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Normal Extensions of Representations of
Abelian Semigroups

Boyu Li

Abstract. A commuting family of subnormal operators need not have a commuting normal exten-
sion. We study when a representation of an abelian semigroup can be extended to a normal repre-
sentation, and show that it suõces to extend the set of generators to commuting normals. We also
extend a result due to Athavale to representations on abelian lattice ordered semigroups.

1 Introduction

An operator T ∈ B(H) is called subnormal if there exists a normal extension N ∈

B(K), whereH ⊆ K and N ∣H = T . _ere aremany equivalent conditions for an op-
erator being subnormal; for example, Agler showed a contractive operator T is sub-
normal if and only if for any n ≥ 0,

n
∑
j=0

(−1) j
(
n
j
)T∗ jT j

≥ 0.

One may refer to [9, Chapter II] for many other characterizations of subnormal op-
erators.
A commuting pair of subnormal operators T1 , T2 ∈ B(H) might not have com-

muting normal extensions [1, 13], and a necessary and suõcient condition was given
by Itô in [11]. Athavale obtained a necessary and suõcient condition for n commut-
ing operators T1 , . . . , Tn ∈ B(H) to have commuting normal extensions in terms of
operator polynomials [4,6].

_is paper considers the question as to when a contractive representation of a
unital abelian semigroup can be extended to a contractive normal representation.
Athavale’s result can be applied to the set of generators and obtain a map that sends
the semigroup into a family of commuting normal operators. Our ûrst result shows
that such a normal map guarantees the existence of a normal representation.

It is also observed that Athavale’s result is equivalent to a certain representation
being regular, and we further extend Athavale’s result to abelian lattice ordered semi-
groups.
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2 Commuting Normal Extension

For an operator T ∈ B(H), an operator S ∈ B(K) extends T (S is called an extension
of T) if it acts on a larger Hilbert spaceK ⊇ H such that S∣H = T . In other words, S
has the form

S = [
T ∗

0 ∗
] .

An operator T ∈ B(H) is called subnormal if it has a normal extension. Amongmany
characterizations of subnormal operators, Agler [2] showed a contractive operator T
is subnormal if and only if for any n ≥ 0,

n
∑
j=0

(−1) j
(
n
j
)T∗ jT j

≥ 0.

However, a commuting pair of subnormal operators need not have a commuting pair
of normal extension [1,13]. Itô [11] established a necessary and suõcient condition for
a commuting family of subnormal operators to have commuting normal extensions.
Athavale [4] generalized Agler’s result to a family of commuting contractions.

_eorem 2.1 (Athavale) Let T = (T1 , T2 , . . . , Tm) be a family of m commuting
contractions. _en T has a commuting normal extension N if and only if for any
n1 , n2 , . . . , nm ≥ 0, we have

(2.1) ∑
0≤k i≤n i

(−1)k1+k2+⋅⋅⋅+km(
n1

k1
) ⋅ ⋅ ⋅(

nm

km
)T∗k1

1 T∗k2
2 ⋅ ⋅ ⋅T∗km

m T km
m ⋅ ⋅ ⋅T k1

1 ≥ 0.

One may observe that a family of m commuting contractions deûnes a contrac-
tive representation T ∶Nm → B(H) that sends each generator e i to Ti . A commuting
normal extension N = (N1 , . . . ,Nm) can be seen as a contractive normal representa-
tion N ∶Nm → B(K) that extends T . Athavale’s result gives a necessary and suõcient
condition for the existence of a normal representation that extends T . If P is a unital
abelian semigroup and T ∶ P → B(H) is a contractive representation, we can also ask
the questionwhen there exists a normal representation N ∶ P → B(K) that extends T .

