y on all weakly compact 
sets. 
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In addition to the tangent cones listed in the Preliminaries in Part I we 
will also consider the radial contingent cone to a set C at x e C, denoted 
RKc(x), which is the set of those y such that x + tny e C for some 
sequence tn I 0. 

For a function/on E, let ep i /denote the epigraph off. 
Recalling the definitions of a contingent cone and of a weak contingent 

cone (Preliminaries, Part I) and using the fact that a contingent cone is 
closed we restate Proposition 6.4 as follows. 

COROLLARY 6.1. Let E be a normed space, x G d o m / y G E. Then 

e p i / " ( * ; • ) = KpifixJix)); 

fm'(x; y) = inf{r G R| (y, r) G WK^f(x,f{x) ) }; 

fG(x; y) = inf{r e R| (y, r) G RK^if(x,f(x) ) }. 

Now we are ready to formulate the basic relations which tie the 
subdifferentiability theory to the theory of tangent cones. 

THEOREM 6.1. Let E be a normed space, x G dom f. Then 
(i) x* is a Hadamard subderivative of f at x if and only if 

(x*, - 1 ) G K^f(x,f(x)); 

(ii) JC* is a weak Hadamard subderivative offat x if and only if 

(x*, - 1 ) G WKlif(xJ(x)); 

(iii) x* is a Gateaux subderivative offat x if and only if 

{x\ - 1 ) G RK^lf(xJ(x)\ 

Proof. Use Proposition 6.3 and Corollary 6.1. 

PROPOSITION 6.5. If E is a normed space then x* is a Frechet 
subderivative off at x if and only if 

(6.5) liminf \\y\\~\f(x 4- y) - f(x) - (x\ y) ) g 0. 
||v||-H),v*0 

Thus, iff is Frechet subdifferentiable at x then f is lowersemicontinuous 
at x. 

Proof. Assume that JC* is a Frechet subderivative of / at x. As for 
y ^ 0 

\\y\r\f(x +y) ~f(x) - (x\y)) = r(\\y\l\\y\r]y) 

and the convergence in (6.2) is uniform on the unit ball, (6.5) follows. 
Suppose that x* is not a Frechet subderivative o f / a t JC. Then there exist 

c > 0, a bounded sequence yn in E and a sequence /„ I 0 such that 
inequality in Proposition 6.2 (i) is violated. Then 
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liminf r(\\y\l \\y\\~ly) ^ lim M \\yn\r
lr(tn, yn) < 0 

HvlHa.V^O n-*oo 

contradicts (6.5) and the proof of the equivalence is completed. The last 
statement follows from 6.5. 

Remark. Note that with appropriate definitions of tangent cones, 
Theorem 6.1 holds in any locally convex vector space. 

COROLLARY 6.2. If E is a reflexive Banach space then the following are 
equivalent: 

(i) x* is a weak Hadamard subderivative of f at x\ 

(ii) (AC*, - 1 ) G WK%if(x,f{x))-

(ûï)fWH{x;y) â {x*, y) for ally G E; 

(iv) x* is a Frechet subderivative of fat x\ 

(v) lim inf \\y\\~\f(x + y) - f(x) - (**, j ; ) ) ^ 0 . 
||.y||-X),v#0 

Proof Use Proposition 6.1 (i), Proposition 6.3 (iii), Theorem 6.1 (i), 
Proposition 6.5. 

Let us recall that for any extended real-valued function f on a locally 
convex vector space E, x* e E* is said to be a Clarke subgradient of f at 
x <E d o m / i f 

(x*, - 1 ) G AÉpi/x,/(*)). 

The subgradient set df(x), consists of such functional x* (see [9] for 
details and references). 

The proof of the following result may be found in [16]. 

PROPOSITION 6.6. If f is a lowersemicontinuous function on a Banach 
space E, then the set (JC|8/(JC) I^ 0} is dense in dom/. 

Hence the following is also true. 

COROLLARY 6.3. Let f be a lowersemicontinuous function on a Banach 
space E. If the epigraph of f is tangentially regular at all its points then f is 
densely Hadamard subdifferentiable on dom / 

Proof. Use Proposition 6.6 and Theorem 6.1. 

We prove a strengthening of this result for reflexive Banach spaces. 
Further on we use 

|| (x, a) || := VlMI2 + a for (je, a) e E X R. 

THEOREM 6.2. Every lowersemicontinuous function f on a reflexive Banach 
space E is densely Frechet subdifferentiable in d o m / 
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Proof. Let x G d o m / Then by Proposition 6.6 there exists x in d o m / 
near x such that for some x* <E E* 

(6.7) (x*, - 1 ) e Nepif(x,f(x)). 

By Corollary 3.2 

(6.8) Ncpif(xJ(x) ) = œ w* lim sup P^e°pi /(x', Y') 
( A " y ) e ^ / J ^ ) 

= cô w* lim sup ^ À ^ x ' , / ( * ' ) ) > 

where the last equality is justified by the lowersemicontinuity off and the 
inclusion 

W^j-ix', y') D W A ^ / x ' , / ( * ' ) ) , 

whenever 

Y' g / ( x ' ) > -oo. 

(6.7) and (6.8) show that there exists x' in dom / near 3c, j * G £* and 
y > 0 such that 

(/>, - y ) e H^ e ° p i /x ' , / (* ' ) ) • 

By Corollary 6.2 we thus get y~ ]y* e dFf(x') and as x' lies in dom/near .x 
we have that the set 

{x\dFf(x) * 0} 

is dense in d o m / a n d the theorem is proven. 

THEOREM 6.3. Let f be a locally Lipschitz function on a weakly compactly 
generated Banach space E, then f is densely Hadamard subdifferentiable 
on E. 

Proof Since E is a weakly compactly generated space, there exists 
a reflexive Banach space R and a one-to-one continuous linear operator 
T:R —» E such that the range of T is dense in E [11]. Suppose fis locally 
Lipschitz on E. Let x e E. Define 

g(z): = f(T(z)l z G R. 

Then g is locally Lipschitz on R and hence by Theorem 6.2 g is densely 
Frechet subdifferentiable on R. This together with the properties of T 
implies that there exist 3c near x in E, z~ e R; z* e R* such that x = 7T 
and 

(6.9) (z*, h) ^ g^7/(z; A) for all h e # . 

A s / i s locally Lipschitz on £, there exists AT > 0 such that 
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gm\z; h) ^ K\\Th\\ for all h <= R. 

Thus 

|(z*, h)\ ^ K\\Th\\ for all A e jR, 

which implies, by taking subgradients or directly, that z* = T*y* for some 
y* e is*. Using this in (6.9) we get for any h e R 

(y\ Th) % gm{(z; h) â gG(I; h) 

= fG(Tz; Th) = fH(Tz; Th), 

where the last equality is due to the fact that fis locally Lipschitz on some 
neighbourhood of Tz. As observed earlier this property o f / a l so implies 
t h a t / (x, •) is continuous on E. Hence as the range of T is dense in E we 
conclude that 

(>>*, y) ^ f\x\ y) for all y <= £, 

which shows that / is Hadamard subdifferentiable at x and the proof is 
finished. 

We complete our considerations with some remarks about generic (i.e., 
on a dense Gs subset of a domain) subdifferentiability and differentiability 
of functions. 

