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PROXIMAL ANALYSIS AND BOUNDARIES OF
CLOSED SETS IN BANACH SPACE
PART II: APPLICATIONS

J. M. BORWEIN AND H. M. STROJWAS

Introduction. This paper is a direct continuation of the article “Proximal
analysis and boundaries of closed sets in Banach space, Part I: Theory”,
by the same authors. It is devoted to a detailed analysis of applications of
the theory presented in the first part and of its limitations.

5. Applications in geometry of normed spaces. Theorem 2.1 has important
consequences for geometry of Banach spaces. We start the presentation with
a discussion of density and existence of R-proper points (Definition 1.3) for
closed sets in Banach spaces. Our considerations will be based on the “lim
inf” inclusions proven in the first part of our paper.

THEOREM 5.1. If C is a closed subset of a Banach space E, then the
K-proper points of C are dense in the boundary of C.

Proof. If X is in the boundary of C, for each r > 0 we may findy & C
with ||y — X|]| << r. Theorem 2.1 now shows that K-(x,) # E for some
x, € C with

X — x,|| = 2r.

Cororrary 5.1. ([2]) If C is a closed convex subset of a Banach space E,
then the support points of C are dense in the boundary of C.

Proof. Since for any convex set C and x € C we have

To(x) = Ke(x) = Fe(x) = P(C — x) = WIr(x)
= WKe(x) = WF-(x),
the R-proper points of C at x, where R(x) is any one of the above cones,
are exactly the support points. Apply Theorem 5.1 to finish the proof.

COROLLARY 5.2. Suppose that C is a closed subset of a Banach space and

that for all x € C
dliminf (R-(x") + x') € K-(x) + x,
,\"7)(
as happens, if for all x € C
lim inf R (x") € K (x).

X=X
¢
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Then the R-proper points of C are dense in the boundary of C.
Proof. Use Theorem 5.1 and the corresponding definitions.

Let us recall that a set C is called tangentially regular at x € C if
To(x) = Ke(x).

CoROLLARY 5.3. If C is a closed subset of a Banach space E such that for
all x € C, K-(x) is convex (in particular if C is tangentially regular at all its
points), then the P-proper points of C are dense in the boundary of C.

Proof. We have for all x € C
Ko(x) = Po(x) D lim inf Po(x).

x’—_>x
Use Corollary 5.2 to complete the proof.

CoROLLARY 5.4. If C is a closed, boundedly relatively weakly compact
subset of a Banach space E then the P-proper points of C are dense in the
boundary of C.

If in addition E has an equivalent Frechet differentiable and Kadec norm
or if C is weakly compact and E has an equivalent Frechet norm, then the
WP-proper points of C are dense in the boundary of C.

Proof. Use Corollary 5.2 and Theorem 4.1, and then Corollary 5.2 and
Theorem 3.4.

CoROLLARY 5.5. If C is a closed subset of a reflexive space then the
WP-proper points of C are derse in the boundary of C.

If in addition the norm of E is Kadec and Frechet differentiable, then the
B-proper points are dense in the boundary of C.

Proof. The first statement follows from Corollary 5.4. Use Corollary 5.2
and Theorem 3.1 to justify the last statement.

We have formulated some assumptions on sets and spaces which
guarantee the density (in particular existence) of R-proper points. We
complete them with the following observations concerning the existence of
R-proper points.

First let us recall that a Banach space E is said to have the
Radon-Nikodym property if every closed and bounded convex subset of
1s the closed convex hull of its strongly exposed points [11].

PROPOSITION 5.1. Let C be a subset of a (locally convex vector) space E,
then any support point of C is a WP-proper point of C.

Proof. Note that if x € C and x* € E* are such that
(x*,¢c —x)=0 forallc € C,

then x* WP%(X).
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CoroLLARY 5.6. If E is a Banach space with the Radon-Nikodym
property, then every closed and bounded subset of E has a WP-proper
point.

Proof. Note that any strongly exposed point of €0 C must belong to C.
Thus if E has the Radon-Nikodym property then any closed and bounded
subset of E has a support point. Proposition 5.1 completes the proof.

Definition 5.1. A subset C of a (locally convex vector) space E is called
compactly epi-Lipschitzian at x if there exist X, a neighbourhood of x,
A > 0, a compact set K and U, a neighbourhood of zero, such that

5.1) XN C+1tUc C+ K forallt € (0, A).

If K may be chosen to be a one point set, then we say that C is
epi-Lipschitzian at x.

The following important result is due to Rockafellar [18].
ProOPOSITION 5.2. If C is epi-Lipschitzian at x then
int 7p(x) # 0

and for any y € int T-(x) there exist some A > 0, X and U, neighbourhoods
of x and 0, respectively, for which (5.1) is satisfied with K = {y}.

The properties of compactly epi-Lipschitzian sets are described in [6],
where the following results are proven.

ProrosITiON 5.3. If C is a closed subset of a Banach space E, x € C,
then
(1) C is compactly epi-Lipschitzian at x and
int 7-(x) # 0

if and only if C is epi-Lipschitzian at x.
Moreover

(i) liminf K (x) = T-(x).

X=X

whenever C is compactly epi-Lipschitzian at x.

CoROLLARY 5.7. If C is a closed subset of a Banach space E which is
compactly epi-Lipschitzian at x € C, then T.(x) = E if and only if x lies
interior to C.

Proof. Use Proposition 5.3 (i) and Proposition 5.2.

PROPOSITION 5.4. Suppose that C is a closed subset of a Banach space
which is compactly epi-Lipschitzian at x € C and tangentially regular at x.
If x lies in the boundary of C, then x is a P-proper point.
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Proof. As C is tangentially regular at x we have
T-(x) = Ko(x) = Pe(x).

If x is in the boundary of C, Corollary 5.7 implies T(x) # E, hence
P-(x) # E and the proof is finished.

COROLLARY 5.8. Suppose that C is a closed subset of a Banach space E
which is compactly epi-Lipschitzian at x € C and such that

lim inf K-(x") = K (x).
X=X
If x lies in the boundary of C, then x is a P-proper point of C.

Proof. Under our assumptions C is tangentially regular at x on using
Proposition 5.3 (ii), hence the conclusion follows from Proposition 5.4.

The existence of B-proper points of C is related to the existence of
nearest points in C.
For any closed subset C of a normed space E, let

Prox C := {c¢ € Clc is the nearest point of C to some z & C}.
The following is an easy consequence of the definitions.

PRrROPOSITION 5.5. Suppose C is a closed subset of a normed space E. Then
x is a B-proper point of C if and only if x € Prox C.

If || || is some norm on a space E let Bﬂv”(x) denote the Bony tangent
cone to C at x with respect to the norm ||||. Let 4" be the set of
all equivalent norms of E.

PROPOSITION 5.6. If C is a subset of a normed space E, x € C then

2, Bll(x) = Ko(x).

Proof. Inclusion

Il
K (x) C I ||QM B'(x)

follows from Proposition 1.1. So suppose that y & K(x). Then
(52)  C 0 [x +[0,2A)(y + 2eB)] = {x}
for some A > 0, e > 0. Let

W := co{eB, y, —y}

and set z := x + Ap. Then x is the (unique) nearest point to z in || || -
Indeed,

x=x+MN—MN€:z+ AW,
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while
CN(z+ AW
CCnN(z—A +Acof0,y + €B,2y})
C C N (x + cof0, Ay + AeB, 2Ny })
C CnN(x+[0,2A\(y + 2B)) = {x}
on using (5.2). Thus
v& B,

CoroOLLARY 5.9. If C is a closed subset of a Banach space E, then there
exists an equivalent norm on E in which C has a B-proper point.

Proof. Apply Proposition 5.6 and Theorem 5.1.

Definition 5.2. A closed subset of a normed space E is completely
antiproximal if Prox C = @ for all equivalent norms on E.

CoroLLARY 5.10. A Banach space contains no proper closed nonempty
completely antiproximal subset.

Proof. Use Corollary 5.9 and Proposition 5.5.

The question arises as to what can be said about the space if the norm in
Corollary 5.9 may be chosen independently of the set C. The answer
follows from the following theorem.

THEOREM 5.2. Let E be a Banach space. Then the following are

equivalent.
(i) There exists an equivalent norm on E for which the equality
(inclusion)
lim inf B-(x") = T-(x), (lim inf B-(x") € Tp(x))
X=X X=X

C C

holds for any closed sets C, and x € C;

(ii) there exists an equivalent norm on E for which, for any closed set C,
B-proper points exist densely in the boundary of C;

(iii) there exists an equivalent norm on E such that for any closed set C,
Prox C is dense in the boundary of C;

(iv) there exists an equivalent norm on E such that for any closed set C,
Prox C is nonempty;

(v) E is reflexive;

(vi) there exists an equivalent norm on E, such that for each closed subset
C of E, the set of those points which have a nearest point in C is dense
in E.

Proof. (v) implies (i) by Theorem 3.1 and (i) implies (ii) by Corollary 5.2.
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Implications (i1) = (iil) = (iv) are obvious. We prove that (iv) = (v).
Assume that (iv) holds and consider F in the norm given by the
assumption. Let x* € E* ||x*|] = 1. Put

C:={x € E|(x* x) = 0}.

Then by (iv) there exist ¢ € C and X & C such that for any x € F,
(x*, x) = 0 implies

llx — %Il = llc — XI.

Thus C and the ball X + ||[x — ¢||B, where B is the closed unit ball in F,
may be separated. Hence there exist 0 # y* € F* and @ € R such that for
any b € B,c € C

(5.3) (5 x+ X —2b) = a = (p* o).