Example 2.2 Consider P = N/{1}, which is a unital semigroup generated by 2 and
3. A contractive representation T ∶ P → B(H) is uniquely determined by T(2), T(3),
which satisûes T(2)3 = T(3)2. We use _eorem 2.1 to test if T(2), T(3) has com-
muting normal extensions N2 ,N3. However, even if they do have such extensions,
there is no guarantee that N3

2 = N2
3 , and therefore, it is not clear if we can get a nor-

mal representation N ∶ P → B(K) that extends T . Nevertheless, since N2 ,N3 ex-
tend T(2), T(3), respectively, we deûne a normal map N ∶ P → B(K) using N2 ,N3
such that {N(p)}p∈P is a family of commuting normal operators where N(p) ex-
tends T(p). As we shall soon see, in _eorem 2.6, the existence of such normal map
guarantees a normal representation that extend T .

We also note that this semigroup P = N/{1} is closely related to the so-called Neil
algebra A = { f ∈ A(D) ∶ f ′(0) = 0}. Dilation on Neil algebra has been studied in
[8, 10]. Unlike N where every contractive representation has a unitary dilation due to
Sz. Nagy’s dilation, contractive representations of P may not have a unitary dilation.
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Even so, for a contractive representation T ∶ P → B(H), we apply Ando’s theorem to
dilate T(2), T(3) into commuting unitariesU2 ,U3, and therefore there exists a family
{Un}n∈P of commutingunitarieswhere PHUn ∣H = T(n) for each n [10, Example 2.4].
However, existence of such unitarymaps does not guarantees a unitary dilation of T .

One of themain tools for the proof is the involution semigroup. Sz.Nagy used such
a technique and proved a subnormality condition of a single operator due to Halmos
[14], and Athavale also used this technique in [4]. We extend this technique to amore
general setting.

Deûnition 2.3 A semigroup P is called an involution semigroup (or a ∗-semigroup)
if there is an involution ∗∶ P → P that satisûes p∗∗ = p and (pq)∗ = q∗p∗.

For example, any group G can be seen as an involution semigroup where g∗ =

g−1. Any abelian semigroup can be seen as involution semigroup where p∗ = p. A
representationD of aunital involution semigroup P is aunital∗-homomorphism. It is
obvious that if pp∗ = p∗p, then D(p) is normal. Sz.Nagy established a condition that
guarantees that a map on an involution semigroup has a dilation to a representation
of the semigroup [14].

_eorem 2.4 Let P be a ∗-semigroup and let T ∶ P → B(H) satisfy the following
conditions:
(i) T(e) = I, T(p∗) = T(p)∗.
(ii) For any p1 , . . . , pn ∈ P, the operator matrix [T(p∗i p j)] is positive.
(iii) _ere exists a constant Ca > 0 for each a ∈ P such that for all p1 , . . . , pn ∈ P,

[T(p∗i a∗ap j)] ≤ C2
a[T(p∗i p j)] .

_en there exists a representation D∶ P → B(K) that satisûes T(p) = PHD(p)∣H and
∥D(p)∥ ≤ Cp .

Now let P be a unital abelian semigroup and consider Q = {(p, q) ∶ p, q ∈ P}. Q
is a unital semigroup under the point-wise semigroup operation

(p1 , q1) + (p2 , q2) = (p1 + p2 , q1 + q2).

Deûne a involution operation of Q by (p, q)∗ = (q, p), which turns Q into an in-
volution semigroup. Notice that since P is abelian, Q is also abelian. Moreover, any
element (p, q) = (0, q) + (0, p)∗. If D∶Q → B(K) is a representation, then

D(0, p)∗D(0, p) = D(p, p) = D(0, p)D(0, p)∗ ,

and therefore D(0, p) is normal.

Lemma 2.5 Let T ∈ B(H) and N ∈ B(K) where H is a subspace of K. Suppose
T = PHN ∣H and T∗T = PHN∗N ∣H; then N is an extension of T .

Proof From the conditions,we have for any h ∈H, ∥Th∥2 = ⟨Th, Th⟩ = ⟨T∗Th, h⟩.
Since T∗T = PHN∗N ∣H, ⟨T∗Th, h⟩ = ⟨N∗Nh, h⟩ = ∥Nh∥2. On the other hand,
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∥Th∥ = sup∥k∥≤1,k∈H⟨Th, k⟩. But T = PHN ∣H, and thus ⟨Th, k⟩ = ⟨Nh, k⟩. _ere-
fore,

∥Th∥ = sup
∥k∥≤1,k∈H

⟨Th, k⟩ = sup
∥k∥≤1,k∈H

⟨Nh, k⟩ = ∥PHNh∥.