First let us note that in general dense Frechet subdifferentiability in 
Theorem 6.2 can not be replaced with generic Frechet subdifferentiability. 
Such a theorem would be no longer true even for E : = R (because for 
example there exists a continuous function nowhere differentiable on 
[0, 1] ). Similarly, dense Gateaux (Hadamard) subdifferentiability in 
Theorem 6.3 can not be replaced with generic Gateaux subdifferentiability 
even for E : = R (because there exists a locally Lipschitz function on R 
which is not generically Gateaux differentiable on R, for example the one 
constructed in Proposition 1.9 of [15] as follows from Theorem 3.8 of the 
same paper). In view of the above remarks it is interesting to observe that 
as a consequence of Theorem 6.2 we obtain a simple proof for the 
following related result of Zhivkov. 

COROLLARY 6.4 [22]. If fis a locally Lipschitz function on an open subset 
D of a weakly compacted generated Banach space E then the subdifferential 
mapping 

(6.10) Sf(x) : = {x* G E*\(x*,y) 

^ lim sup r \f(x + ty) - f(x) ), Vy G E) 

has nonempty images at the points of a dense G8 subset of D. 

Remark. Note that by Theorem 6.3 Sf(x) is nonempty densely in D. 
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Proof. Let R, T, and g be as in the proof of Theorem 6.3. Put 
~ D. Then C is open in R. Let m, n e N, m, 

£,w? : - { Z G C | there is z* G #* such that 

) : 

L : = {z e C|8gF(z) * 0}, 

C := T D. Then C is open in R. Let m, w e N, m, « â 1. Denote 

g(z + h) - g(z) > (z*, h) - m l̂AH whenever ||/z|| ^ « ! } , 

and 

Gm : = { x e D | there are nm ^ m and 

x G TBw„m with ||* - x|| < m~ln~]}. 

By Theorem 6.2 L is dense in C, thus 7X is dense in D. Furthermore 

oo 

TL c n Gm. 

To see this assume x G 7X and put x : = x in definition of Gm. Obviously 
for all m Gm is an open set. Thus 

oo 

G:= n Gm 
m = 1 

is a dense Gs subset of D. Let x e G. Then there exist sequences zw G C, 
xm = Tzm, z^ G E* and «w â m such that 

(6.11) ||xw - JC|| <m-]nm
] 

and 

(6.12) g(zm + A) - g ^ ) > (z*, A) - m-^l/zll 

whenever \\h\\ = nm . Take any h in R with ||/z|| = 1. Let L be a Lipschitz 
constant o f / o n some neighbourhood of x. Then for m sufficiently big we 
get by (6.11) and (6.12) 

f(x + n~xTh) -f(x) 

^f(*m + n~xTh) -f(xm) - 2L\\xm - x\\ 

(4«J^) - m XnmX - 2Lm XnmX-
Thus 

(6.13) fi^<:Th)-Ax) ^ h) ( 2 L + iym_K 

Note that it follows from (6.13) that the sequence ||z*J| is bounded. Since 
R is reflexive the sequence z^ has a weak star convergent subsequence. Let 
z* be its limit. Then from (6.13) we get 

https://doi.org/10.4153/CJM-1987-019-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-019-4


PROXIMAL ANALYSIS 447 

(6.14) lim sup ^ (z , /z) 

and we conclude easily that this inequality is valid for any h in R. In a 
similar way as in the proof of Theorem 6.3 we may argue that z* = T*y* 
for some y* e E*. Then using the fact that / is Lipschitz on some 
neighbourhood of x and T is continuous with a dense range we get from 
(6.14) 

f(x + ty) - f(x) 
hm sup ^ (^*, j ) for all y ^ E. 

40 / 

Thus Ô/(JC) ^ 0 whenever x e G. This finishes the proof. 

Definition 6.3. L e t / b e a function on a normed space E and let D be a 
subset of d o m / 

We say t ha t / i s Frechet subconvex on D if for each x e Z) there exists a 
proper convex function on £, $(x; •) with 0(JC; 0) = 0 and 

(6.15) liminf I W r 1 ( / (* + JO - / ( * ) ~ <&(*; y) ) = 0. 
||v||-K) > ^ 0 

Obviously i f / i s Frechet subdifferentiable on D then by Proposition 6.5 
it is Frechet subconvex on D. 

Thus any convex function is Frechet subconvex on its domain of 
continuity. 

THEOREM 6.4. Let f be a function on a reflexive Banach space. If 
f is upper'semicontinuous and Frechet subconvex on {an open subset D of) 
dom / then f is densely Frechet différend able on dom / {respectively 
on D). 

Proof Let x e d o m / Since —/is a lowersemicontinuous function on a 
reflexive Banach space E, by Theorem 6.2 there exist x e d o m / n e a r x 
and x* e E* such that 

(6.16) lim sup \\y\r\f{x + y) - f{x) - {x\y)) ^ 0. 
||v||-X),v*0 

By subconvexity there exists a proper convex function Q{x\ •) on E with 
<b{x\ 0) = 0, such that / and $ satisfy condition (6.15). Note that 
conditions (6.16) and (6.15) imply that ${x; •) is finite on some 
neighbourhood of 0 in E. Thus the directional derivative of <&{x\ •) at 0, 
denoted $>'{x, 0; •), is a proper convex function on E. It follows from (6.16) 
and (6.15) that 

(6.17) (je*, y) â inf \~x<&{x\ \y) = $r(.x, 0; y\ 

therefore ^ ' ( ^ 0; •) being bounded by a continuous function on E is itself 
continuous. This together with (6.17) implies 
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(6.18) JC* = $Xx, 0; •) ^ 0(JC; •). 

By (6.15), (6.16) and (6.18) we get 

lim \\y\r\f(x + j , ) -f(x) - (x*,y)) = 0, 
HvlH0,v*0 

hence/ is Frechet differentiable at x. The proof of the version in brackets 
is analogous. 

Definition 6.4. L e t / b e a function on a normed space E and let D be a 
subset of d o m / 

We say tha t / i s Gateaux subconvex on D if for each x Œ D there exists a 
proper convex function on E, 0(JC; •) with <I>(JC; 0) = 0 and 

(6.19) fG(x; y) ^ $(JC; y) for all y in E. 

Obviously any Frechet subconvex function on D is Gateaux subconvex 
on D. Any function Gateaux subdifferentiable on D is Gateaux sub-
convex on D. 

THEOREM 6.5. Let f be a function on a weakly compactly generated 
Banach space. If f is locally Lipschitz on an open subset D of dom / and 
Gateaux subconvex on D then f is densely Hadamard differentiable on D. 

Proof Let ï e £ By Theorem 6.3 applied to the function —/and by 
Proposition 6.3, there exist JC near 3c in D and JC* e E* such that 

/ n m r f(x + 00 - / ( * ) < , * , ^ ^ 
(6.20) lim sup ^ (jc*,;y), j> e E. 

40 / 
Let O be as in Definition 6.4. Then (6.19) and (6.20) imply that 

(6.21) 0(JC;>>) ê (x*,y), y e E. 

Thus <I>(JC; •) is convex and continuous on E. As 0(JC; 0) = 0, from (6.21) 
we get 

0(JC; •) = JC*. 

This together with (6.19), (6.20), (6.21), and the fact that / is locally 
Lipschitz imply that JC* is the Hadamard derivative o f / a t JC and the proof 
is finished. 