This is only possible if @ = 0 and x* = Ap*, for some A # 0. Thus from
(5.3) we get

(x* X+ |Ix — ¢llb) = 0 forallh € B,
or
(x*, =x + ||x —<¢llbp) =0 forallb € B.

Hence as (x*, ¢) = 0 and ||x*|| = 1 we get

(x*, )E—_E) -1 or (x*, ;:E_) -1
Ix — ll Ix — cll

We conclude that any functional from E* attains its norm on a unit ball
hence by an application of James’ Theorem [12], E is reflexive. That is (v)
holds. (v) implies (vi) by Proposition 3.3 and Proposition 3.4 and (vi)
obviously implies (iv). The proof is complete.

We leave for a while considerations related to the existence and the
density of R-proper points of closed subsets of Banach spaces and we will
return to this subject in the next section in connection with differentiabil-
ity and subdifferentiability properties of functions on Banach spaces.

We now turn to the theory of starshaped sets which, as will be shown, is
another area of possible applications of our main results.

Let £ be a normed space, C C E.

Definition 5.3. We say x € C sees ¢ in C if the line segment [x, ¢] is
contained in C.

We say C has a-visibility (in A € C) if every subset of C of cardinality «
1s simultaneously seen by some point ¢ € C (a € A4).

If C has k-visibility (in 4) for every natural number k we say C has
finite visibility (in A).
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Comparing Definition 2.1 and Definition 5.3 we see that C of
cardinality « is starshaped if and only if C has a-visibility.

Definition 5.4. A point ¢ € C is said to be a cone point of C if there is a
nonzero x* € E* such that

(x*, ¢) = sup{ (x*, x) |x sees c in C}.

As the set of those x’s which see ¢ in C is contained in F-(c) + ¢, any
P-proper point of C is a cone point of C.

Krasnoselski [13] showed that if C is a compact subset of R" and every
n + 1 cone points of C can be seen by some point in C, then C is
starshaped.

We prove the following strengthening of Krasnoselski’s result.

THEOREM 5.3. Suppose that C is a norm-closed boundedly relatively
weakly compact subset of a Banach space E. If there exists a bounded subset
A of C such that for any finite number of P-proper points of C there is some
point a in A which simultaneously sees them in C then

star C N weld # 0

and C is starshaped.
In particular, if C is a bounded closed subset of a reflexive space E and C
has finite visibility, then C is starshaped.

Proof. By Corollary 4.1 we get
star C = XQC FPr(x) + x

) xQC (Pe(x) + x) N wel 4

D xQC, ((Pe(x) + x) N wcl 4).
x 18 P-proper

Define
Ax) = (P(x) + x) N wel 4, x € C.

Note that A (x) is weakly compact for all x € C. Let S be any finite subset
of P-proper points of C. Then, as we have assumed, we may find a € 4
with [a, s] € C for all s € S. This in turn implies that a — s € K (s),
therefore a € A(s). This means that

a € SQSA(S) # 0

and by the finite intersection property we conclude that
0 + N < star C N wel 4

x€C
x is P-proper
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therefore
star C # 0.
Thus C 1s starshaped and the proof is finished.

CoroLLARY 5.11. ([5]) E is reflexive if and only if every closed bounded
subset of E with finite visibility is starshaped.

Proof. Assume that E is reflexive. Then every closed bounded subset of
E with finite visibility is starshaped by Theorem 5.3. If the unit ball of E is
not weakly compact, then the construction of a closed and bounded subset
of E with finite visibility but not starshape was shown in [5], which
finishes the proof.

Our next considered applications are related to the theory of vector
fields and invariant flows, see [10] and [17], where additional details and
references may be found.

Let C be a subset of a space E and let 4:C — 2% be a multifunction on C
with values in E. We will say that 4 is lowersemicontinuous (LSC) on C at x
e Cif

lim inf 4(x") = A(x).

X=X
¢

We will say that 4 is d-lowersemicontinuous (dLSC) on C at x € C if
dlim inf A(x") = A(x).

x' =X
P
THEOREM 5.4. Let E be a normed space and let C be a closed subset of E.
Suppose that V is a multifunction on C with values in E, which is LSC on C at
all points of C. Consider the following statements.
(i) V(x) c T(x) for all x
(i) V(x) € Ko(x)  forall x
(iii) V(x) C Po(x) for all x
(iv) V(x) € WI(x) forall x
(v) V(x) € WKq(x) forall x
(vi) V(x) € WP-(x) forallx
(vii) V(x) € Bo(x)  forall x
Then
1) if E is a Banach space, (i) and (ii) are equivalent;
2) if E is a reflexive Banach space, (1)-(vi) are equivalent;
3) if E is a reflexive Banach space and the norm of E is Frechet
differentiable and Kadec, (i)-(vil) are equivalent,
4) if C is weakly compact, E is a Banach space which may be given an
equivalent smooth norm then (1)-(iil) are equivalent;
5) if C is weakly compact, E is a Banach space (which may be given an
equivalent Frechet differentiable norm), then (i)-(vi) are equivalent.

mMmmmmammm
ISESEONONORONS
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Proof. Note that if
lim inf R-(x") € T(x), x € C, and

x'—Xx
¢

V(x") € Ro(x’) forallx € C
then with our assumptions on V" we have

V(x) = lim inf V(x’) C lim inf R-(x") C T-(x),
x' =X x' =X
C C
hence V(x) C T-(x).
This observation together with Theorem 1.1, Corollary 3.2, and
Theorem 3.1 proves 1), 2), 3), respectively, and together with Theorem 3.4
it proves 4) and 5).

THEOREM 5.5. Let E be a Banach space and let C be a norm-closed
boundedly relatively weakly compact subset of E. Suppose that V is a
multifunction on C with values in E, such that if

V(ix):=V(x) +x, x € C,

then V is ALSC on C at all points of C. With these assumptions (i)-(iii) of
Theorem 5.4 are equivalent.

If E may be given an equivalent Frechet differentiable and Kadec norm
then (1)-(vi) are equivalent.

Proof. Note that if
dlim inf R-(x") + x’ C T-(x) + x,

x'—=Xx
i
x € Cand V(x') C Rq(x’) for all x” € C, then with our assumptions on V'
we have
V(x) + x = dliminf V(x') + x’

x' =X
c

C dliminf R-(x") + x’ C T-(x) + x.

x' =X

Hence V(x) C Tp(x).
This observation together with Theorem 4.1 implies the claimed
equivalences.

As an interesting application of Theorem 5.4 and Theorem 5.5 we
present their consequences in the theory of pseudoconvexity. First
we prove the following basic relations of this theory in Banach spaces.
Pseudoconvexity was defined in Definition 1.2.
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THEOREM 5.6. In a Banach space the closed convex sets coincide with the
T-pseudoconvex and K-pseudoconvex sets.

Proof. 1f C is K-pseudoconvex we have
C c _‘_Q(‘ K (x) + x.

By Corollary 2.1 we have
Cc 0. Tr(x) + x C star C,

which shows that C = star C. This means that C is convex and so
T-pseudoconvex.

COROLLARY 5.12. Let C be a closed subset of a normed space E. Then any
one of the following assumptions 1)-6) imply that the equivalence:
C is R-pseudoconvex if and only if C is convex,
holds;
1) E is a Banach space and T(x) C Ro(x) C Kq(x) for all x € C,
2) E is a reflexive Banach space and
TI-(x) C Ro(x) € WP-(x) forallx € C,
3) E is a reflexive Banach space with a Frechet differentiable, Kadec norm
and
T(x) C Ro(x) C Bo(x) forall x € C,
4) C is weakly compact, E is a Banach space which has an equivalent
Frechet norm and
T:(x) C Rp(x) © WP-(x) forall x € C,
S) C is boundedly relatively weakly compact, E is a Banach space and
T(x) € Ro(x) C Po(x) forall x € C,
6) C is boundedly relatively weakly compact, E is a Banach space which
has an equivalent Frechet, Kadec norm and
T(x) C Rpo(x) € WP-(x) forallx € C.

Proof. Note that if we define V(x) := C — x, x € C, then Vis LSC on
C at all points of C. Use Theorem 5.4 and Theorem 5.6 to prove 1)-4).
5) and 6) follow from Theorem 5.6 and Theorem 5.5 as ¥/ = C is obviously
dLSC on C at all points of C.

Theorem 5.6 and Corollary 5.12 complete results of [5], [4] and [3].
6. Differentiability and subdifferentiability. Let £ be a locally convex
topological vector space and let f be an extended real-valued function

on E.
For
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x € dom f:= {x € E||f(x)] < o0},
y € E, t € (0, c0) and x* € E* define

Pt y) 1= fix + tyt) VACI S x*. ).

Let us recall that x* € E is said to be the Gateaux derivative of [ at
x € dom fif forally € E

(6.1) limr(t,y) =0.
t]0

If the convergence in (6.1) is uniform in y on all sequentially compact
(bounded) sets, we say that x* is the Hadamard (Frechet) derivative of f
at x. If such an x* exists we say f is Gateaux (Hadamard, Frechet)
differentiable at x. (See [21] for details.)

We generalize these definitions as follows.

Definition 6.1. x* € E* is said to be a Gateaux subderivative of [ at
x € dom fif forally € E

(62)  lim min{r(, ), 0} = 0.
L}

If the convergence in (6.2) is uniform in y on all sequentially compact
(bounded) sets, we say that x* is a Hadamard (Frechet) subderivative of
fat x.

If F is considered in its weak topology then a corresponding Hadamard
subderivative of f at x € dom f will be called a weak Hadamard
subderivative of f at x.