_erefore, ∥Th∥ = ∥Nh∥ = ∥PHNh∥, and thus H is invariant for N . Hence, N is
an extension of T .

_eorem 2.6 Let P be any unital abelian semigroup and let T ∶ P → B(H) be a unital
contractive representation of P. _en the following are equivalent:
(i) _ere exists a contractive normal map N ∶ P → B(K) that extends T , where the

family {N(p)}p∈P is a commuting family of normal operators.
(ii) _ere exists a contractive normal representation N ∶ P → B(L) that extends T .

Proof (ii) ⇒ (i) is trivial. For the other direction, let Q be the ∗-semigroup con-
structed before and let T̃ ∶Q → B(H) deûned by T̃(p, q) = T(p)∗T(q). For each
p ∈ P, denote N(p) = [

T(p) Xp
0 Yp

] . Pick s i = (p i , q i) ∈ Q and t = (a, b) ∈ Q. We will
show that T̃ satisûes all the conditions in _eorem 2.4.

_e ûrst condition of _eorem 2.4 is clearly valid. For the second condition, we
have

[ T̃(s∗i s j)] = [ T̃(q i p j , p iq j)] = [T(q i)
∗T(p j)

∗T(p i)T(q j)]

= diag(T(q1)
∗ , T(q2)

∗ , . . . , T(qn)
∗)[T(p j)

∗T(p i)] diag(T(q1), . . . , T(qn))

It suõces to show [T(p j)
∗T(p i)] ≥ 0. Notice that {N(p i)} is a commuting family

of normal operators, and thus they also doubly commute (by Fuglede’s _eorem):

[N(p j)
∗N(p i)] = [N(p i)N(p j)

∗] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N(p1)

N(p2)

⋮

N(pn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[N(p1)
∗ N(p2)

∗
⋅ ⋅ ⋅N(pn)

∗] ≥ 0.

_en N(p i) extends T(p i), and therefore PHN(p j)
∗N(p i)∣H = T(p j)

∗T(p i). By
projecting on Hn , we get the desired inequality.
For the third condition, we have

[ T̃(s∗i t∗ts j)] = [ T̃(q i p jab, abp iq j)]

= [T(ab)∗T(q i)
∗T(p j)

∗T(p i)T(q j)T(ab)]

= diag(T(q1)
∗ , T(q2)

∗ , . . . , T(qn)
∗)[T(ab)∗T(p j)

∗T(p i)T(ab)]

diag(T(q1), . . . , T(qn))

_erefore, it suõces to show (with Ct = 1 in the condition) that

[T(ab)∗T(p j)
∗T(p i)T(ab)] ≤ [T(p j)

∗T(p i)]

Similar to the previous case, it suõces to show that

[N(ab)∗N(p j)
∗N(p i)N(ab)] ≤ [N(p j)

∗N(p i)] .
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Let X = [N(p j)
∗N(p i)] ≥ 0 and D = diag(N(ab), . . . ,N(ab)). Since D and X

∗-commute, D and X1/2 also ∗-commute. We have

D∗XD = X1/2D∗DX1/2
≤ ∥N(ab)∥X .

Since N is contractive, this shows that D∗XD ≤ X. _erefore, all conditions in
_eorem 2.4 aremet, and thus there exists a contractive representation S∶Q → B(L)

such that T̃(p, q) = PHS(p, q)∣H. Denote M(p) = S(0, p). _en M∶ P → B(L) is a
representation of P, andmoreover,

T(p)∗T(p) = PHS(p, p)∣H = PHM(p)∗M(p)∣H .

By Lemma 2.5,we know M(p) extends T(p), and thereforeM is a normal extension.