Definition 6.5. Let T be a nonempty set and let E be a normed space. 
Suppose that F is an extended real-valued function on E X T and D is a 
subset of 

n dom F(-, /). 

We say that F i s Frechet (Gateaux) equisubconvex on D if for each x ^ D 
and each / e r there exists a proper convex function on E, ®t(x; •) with 
<Ï>(JC; 0) = 0 and 

https://doi.org/10.4153/CJM-1987-019-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-019-4


PROXIMAL ANALYSIS 449 

(6.22) lim inf inf ||^|| l(F(x + y, t) - F(x, t) - <*>(*; y) ) ^ 0. 
| |v||-»0,v*0 t^T 

(Respectively: 

lim inf inf [ (X~]F(x + Xy, /) - F(x, t) ) - 4>(JC; y) ] ^ 0 

for all v e= F.) 

Proposition 6.7. Le/ E be a normed space and let T be a nonempty set. 
Suppose that F is a function on E X T such that 

(i) for each x £ £), 

F(JC) : = {/ <= r|F(jc, 0 = sup F(x, t) } 

is nonempty. 
(ii) F zs Frechet {Gateaux) equisubconvex on D {or 6.22 holds with T 

replaced by T{x) ). 
Then 

f := sup F(-, 0 

zs Frechet {Gateaux) subconvex on D. 

Proof. We prove the case of Frechet subconvexity. The other one is 
analogous. Let x e D. Put 

0(JC; ) := sup $t{x\ •), 
rer(.v) 

where ^ (x ; •), / e F are as in Definition 6.5. Then 0(x; •) is convex and 
proper on E. Also 0(x; 0) = 0 and furthermore 

lim inf \\y\\~\f{x + y) - f{x) ~ <D(x; y) ) 
||v||-X),v*0 

â lim inf ||j^||"l( sup F(x + y, t) - f(x) 
| | v lM) , r^0 t^T(x) 

- sup <bt(x\y)) 

^ lim inf inf \\y\\~l{F{x 4- y, /) 
| |v| |-*),v*0 ^ T ( A - ) 

- F ( J C , 0 - Qt(x,y)) S 0, 

where the last inequality follows from (6.22). Thus / i s Frechet subconvex 
on D. 

Note that (ii) is satisfied whenever T is compact and functions F{x, •) 
are uppersemicontinuous on T for all x e Z). 
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C O R O L L A R Y 6.5. Let E be a reflexive Banach space and lei T be a 
nonempty set. Suppose that F is a function on E X T, 

/ : = s u p F ( - , / ) 
/ e l 

and D denotes dom / or an open subset of dom / If F is Frechet 
equisubconvex on D, T(x) ¥= & for all x e D and f is uppersemicontinuous 
on D (which is the case if for example F is equiuppersemicontinuous on D, 
that is for any x e D and e > 0, there exists X, a neighbourhood of x in E, 
such that 

F(x\ t) - F(x, t) < € 

for all t e T whenever x' Œ X), then f is densely Frechet differentiable 
on D. 

Proof. By Proposition 6.7 / is Frechet subconvex on D. As it is also 
uppersemicontinuous on D, Theorem 6.4 finishes the proof. 

C O R O L L A R Y 6.6. Let E be a weakly compactly generated space and let T 
be a nonempty set. Suppose that F is a function on E X T, 

/ : = supF(-, 0 

and D denotes an open subset of dom f If F is Gateaux equisubconvex on D, 
T(x ) ^ 0 for all x e D andf is locally Lipschitz on D (as is the case if for 
example F is locally equi-Lipschitz on Dy that is for any x e D there exists 
X, a neighbourhood of x in E and K > 0 such that 

\F(x\ t) - F(x\ t) | < AT||JC' - x" | | 

for all x\ x" G X and all t e 71), then f is densely Hadamard differentiable 
on D. 

Proof. By Proposition 6.7 / is Gateaux subconvex on D. As it is also 
locally Lipschitz on / ) , Theorem 6.5 finishes the proof. 

C O R O L L A R Y 6.7. Let E be a reflexive (weakly compactly generated) 
Banach space and let T be nonempty and finite. Suppose that F is a function 
on EXT and 

/ : = maxF(-, /) . 

If for each t ^ T, F(\ t) is uppersemicontinuous (locally Lipschitz) and 
Frechet (Gateaux) subconvex on D, then f is densely Frechet (Hadamard) 
differentiable on D. 

Proof. Since T is finite, conditions (i) and (ii) of Proposition 6.7 are 
satisfied. The proof follows from Corollary 6.5 (Corollary 6.6). 
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Let us recall that a Banach space E is called an Asplund space if every 
convex function on E is Frechet differentiate on a dense G8 (dense) 
subset of its domain of continuity [1]. A Banach space is weak Asplund if 
every convex function on E is Gateaux differentiable on a dense G8 subset 
of its domain of continuity. A Banach space is called a Gateaux 
(Minkowski) differentiability space if every convex (Minkowski) function 
on E is densely Gateaux differentiable on its domain of continuity [14]. 
Also £ is a Minkowski differentiability space if and only if every 
equivalent norm on E has at least one point of Gateaux differentiability 
[14]. We will also say that a Banach space £ is a weak Hadamard 
differentiability space if every convex function / is densely weak 
Hadamard differentiable on its domain of continuity. From Theorem 6.4 
and Corollary 6.4 we obtain the following classical results. 

COROLLARY 6.9. Any reflexive Banach space is an Asplund space. Any 
weakly compactly generated space is a weak Asplund space. 

We will say that a Banach space E is an R-proper space, whenever for 
any closed subset C of E the ^-proper points of C are dense in the 
boundary of C 

PROPOSITION 6.S.I/E X R is a WP-proper (P-proper space), then E is a 
weak Hadamard {Gateaux) differentiability space. 

Proof. For example we prove the "weak" case. Let / b e a convex 
function on E continuous at x. Put 

C : = e p i ( - / ) . 

Then there exists x close to x such that 

WPc(x, -f(x) ) * E 

and fis continuous at x. As a consequence there exists 

( -** , r) e WK°c(x, ~/(3c)), ( -** , r) ¥= 0. 

As —/is locally Lipschitz around x, 

(-f)mi(x; y) < +oo for My e= E 

and using the characterization from Corollary 6.1 we get 

(6.23) (~x*,y) ë r(-f)m\x\ y) for all y e E. 

Thus r > 0, and without loss of generality we may assume r = 1. 
We will prove that x* is a weak Hadamard derivative o f / a t x. To show 

this it is enough to argue that for all weakly converging sequences yn and 
all sequences tn J, 0 we have 

(6.24) lim ( / ( * + ' • * , > - / ( * > _ ( J C * ^ ) ) = o. 
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First note, that if yn converges weakly ioy and tn I 0, by (6.23) where r = 1 
and Definition 6.2, we get 

<£~>*\ <* \>v f& + ^y^ ~ / ( * ) 
(6.25) (x*, y) ^ hm sup • . 

Let x* be a subgradient o f / a t x. then taking any y <E E and yn = y for 
« G N i n (6.25) we get (x*, _y) = (3c*, j ) . Hence x* = 3c*. This together 
with (6.25) shows that 

, * x r 7 ( ^ + tnyn) -f(x) 
(x*,j>) = hm , 

n—>oo t n 

therefore (6.24) holds and the proof is finished. 