The set of all Hadamard (weak Hadamard, Frechet, Gateaux)
subderivatives of f at x € dom f will be called the Hadamard (weak
Hadamard, Frechet, Gateaux) subdifferential of f at x. 1t will be denoted
by

M )@ (x), 3T (x), 397 (x)).

If x ¢ dom f, all the subdifferentials of f at x are empty, by
convention.

We will say that f is Hadamard (weakly Hadamard, Gateaux, Frechet)
subdifferentiable at x whenever the corresponding subdifferential is not
empty.

As an easy consequence of the definitions we obtain the following
relations.

ProrosITION 6.1. For any locally convex topological vector space E, any
Sfunction fon E, and x € E the following inclusions always hold

7 (x) c 3" (x) c 3f(x) c 3% (x).
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(i) If E is a reflexive Banach space then
8 (x) = 3" (x);
(i) if E is finite dimensional then

37 (x) = 3"f(x);

439

(iii) if weakly convergent sequences converge in E (in particular if

E:= ll(S)) then
0"y = 8" (s

(iv) if f is Lipschitz on some neighbourhood of x then

M (x) = 39 (x).

The following characterizations are easy to obtain.

PROPOSITION 6.2. (i) x* is the (weak) Hadamard subderivative of f at
x € dom f'if and only if for all (weakly) convergent sequences y, in E and all

sequences t, |, 0 we have

lim inf r(z,, y,) = 0;

n—>00

(ii) x* is the Frechet subderivative of f at x € dom f if and only if for all

bounded sequences y, in E and all sequences t, | 0 we have

lim inf r(z,, y,) = 0,

nH—>00

(iii) x* is the Gateaux subderivative of f at x € dom f'if and only if for all

sequences t, |, 0 and y € E we have

lim inf r(z,, y) = 0.

n—o0

Definition 6.2. Let x € dom f, y € E. Then

S+ 1,y) — f(x)

fYx; y) := inf lim inf

1,0 n—00 t,
) — f)
= lim inf )

t}0 t

S+ t,y) — f(x)

fHx; y) := inf lim inf
Y,y n—00 t
t

10 g

n

S+ ) = f(x)

f"M(x; y) := inf lim inf
w n—o00 tn
Y

4,40
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(where y, % »y means y, converges to y weakly), will be called respectively
the Gateaux, the Hadamard, the weak Hadamard directional subderivative
of [ at x with respect to y.

As an obvious consequence of Proposition 6.2 and Definition 6.2 we
obtain the following characterization.

PrROPOSITION 6.3. (i) x* is a Gateaux subderivative of [ at x if and only if
SO y) Z (x*.y) forally € E

(i) x* is a Hadamard subderivative of f at x if and only if
S y) = (*y) Sforally € E:

(ili) x* is a weak Hadamard subderivative of f at x if and only if
fY(x; vy = (x*,y) forally € E.

Note that the following equivalent formulations of Definition 6.2
hold.

PrOPOSITION 6.4. Let x € dom f, y € E. Then
() fM(x: y) = inf{r € R|(y. r) is the limit of some sequence
L (e, = (n f(0))
with t, |, 0 and c, in the epigraph of f'};
(i) f"(x; y) = inf{r € R|(p, r) is the weak limit of some sequence
ty (e, = (% f(x)))
with t, |, 0 and c, in the epigraph of '},
(iii) f9(x; y) = inf{r € R| for some sequence t, | 0, the sequence
(x, f(x)) + t,(y. 1)
lies in the epigraph of [}.

Proof. We give a proof of (i). The proofs of (ii) and (iii) are
analogous.

Suppose that x € dom f. If f"(x; y) = +oo, then it is easy to see that
the infimum in (i) is taken over the empty set and as such it is equal to
+co. Therefore (1) holds in this case.

Assume now that f”(x; y) # +oo. Suppose that

©3) [y <r
Then there exist sequences y, converging to y and 7, | 0 such that

f(x + t,3,) < +oo and
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S yy = tim ] (foe+ 6,3, — f)) <,

H—>00

where the limit above is finite or equals —oco. Let

z, =X+ 1,),
Yn L= max{f(zn)’ f(X) + t”r}’
Cn = (Z)l’ Yn)'

Then the sequence ¢, lies in the epigraph of f and
(ror) = lim 1, (¢, = (x. f(x))).

Denoting the right-hand side of (i) by d we see that d = r, which by (6.3)
implies

6.4) d =[x ).

This argument also shows that the set on the right-hand side of (i) is

nonempty whenever f1(x; y) < +oo. So suppose that 7 is in this set and
let

(r, ) = lim £,7'(c), — (x, f(x)))

n—>00
where
=) v 2. 6,1 0.
Put y, := 1,"'(z, — x), then
S0 ) = timinf 1,7 ' (f(x + 4,0,) = f(x))

H—>00

= lim t,’,“l(y,', —f(x)) =r.

Hence
s y) = 4,
which together with (6.4) finishes the proof of (1).

We will be mostly interested in the case of normed spaces. The
following observations will be helpful. If £ is normed, then

M vy = lim | ff(X + 1) _f(x)’
Sxy) 'T;f' ;

t]0

and if f is locally Lipschitz around x then f’/(x; -) is continuous.
Furthermore, this is a consequence of Eberlein-Smulian theorem [12] that
if £ is normed, then x* is the weak Hadamard subderivative of f at x if and
only if the convergence in (6.2) is uniform in y on all weakly compact
sets.
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In addition to the tangent cones listed in the Preliminaries in Part I we
will also consider the radial contingent cone to a set C at x € C, denoted
RK(x), which is the set of those y such that x + ¢,y € C for some
sequence ¢, | 0.

For a function f on E, let epi f denote the epigraph of f.

Recalling the definitions of a contingent cone and of a weak contingent
cone (Preliminaries, Part 1) and using the fact that a contingent cone is
closed we restate Proposition 6.4 as follows.

COROLLARY 6.1. Let E be a normed space, x € dom f, y € E. Then
epi f710x; ) = Kopi(x, f(x));
S y) = inf{r € RI(y, r) € WKpir(x, f(x) };
Sx:y) = inf(r € RI(y.r) € RK/(x.f(x)) }.

Now we are ready to formulate the basic relations which tie the
subdifferentiability theory to the theory of tangent cones.

THEOREM 6.1. Let E be a normed space, x € dom f. Then
(i) x* is a Hadamard subderivative of [ at x if and only if

(X*’ - 1) € Kf?pif(x’f(x) )»

(i1) x* is a weak Hadamard subderivative of [ at x if and only if
(%, —1) € WKG (x. f(x)):

(iii) x* is a Gateaux subderivative of f at x if and only if
(x*, —1) € RKQr(x, f(x)).

Proof. Use Proposition 6.3 and Corollary 6.1.

ProrosiTiON 6.5. If E is a normed space then x* is a Frechet
subderivative of f at x if and only if

6.5)  liminf [Iyll"'(f(x + ) — f(x) — (x*,¥)) = 0.
[l vl}=0,y#0

Thus, if f is Frechet subdifferentiable at x then [ is lowersemicontinuous
ar x.

Proof. Assume that x* is a Frechet subderivative of f at x. As for
y#0

I+ ) = F(x) — 5 ov)) = rCllL Dl y)

and the convergence in (6.2) is uniform on the unit ball, (6.5) follows.

Suppose that x* is not a Frechet subderivative of f at x. Then there exist
€ > 0, a bounded sequence y, in £ and a sequence ¢, | 0 such that
inequality in Proposition 6.2 (i) is violated. Then
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lim lnf r( Iyl Iyl Yy = liminf ||yl 'r(2, 3,) < O

||l“ n—o0

contradicts (6.5) and the proof of the equivalence is completed. The last
statement follows from 6.5.

Remark. Note that with appropriate definitions of tangent cones,
Theorem 6.1 holds in any locally convex vector space.

COROLLARY 6.2. If E is a reflexive Banach space then the following are
equivalent:
(i) x* is a weak Hadamard subderivative of f at x;

(if) (v, —1) € WK (6 f() )
(i) fM(x; y) = (x*, p) for all y € E;
(iv) x* is a Frechet subderivative of f at x;

v) A hlm inf Iyl '(f(x + y) = f(x) — (x*,p)) = 0.

Proof. Use Proposition 6.1 (i), Proposition 6.3 (iii), Theorem 6.1 (i),
Proposition 6.5.

Let us recall that for any extended real-valued function f on a locally
convex vector space E, x* € E* is said to be a Clarke subgradient of f at
x € dom fif

(X*a —1) € Mpif(x’f(x) )

The subgradient set 9f(x), consists of such functionals x* (see [9] for
details and references).
The proof of the following result may be found in [16].

PROPOSITION 6.6. If f is a lowersemicontinuous function on a Banach
space E, then the set {x|3f (x) # @} is dense in dom f.

Hence the following is also true.

COROLLARY 6.3. Let f be a lowersemicontinuous function on a Banach
space E. If the epigraph of f is tangentially regular at all its points then f is
densely Hadamard subdifferentiable on dom f.

Proof. Use Proposition 6.6 and Theorem 6.1.

We prove a strengthening of this result for reflexive Banach spaces.
Further on we use

l(x, )| := V|x|? + &> for(x,a) € E X R.

THEOREM 6.2. Every lowersemicontinuous function f on a reflexive Banach
space E is densely Frechet subdifferentiable in dom f.
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Proof. Let x € dom f. Then by Proposition 6.6 there exists X in dom f
near x such that for some x* € E*

(6.7)  (x* —1) € Npis(x, f(X)).
By Corollary 3.2
(6.8)  Nyif(X.f(X)) = 0 w* limsup  WKJi (x.Y)
YY) (X f(3))
epif
= T w* lim sup WKJ,;/(x', f(x')),
SO @
where the last equality is justified by the lowersemicontinuity of f and the
inclusion
WKpif (X' ¥') D WK i (X, fG)),
whenever
Y =2 f(x') > —oo.

