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Lattices of Closed Subspaces

The main objects of this chapter are the lattices formed by closed subspaces of
infinite-dimensional complex normed spaces. Our first result is the following
analogue of the Fundamental Theorem of Projective Geometry: all isomor-
phisms of such lattices are induced by linear or conjugate-linear homeomor-
phisms between the corresponding normed spaces (for the finite-dimensional
case this fails). This statement is closely connected to the remarkable Kakutani–
Mackey theorem [31] which states that every orthomodular lattice consisting
of all closed subspaces of an infinite-dimensional complex Banach space is
the orthomodular lattice associated to an infinite-dimensional complex Hilbert
space.

At the end, we consider the partially ordered set formed by all closed sub-
spaces of a complex Hilbert space whose dimension and codimension both
are infinite. It will be shown that every isomorphism between such partially
ordered sets can be uniquely extended to an isomorphism of the lattices of
closed subspaces. Using the same arguments, we obtain an analogue of Chow’s
theorem for connected components of the Grassmamm graphs associated to
infinite-dimensional Hilbert spaces (note that for Grassmannians of infinite-
dimensional vector spaces there is no result of such kind).

3.1 Linear and Conjugate-Linear Operators

We will work with semilinear maps of complex normed spaces. For this reason,
we need some information on endomorphisms of the field of complex numbers.
The automorphism group of this field contains the conjugate map a → a and
infinitely many other elements.
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54 Lattices of Closed Subspaces

Example 3.1 Using Zorn’s lemma and [34, Chapter V, Theorem 2.8], we
can show that every automorphism of a field can be extended to an automor-
phism of any algebraically closed extension of this field (see, for example, [45,
Section 1.1]). The field Q(

√
p), where p is a prime number, is contained in

the algebraically closed field C. Consider the automorphism of Q(
√

p) send-
ing every v + w

√
p to v − w

√
p and extend it to an automorphism of C. Any

such extension is not identity on R, which implies that it is different from the
conjugate map.

Lemma 3.2 Every continuous endomorphism of the field C is identity or the
conjugate map.

Proof If σ is an endomorphism of C, then the restriction of σ to Q is identity.
Therefore, the restriction of σ to R is identity if σ is continuous. It is clear that
σ(i) = ±i and we get the claim. �

A complex normed vector space is a complex vector space N together with
a real-valued norm function x→ ||x|| satisfying the following conditions:

• ||x|| ≥ 0 for every x ∈ N and ||x|| = 0 only in the case when x = 0,
• ||ax|| = |a| · ||x|| for all x ∈ N and a ∈ C,
• ||x + y|| ≤ ||x|| + ||y|| for all x, y ∈ N.

A normed vector space can be considered as a metric space, where the distance
between any two vectors x and y is equal to ||x−y||. In the case when this metric
space is complete, the normed space is called a Banach space.

Let N and N′ be complex normed spaces. A semilinear map L : N → N′ is
bounded if there is a non-negative real number a such that

||L(x)|| ≤ a||x||

for all vectors x ∈ N. The smallest number a satisfying this condition is called
the norm of L and denoted by ||L||.

Proposition 3.3 For every bounded semilinear map between complex normed
spaces the associated endomorphism of the field C is identity or the conjugate
map.

This statement is a simple consequence of the following lemma (which will
be also exploited in the next section).

Lemma 3.4 If σ is an endomorphism of the field C such that for every se-
quence of complex numbers {an}n∈N converging to zero the sequence {σ(an)}n∈N
is bounded, then σ is identity or the conjugate map.

https://doi.org/10.1017/9781108800327.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108800327.005


3.1 Linear and Conjugate-Linear Operators 55

Proof By Lemma 3.2, we need to show that σ is continuous. Since σ is ad-
ditive, it is sufficient to establish that σ is continuous in zero.

Suppose that a sequence {an}n∈N converges to zero and the same fails for the
sequence {σ(an)}n∈N. Then {an}n∈N contains a subsequence {a′n}n∈N such that the
inequality |σ(a′n)| > a holds for a certain real number a > 0 and all natural n.
In the sequence {a′n}n∈N, we choose a subsequence {a′′n }n∈N satisfying na′′n → 0.
Since σ is an endomorphism of C, we have σ(n) = n for every natural n. Then

|σ(na′′n )| = n|σ(a′′n )| > na

and the sequence {σ(na′′n )}n∈N is unbounded, which contradicts our assumption.
�

Remark 3.5 For a semilinear map L : N → N′ the following two conditions
are equivalent:

• L is continuous,
• L is bounded.