7. The subgradient formulas in reflexive Banach spaces. 

Definition 7.1. L e t / b e an extended real valued function on a Banach 
space E. Assume t h a t / i s lowersemicontinuous and let x be any point with 

f(x) finite. We say that x* e E* is a proximal subgradient to f at x if (x*, 
— 1) is a proximal normal functional (as defined in Definition 3.1) to the 
epigraph o f / a t ( x , / ( x ) ). 

The proximal subgradient set o f / a t x denoted dpf(x) consists of all 
such functionals. If x £ d o m / t h e n 3 / ( x ) is empty by convention. 

Thus we have: x* e dPf(x) if and only if 

(x*, - 1 ) e i W e p i / ( x , / ( x ) ) 

and this definition extends the one given in [19] for E : = Rm. 
An examination of the definitions shows that whenever the norm of E is 

Frechet differentiable then the following holds. 

P R O P O S I T I O N 7.1. Let the norm of E be Frechet differentiable and let j be 
a lowersemicontinuous junction on E. If x* e 8 / (3c) then there is a 
neighbourhood Xofx and a function g on E such that for any x e X g has 
a Frechet derivative g* <E E*, the mapping x —•» g* is norm to norm 
continuous on X, gf = x*, g(3c) = / ( x ) and g(x) = / ( x ) for all x G X. 

Proof As (x*, - 1) e PNcpij{x,f(x) ), there exists (y, a) <= E X R such 
that 

</ : = || ( j> - x, a - f(x) ) || = d^f{ (>', a) ) 

and 

(x*, - \)(y ~ 3c, a - / ( x ) ) = || (x*, - 1) \\d. 

Put 
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g(x): = Vd2 - \\y - x\\2 - a, 

use the fact that the norm of E is continuously differentiable. 

THEOREM 7.1. Let f be a lowersemicontinuous function on a reflexive 
Banach space E. Then the set {x\d f(x) ¥- 0} is dense in dom / whenever 
the norm of E is Kadec and Frechet differentiable. 

Proof. Let x e dom / . Then by Proposition 6.6 there exists x in dom / 
near x such that for some x* e E* 

(7.1) (**, - 1 ) G iVep i /(x,/(*)). 

By Theorem 3.1 

(7.2) N ïf(xJ(x) ) = cô w* lim sup PN {f(x\ Y) 
(x\Y)-HxJ{x)) 

epi/ 

= cow* lim sup PN xAx\ f(x') ), 

/ 
(we use notation: xf ~^/x if and only if x' —> x and/(.*') —>f(x) ), where 
the last equality is justified by the lowersemicontinuity of / and the 
inclusion 

PNepif(x\Y) c PNepif(x\f(x')), 

whenever 

y' ^ / ( X ' ) > - o o . 

(7.1) and (7.2) show that there exist x' in dom / n e a r x, 7* e £* and y > 0 
such that 

(/*, - y ) e /W c p i /(x ' , / (x ') ). 

Hence 

y - y e dpf(x',f(x')) 

and the proof is finished. 

Proposition 7.1 and Theorem 7.1 together with renorming theorems 
(Proposition 3.3) obviously imply the following. 

COROLLARY 7.1. If f is a lowersemicontinuous function on a reflexive 
Banach space E then the set of points xfor which there exist a neighbourhood 
Xofx and a function g continuously differentiable on X with g(x) = / ( x ) , 
g(x) ^ f(x) for x e X, is dense in d o m / 

We apply Corollary 7.1 to prove the following. 

PROPOSITION 7.2. Let E be a reflexive Banach space with Kadec norm and 
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let K be a closed and bounded subset of E. Suppose that J is a lower-
semicontinuous function on E bounded from below on K and somewhere finite 
on K. Then the set of those y for which the infimum 

(7.3) F(y): = inf ( / (*) + \\x ~ y\\ ) 

is attained on K is dense in E. 

Proof. By the assumption F is lowersemicontinuous and finite on E. 
Thus Corollary 7.1 implies that there exists a dense subset G of E such that 
if y e G then there exists a neighbourhood F of y and a function g with 
norm to norm continuous Frechet derivative g* on 7, g(y) = F(y) and 
g(y) ^ F(y) for all y e Y. We will show that the infimum in (7.3) is 
attained for any y in G. 

Let xn e K and 

/(*„) + ik -yii-^oo-
As K is bounded JC,7 has a weakly convergent subsequence. Without loss of 
generality assume that xn converges weakly to some x. It is enough to show 
that xn converges to x in norm. Then x e K and by lowersemicontinuity 
o f / w e get 

fix) + ||x - y|| ^ lim inf (/(*„) + ||xw - y|| ) = F(y). 
n—*oo 

So let us prove that xn converges to 3c in norm. Put 

en := (f(xn) + ||xw - y | | - g(JD)1/2 s o . 
If for some n e N e,2 = 0 we are done. So assume that e,7 > 0 for all 
n e N. Without loss of generality assume that Y is closed. Applying 
Ekeland's variational principle as given in [9] to the function 

y -> / (*„) + \Un - y\\ ~ g(y) 

on Y yields yn in 7 such that \\yn — y\\ ^ en and for all y in F we have 

(7.4) ||*w ~ y\\ - g(y) - ( \\xn - yn\\ - g(y„)) â - c j b - V„\l 

Without loss of generality assume that all yn are in the interior of Y. Then 
for all t > 0 sufficiently small 

yn + t(xn - y„) e 7. 

By using (7.4) we get 

'Ik, - .yJI = - ( ^ ( ^ + t(xn ~ yn) ~ g(yn)) + vll*w ~ yJ\-
Hence dividing by t and letting / go to zero we obtain 

(7.5) (1 - £„) ||x„ - yn\\ fk g*(yn - x„). 
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Let y e E. For t > 0 sufficiently small yn + ty Œ Y and therefore it 
follows from (7.4) that 

(1 + efl)\\y\\ ^ g*(y) f o r a U > i n £ . 

This and (7.5) implies 

1 - £„ ë ||g*|| g 1 + £„. 

Hence as g* converges in norm to g* we get 

iig*n = i. 

Thus by (7.5) we have 

(7.6) \\y - x\\ è g*(y - x) 

= g*(y„ - •*„ ) + (g*(j - *) - £*(.y„ - •*„) ) 

+ g*(.v ~ *) ~ g*(y„ - x„) 

i= \\y„ - x„\\ + e„, 

where 

+ 8y(y ~ x) ~ gy(yn ~~ xn)-

Note that 0n converges to zero as n goes to infinity, therefore (7.6) 
implies 

\\x - y|| ^ lim sup ||x„ - yn\\. 
n—>co 

Weak lowersemicontinuity of the norm implies now 

lim ||JC„ - yn\\ = \\x - y|| 

and the Kadec property gives xn — yn converges t o î — y in norm. Thus 
also xn converges to x in norm and the proof is finished. 

If || || is some norm on E and x e C c E let PNc\x) denote the set of 
proximal normal functionals to C at x with respect to the norm || ||. 

THEOREM 7.2. Let f be a lowersemicontinuous function on a reflexive 
Banach space E. Assume that the norm of E is Kadec and Frechet 
differ entiable. If f is finite at x and 

(y*,0) e PNepif(xJ(x)) 

then there exist sequences xn —> x, tn { 0, a sequence of equivalent norms on E 
|| ||/r such that all of them are Kadec and Frechet differ entiable and a 
sequence y% e E* with 
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(v* - 1 ) e PN^f(x,rf(x„)), 

for which 

(>•*, 0) = lim t„(tf„ -1 ) . 
//—->00 

Proof. Without loss of generality let us assume that 

(xj\x)) = (0,0) and | | y | | = 1. 