(6.7) and (6.8) show that there exists x’ in dom f near X, y* € E* and
v > 0 such that

(*, —) € WKQ/(x'. f(x)).

By Corollary 6.2 we thus get y ly* S aFf(x’) and as x’ lies in dom f near x
we have that the set

{(xI3"f (x) # 8}
is dense in dom f and the theorem is proven.

THEOREM 6.3. Let f be a locally Lipschitz function on a weakly compactly
generated Banach space E, then f is densely Hadamard subdifferentiable
on E.

Proof. Since E is a weakly compactly generated space, there exists
a reflexive Banach space R and a one-to-one continuous linear operator
T:R — E such that the range of T is dense in E [11]. Suppose f is locally
Lipschitz on E. Let x € E. Define

g(z) := f(T(z)), z € R

Then g is locally Lipschitz on R and hence by Theorem 6.2 g is densely
Frechet subdifferentiable on R. This together with the properties of T
implies that there exist X near x in E,z € R; z* € R* such that x = Tz
and

6.9)  (z*.h) = ¢g""z h) forallh € R.

As fis locally Lipschitz on E, there exists K > 0 such that
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g""(z; h) = K||Th|| forall h € R.
Thus
| (z*, h)| = K||Th|| forall h € R,

which implies, by taking subgradients or directly, that z* = T*y* for some
y* € E*. Using this in (6.9) we get for any & € R

(*. Th) = g™z n) = ¢ h)
= 19Tz Th) = f(TZ; Th),

where the last equality is due to the fact that f'is locally Lipschitz on some
neighbourhood of Tz. As observed earlier this property of f also implies
thatf”()_c, -) is continuous on E. Hence as the range of T is dense in £ we
conclude that

(5 y) = /M"F y) forally € E,

which shows that f is Hadamard subdifferentiable at x and the proof is
finished.

We complete our considerations with some remarks about generic (i.e.,
on a dense Gg subset of a domain) subdifferentiability and differentiability
of functions.

First let us note that in general dense Frechet subdifferentiability in
Theorem 6.2 can not be replaced with generic Frechet subdifferentiability.
Such a theorem would be no longer true even for £ := R (because for
example there exists a continuous function nowhere differentiable on
[0, 1]). Similarly, dense Gateaux (Hadamard) subdifferentiability in
Theorem 6.3 can not be replaced with generic Gateaux subdifferentiability
even for E := R (because there exists a locally Lipschitz function on R
which is not generically Gateaux differentiable on R, for example the one
constructed in Proposition 1.9 of [15] as follows from Theorem 3.8 of the
same paper). In view of the above remarks it is interesting to observe that
as a consequence of Theorem 6.2 we obtain a simple proof for the
following related result of Zhivkov.

COROLLARY 6.4 [22]. If fis a locally Lipschitz function on an open subset
D of a weakly compacted generated Banach space E then the subdifferential

mapping
(6.10) 8f(x) := {x* € E*l(x*, )

= limsup ¢ '(f(x + ty) — f(x)), ¥y € E}
t}0

has nonempty images at the points of a dense Gg subset of D.

Remark. Note that by Theorem 6.3 §f(x) is nonempty densely in D.
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Proof. Let R, T, and g be as in the proof of Theorem 6.3. Put
C:= T 'D. Then Cis openin R. Let m, n € N, m, n = 1. Denote:

B, := {z € (| there is z* € R* such that

gz + h) — g(z) > (z%, h) — m~Y|h|| whenever ||h]| = n_'},
L:= {z € Claghz) # 8},

and
G,, 1= {x € D| there are n,, = m and

% e TB,, with|X — x| <m 'n,'}.

mn,,

By Theorem 6.2 L is dense in C, thus TL is dense in D. Furthermore

oo
TL C N, G,
To see this assume x € TL and put X : = x in definition of G,,. Obviously
for all m G,, is an open set. Thus

[ee)

G:=
m=1 m

is a dense Gy subset of D. Let x € G. Then there exist sequences z,, € C,
X, = Tz,, z} € E* and n,, = m such that
-1 -1
6.11) |lx,, — xll < m ™ 'n,
and

(6.12) g(z,, + h) — g(z,,) > (2%, h) — m~ '||All

ne

whenever ||h|| = n,;]. Take any & in R with ||4|| = 1. Let L be a Lipschitz
constant of f on some neighbourhood of x. Then for m sufficiently big we
get by (6.11) and (6.12)

S+ n, ' Thy = f(x)

= f(x,, + n,;lTh) — f(x,,) — 2Llx,, — xl|
= 8(z,, + n,'h) — g(z,) = 2Lllx,, — x|
= (zx, n, ' hy — m'nt = 2Lm )

Thus

= (z*, h) — QL + D)m "

m°

(6.13)

fx + n,'Thy — f(x)
-1

n’ﬂ

Note that it follows from (6.13) that the sequence ||z}¥|| is bounded. Since
R is reflexive the sequence z* has a weak star convergent subsequence. Let

m

z* be its limit. Then from (6.13) we get
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(6.14) lim sup SO+ (TH) = /()

1|0

= (z*, h)

and we conclude easily that this inequality is valid for any 4 in R. In a
similar way as in the proof of Theorem 6.3 we may argue that z* = T*y*
for some y* € E* Then using the fact that f is Lipschitz on some
neighbourhood of x and T is continuous with a dense range we get from
(6.14)

; fox+ o) = fx)
im sup ; = (y
10

,y) forally € E.

Thus 8f(x) # 0 whenever x € G. This finishes the proof.

Definition 6.3. Let f be a function on a normed space E and let D be a
subset of dom f.

We say that f'is Frechet subconvex on D if for each x € D there exists a
proper convex function on E, ®(x; ) with ®(x; 0) = 0 and
(©.15) Lim inf Iyl ' (f(x + ) = f(x) = ®(x: y)) = 0.

[[yll=>0  »##0

Obviously if f'is Frechet subdifferentiable on D then by Proposition 6.5
it is Frechet subconvex on D.

Thus any convex function is Frechet subconvex on its domain of
continuity.

THEOREM 6.4. Let f be a function on a reflexive Banach space. If
[ is uppersemicontinuous and Frechet subconvex on (an open subset D of)
dom f then f is densely Frechet differentiable on dom f (respectively
on D).

Proof. Let x € dom f. Since —f is a lowersemicontinuous function on a
reflexive Banach space E, by Theorem 6.2 there exist x € dom f near X
and x* € E* such that
(6.16)  lim sup [lyll”'(f(x + y) = f(x) = (x*,y)) = 0.

[1y[|—=0.y#0

By subconvexity there exists a proper convex function ®(x; -) on E with
®(x; 0) = 0, such that f and ® satisfy condition (6.15). Note that
conditions (6.16) and (6.15) imply that ®(x; -) is finite on some
neighbourhood of 0 in E. Thus the directional derivative of ®(x; -) at 0,
denoted ®’(x, 0; ), is a proper convex function on E. It follows from (6.16)
and (6.15) that

(6.17) (x*,y) = inf A '®(x; Ay) = @'(x, 0; ),
A>0

therefore ®’(x, 0; -) being bounded by a continuous function on FE is itself
continuous. This together with (6.17) implies
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(6.18) x* = ®'(x,0; °) = O(x; ).
By (6.15), (6.16) and (6.18) we get
lim I+ y) = fx) = (%)) = 0,
[ yll—=0,y#0

hence f'is Frechet differentiable at x. The proof of the version in brackets
is analogous.

Definition 6.4. Let f be a function on a normed space E and let D be a
subset of dom f.

We say that f'is Gateaux subconvex on D if for each x € D there exists a
proper convex function on E, ®(x; -) with ®(x; 0) = 0 and

(6.19) f%x; y) = ®(x; y) forall yin E.
Obviously any Frechet subconvex function on D is Gateaux subconvex

on D. Any function Gateaux subdifferentiable on D is Gateaux sub-
convex on D.

THEOREM 6.5. Let [ be a function on a weakly compactly generated
Banach space. If [ is locally Lipschitz on an open subset D of dom f and
Gateaux subconvex on D then f is densely Hadamard differentiable on D.

Proof. Let X € E. By Theorem 6.3 applied to the function —f and by
Proposition 6.3, there exist x near X in D and x* € E* such that

x + ) —
620) limsup ZEF D TS 0w e g
110 t
Let ® be as in Definition 6.4. Then (6.19) and (6.20) imply that

(6.21) O(x;y) = (x*,y), y € E.

Thus ®(x; -) is convex and continuous on E. As ®(x; 0) = 0, from (6.21)
we get
P(x; ) = x*.
This together with (6.19), (6.20), (6.21), and the fact that f is locally
Lipschitz imply that x* is the Hadamard derivative of f'at x and the proof
is finished.
Definition 6.5. Let T be a nonempty set and let £ be a normed space.

Suppose that F is an extended real-valued function on £ X T and D is a
subset of

[QT dom F(-, t).

We say that F'is Frechet (Gateaux) equisubconvex on D if for each x € D
and each ¢+ € T there exists a proper convex function on E, ®(x; -) with
®(x; 0) = 0 and
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(6.22)  liminf inf |[y]|"'(F(x + y, 1) — F(x, 1) — ®(x; y)) = 0.

[ v[|=0,y#0 t€T
(Respectively:
lim inf inf [A"'F(x + Ay, 1) — F(x. 1)) — ®(x;y)] = 0
A0 reT

forally € E))

Proposition 6.77. Let E be a normed space and let T be a nonempty set.
Suppose that F is a function on E X T such that

(i) for each x € D,
T(x):= {t € T|F(x, t) = sup F(x, 1)}
teT

is nonempty.