Remark 2.7 When the semigroup is P = Nk , _eorem 2.6 is trivial. For a normal
map N ∶Nk → B(K), one can deûne a normal representation by sending each gener-
ator e i to N(e i). However, it is not clear how we can derive a normal representation
from a normal map when the semigroup does not have nice generators. For example,
we have seen this issue in Example 2.2where the semigroup P = N/{1} is ûnitely gen-
erated. _is result shows that ûnding a commuting family of normal extensions for
{T(p)}p∈P is equivalent of ûnding a normal representation that extends T .

Corollary 2.8 Let P be a commutative unital semigroup generated by {p i}i∈I , and
let T ∶ P → B(H) a unital contractive representation. _en the family {T(p i)}i∈I has
commuting normal extensions {N i}i∈I if and only if there exists a normal representation
N ∶ P → B(K) such that each N(p) extends T(p).

Proof _e backward direction is obvious. Now assuming {T(p i)}i∈I has commut-
ing normal extension {N i}i∈I . For each element p ∈ P, write p as a ûnite product of
{p i}i∈I and deûne N(p) to be the corresponding product of T(p i). Since N i com-
mutes with one another, we obtain a normal map N ∶ P → B(L) where {N(p)}p∈P
is a family of commuting normal operators where N(p) extends T(p). _eorem 2.6
implies the existence of the desired normal representation N .

Remark 2.9 Corollary 2.8 shows that for a contractive representation T ∶ P →
B(H), it suõces to extends the image of T on a set of generators. Since Athavale’s re-
sult still holds for an inûnite family of operators (Corollary 3.6),wemay use condition
(2.1) to check if the set of generators have a commuting normal extension. However,
when the semigroup has too many generators, condition (2.1) is hard to check. We
will give another equivalent condition for an abelian lattice ordered group in the next
section.

3 Normal Extensions For Lattice Ordered Semigroups

A lattice ordered semigroup P is a unital normal semigroup inside a group G = P−1P
that induces a lattice order. Given a unital normal semigroup P ⊆ G = P−1P, there is
a natural partial order onG given by x ≤ y when x−1 y ∈ P. If any two elements g , h in
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G has a least upper bound (also called the join g ∨ h) and greatest lower bound (also
called themeet g∧h) under this partial order, the partial order is called a lattice order.

Example 3.1 (Examples of Lattice Ordered Semigroups)
(i) Nk is a lattice ordered semigroup inside Zk for any k ∈ N⋃{∞}.
(ii) R+ is a lattice ordered semigroup inside R. Notice that R+ is not countably

generated.
(iii) More generally, if the partial order induced by P is a total order, or equivalently,

G = P⋃ P−1, then P is also a lattice ordered semigroup in G.
(iv) If Pi are lattice ordered semigroups inside G i , then their product∏ Pi is also a

lattice ordered semigroup inside∏G i .
(v) If X is a topological space and C+(X) contains all the non-negative continuous

function on X, then C+(X) is a lattice ordered semigroup inside C(X), where
the group operation is point-wise addition.

(vi) Even though our focus is on abelian lattice ordered semigroups, there are non-
abelian lattice ordered semigroups. Consider an uncountable totally ordered set
X, and deûneG to be the set of all order preserving bijections on X. G is a group
under composition. Deûne P = {α ∈ G ∶ α(x) ≥ x}; then P is a non-abelian
lattice ordered semigroup in G [3].

If P is a lattice ordered semigroup insideG, then every element g ∈ G has a unique
positive and negative part, g+ , g−, in the sense that g = g−1

− g+ and g+ ∧ g− = e. _is
notion of positive and negative part is essential in deûning a regular dilation. For a
lattice ordered semigroup P inside G, a representation T ∶ P → B(H) has a dilation
U ∶G → B(K) if U is a unitary representation of G on a Hilbert space K ⊇ H such
that for any p ∈ P,

T(p) = PHU(p)∣H .

Such a dilation is called regular if for any g ∈ G,

T(g−)∗T(g+) = PHU(g)∣H .

_ere is a dual version of regular dilation that call such a dilation ∗-regular if for any
g ∈ G,

T(g+)T(g−)∗ = PHU(g)∣H .