Then there exists (y, 0) £ ep i / such that 

/ : = || (y, 0) | | = d i s t e p i / ( y o ) s i 

and ( v*, 0) is the derivative of the norm of E X R at t~\y, 0). Denote the 
closed unit ball of £ by B. 

Let us choose € with 0 < e < 1/4 and put À : = 1. Then 

(7.7) JC e= (0, X](y + 2c/5) implies/(x) ^ 0. 

Let us also choose 

p„ < min{ ( l /4 ) ' , + 1, (1 - c)/, €/4} 

and an > 0 such that 

an < min{cpw/3, ((1 - e)t - p„)/2t}. 

Similarly as in the proof of Theorem 3.1 we define for n <E N 

Wn : = co(c/£, (1 + oin)~\y + «„£/£), 

(1 + an)-
](-y + anetB)\ 

and we denote by || ||„ the norm of E associated with the unit ball Wn. 
Then 

etB c Wn c tB 

and by Lemma 1 of Part I of the paper the norm || ||/? is an equivalent 
Kadec and Frechet differentiable norm of E. 

Note that 

(7.8) y„ : = ||y||„ = (1 + a„)(l + ane)~] 

and 

(7-9) ynWn c tB. 

Assume without loss of generality t h a t / is bounded below on the set 
{A- <E E\ \\X\\ ^ 1} by some —/} > - o o . Choose n ^ kn e N with 

For n e N, w e £ put 
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R„:= {x e ÊllWI ^p„), 

/ • ( „ ) • = ; ^ - | | M | | « i f N l » = y»{k>> ~ ])(k''+ i r ' -
"U ' ) K(yn - Mn) if ||M||„ g Y „ ( ^ - 1)(^ + I ) " ' . 

Let us consider 

(7.10) F„(y): = inf (/~'y„/(x) - f„(x ~ y) ), y e £. 

For all /i, ^ , (7) S 0. If i=;,( J ) = 0, then 

0 = F„(y) ^ f(0) - fn(0 - y) = 0, 

and the infimum in (7.15) is attained at xn := 0 for yn := y. Suppose 
that F,?(j7) < 0. Then there exists 6n > 0 such that for all y with 

(7.11) F„(^) = inf (C\f(x) ~ k„(y„ - \\x - y\\n)\ 

where 

S„:=R„ n {* G £ M U - y | | „ ^ y,,}. 

Indeed, let L„ â &„ be such that 

!/„(«,) - / > 2 ) | ^ L > , - «2||„ 

whenever H^H,, = yn 4- 2 for z = 1,2. Choose 0„ > 0 with 

0„ < min{-(2L„rlFn(y), 2y„(k2„ + 1)" ' , «„}. 

Then for all y for which ||_y — y\\n < 0n we have 

(7.12) Fn(y) = inf (r\f(x) - f„(x - y) ) < F„(y) + Ln6„. 
xeR„ 

Furthermore, if ||JC — J||„ = y„ we have 

(7.13) r]yj(x) -f„(x ~y)^0. 

Indeed, for ||JC - y\\„ ^ y„ 

(7.14) f„(x - y) â VY?, - Ik - y\t 

Also it follows from (7.19) that 

\\x -JH g Hx-y i l , , -^ ; 1 . 

Thus 

(7.15) ||x -y\\^t and Vf2 - \\x - y |F S / ( x ) . 

Also 
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y] - \\x-y\\l^yl-yl(tY%-y\\2 

= y f r V V - IU-JII2)-
Using this, (7.14) and (7.15) we get 

f„(x - y) S V " ' Vt2 - ||* - y||2 Si y„C'f(x), 

which implies (7.13). 
Therefore if ||x — 7||n â yn then 

(7.16) rly„f(x) - f„(x - y) 

= r ' y „ / ( i ) - / „ ( * - y) + [/„(* - y) -fn(x - y)} 

> 0 - L„6„ â F„(j0 + I A -

(7.16) and (7.12) show that 

(7.17) F„(y) : = inf (t~\f(x) - f„(x - y)). 

However, if |U - y||„ è y„ and ||> - y||„ < 6n then 

||x - ^||„ ^ |U - y\\„ - 0„ i£ y„ - 2y„(kl + I ) " 1 

= yn(kl - \)(kl + \y] 

and therefore 

fn(x - y) = kn(yn ~ Wx ~~ y\0-
This together with (7.17) finishes the proof of (7.11). 

Applying Proposition 7.2, we choose yn in E with 

\\yn -711* <0„ 
for which infimum in (7.11) is attained at some xn e Rn such that 

(7.18) ||x„ - y||„ â yn. 

Then by (7.12) we get 

Fn(yn) < F„(y) + LA 
and hence 

rlyj(x„) - k„(y„ - ||x„ - J| |„) â F„(y„) + L„0„ 

< Fn(y) + 2L„8n < 0. 

This together with (7.18) implies 

- r \ p ^ rxyj{x„) 

< rly„f(x„) - k„(y„ - \\x„ - y\\„) < 0. 
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Thus 

(7.19) / ( * „ ) < 0 

and 

(7.20) ||*„ - y\\„ < y„ ~ K]r{yJ(xn) 

< y„ + knXt~xy,fi < y„ + «„• 

We will show that 

(7.21) HocJI < p„. 

As y„ i 1 + an we have by (7.20) 

xn = (*« - y) + y e (Y„ + anw„ + y 

cy+W„ + 2anWn. 

Now following the lines of the proof of Theorem 3.1 we get 

y + Wn c (0, + oo)(y + itB) 

and 

x„ G ((0, +ooX7 + «/*) + 2a„W£) n p„S 

c (0, l)(y + ttB) + 2anWn 

c {(0, 2ane-])(y + «B) + 2anWn) 

U {[2a„€-\ \](y + 2ttB)}. 

This together with (7.7) and (7.19) implies 

x„ G (0, 2a„e-')(y + etB) + 2antB. 

Hence 

||x„|| ^ 2a„e_1f(l + e) + 2a„t 

= /2a„£_ l(l + 2e) =S 3a„£
_ 1 < p„ 

and (7.21) is proven. 
We conclude that the sequence x„ has the following property 

(7.22) x „ - > 0 , 

thus by (7.19) and lowersemicontinuity off 

(7.23) / ( x n ) - > 0 . 

Furthermore it follows from our construction via (7.21) that there exists 
a neighbourhood Xn c i ^ of x,7 such that for all x e A^ 

(7.24) / ( * ) è - / y ^ M ||x - yn\\n - \\xn - yn\\„) + / ( * „ ) — M*)-
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For z e E let <p" and <pz denote respectively the Frechet derivatives of 
the norm || \\n and || || at z. 