(1) F is Frechet (Gateaux) equisubconvex on D (or 6.22 holds with T
replaced by T(x)).
Then

f:= sup F(-, 1)
teT

is Frechet (Gateaux) subconvex on D.

Proof. We prove the case of Frechet subconvexity. The other one is
analogous. Let x € D. Put

P(x; ) i= sup Q(x; ),
reT(x)

where ®(x; -), t € T are as in Definition 6.5. Then ®(x; -) is convex and
proper on E. Also ®(x; 0) = 0 and furthermore

liminf [yl '(/(x + ) = f(x) — ®(x:¥))
[[v[]I—0,y+#0

= liminf |/y] "% SL;E) F(x +y, 1) — f(x)
rel(x)

11y ll—0, 1 %0
= sup Q(x;y))
teT(x)

= liminf inf ||yll”"(F(x + y, 1)
|| v[—=0,y#0 reT(x)

— F(x, 1) — @(x,y)) = 0.

where the last inequality follows from (6.22). Thus f'is Frechet subconvex
on D.

Note that (1) is satisfied whenever T is compact and functions F(x, )
are uppersemicontinuous on 7 for all x € D.
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COROLLARY 6.5. Let E be a reflexive Banach space and let T be a

nonempty set. Suppose that F is a function on E X T,
f = sup F(-, 1)
teT

and D denotes dom [ or an open subset of dom f. If F is Frechet
equisubconvex on D, T(x) # @ for all x € D and [ is uppersemicontinuous
on D (which is the case if for example F is equiuppersemicontinuous on D,
that is for any x € D and € > 0, there exists X, a neighbourhood of x in E,
such that

F(x',t) — F(x, t) < e

for all t € T whenever x' € X), then f is densely Frechet differentiable
on D.

Proof. By Proposition 6.7 f is Frechet subconvex on D. As it is also
uppersemicontinuous on D, Theorem 6.4 finishes the proof.

COROLLARY 6.6. Let E be a weakly compactly generated space and let T

be a nonempty set. Suppose that F is a function on E X T,
f = sup F(, 1)
reT

and D denotes an open subset of dom f. If F is Gateaux equisubconvex on D,
T(x) # @ for all x € D and [ is locally Lipschitz on D (as is the case if for
example F is locally equi-Lipschitz on D, that is for any x € D there exists
X, a neighbourhood of x in E and K > 0 such that

|F(x', 1) — F(x", 1) | < K||x" — x”|]

Jorall X', x" € Xandallt € T), then [ is densely Hadamard differentiable
on D.

Proof. By Proposition 6.7 f is Gateaux subconvex on D. As it is also
locally Lipschitz on D, Theorem 6.5 finishes the proof.

COROLLARY 6.7. Let E be a reflexive (weakly compactly generated)
Banach space and let T be nonempty and finite. Suppose that F is a function
on E X T and

[ = max F(, t).
teT
If for each t € T, F(-, t) is uppersemicontinuous (locally Lipschitz) and
Frechet (Gateaux) subconvex on D, then [ is densely Frechet (Hadamard)
differentiable on D.

Proof. Since T is finite, conditions (i) and (ii) of Proposition 6.7 are
satisfied. The proof follows from Corollary 6.5 (Corollary 6.6).
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Let us recall that a Banach space E is called an Asplund space if every
convex function on E is Frechet differentiable on a dense Gy (dense)
subset of its domain of continuity [1]. A Banach space is weak Asplund if
every convex function on E is Gateaux differentiable on a dense G subset
of its domain of continuity. A Banach space is called a Gateaux
(Minkowski) differentiability space if every convex (Minkowski) function
on E is densely Gateaux differentiable on its domain of continuity [14].
Also E is a Minkowski differentiability space if and only if every
equivalent norm on E has at least one point of Gateaux differentiability
[14]. We will also say that a Banach space E is a weak Hadamard
differentiability space if every convex function f is densely weak
Hadamard differentiable on its domain of continuity. From Theorem 6.4
and Corollary 6.4 we obtain the following classical results.

COROLLARY 6.9. Any reflexive Banach space is an Asplund space. Any
weakly compactly generated space is a weak Asplund space.

We will say that a Banach space FE is an R-proper space, whenever for
any closed subset C of E the R-proper points of C are dense in the
boundary of C.

PROPOSITION 6.8. If E X R is a WP-proper (P-proper space), then E is a
weak Hadamard (Gateaux) differentiability space.

Proof. For example we prove the “weak” case. Let f be a convex
function on E continuous at x. Put

C := epi(—f).
Then there exists X close to x such that
WP-(%, —f(X)) # E
and f'is continuous at x. As a consequence there exists
(—x* r) € WKNZ, —f(X)), (—x*r) # 0.
As —f is locally Lipschitz around X,
(—H"(x; y) < +oo forally € E
and using the characterization from Corollary 6.1 we get
(6.23) (—x* y) = r(—H"(x;, y) forally € E.

Thus r > 0, and without loss of generality we may assume r = 1.

We will prove that x* is a weak Hadamard derivative of f at X. To show
this it is enough to argue that for all weakly converging sequences y, and
all sequences ¢, | 0 we have

j()_C + tnyn) ‘f(f)
t

n

)
H

(6.24) lim ( — (x*,y,,)) = 0.
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First note, that if y, converges weakly toy and ¢, | 0, by (6.23) where r = 1
and Definition 6.2, we get

(6.25) (x*, y) = lim sup JE + 14,0,) _f()?).

n—00 t

n

Let X* be a subgradient of f at X; then taking any y € E and y, = y for

n € N in (6.25) we get (x*, y) = (X*, y). Hence x* = Xx*. This together
with (6.25) shows that

(x* y) = lim f(k_ + tnyn) _f()_c)

n—00 t"

therefore (6.24) holds and the proof is finished.

7. The subgradient formulas in reflexive Banach spaces.

Definition 7.1. Let f be an extended real valued function on a Banach
space E. Assume that f'is lowersemicontinuous and let x be any point with
/f(x) finite. We say that x* € E* is a proximal subgradient to f at x if (x*,
—1) is a proximal normal functional (as defined in Definition 3.1) to the
epigraph of f at (x, f(x)).

The proximal subgradient set of f at x denoted 3"f(x) consists of all
such functionals. If x & dom f then 3" (x) is empty by convention.

Thus we have: x* E)Pf(x) if and only if
(x*, —1) PNcpi/'(X’f(X))

and this definition extends the one given in [19] for E := R".
An examination of the definitions shows that whenever the norm of F is
Frechet differentiable then the following holds.

PrROPOSITION 7.1. Let the norm of E be Frechet differentiable and let | be
a lowersemicontinuous function on E. If x* € 93'f(X) then there is a
neighbourhood X of X and a function g on E such that for any x € X g has
a Frechet derivative g¥ € E*, the mapping x — g% is norm to norm
continuous on X, g* = x*, g(X) = f(X) and g(x) = f(x) for all x € X.

Proof. As (x*, —1) € P/\/Cp‘rf()?,f()_c) ), there exists (y, @) € E X R such

that

di=l(y =X a—=f))I = dypy((y, @)
and

* =y = Xoa = f(x)) =l (x* —D]ld
Put
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g(x):= Vd* — ly — xIIF — a
use the fact that the norm of E is continuously differentiable.

THEOREM 7.1. Let f be a lowersemicontinuous function on a reflexive
Banach space E. Then the set {xlapf(x) # B} is dense in dom f, whenever
the norm of E is Kadec and Frechet differentiable.

Proof. Let x € dom f. Then by Proposition 6.6 there exists X in dom [
near x such that for some x* € E*

(1.1) (% —1) € Ny (X f(3)).
By Theorem 3.1

(1) Npy(@ /(@) = @w* limsup PNy (x'.v)

(XY )RS (X))

epif
= €0 w* lim sup PN, /(x’, f(x')),
XX ’
7

(we use notation: x” —,x if and only if x" — x and f(x") — f(x) ), where
the last equality is justified by the lowersemicontinuity of f and the
inclusion

PNpiy (X' ¥) € PNyip (X', f(X)),
whenever
Y Z f(x') > —oo.

(7.1) and (7.2) show that there exist x’ in dom fnear X, y* € E* andy > 0
such that

*. =) € PNyip(x', f(xX)).
Hence

y e e T f())
and the proof is finished.

Proposition 7.1 and Theorem 7.1 together with renorming theorems
(Proposition 3.3) obviously imply the following.

CoroLLARY 7.1. If [ is a lowersemicontinuous function on a reflexive
Banach space E then the set of points X for which there exist a neighbourhood
X of X and a function g continuously differentiable on X with g(X) = f(X),
g(x) = f(x) for x € X, is dense in dom f.

We apply Corollary 7.1 to prove the following.

ProrosITION 7.2. Let E be a reflexive Banach space with Kadec norm and
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let K be a closed and bounded subset of E. Suppose that [ is a lower-
semicontinuous function on E bounded from below on K and somewhere finite
on K. Then the set of those y for which the infimum

(713) F() = inf () + I =)

is attained on K is dense in E.

Proof. By the assumption F is lowersemicontinuous and finite on E.
Thus Corollary 7.1 implies that there exists a dense subset G of E such that
if y € G then there exists a neighbourhood Y of y and a function g with
norm to norm continuous Frechet derivative g on Y, g(¥) = F(y) and
g(y) = F(y) for all y € Y. We will show that the infimum in (7.3) is
attained for any y in G.

Let x, € K and

f(x) + lix, = ¥l = F().