This is well known if L is linear, but we need some explanations in the general
case. If L is continuous, then the associated endomorphism of C is continuous,
i.e. it is identity or the conjugate map, and for every real ε > 0 there is a real
δ > 0 such that ||L(x)|| < ε if ||x|| = δ; since the field endomorphism associated
to L preserves each real number, we have

||L(x)|| < εδ−1||x||

for every x ∈ N and L is bounded. Conversely, suppose that L is bounded. Then
it sends every vector sequence converging to zero to a bounded sequence. As
in the proof of Lemma 3.4, we show that L(xn)→ 0 for every vector sequence
xn → 0, i.e. L is continuous in zero. Then L is continuous by additivity.

Linear maps of normed spaces are called linear operators. A semilinear map
between complex normed spaces is said to be a conjugate-linear operator if
the associated endomorphism of C is the conjugate map.

Example 3.6 Let H be a complex Hilbert space and let B = {ei}i∈I be an
orthonormal basis of H. There is a unique conjugate-linear operator CB which
leaves fixed every vector from this basis. If J is a countable or finite subset of
I and x =

∑
j∈J a je j, then

CB(x) =
∑
j∈J

a je j.

Since ||CB(x)|| = ||x|| for every vector x ∈ H, the operator CB is bounded.
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56 Lattices of Closed Subspaces

Denote by L(N) and L(N′) the sets of all closed subspaces of N and N′,
respectively. The partially ordered sets (L(N),⊂) and (L(N′),⊂) are bounded
lattices (such lattices were considered in Section 1.3 for Hilbert spaces). Every
linear or conjugate-linear homeomorphism A : N → N′ induces an isomor-
phism between these lattices and each non-zero scalar multiple of A defines
the same lattice isomorphism. In the case when N and N′ are Banach spaces,
every invertible bounded linear or conjugate linear operator A : N → N′ is a
homeomorphism (if A is linear, then this follows easily from the Open Map
Theorem, see [55, Corollary 2.12]; readers can check that the Open Map The-
orem [55, Theorem 2.11] holds for the conjugate-linear maps).

Let H and H′ be complex Hilbert spaces. Recall that for every bounded
linear operator A : H → H′ the adjoint linear operator A∗ : H′ → H satisfies

〈A(x), y〉 = 〈x, A∗(y)〉

for all x ∈ H and y ∈ H′. Now, we consider the case when A : H → H′ is a
bounded conjugate-linear operator. For every vector y ∈ H′ the map

x→ 〈A(x), y〉

is a linear functional on H and there is a unique vector A∗(y) ∈ H such that

〈A(x), y〉 = 〈x, A∗(y)〉

for all vectors x ∈ H. So, we get a conjugate-linear operator A∗ : H′ → H
which will be called adjoint to A. As in the linear case, the operator A∗ is
bounded and ||A∗|| = ||A||.

For every linear or conjugate-linear bounded operator A : H → H′ we
have A∗∗ = A. The kernel of A∗ is the orthogonal complement of the image
of A. Therefore, A∗ is invertible if and only if A is invertible. In this case, the
operators (A−1)∗ and (A∗)−1 are coincident. For every scalar a ∈ C we have
(aA)∗ = aA∗ if A is linear, and (aA)∗ = aA∗ if it is conjugate-linear.

There is the following relation between adjoint operators and lattice isomor-
phisms.

Proposition 3.7 For every invertible bounded linear or conjugate-linear op-
erator A : H → H′ the map of L(H) to L(H′) defined as

X → A(X⊥)⊥

for every X ∈ L(H) is the lattice isomorphism induced by the operator (A∗)−1.