Define 

and let h* denote the Frechet derivative of the function hn at xn. Then 

(7.25) || (A* - 1) ||A/ \h*„ ~ \){yn - xfV rn - / (*„) ) 

= V l + (t \kn
 ])2 \\x„ - y„\\n = || (y„ ~ xn9 rn - f(x„) ) ||„ 

and 

(7.26) \\x - y„\\l + \h„(x) ~ rf = \\x - yn\\
2

n 

+ \-ty~]k„(\\x - y„\\n - \\x„ ~ y„\\„) 

+ >AOl*„ -yn\\f 
= d + ( rW) 2 ) lk , -y£,+^r 

where 

K = ((ty-]k„)2 + l)\\x - y„\\l - 2((/y,7'/c„)2 + 1) 

x II* - y„\\„\K - y„\\„ 

+ ((ty^k,,)1 + \)\\xn - y„\\l 

= ( (ty-xk„? + 1)( \\x - >g|„ - \\x„ ~ y„\\„)2 ^ 0. 

As hn is a continuous function (7.26) and (7.25) show that 

d^û,Sy»'r") = I IU , -*„ . ' • „ - / (*„ ) ) L 
which together with (7.24) proves that 

dlp;/(y,i>o = i i u , -x„,r„ -f(x„))\\n. 
This in turn implies by (7.25) that 

(7.27) (h% - 1 ) G PN^f(x,rf(xn)). 

Note that 

(7.28) K=ty-'kyXn_yii. 

Now it may be easily argued (as in the proof of Lemma 1 in Part I) that 

<7-29> <-,•„ = \K-yX\K -yn\\~\-y„-
Put 

s„ •= II*,. - yAMx„ - y„\\~l a n d 

/„ := ^ ' d + {ty-'k„fyv\ 
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then yn —> 1, sn —> t , kn —> oo. Thus 

(7.30) / „ j 0 . 

Furthermore Frechet differentiability of the norm || || implies that 

(7.31) Vx_r - » „ _ ï ï = -y*. 

Using (7.28), (7.29), (7.30), and (7.31) we get 

(7.32) /„(/** - i ) - > ( ^ * , 0 ) . 

Now (7.22), (7.23), (7.27), (7.30), and (7.32) show that the theorem is 
true. 

Definition 7.2. L e t / b e an extended real valued function on a Banach 
space E with a Frechet differentiable norm. Assume that / is lowersemi-
continuous and let JC be any point with f(x) finite. Denote by J^ the 
set of all equivalent and Frechet differentiable norms on E. We say that 
x* G E* is a generalized proximal subgradient to f at x if 

—n 

The set of all such functional will be denoted by dAx). 

In the following theorem we state and prove the proximal subgradient 
formula which generalizes the finite dimensional version proven in [19]. 
Let us define 

Y(x) : = w* lim sup dPf(x'), 
x'—*x 

f 

V(x) : = w* lim svp'dFf(x'), 
x'-*x 

f 

Y0(x) : = w* lim sup A3 f(x'), 
x'-*x 
A|0 

V0(x) : = w* lim sup \dFf(x'). 
x'-*x 
AjO 

THEOREM 7.3. Let f be a lowersemicontinuous function on a reflexive 
Banach space E. Assume that the norm of E is Kadec and Frechet 
differentiable. If f is finite at x then the formula 

(7.33) df(x) = m(Y(x) + Y0(x)) = c5((/(x) + V0(x)) 

holds. 

Proof In any space with Frechet differentiable norm we have 

d™f{x) 3 3' /(*). 
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Hence as E is reflexive, equality 

tff(x) = dw"f{x) 
implies 

(7.34) cô(F(x) + Y0(x)) c œ(V(x) + VQ(x)). 

Let x* <E F(x) and x* e ^oC*)- Then sequences xtv xn e £", x*, 
x* e £* and Xfl I 0 exists such that 

xn —>fX, xn ~^fX, x* = w* lim x*, 
n—*oo 

x* = w* lim \ 7 x* and 

(** - 1) e H< p i / (x , , , / (x , , ) ) , 

(X* - 1 ) G ^ p l / ( * , , , / ( * , , ) ) • 

This by Theorem 3.1 implies that 

(x*, - 1 ) e= w* lim sup W^K°(X',/(JC') ) c Nepif(x,f(x) ), 
A"'—».X 

/ 
(3c*, 0) e w* lim sup J P X V , / ( * ' ) ) c A^epi/(x, / ( * ) ). 

A'—»A 

./ 
Thus 

(x* -h x*, - 1 ) = (x*, - 1 ) 4 - (x*, 0) e Afep i /(x,/(x)) 

on using convexity of the Clarke normal cone. Therefore 

x* + x* e 3/(x). 

This proves that 

|/(x) + K0(x) c 3/(x), 

and consequently 
(7.35) œ(V(x) + F0(x) c 8/(x) ), 

because the Clarke subgradient set is always convex and weak star 
closed. 

By (7.34) and (7.35) it remains to show that 

df(x) c co(Y(x) + y0(x)). 

But this inclusion is a consequence of the equality 

Ncpi/(xJ(x)) = œ{My\ - 1 ) \y* e Y(x), X > 0} 

U {(>>*, 0 ) b * e T0(x)} 

which follows from Theorem 3.1 and Theorem 7.2. This finishes the 
proof. 
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As any reflexive Banach space has an equivalent Kadec and Frechet 
differentiable norm we easily obtain from Theorem 7.3 the following 
result. 

COROLLARY 7.2. Let f be a lowersemicontinuous function on a reflexive 
Banach space. If f is finite at x then the following formula holds: 

df(x) = œ(V(x) + V0(x)). 

The subgradient formulas simplify for locally Lipschitz functions. 

COROLLARY 7.3. If j is a locally Lipschitz junction on a reflexive Banach 
space with a Kadec and Frechet differentiable norm then 

(7.36) 9/(JC) = cow* lim sup dPf{x') 
x'—*x 

= côw* lim sup dFf(x') 
x'-^x 

= cô w* lim sup 3 f(x'). 
x'-*x 

Proof. We have Y0(x) c V0(x) and a s / i s locally Lipschitz there exist X 
a neighbourhood of x and M > 0 such that for any x' e X 

fl\x'\ y) < M for all y €= B, 

(where B is a unit ball of E). Thus V0(x) = {0}, and the first and the 
second equalities in (7.36) follow by (7.33), where xf —>rx niay be replaced 
by x' —» x. 

Furthermore for a locally Lipschitz function on a Banach space we 
have [20] 

N {f(xJ{x) ) = (lim inf ^{x'Jtf) ) )°, 
x'-^x 

thus using (3.24) we get 

Neplf(xJ(x) ) D w* lim sup A^iyCx' , /^ ') ). 
x'—*x 

Hence using the appropriate definitions we obtain 

df(x) ^ lim sup dHf(x'), 
x'—*x 

which together with the equalities already proven finishes the proof of 
(7.36). 

Again by using renorming theorems we obtain easily the following. 

COROLLARY 7.4. If f is a locally Lipschitz function on a reflexive Banach 
space then 

df(x) = cô w* lim sup 3 f(xf) 
x'—>x 
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= co w* lim sup 3 f(xf). 
x'—*x 

The results of this section have many apparent consequences for 
non-smooth optimization and non-smooth analysis on reflexive Banach 
spaces which is the subject of our forthcoming paper. 

8. Examples. In this section we present limiting examples for the theory 
developed in the paper. Our first examples will be based on the 
observation that the tangency properties of the set (x e E\ \\X\\ = 1} are 
related to the differentiability properties of the norm || || as is explained in 
the following considerations. 

P R O P O S I T I O N 8.1. Let E be a Banach space. Let \\ \\ be a norm on E 
and 

C:= {x G E\\\x\\ â 1}. 