As K is bounded x, has a weakly convergent subsequence. Without loss of
generality assume that x, converges weakly to some X. It is enough to show
that x, converges to X in norm. Then X € K and by lowersemicontinuity
of f we get

JG&) + lIx = ¥l = liminf (f(x,) + llx, = yll) = F(»).

n—00
So let us prove that x, converges to X in norm. Put
&= (f(x,) + lix, = ¥l = g()'? = 0.

If for some n € N ¢, = 0 we are done. So assume that ¢, > 0 for all
n € N. Without loss of generality assume that Y is closed. Applying
Ekeland’s variational principle as given in [9] to the function

y = fx,) + llx, =yl = g(»)
on Y yields y, in Y such that ||y, — ¥l = ¢, and for all y in Y we have
T4 lx, =l =g = (lx, =3l = g()) = —¢lly =yl

Without loss of generality assume that all y, are in the interior of Y. Then
for all + > 0O sufficiently small

)}H + t(xﬂ - yﬂ) = )_/‘
By using (7.4) we get

dix, = yll = =@y, + 1(x, = 3,) = g)) + gllx, — yll.
Hence dividing by ¢ and letting r go to zero we obtain

(7.5) (1= &) lIx, = nll = g5y, — x,).
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Let y € E. For t > 0 sufficiently small y, + ty € Y and therefore it
follows from (7.4) that

(1 +¢,) Iyl = gf(y) forallyinE.
This and (7.5) implies

I —¢ = lgfll =1 + ¢,
Hence as g‘* converges in norm to g_;l.‘ we get

gl = 1.
Thus by (7.5) we have
(76) |y =l =gy — %

= gHy, — x,) + (g — %) — gk, — x,))

I

g:t,(y/l - xll) + (g’:E(yII - XII) - gj—:()lﬂ - X/l))

+ gy — %) — gy, — X,
i ”yn - Xn” + 0}7’
where
0” = _enll-yll - X”” + g}i(yll - 'xII) - gj_k'”()}" - xll)

T g0 — %) — g0, — X))
Note that 8, converges to zero as n goes to infinity, therefore (7.6)
implies

IX = ¥l = lim sup |Ix, — .
H—>00

Weak lowersemicontinuity of the norm implies now

lim |lx, — pll =[x — ¥l

n—o0

and the Kadec property gives x, — y, converges to X — y in norm. Thus
also x,, converges to X in norm and the proof is finished.

If || || is some normon £ and x € C C E let PNﬂ“(.x) denote the set of
proximal normal functionals to C at x with respect to the norm || ||.

THEOREM 7.2. Let f be a lowersemicontinuous function on a reflexive
Banach space E. Assume that the norm of E is Kadec and Frechet
differentiable. If [ is finite at x and

(»*,0) € PNyip(x. f(x))

then there exist sequences x,, — x, t, | 0, a sequence of equivalent norms on E
[Ill,, such that all of them are Kadec and Frechet differentiable and a
sequence y¥ € E* with
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O =1 € PN (5,0 f(x,)),
Jfor which

(y* 0) = lim 7,y —1).

Proof. Without loss of generality let us assume that
(x.f(x)) = (0,0) and [y* = L
Then there exists (7, 0) & epi f such that
=113 0l = dist, (3. 0) = 1
and (y*. 0) is the derivative of the norm of £ X Rat: (7, 0). Denote the
closed unit ball of E by B.
Let us choose € with 0 < € < 1/4 and put A := 1. Then
(7.7) x € (0, \](y + 2eB) implies f(x) = 0.
Let us also choose
p, < min{ (174" "', (1 — ey, e/4}
and «,, > 0 such that
a, < min{ep,/3, ((1 — &)t — p,)/2t}.
Similarly as in the proof of Theorem 3.1 we define for n € N

W, .= co(etB. (1 + a,) (7 + a,e1B),

(1 +a) (=7 + aeB)).
n ) n

and we denote by || ||, the norm of E associated with the unit ball W,.
Then

eB Cc W C (B

H

and by Lemma 1 of Part I of the paper the norm || ||, is an equivalent
Kadec and Frechet differentiable norm of E.
Note that

(78) v, =¥, =1+ )] + ae)
and
(7.9 v,W, € 1B.

Assume without loss of generality that f is bounded below on the set
{x € El|lx|ll = 1} by some —B > —oo. Choose n = k, € N with

| 1
k, t v8 < a,.

n

Forn € N, u € E put
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R,:={x € Ellxll =p,}
VYE = > if llull, = v,k — Dk, + 17
k, (v, — llull,) iflldl, = v,(k = Dk, + 17"

lIA

Ja(u) =

Let us consider

OM>auw=m£w%ﬂn—ﬁu—nxyeﬁ

For all n, F,(y) = 0. If F,(y) = 0, then
0 =F,(=/f0) — /00—y =0,

and the infimum in (7.15) is attained at x, := 0 for y, := y. Suppose
that F,(y) < 0. Then there exists 8, > 0 such that for all y with
“y - y”n = 0»1
(711 E(») = inf (00 = kG = =),

XES,
where

S, =R, N{xeEllx—¥l,=v}
Indeed, let L, = k, be such that
£ — f,w) | = Llluy — wll,
whenever |lull, = vy, + 2 fori = 1, 2. Choose 8, > 0 with
8, < min{—(L,) " 'E,(¥), 2v,(k, + 1) " o).
Then for all y for which ||y — yll, < 8, we have

(7]2) F;z(y) = ln£ (tklynf(x) ~—f;,(x - y)) < Frlz(y) + Lnan‘

Furthermore, if |[x — |, = v, we have
(713) 'y fx) = f(x = ¥) 2 0.
Indeed, for |[x — yll, = v,

(114) fi(x =) = Vy2 — lIx — 7l
Also it follows from (7.19) that

e =3l = Ik = 3ll, e, -
Thus

¢ and V7 — |Ix — 3l = f(x).

I

(7.15) [lx — ¥l
Also
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Yo = I = VlE = v = vl = I
= 7@ =l = 3P,
Using this, (7.14) and (7.15) we get

fix =P =y VE — Ix — 3P = v o,

which implies (7.13).
Therefore if |[x — yl|l, = v, then
(71.16) 1"y f(x) = fy(x — »)
=t %S — flx =)+ Ulx —P) — fulx
>0- L0 = F(y + L9,

(7.16) and (7.12) show that
(717 () i= inf (700 — £, = ).

n

However, if [[x — ||, = vy, and ||y — yll, < 6, then

=l

lx = yll, = lIx = 5ll, — 6, =y, — 2y,(k2 + D!

— v, (k2 = k2 + 17!

and therefore

L —y) =k, (v, — lIx = yll,)-

This together with (7.17) finishes the proof of (7.11).
Applying Proposition 7.2, we choose y, in E with

Iy, = ¥ll, <8,

for which infimum in (7.11) is attained at some x, € R, such that

(7.18) ix, = ¥ll, = ¥,
Then by (7.12) we get
F;l(yll) < El(-)—)) + L"0"

and hence

tAI‘YI?fV(/V”) - k”(Yn - ”'x” - )_)”H) é F;I(yn) + L”0”

< F(y) + 2L
This together with (7.18) implies
—t B =1y, f(x,)

<t Yy f(x,) — kv, — lIx, = 7ll,) <
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Thus
(7.19) f(x,) <0
and
(7200 lx, = ¥ll, < v — k, 't ', f(x,)
<y, + k"vlt_]y,,,B <y, + a,
We will show that
7.21)  lIx,ll < p,.
Asy, = 1 + a, we have by (7.20)
X, =, =) +tyeq o)W, +y
cy+ W + 2a,W,.
Now following the lines of the proof of Theorem 3.1 we get
+ W, c (0, +oo)(7 + etB)
and
x, € ((0, +oo)(J + eB) + 2a,W,) N p,B
c 0, Iy + e¢B) + 2a,W,
c {(0,2a,e )7 + «B) + 2a,W}
U {Ra,e ', 1)(¥ + 2eB) ).
This together with (7.7) and (7.19) implies
x, € (0, 2,6 "Y(7 + eB) + 2a,1B.
Hence
lIx, )l = 2a,e '1(1 + € + 2,
= Rae (1 + 2¢) = 30,6 ' < p,

and (7.21) is proven.
We conclude that the sequence x, has the following property

(7.22) x, — 0,
thus by (7.19) and lowersemicontinuity of f
(7.23) f(x,) —0.

Furthermore it follows from our construction via (7.21) that there exists
a neighbourhood X,, C R, of x, such that for all x € X,

(124) () = =ty ke, (Ul = yll, = lbx, = wll) + 0x) = ().
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For z € E let ¢" and ¢. denote respectively the Frechet derivatives of
the norm || ||, and || || at z.
Define

r=S00) =k, ik, =
and let A* denote the Frechet derivative of the function 4, at x,,. Then
](h:’ - 1)()’)1 TR f(xn))
= \/1 + (tillynknil)2 HX" - y)l”n = H (yﬂ Xy ——f‘(xn) ) ||n

(7.25) 11 (3. =D,

and

(7.26) |lx — plIZ + b, (x) — rl* = lIx = ylIZ

n

1
+ I_IYH k}l( ”x - -)/H”)l - HXH - )}H“H)

- —1 2
+ I l.YII](H “'xﬂ - yn“n'
- —1\2 2
= (1 + (¢t 'yk, Wlx, — »ll2 + %,

where
S = (v, 'k, + Dllx =yl — 2(@y, 'k, + 1)

X ”X - yn”n”xn - yn”n

+ (v, 'k,)? + Dllx, =yl

hn

= (v, 'k + DClke = yll, = llx, = pll,)* = 0.
As h, is a continuous function (7.26) and (7.25) show that

duly ) = 1Oy = X1, = S00)) e

which together with (7.24) proves that

I, _ _ _
deif(y"’ r”) - ” (yn X”, rn f(xn) ) Hn'

This in turn implies by (7.25) that

(127) (h*, —1) € PN’C'p“i;.(xm fx)).