Proof If x, y ∈ H, then 〈y, x〉 = 〈A−1A(y), x〉 is equal to

〈A(y), (A−1)∗(x)〉 or 〈A(y), (A−1)∗(x)〉.
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In other words, y is orthogonal to x if and only if A(y) is orthogonal to (A−1)∗(x).
This implies that

A(X⊥)⊥ = (A−1)∗(X) = (A∗)−1(X)

for every closed subspace X ⊂ H. �

3.2 Lattice Isomorphisms

We prove the following analogue of the Fundamental Theorem of Projective
Geometry for the lattices of closed subspaces of infinite-dimensional complex
normed spaces.

Theorem 3.8 (Mackey [35] and Kakutani and Mackey [31]) Let N and N′

be infinite-dimensional complex normed spaces. Then every isomorphism be-
tween the lattices L(N) and L(N′) is induced by a linear or conjugate-linear
homeomorphism A : N → N′ and any other operator inducing this lattice
isomorphism is a scalar multiple of A.

Remark 3.9 For finite-dimensional complex normed spaces this statement
fails. Indeed, if N is a complex normed space of finite dimension, then L(N)
consists of all subspaces of N (since every finite-dimensional subspace is clo-
sed) and some automorphisms of L(N) are induced by unbounded semilin-
ear automorphisms of N, i.e. semilinear automorphisms associated to non-
continuous automorphisms of the field C.

Let f be an isomorphism between the latticesL(N) andL(N′), where N and
N′ are complex normed spaces. Then f (G1(N)) = G1(N′) and the restriction of
f to G1(N) is an isomorphism between the projective spaces ΠN and ΠN′ , i.e.
this restriction is induced by a semilinear isomorphism L : N → N′. It is easy
to see that f (X) = L(X) for every X ∈ L(N).

Now, we suppose that our normed spaces are infinite-dimensional and show
that L is linear or conjugate-linear. After that we establish that L is a homeo-
morphism.

Lemma 3.10 If N is infinite-dimensional, then there exist a linearly inde-
pendent set of vectors {xn}n∈N and a sequence of bounded linear functionals
{vn}n∈N on N such that

vi(x j) = δi j. (3.1)

Proof We take any closed hyperplane H ⊂ N and a vector x1 � H. Consider
the bounded linear functional v1 such that v1(tx1 + y) = t for every vector
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58 Lattices of Closed Subspaces

y ∈ H and every scalar t. Suppose that (3.1) holds for linearly independent
vectors x1, . . . , xn and bounded linear functionals v1, . . . , vn. Since N is infinite-
dimensional, there are a bounded linear functional vn+1 whose kernel contains
all xi and a vector x′n+1 such that vn+1(x′n+1) = 1 [55, Theorem 3.5]. We define

xn+1 = x′n+1 −
n∑

i=1

vi(x′n+1)xi.

Then vn+1(xn+1) = 1 and vi(xn+1) = 0 for all i ≤ n. �

Lemma 3.11 If N is infinite-dimensional, then it contains a linearly inde-
pendent subset {xn}n∈N satisfying the following condition: for every bounded
sequence of scalars {an}n∈N there is a bounded linear functional v on N such
that

v(xn) = an

for every natural n.

Proof Let {xn}n∈N and {vn}n∈N be as in the previous lemma. We can assume
that

||vn|| = 1/2n for all n ∈ N

(for every natural n there is a scalar bn such that ||bnvn|| = 1/2n and we take a
scalar multiple x′n of xn satisfying bnvn(x′n) = 1).

Let {an}n∈N be a bounded sequence of scalars and a = sup |ai|. Denote by X
the subspace formed by all linear combinations of vectors from the sequence
{xn}n∈N. For every vector

x = v1(x)x1 + · · · + vn(x)xn ∈ X

we define

v(x) := v1(x)a1 + · · · + vn(x)an.

Then

|v(x)| ≤ |a1| · ||v1|| · ||x|| + · · · + |an| · ||vn|| · ||x||

≤ a||x||(1/2 + · · · + 1/2n) < a||x||.

This means that v is a bounded linear functional on X. By [55, Theorem 3.6],
v can be extended to a bounded linear functional of N. �

The following lemma is crucial in our proof.
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Lemma 3.12 (Kakutani and Mackey [31]) Suppose that N and N′ are infinite-
dimensional. If a semilinear isomorphism L : N → N′ sends closed hyper-
planes to closed hyperplanes, then L is linear or conjugate-linear.