If 11*11 = 1 then the following are equivalent. 
(i) x e C is a P-proper point of C; 

(ii) x G C is a cone point of C; 
(iii) the norm \\ \\ is Gateaux differentiable at x. 

Proof. Obviously (i) implies (ii) as remarked after Definition 5.4. 
Assume that (ii) holds. Let x* be such that 

(8.1) (x*, 3c) = sup{ (x*, x) | [x, x] c C } , ||x*|| = 1. 

Let x* be a subgradient of the norm || || at x. Suppose that y e E and 
(x*, y) ^ 0. Then for any t, 0 ^ t ^ 1 we have 

|| (1 - t)x + t(y + JC) || = ||3c + ty\\ ^ \\x\\ + t(x*, y) ^ 1. 

Hence by (8.1) 

(x*, x) ^ (x*, x + y). 

Thus 

(x*, y) ^ 0 implies (x*, y) = 0 

and as ||x*|| = ||x*|| = 1 we get x* = —x*. This proves that the 
subgradient set of the norm || || at x consists of exactly one functional and 
therefore the norm || || is Gateaux differentiable at x. 

Assume now that (iii) holds. Let x* be a Hadamard derivative of the 
norm || || at x. Suppose that y G ^ c ( x ) . Then 

y = lim t~\cf1 — x) for some cn e C, tn [ 0 

and by Hadamard differentiability we have 

, , , ,. Ik„ll - 113c!I > n 
(x*,y) = lim — ^ 0. 

n—>oo / 
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This proves that Pc(x) ¥= E and the proof is finished. 

PROPOSITION 8.2. Let E, || ||, C be as in Proposition 8.1. If\\x\\ = 1 then 
the following are equivalent: 

(i) x G C w (3 WP-proper point of C; 
(ii) //*£ norm || || /s w£<2& Hadamard differentiable at x. 

Proof Suppose that WPc(x) * E. Let x* <E J W ^ J C ) and ||x*|| = 1. 
Then as in the proof of the implication (ii) =» (iii) in Proposition 8.1 we 
may prove that — x* is a Gateaux derivative of || || at x. Suppose that — x* 
is not a weak Hadamard derivative of || || at x. Then there exist € > 0 and 
sequences tn I 0 and yn converging weakly to some y such that 

/Q ^ I'* + ^ ^ 1 1 ~ 11*11 _L / * A ^ cz XT 
(8.2) f + (x > y„) > e> « G N. 

a) Suppose that (x*, 7) = 0. As ||3c|| = 1, we conclude by 8.2 that 

|fr + tn(yn - (c/2)3c)|| ~ Hxll 

> ||x + tnyn\\ - \\x\ 
^ - (6/2)||x|| > -(x*,y„) + e/2. 

Therefore 

||x + tn{yn - (e/2)x)|| S 1 + t„(-(x*,yn) + c/2) > 1, 

for sufficiently big n. This implies that 

y - (c/2)3c e WPc(x), 

hence 

(x*, (y - (c/2)3c) ) ë 0. 

As — (x*, 3c) = 1, we get a contradiction from 

- (A:* , (c/2)3c) = c/2 ^ 0. 

b) So suppose that a : = (x*, y) ^ 0 and consider 

z : = >> + ax, z„ : = .)/„ + ax, x„ : = x + tnyn. 

Using (8.2) we get 

(8.3) "* + '"*"" " "*" + (**, zj 

> "*" + ' » " * " " I M + (*•, ax) + c. 

https://doi.org/10.4153/CJM-1987-019-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-019-4


466 J. M. BORWEIN AND H. M. STROJWAS 

For i G £ l e t / Y be the Gateaux derivative of the norm at x. Then the 
mapping x —>fx is norm to weak star continuous from the unit sphere of E 
to the unit sphere of E* [11]. Thus we get 

v8-4) = aJxn\\xn\r](x)-

Also JCW/||JC„|| —» 3c implies 

Thus (8.3) and (8.4) give 

( 8 5 ) I I * + ^ " - I W I + (x*, z„) > a(fxMri(x) ~ 1) + € > c/2, 

whenever n is sufficiently big. As (8.5) is analogous to (8.2) and 
(JC*, z) = 0, we get a similar contradiction as in the first part of the proof. 
This proves that || || is weak Hadamard differentiable at x whenever C is 
JfP-proper at 3c. 

Replacing Hadamard by weak Hadamard, Pc(x) by WPc{x) and norm 
convergence of t~ (cn — x) by weak convergence in the proof of the 
implication (iii) => (ii) in Proposition 8.1, we may prove that C is 
WP-proper at x whenever || || is weak Hadamard differentiable at x. This 
finishes the proof. 

COROLLARY 8.1. Let E be a Banach space. If any closed subset C of E has 
a cone point {in particular if E is a P-proper space) then E is a Minkowski 
differentiability space. 

Proof. Let || || be any equivalent norm on E, then by our assumptions the 
set 

C : = {x e E\\\x\\ == 1} 

has a P-proper point 3c e C. By Proposition 8.1, || || is Gateaux dif­
ferentiable at 3c. Thus any equivalent norm on E has a point of Gateaux 
differentiability, hence E is a Minkowski differentiability space. 

Using Corollary 8.1 we may obtain a partial strengthening of 
Proposition 6.8. 

COROLLARY 8.2. Let E be a Banach space. If any closed subset of E X R 
has a cone point then E is a Gateaux differentiability space. 

Proof. If our assumptions are satisfied then by Corollary 8.1, E X R is a 
Minkowski differentiability space. This in turn is equivalent to E being 
a Gateaux differentiability space as proven in [14]. 

Example 1. Let E be any Banach space with a nowhere weak Hadamard 
differentiable norm. Let || || be the norm of E. Put 
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C : = {x e E\\\x\\ ^ 1}. 

Then C is a closed set which by Proposition 8.2: 
(i) has no W^P-proper points 

(ii) is WP-pseudoconvex but not convex. 
In particular the following spaces may serve as the example. 
A. Consider E : = lx(S), S uncountable. Then the norm of E is nowhere 

Gateaux [12] hence nowhere weak Hadamard differ en tiable. 
B. Consider E := C( [0, 1] ). We will show that not only is the norm of 

E nowhere weak Hadamard differentiable and conditions (i) and (ii) hold 
but what is more, the set C: 

(iii) has no WT-proper points, 
(iv) is JFT-pseudoconvex but not convex. (WTc(x) denotes the weak 

Clarke tangent cone to C at x as introduced in Part I.) 

Proof. Let / e C, | | / | | = 1. Take any g e E. Suppose that sequences 
tn I 0 and fn e C converging (in norm) to / are given. Define 

Nx := {n G N| sup fn{x) ^ 1}, 
*e[0,l] 

N2:= {n e N| sup - / „ ( * ) ^ 1}. 
XG[0,1] 

For « G ]V, let 

W„:= {x\ f„(x)> \-tn). 

Then Wn is nonempty and open. Choose Qn open, (^ c Wn with 
diam £),7 < \ln, (where 

diam Qn := sup{ | j ' - s"| |*', s» G g„} ) . 