Note that
(7.28) h* = 1y, 'k,¢"

nPx, =y,

Now it may be easily argued (as in the proof of Lemma 1 in Part I) that

(729) (p.’\l’””_l‘,, = HXII - yn”/l”xn - yll” - l(p,\’,, A
Put
I*’ 1

SII L= HX}I - yll“’l”'xll - y’ll and

0, =5, (1 + (v, k)2,

n
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theny, = 1,5, >t ', k, — co. Thus

> Yn

(7.30) 1, | 0.

Furthermore Frechet differentiability of the norm || || implies that

(131) @y, o 5 = —)*.
Using (7.28), (7.29), (7.30), and (7.31) we get
(7.32) 1,(h*, —1) = (y*, 0).

n’

Now (7.22), (7.23), (7.27), (7.30), and (7.32) show that the theorem is
true.

Definition 7.2. Let f be an extended real valued function on a Banach
space E with a Frechet differentiable norm. Assume that f is lowersemi-
continuous and let x be any point with f(x) finite. Denote by % the
set of all equivalent and Frechet differentiable norms on E. We say that
x* € E* is a generalized proximal subgradient to f at x if

(x*. =1 e u_PNIL(x f(x)).

He#
The set of all such functionals will be denoted by 5;)()6).

In the following theorem we state and prove the proximal subgradient
formula which generalizes the finite dimensional version proven in [19].
Let us define

Y(x) := w* lim sup E)’}-(x’),
x'—=x
/

V(x) := w* lim sup o' f(x"),
X' —x
S

Yo(x) = w* lim sup A7 (x),
X=X
A0
Vo(x) := w* lim sup A" f(x).
x'—=x
A0
THEOREM 7.3. Let [ be a lowersemicontinuous function on a reflexive
Banach space E. Assume that the norm of E is Kadec and Frechet
differentiable. If [ is finite at x then the formula

(7.33) 3f(x) = Co(Y(x) + Yy(x)) = co(V(x) + Vy(x))
holds.

Proof. In any space with Frechet differentiable norm we have

MMf(x) o ' (x).
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Hence as E is reflexive, equality
o (x) = a"f(x)
implies
(7.34) T(Y(x) + Yy(x)) € co(V(x) + Vy(x)).

Let x* € V(x) and Xx* € Vy(x). Then sequences x
x} € E* and A, | O exists such that

= *
n Xn € E’ X

= % 1 *
X, rx, X, 7px, x* = w* lim x7
n—00

X* = w* lim A X} and
n—00

(ot = 1) € WKyi(x,,, f(x,)),
(%5 —1) € WKgi(%,. f(X,)).

This by Theorem 3.1 implies that
(x*, —1) € w* lim sup WK (x', f(x)) C Ncpif(x,f(x) ),

X'y
/

(x*,0) € w* lim sup WK(x', (X)) C Nepip (X, f(x)).

Thus
(F + T, 1) = (¢, 1)+ (7 0) € Npyp(x, f(x)
on using convexity of the Clarke normal cone. Therefore
x* + x* € 3f (x).
This proves that
V(x) + Vy(x) € 3 (x).
and consequently
(7.35) co(V(x) + Vy(x) € 9f(x)),

because the Clarke subgradient set is always convex and weak star
closed.
By (7.34) and (7.35) it remains to show that

f(x) € Co(Y(x) + Yy(x)).
But this inclusion is a consequence of the equality
Ny (6. f(x)) = DA™, — 1) [y* € Y(x), A > 0)
U {50 y* € Yyx)}

which follows from Theorem 3.1 and Theorem 7.2. This finishes the
proof.
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As any reflexive Banach space has an equivalent Kadec and Frechet
differentiable norm we easily obtain from Theorem 7.3 the following
result.

CorOLLARY 7.2. Let f be a lowersemicontinuous function on a reflexive
Banach space. If f is finite at x then the following formula holds:

I (x) = co(V(x) + Vi(x)).
The subgradient formulas simplify for locally Lipschitz functions.

CoroLLARY 7.3. If fis a locally Lipschitz function on a reflexive Banach
space with a Kadec and Frechet differentiable norm then

(7.36)  9f(x) = co w* lim sup 3'f(x")

X' —x

= Co w* lim sup aFf(X/)

X' —x

= co w* lim sup 8"f(x’).

X'—x

Proof. We have Yy(x) C V(x) and as fis locally Lipschitz there exist X
a neighbourhood of x and M > 0 such that for any x’ € X

f(x; y) < M forally € B,

(where B is a unit ball of E). Thus Vy(x) = {0}, and the first and the
second equalities in (7.36) follow by (7.33), where x” —,x may be replaced
by x’ — x.

Furthermore for a locally Lipschitz function on a Banach space we
have [20]

Nopir (%, f(x)) = (tim inf Ky (¢, f()))',
thus using (3.24) we get

Ny (35, /() 2 w* lim sup K (', /().
Hence using the appropriate definitions we obtain

3 (x) D lim sup 3"f(x"),

x'—x

which together with the equalities already proven finishes the proof of
(7.36).

Again by using renorming theorems we obtain easily the following.

CoroLLARY 7.4. If fis a locally Lipschitz function on a reflexive Banach
space then

df (x) = <o w* lim sup 3'/(x")

X X
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= o w* lim sup 3"/f(x").
X' —x
The results of this section have many apparent consequences for
non-smooth optimization and non-smooth analysis on reflexive Banach
spaces which is the subject of our forthcoming paper.

8. Examples. In this section we present limiting examples for the theory
developed in the paper. Our first examples will be based on the
observation that the tangency properties of the set {x € E| ||x|]| = 1} are
related to the differentiability properties of the norm || || as is explained in
the following considerations.

ProvrosiTioN 8.1. Let E be a Banach space. Let || || be a norm on E
and

C:={x € E|l|lx]]| = 1}.

If |IXIl = 1 then the following are equivalent.
(i) X € C is a P-proper point of C,;
(i) X € C is a cone point of C;
(i) the norm || || is Gateaux differentiable at X.

Proof. Obviously (i) implies (i) as remarked after Definition 5.4.
Assume that (ii) holds. Let x* be such that

(8.1)  (x*,X) = sup{ (x*, x)|[X, x] € C}, lIx*|| = L.
Let X* be a subgradient of the norm || || at X. Suppose that y € E and
(x*,y) £ 0. Then for any ¢, 0 = ¢t = 1 we have

@ =ox +1(y + )1l =1x + ol = [IXll +x*y) =1
Hence by (8.1)

(x*, X) = (x*, x + y).
Thus

(x*, y) = 0 implies (x*, y) =0
and as [[X*|| = |Ix*|| = 1 we get x* = —x*. This proves that the
subgradient set of the norm || || at X consists of exactly one functional and
therefore the norm || || is Gateaux differentiable at X.

Assume now that (iii) holds. Let x* be a Hadamard derivative of the

norm || || at x. Suppose that y € K(X). Then

y = lim t;](cn — X) forsomec, € C,t,] 0

H—>00

and by Hadamard differentiability we have

(x*, y) = lim Ll 1

n—o0 !

= 0.

n
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This proves that P-(X) # E and the proof is finished.

ProrosiTioN 8.2. Let E, || ||, C be as in Proposition 8.1. If ||x|| = 1 then
the following are equivalent:

(1) x € Cis a WP-proper point of C,

(i) the norm || || is weak Hadamard differentiable at x.

Proof. Suppose that WP-(x) # E. Let x* € WP%(,?) and ||x*|| = 1.
Then as in the proof of the implication (ii) = (ii1) in Proposition 8.1 we
may prove that —x* is a Gateaux derivative of || || at X. Suppose that —x*
is not a weak Hadamard derivative of || || at Xx. Then there exist ¢ > 0 and
sequences ¢, | 0 and y, converging weakly to some y such that

Ix + 2, — Il

(8.2) + (x*,y,) >¢€¢ n €N

a) Suppose that (x*, y) = 0. As ||x]| = 1, we conclude by 8.2 that

X + 2,(3, — (/2)x) || — |Ix]]
t

n

Ix + 2, Il — lIxI|
t

n

— (/) |Ixl] > —(x*,y,) + €/2.

I

Therefore
Ix + 2,(y, — (€2)X) || = 1 + 1,(—(x*y,) + €2) > 1,
for sufficiently big n. This implies that
y — (e/2)x € WP-(X),
hence
(x*, (y — (/%)) = 0.
As —(x*, xX) = 1, we get a contradiction from
—(x*, (e/2)x) = €/2 = 0.
b) So suppose that « : = (x*, y) # 0 and consider
z:=y+tax,z,:=y, tax,x,: =X+ 1),

Using (8.2) we get

N A e

n

(x*, z,)

- llx, + t,axll — llx,|l
t

n

+ (x*, aX) + e
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For x € E let f be the Gateaux derivative of the norm at x. Then the
mapping x — f,_is norm to weak star continuous from the unit sphere of £
to the unit sphere of £* [11]. Thus we get

llx, + taxll — lix,ll —
(84) i ; (Xf\,"HX"”/I(X).

n

Also x,/||x,|l = X implies
Foo 1(®) = fe(®) = 1.
Thus (8.3) and (8.4) give
%+ ¢ =
(8.5) IIx + 2,2,/ — |Ix]]

n

+ (x* z,) > alfy o (X)) — D) + € > €/2,

whenever n is sufficiently big. As (8.5) is analogous to (8.2) and
(x*, z) = 0, we get a similar contradiction as in the first part of the proof.
This proves that || || is weak Hadamard differentiable at X whenever C is
WP-proper at Xx.