Proof Let σ be the automorphism of C associated to L. Let also {xn}n∈N be
a subset of N with the property described in the previous lemma. By Lemma
3.4, we need to show that for every sequence of complex numbers {an}n∈N
converging to zero the sequence {σ(an)}n∈N is bounded.

If the latter sequence is unbounded, then {an}n∈N contains a subsequence
{bn}n∈N such that

|σ(bn)| ≥ n||L(xn)|| (3.2)

for all natural n. By Lemma 3.11, there is a bounded linear functional v on N
satisfying v(xn) = bn for every n. We take any vector z ∈ N such that v(z) = 1.
Then xn = yn + bnz, where yn ∈ Ker v. We have

L(xn)/σ(bn) = L(yn/bn) + L(z)

and (3.2) implies that

L(xn)/σ(bn)→ 0 and L(−yn/bn)→ L(z).

The latter means that L(z) belongs to the closure of L(Ker v). On the other
hand, Ker v is a closed hyperplane and the same holds for L(Ker v) by our
assumption. Therefore, L(z) belongs to L(Ker v). Since L is bijective, we get
z ∈ Ker v, which contradicts v(z) = 1. �

Proof of Theorem 3.8 It was noted above that every isomorphism between
the lattices L(N) and L(N′) is induced by a semilinear isomorphism L : N →
N′. Then L and L−1 send closed hyperplanes to closed hyperplanes and Lemma
3.12 implies that L is linear or conjugate-linear.

Let v be a non-zero bounded linear functional on N′. Then Ker v is a closed
hyperplane of N′ and S = L−1(Ker v) is a closed hyperplane of N. For every
closed hyperplane of N there is a bounded linear functional whose kernel coin-
cides with this hyperplane. Consider a bounded linear functional w on N such
that Ker w = S and fix z ∈ N satisfying w(z) = 1. Every vector x ∈ N can be
presented as the sum x = y + w(x)z, where y ∈ S . Then we have

v(L(x)) = v(L(y)) + v(L(w(x)z)) = v(L(w(x)z))

(since L(y) ∈ Ker v) and

v(L(x)) = w(x)v(L(z)) or v(L(x)) = w(x)v(L(z)) (3.3)

(if L is linear or conjugate-linear, respectively).
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Let X be a bounded subset of N. Then w(X) is a bounded subset of C and
(3.3) implies that the same holds for v(L(X)). Since v is taken arbitrarily, the
set v(L(X)) is bounded for every bounded linear functional v on N′, i.e. L(X)
is weakly bounded in N′. In a normed space, every weakly bounded subset
is bounded [55, Theorem 3.18]. So, L transfers bounded subsets to bounded
subsets, which means that L is bounded.

Similarly, we show that L−1 is bounded. �

Remark 3.13 Theorem 3.8 was first proved by Mackey [35] for the lattices
of closed subspaces of infinite-dimensional real normed spaces. Lemma 3.12
was obtained in [31]; it shows that the arguments given in [35] work for the
complex case. See also [22].

Corollary 3.14 If H and H′ are infinite-dimensional complex Hilbert spaces,
then for every anti-isomorphism f of L(H) to L(H′) there is an invertible
bounded linear or conjugate-linear operator A : H → H′ such that

f (X) = A(X)⊥

for every X ∈ L(H) and any other operator inducing this anti-isomorphism is
a scalar multiple of A.

Proof We apply Theorem 3.8 to the composition of f and the orthocomple-
mentation map. �

The algebra of all bounded linear operators on a normed space N is denoted
by B(N). All ring isomorphisms between the algebras of linear operators on
real normed spaces were described by Eidelheit [20]. Following [22] we com-
bine the methods of [20] together with the arguments used to prove Theorem
3.8 and get a simple proof of the complex version of Eidelheit’s theorem.

Theorem 3.15 (Arnold [2]) Let N and N′ be infinite-dimensional complex
normed spaces. For every ring isomorphism f : B(N) → B(N′) there is an
invertible bounded linear or conjugate-linear operator L : N → N′ such that

f (A) = LAL−1 (3.4)

for every A ∈ B(N).