Suppose that iVj is infinite. Then if 

put f/w : = £>„ for all n e N}. U 

n (?„ = y for some v G [0, 1], 
new, ^w ^ ^ L J 

put 

t/„:=Ô„V-
Then 

(8.6) 1 - tn <fn(x) for x in Un,n e TV, 

and 

(8.7) nQ UH = 6. 
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We will construct a sequence of functions hn in C for which 

(8.8) t~ (hn — fn) converges weakly to g as n goes to oo in N{. 

For n <= N{ consider functions 

* „ : = ( ! " tnVn + t„(f+g). 

If \\k„\\ i= 1 put h„ : = k„. If \\k„\\ < 1, pick u„ e U„ and put 

h\x) .= (*«(*) i f x G [0, 1], x * «„, 
' 11 if x = M„, 

Then 

and 

h2(x,._ fkn(x) if JC e [ 0 , l ] \ t /„ , 

*„(x) ^ Aj(x) â hl(x) for all * e [0, 1], 

\\h\(x) || = \\h2„(x) 
1 ? 

Also Art is uppersemicontinuous on [0, 1] and hn is lowersemicontinuous on 
[0, 1]. By Michael's selection theorem [12] there exists a continu­
ous function hn on [0, 1] such that 

hx < h ^ h2 

Note that all the constructed functions hn are in C. We will show that (8.8) 
is satisfied. Indeed, let K > 0 be such that 

\\f(x) 4- g(x) - fn(x) || ^ K for all JC e [0, 1]. 

If AW(JC) - £„(*), then 

IC'CM*) - / „ (* ) ) ! = \f(x) + g(x) - /„(*) | ^ tf. 

If Aw(x) ^ kn(x) then x e Un and by (8.6) we get 

- t f â Ç\kn(x) -f„(x)) ^ Ç\hn(x)-fn(x)) 

^ Ç\h2
n(x) - / „ ( * ) ) ^ Ç\\ - / „ ( * ) ) ^ 1. 

Thus if n goes to infinity in Nx the sequence 

is norm bounded and as 

n !/„ = 0, 

it converges pointwise to g. Therefore by Lebesque's bounded convergence 
theorem it converges weakly to g. 
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Suppose now that N2 is infinite, then replacing N] and / , by N2 and —fn 

in the construction of the sets Un above, we get that there exist nonempty 
open sets Un such that 

\ — tn< -fn(x) for all x in Un, n e N2 

and 

n u = 0. 

For n ^ N2 consider functions 

*„:=(1 ~ t„X~f„) + t„(-f - g). 
If ||*„|| § 1 put /*„ : = *„. If ||*„|| < 1, pick u„ G U„ and put 

*J(*) : = {*„(*) if x G 

if x = 
[0, U, x ¥= u,„ 

hl(x): = fk„(x) if je G 

if x G 
[0, i]\u„, 

Then for all x e [0, 1] 

hl(x) =g *J(*) S , M*), 
and 

\\hl(x) || = ll*J(*) II = 1. 
1 ? 

Also /z„ is lowersemicontinuous on [0, 1] and hn is uppersemincontinu-
ous on [0, 1]. Again by Michael's selection theorem there exists a 
continuous function hn on [0, 1] such that 

hl(x) ^ hn(x) ^ h\{x) ^ kn(x). 

Note that all the functions hn are in C and as in the first part of the proof 
one shows that if n goes to infinity in N2 the sequence t~ (hn — fn) con­
verges weakly to g. As the conclusion of the above considered cases we get 
t~\hn — fn) converges weakly to g. As g was arbitrary in E, we 
get WTc(f) = E, which proves also (iii) and (iv). 

Note that the same argument works if is : = C(fi), where Q, is a compact, 
perfect, metric space. 

Example 2. Let E be any non-Minkowski differentiable space. Let || || be 
an equivalent norm of E which is nowhere Gateaux differentiable. Then 
by Proposition 7.1 the set 

C: = {x e E\\\x\\ ^ 1} 

(i) has no P-proper points; 
(ii) has no cone points; 

(iii) is closed and P-pseudoconvex but not convex. 
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In particular the following spaces and norms may serve as the 
example. 

A. Let E : = L°°( [0, 1], /x), (ju is Lebesque measure). The norm of E is 
nowhere Gateaux differentiable [21]. 

B. Let E : = l\S), S uncountable. The norm of E is nowhere Gateaux 
differentiable. 

C. Let E : = /°°(N). Define an equivalent norm on E by 

IWI : = IWloo + l i m SUP W> X = <X) G E' 
n—*oo 

Then || || is nowhere Gateaux differentiable [14]. 

Example 1 shows that if in Theorem 1.1, Theorem 5.1, and Corollary 2.1 
the contingent cones are replaced by weak Clarke tangent cones or weak 
pseudocontingent cones then their statements may fail even in separ­
able (hence weakly compactly generated) space (as we have shown in 
C([0, 1])) . 

Example 2 shows that if in Theorem 1.1, Theorem 5.1, and Corollary 2.1 
the contingent cones are replaced by pseudocontingent cones then their 
statements may fail even in a dual space with the Radon Nikodym 
property (as in ll(S), S uncountable). 

In particular, the constructed sets have no WP-proper points or no 
P-proper points. Note however that those sets are unbounded and for 
example the nonexistence of W'P-proper points of the considered set C in 
l\S) is due to its unboundedness. 

Example 3. 
A. Let E and || || be as in Example 1 or 

B. Let E and || || be as in Example 2. Consider 

C := {JC e E\\ ^ IWI ë 2}. 

Note that C is convex (hence WT-, P-, f^T-pseudoconvex) on some 
neighbourhood of any x with \\x\\ = 2. Thus in the case A, the set C is 
closed, bounded and 

(i) has (WT-), WP-proper points but they are not dense in the 
boundary of C, 

(ii) is (WT-), WT-pseudoconvex but not convex. 
In the case B, the set C is closed, bounded and 
(i) has P-proper points but they are not dense in the boundary of C, 

(ii) is P-pseudoconvex but not convex. 
However the following questions remain still open: does there exist a 

closed bounded subset of a Banach space, which has no J^P-proper points 
or which has no P-proper points? Does there exist a closed bounded 
subset of a Banach space without cone points? 
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We have indicated several limiting examples for the theory in Banach 
spaces. The limiting examples for normed spaces were investigated in [6]. 
They are related to the existence of normed unsupportable spaces, the 
theory of which originated by Klee, was recently extended in [8]. The 
normed space is unsupportable if it contains a closed bounded convex set S 
with no support points. Most incomplete normed spaces are unsupport­
able. In [8] it is conjectured that all are. 

Example 4. Let E be an unsupportable normed space. Let S be a closed 
convex bounded set with no support points and 0 £ S. Put 

C, : = S U -S and C2 : = U \S. 
1 2 | A | ^ 1 

Then 
A. One can check that Tc(x) = E for all x e Q , hence for all 

x e Cj, 

n Tr (x) + x = E while star C, = 0. 

Thus Cx is T-pseudoconvex but not convex and Corollary 2.1, Theorem 
5.1 and Theorem 5.6 are violated outside Banach spaces. 

B. Moreover, as in [6], 

n Kr(x) + x = cone S U cone(-S') 

and 

while 

n rc (x) + x = {0} 
A€EC 2 ^ 2 

n P r(x) + x - E. 

This provides counter examples to Theorem 1.1 and Corollary 2.1, and 
exhibits a set with one AT-proper and no P-proper points. 

C. Any unsupportable convex set S is completely antiproximal and so 
provides a counter-example to Proposition 5.10. 
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