_ese two deûnitions are equivalent in the sense that T is ∗-regular if and only if
T∗∶ P−1 → B(H) where T∗(p−1) = T(p)∗ is regular [12, Proposition 2.5]. We call a
representation T regular if it has a regular dilation.
A well known result due to Sarason shows that such a Hilbert spaceK can be de-

composed as K =K+ ⊕H ⊕K−, where under such such decomposition,

U(p) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∗ 0 0
∗ T(p) 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Regular dilations were ûrst studied by Brehmer [7] where he gave a necessary and
suõcient condition for a representation of NΩ to be regular.
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_eorem 3.2 (Brehmer) Let Ω be a set, and denote ZΩ to be the set of (tω)ω∈Ω
where tω ∈ Z and tω = 0 except for ûnitely many ω. Also, for a ûnite set V ⊂ Ω, denote
eV ∈ ZΩ to be 1 at those ω ∈ V and 0 elsewhere. If {Tω}ω∈Ω is a family of commuting
contractions, we deûne a contractive representation T ∶ZΩ

+ → B(H) by
T(tω)ω∈Ω = ∏

ω∈Ω
T tω

ω .

_en T is regular if and only if for any ûnite U ⊆ Ω, the operator

∑
V⊆U

(−1)∣V ∣T(eV)∗T(eV) ≥ 0.

Recently, the author extended this result to an arbitrary lattice ordered semigroup
(not necessarily abelian) [12].

_eorem 3.3 Let P be a lattice ordered semigroup in G and let T ∶ P → B(H) be
a contractive representation. Deûne T̃ ∶G → B(H) by T̃(g) = T(g−)∗T(g+). _en
T is regular if and only if for any p1 , . . . , pn ∈ P and g ∈ P where g ∧ p i = e for all
i = 1, 2, . . . , n, we have

[T(g)∗T̃(p i p−1
j )T(g)] ≤ [ T̃(p i p−1

j )] .

Although it is observed that condition (2.1) implies a representation T ∶Nm →
B(H) has regular dilation [5], the converse is not true. However, we will prove that
Athavale’s result is equivalent of saying that a certain representation T∞ is regular.
First of all, deûne Nm×∞ by taking the product of inûnitely many copies of Nm ; in
other words, Nm×∞ is the abelian semigroup generated by (e i , j)1≤i≤m , j∈N. Consider
T∞∶Nm×∞ → B(H) where T∞ sends each generator e i , j to Ti .

Lemma 3.4 As deûned above, T∞ is regular if and only if T satisûes condition (2.1).

Proof It suõces to verify that condition (2.1) is equivalent to Brehmer’s condition
on Nm×∞ in _eorem 3.2. For any ûnite set U ⊆ {1, 2, . . . ,m} ×N, denote by n i the
number of u ∈ U whose ûrst coordinate is i. For any subset V ⊆ U , denote by k i the
number of v ∈ V whose ûrst coordinate is i. It is clear that 0 ≤ k i ≤ n i . Notice that
T(eV) = T k1

1 T k2
2 ⋅ ⋅ ⋅T km

m , and among all subsets of U , there are exactly (
n1
k1
) ⋅ ⋅ ⋅ (

nm
km

)

subsets V that have k i elements whose ûrst coordinate is i. _erefore,

∑
V⊆U

(−1)∣V ∣T(eV)∗T(eV) =

∑
0≤k i≤n i

(−1)k1+k2+⋅⋅⋅+km(
n1

k1
) ⋅ ⋅ ⋅(

nm

km
)T∗k1

1 T∗k2
2 ⋅ ⋅ ⋅T∗km

m T km
m ⋅ ⋅ ⋅T k1

1 .

Hence, Brehmer’s condition holds if and only if T satisûes condition (2.1).