Replacing Hadamard by weak Hadamard, P-(X) by WP-(X) and norm
convergence of ¢, l(c,, — x) by weak convergence in the proof of the
implication (iii) = (ii) in Proposition 8.1, we may prove that C is
WP-proper at X whenever || || is weak Hadamard differentiable at x. This
finishes the proof.

COROLLARY 8.1. Let E be a Banach space. If any closed subset C of E has
a cone point (in particular if E is a P-proper space) then E is a Minkowski
differentiability space.

Proof. Let || || be any equivalent norm on E, then by our assumptions the
set

C:={x € El|x|| =1}

has a P-proper point X € C. By Proposition 8.1, || || is Gateaux dif-
ferentiable at X. Thus any equivalent norm on E has a point of Gateaux
differentiability, hence F is a Minkowski differentiability space.

Using Corollary 8.1 we may obtain a partial strengthening of
Proposition 6.8.

COROLLARY 8.2. Let E be a Banach space. If any closed subset of E X R
has a cone point then E is a Gateaux differentiability space.

Proof. If our assumptions are satisfied then by Corollary 8.1, £ X Ris a
Minkowski differentiability space. This in turn is equivalent to E being
a Gateaux differentiability space as proven in [14].

Example 1. Let E be any Banach space with a nowhere weak Hadamard
differentiable norm. Let || || be the norm of E. Put
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C:={x € E||lx|| = 1}.

Then C is a closed set which by Proposition 8.2:

(1) has no WP-proper points

(11) 1s WP-pseudoconvex but not convex.

In particular the following spaces may serve as the example.

A. Consider E : = [|(S), S uncountable. Then the norm of E is nowhere
Gateaux [12] hence nowhere weak Hadamard differentiable.

B. Consider E := C([0, 1]). We will show that not only is the norm of
E nowhere weak Hadamard differentiable and conditions (1) and (ii) hold
but what is more, the set C:

(i11) has no WT-proper points,

(iv) is WT-pseudoconvex but not convex. (W7T-(x) denotes the weak
Clarke tangent cone to C at x as introduced in Part I.)

Proof. Let f € C, ||f|| = 1. Take any g € E. Suppose that sequences
t,} 0and f, € C converging (in norm) to f are given. Define

N,:={n eN| sup f,(x) =1},
x€(0,1]

Ny :={n € N| sup —f,(x) = 1}.
xe[0,1]

Forn € N, let

W= {xI f,(x)>1-1}
Then W, is nonempty and open. Choose Q, open, Q, C W, with

n

diam Q, < 1/n, (where

diam Q, := sup{ls’ — s”|ls", s” € Q,}).
Suppose that N, is infinite. Then if
Q,=19

N
neN,
put U, := Q,foralln € N,. If
Q, =y forsomey € [0, 1],

N,
put

U, = 0\
Then
86) 1—1,<f,(x) forxinU,n € N,
and

@87 N U =8

neN, n
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We will construct a sequence of functions 4, in C for which
(8.8) t”—'(h" — f,) converges weakly to g as n goes to co in N,.
For n € N, consider functions

k,:= 1 — ), +1,(f + 2.
If |lk,/l = 1 puth, := k,. If ||k,|l < I, pick u, € U, and put
h‘(x) L {k”(x) if x €10, 1], x # u,,

" 1 if x = u,

oy = {10 2 210100
Then

k,(x) = h\(x) = hX(x) forall x € [0, 1],
and

B oy 1l = 2 I = 1.

Also h}, 1s uppersemicontinuous on [0, 1] and h,z, 1s lowersemicontinuous on
[0, 1]. By Michael’s selection theorem [12] there exists a continu-
ous function 4, on [0, 1] such that

h” = h” p— h”.

Note that all the constructed functions 4, are in C. We will show that (8.8)
1s satisfied. Indeed, let K > 0 be such that

1f(x) + gx) — f,(x) || = K forall x € [0, 1].
If h,(x) = k,(x), then

lt, '(h,(x) = £, | = 1f(x) + g(x) = f,(x)| = K.
If h,(x) # k,(x) then x € U, and by (8.6) we get

—K = 1, (k,(x) = £,(x)) = 1, "(h,(x) — £,(x))

=1, ) — £,00) =4,'0 — f,(0)) = 1.

Thus if n goes to infinity in N, the sequence

6, \(hy = 1)
1s norm bounded and as
Nn U, =19,
nEN,

it converges pointwise to g. Therefore by Lebesque’s bounded convergence
theorem it converges weakly to g.
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Suppose now that N, is infinite, then replacing N, and f, by N, and —f,
in the construction of the sets U, above, we get that there exist nonempty
open sets U, such that

1 —1, < —f,(x) forallxin U, n € N,
and

N I =@

neN,
For n € N, consider functions

ky:= 0 —t)X=f) + t,(=f — g).
If|lk|l = 1puth :=k,.If|lk,| < 1, pick u, € U, and put
n n n n n n

) = {k,,(x) if x € [0, 1], x # u,,

" -1  ifx = u,

2 .V k,(x) ifx €0, 1INU,,
hax) = {—1 ifxe U

Then for all x € [0, 1]

R(x) = hMx) = k,(x),
and

) T = Ny ) I = 1.

Also h,], is lowersemicontinuous on [0, 1] and hf; is uppersemincontinu-
ous on [0, 1]. Again by Michael’s selection theorem there exists a
continuous function 4, on [0, 1] such that

y(x) = h,(x) = h(x) = k,(x).

Note that all the functions 4, are in C and as in the first part of the proof
one shows that if n goes to infinity in N, the sequence ¢, '(h" — f,) con-
verges weakly to g. As the conclusion of the above considered cases we get
t, ‘(h,, — f,) converges weakly to g. As g was arbitrary in E, we
get WT.(f) = E, which proves also (iii) and (iv).

Note that the same argument works if E : = C({2), where Q is a compact,
perfect, metric space.

Example 2. Let E be any non-Minkowski differentiable space. Let || || be
an equivalent norm of E which is nowhere Gateaux differentiable. Then
by Proposition 7.1 the set

C:={x <€ Ex =1

(1) has no P-proper points;
(i1) has no cone points;
(ii1) is closed and P-pseudoconvex but not convex.
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In particular the following spaces and norms may serve as the
example.

A. Let E := L*([0, 1], p), (u is Lebesque measure). The norm of E is
nowhere Gateaux differentiable [21].

B. Let E := ll(S), S uncountable. The norm of E is nowhere Gateaux
differentiable.

C. Let E : = [®(N). Define an equivalent norm on E by

IIx]| := lIxllo + lim sup |x,|, x = (x,) € E.

n—o0
Then || || is nowhere Gateaux differentiable [14].

Example 1 shows that if in Theorem 1.1, Theorem 5.1, and Corollary 2.1
the contingent cones are replaced by weak Clarke tangent cones or weak
pseudocontingent cones then their statements may fail even in separ-
able (hence weakly compactly generated) space (as we have shown in
C([0, 1])).

Example 2 shows that if in Theorem 1.1, Theorem 5.1, and Corollary 2.1
the contingent cones are replaced by pseudocontingent cones then their
statements may fail even in a dual space with the Radon Nikodym
property (as in l](S), S uncountable).

In particular, the constructed sets have no WP-proper points or no
P-proper points. Note however that those sets are unbounded and for
example the nonexistence of WP-proper points of the considered set C in
1'(S) is due to its unboundedness.

Example 3.
A. Let E and || || be as in Example 1 or

B. Let E and || || be as in Example 2. Consider
C:= {x € E|l = |lxl| = 2}.

Note that C is convex (hence WT-, P-, WP-pseudoconvex) on some
neighbourhood of any x with ||x|| = 2. Thus in the case A, the set C is
closed, bounded and

(i) has (WT-), WP-proper points but they are not dense in the
boundary of C,

(i1) i1s (WT-), WP-pseudoconvex but not convex.

In the case B, the set C is closed, bounded and

(1) has P-proper points but they are not dense in the boundary of C,

(i1) is P-pseudoconvex but not convex.

However the following questions remain still open: does there exist a
closed bounded subset of a Banach space, which has no WP-proper points
or which has no P-proper points? Does there exist a closed bounded
subset of a Banach space without cone points?
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We have indicated several limiting examples for the theory in Banach
spaces. The limiting examples for normed spaces were investigated in [6].
They are related to the existence of normed unsupportable spaces, the
theory of which originated by Klee, was recently extended in [8]. The
normed space is unsupportable if it contains a closed bounded convex set S
with no support points. Most incomplete normed spaces are unsupport-
able. In [8] it is conjectured that all are.

Example 4. Let E be an unsupportable normed space. Let S be a closed
convex bounded set with no support points and 0 & S. Put

C,:=SU -8 and G, := |>\|Li| AS.
Then
A. One can check that TC](x) = F for all x € C,, hence for all
x € C,

o I (x) + x = E while star C; = 9.
X 1
Thus C, is T-pseudoconvex but not convex and Corollary 2.1, Theorem
5.1 and Theorem 5.6 are violated outside Banach spaces.

B. Moreover, as in [6],

N ch Kcz(x) + x = cone S U cone(—S)

and

O Te0) + x = (0)

while

N PCZ(X) + x = E.

X€GC,

This provides counter examples to Theorem 1.1 and Corollary 2.1, and
exhibits a set with one K-proper and no P-proper points.

C. Any unsupportable convex set S is completely antiproximal and so
provides a counter-example to Proposition 5.10.
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