Notice that condition (2.1) cannot be generalized directly to arbitrary abelian lat-
tice ordered semigroups when the semigroup lacks generators. However, Lemma 3.4
motivates us to consider T∞ in an abelian lattice ordered semigroup. For a lattice or-
dered semigroup P inside a groupG, deûne P∞ =∏

∞
i=1 P to be the abelian semigroup

generated by inûnitely many identical copies of P. Inside the n-th copy of P∞, we
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denote p by p⊗ δn . A typical element of P∞ can be denoted by∑N
i=1 p i ⊗ δ i for some

large enough N . _en P∞ is naturally a lattice ordered semigroup inside the group
G∞, where

(
N
∑
i=1

p i ⊗ δ i) ∧ (
N
∑
i=1

q i ⊗ δ i) =
N
∑
i=1

p i ∧ q i ⊗ δ i .

Our main result shows that T∞ being regular is equivalent to having a normal exten-
sion.

_eorem 3.5 Let T ∶ P → B(H) be a contractive representation of an abelian lattice
ordered semigroup. Deûne T∞∶ PN → B(H) by T∞(p, n) = T(p) for any n. _en the
following are equivalent:
(i) T has a contractive normal extension to a representation N ∶ P → B(K). In other

words, there exists a contractive normal representation N ∶ P → B(K) such that
for all p ∈ P, T(p) = N(p)∣H.

(ii) T∞ is regular.

Proof (i)⇒ (ii): First of all notice that the family {N(p)}p∈P ∗-commutes due to
Fuglede’s theorem. Deûne N∞ by sending N∞(p, n) = N(p) for all p ∈ P, n ∈ N.
_en for any s, t ∈ P∞, N∞(s),N∞(t) are a ûnite product of operators in {N(p)}p∈P
and therefore they also ∗-commute. In particular, N∞ isNica-covariant and therefore
is regular [12,_eorem 4.1]. Since N extends T , N∞ also extends T∞, and therefore
for any s, t ∈ P∞,

PHN∞
(t)∗N∞

(s)∣H = T∞
(t)∗T∞

(s).

_us, N∞ satisûes the condition in _eorem 3.3, and by projecting onto H, T∞ also
satisûes this condition and thus is regular.

(ii)⇒ (i): LetU ∶G∞ → B(K) be a regular unitary dilation of T∞, and decompose
K =K+ ⊕H ⊕K− so that under such decomposition, for each w ∈ P∞,

U(w) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∗ 0 0
∗ T(w) 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Fix p ∈ P, let U i(p) = U(p⊗ δ i). Under the decomposition K =K+ ⊕H ⊕K−, let

U i(p) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

A i 0 0
B i T(p) 0
C i D i E i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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First by regularity of U , for any i /= j,

T(p)∗T(p) = PHU(p⊗ δ i − p⊗ δ j)∣H

= PHU j(p)∗U i(p)∣H

= PH

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A∗j B∗j C∗j
0 T(p)∗ D∗j
0 0 E∗j

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A i 0 0
B i T(p) 0
C i D i E i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRRH

= PH

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ ∗

∗ T(p)∗T(p) + D∗j D i ∗

∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRRH

.

_erefore, each D∗j D i = 0 whenever i /= j. When i = j, since U is a unitary repre-
sentation, U i(p) is a unitary, and thus D∗i D i = I − T(p)∗T(p). Now ûx є > 0 and
denote

Λє = { λ = (λ i)
∞
i=1 ∈ c00 ∶

∞
∑
i=1

λ i = 1, 0 ≤ λ i ≤ 1, ∥λ∥2 < є} .

_is set is non-empty, since we can let λ i =
1
n for 1 ≤ i ≤ n, and 0 otherwise. _is

gives ∥λ∥2 = 1√
n , which can be arbitrarily small as n → ∞. For each λ ∈ Λє , let

Nλ = ∑
∞
i=1 λ iU i(p), which converges, since λ has ûnite support. Denote

Nє = {Nλ ∶ λ ∈ Λє}

Notice that PHNλ ∣H = ∑
∞
i=1 λ iT(p) = T(p). _erefore, under the decomposition

K =K+ ⊕H ⊕K−,

Nλ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Aλ 0 0
Bλ T(p) 0
Cλ Dλ Eλ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, Dλ = ∑
∞
i=1 λ iD i , and thus

D∗λDλ =
∞
∑
i , j=1

λ iλ jD∗i D j =
∞
∑
i=1

∣λ i ∣
2D∗i D i .

Here, we used the fact that D∗i D j = 0 whenever i /= j. Note that each D∗i D i = I −
T(p)∗T(p), which is contractive. Hence,

∥D∗λDλ∥ ≤ ∥λ∥2
2 < є2 .

Each Nλ is a convex combination of U i , and thus is contained in the convex hull
of U i , which is also contained in the unit ball in B(K). Observe that each Nє is also
convex. _erefore, the convexity implies their SOT∗ andWOT closures agree (here,
SOT∗ − limTn = T if Tn and T∗

n converges to T and T∗ respectively in SOT.). Hence,

Nє
SOT∗

= Nє
WOT

⊆ convWOT
{U i} ⊆ b1(B(K)).

_eBanachAlaoglu theoremgives b1(B(K)) isWOT-compact, and thereforeNє
WOT

is a decreasing nest ofWOT-compact sets. By the Cantor intersection theorem,

⋂
є>0

Nє
SOT∗

= ⋂
є>0

Nє
WOT

/= ∅.
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Pick N(p) ∈ ⋂є>0Nє
SOT∗

. _en for any є > 0, we can choose a net (Nλ)λ∈Iє , where
Iє ⊆ Λє , such that SOT∗ − limIє Nλ = N(p), and thus SOT∗ − limIє N∗

λ = N(p)∗.
Now both Nλ ,N∗

λ are uniformly bounded by 1, since they are all contractions. Hence,
their product is SOT-continuous:

SOT − lim
Λ

N∗
λ Nλ = N(p)∗N(p),

SOT − lim
Λ

NλN∗
λ = N(p)N(p)∗

But since U i are commuting unitaries and thus ∗-commute, Nλ is normal. Hence,
N(p)∗N(p) = N(p)N(p)∗, and N(p) is normal.
Consider N(p) ∈ B(K) under the decomposition K = K+ ⊕H ⊕K−, each entry

must be theWOT-limit of (Nλ)λ∈Iє , and therefore it has the form

N(p) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

A(p) 0 0
B(p) T(p) 0
C(p) D(p) E(p)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Since (Dλ)λ∈Iє WOT-converges to D(p), and for each λ ∈ Λє , ∥Dλ∥ < є. _erefore,
∥D(p)∥ < є for every є > 0 and thus D(p) = 0. Hence, H is invariant for N(p),
whence N(p) is a normal extension for T(p).

_e procedure above gives a normal map N ∶ P → B(K) where each N(p) is a
normal contraction that extends T(p). Notice that N(p) is a WOT-limit of con-
vex combinations of {U i(p)}i∈N, where the family {U i(p)}i ,p is commuting since
P is abelian. Any convex combination of {U i(p)}i∈N also commutes with any con-
vex combination of {U i(q)}i∈N. _erefore, {N(p)}p∈P is also a commuting family of
normal operators. By_eorem 2.6, there exists anormal representationN ∶ P → B(L)

that extends T .

As an immediate corollary,_eorem 2.1 can be extended to any family of commut-
ing contractions {T(ω)}ω∈Ω by considering Brehmer’s condition on NΩ×∞.

Corollary 3.6 Let {Ti}i∈I be a family of commuting contractions. _en there exists
a family of commuting normal contractions {N i}i∈I that extends {Ti}i∈I if and only if
for any ûnite set F ⊆ I, {Ti}i∈F satisûes condition (2.1).

It is known that isometric representations of lattice ordered semigroups are au-
tomatically regular [12, Corollary 3.8]. _erefore, if T ∶ P → B(H) is an isometric
representation, then T∞∶ P∞ → B(H) is also an isometric representation, and thus
T has a subnormal extension.

Corollary 3.7 Every isometric representation of an abelian lattice ordered semigroup
has a contractive subnormal extension.
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