Proof Let P be a rank one idempotent of B(N) (see Section 1.3). Then f (P)
is an idempotent of B(N′). We fix non-zero vectors x0 and x′0 belonging to the
images of P and f (P), respectively. For any vector x ∈ N there is A ∈ B(N)
satisfying x = A(x0) and we set

L(x) = f (A)[x′0].
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3.3 Kakutani–Mackey Theorem 61

If B ∈ B(N) and B(x0) = x, then AP and BP are rank one operators sending x0

to x. We have AP = BP, which implies that

f (A) f (P) = f (B) f (P) and f (A)[x′0] = f (B)[x′0].

Therefore, the map L : N → N′ is well defined. It is easy to see that this map
is additive and bijective.

If A, B ∈ B(N) and B(x0) = x, then

LA(x) = LAB(x0) = f (AB)[x′0] = f (A) f (B)[x′0] = f (A)L(x),

i.e. LA(x) = f (A)L(x) for every x ∈ N, which means that the equality (3.4)
holds for all A ∈ B(N).

The centres of B(N) and B(N′) are formed by all scalar multiples of the
identity transformations of N and N′, respectively. We have

f (a IdN) = σ(a)IdN′ ,

where σ is an automorphism of the field C. Since

f (aA) = f (a IdN) f (A) = σ(a) f (A)

for every a ∈ C, the map L is σ-linear.
For every closed hyperplane S ⊂ N there is non-zero A ∈ B(N) whose

kernel coincides with S . The kernel of f (A) contains L(S ). If the hyperplane
L(S ) is not closed, then its closure coincides with N′ and f (A) = 0 by conti-
nuity. The latter is impossible and L(S ) is closed. Similarly, we show that L−1

sends closed hyperplanes to closed hyperplanes. Then L is linear or conjugate-
linear by Lemma 3.12. As in the proof of Theorem 3.8, we establish that L is
bounded. �

3.3 Kakutani–Mackey Theorem

In this section, we consider the lattice L(B) formed by closed subspaces of
an infinite-dimensional complex Banach space B. We show that this lattice is
orthomodular only in the case when it is the lattice of closed subspaces of a
complex Hilbert space.

Theorem 3.16 (Kakutani and Mackey [31]) Let B be an infinite-dimensional
complex Banach space. Suppose that there is a bijective transformation X →
X⊥ of the lattice L(B) satisfying the following conditions for any X,Y ∈ L(B):

(1) the inclusion X ⊂ Y implies that Y⊥ ⊂ X⊥,
(2) X⊥⊥ = X,
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62 Lattices of Closed Subspaces

(3) X ∩ X⊥ = 0.

Then there is an inner product B × B → C such that the following assertions
are fulfilled:

• The vector space B together with this inner product is a complex Hilbert
space.

• The identity transformation of B is an invertible bounded linear operator of
the Banach space to the Hilbert space, i.e. a subspace of B is closed in the
Banach space if and only if it is closed in the Hilbert space1.

• For every X ∈ L(B) the subspace X⊥ is the orthogonal complement of X
with respect to the inner product.

Proof Consider the Banach space B∗ formed by all bounded linear function-
als on B [55, Theorem 4.1]. For every closed subspace X ⊂ B we denote by
X0 the annihilator of X⊥ in N∗, i.e. the set of all bounded linear functionals
v : B → C satisfying v(X⊥) = 0. This is a closed subspace of B∗. If P is a
1-dimensional subspace of B, then (1) shows that P⊥ is a closed hyperplane
of B and P0 is a 1-dimensional subspace of B∗. Consider the map of G1(B)
to G1(B∗) which sends every 1-dimensional subspace P to P0. It follows from
(1) that this is an isomorphism between the projective spaces ΠB and ΠB∗ , i.e.
there is a semilinear isomorphism L : B → B∗ such that L(P) = P0 for every
P ∈ G1(B).

Let H be a closed hyperplane of B. Then H = P⊥ for a certain P ∈ G1(B).
By (1) and (2), Q ∈ G1(B) is contained in H if and only if P ⊂ Q⊥; in other
words, the kernel of every v ∈ L(Q) contains P. Then L(H) consists of all
v ∈ B∗ satisfying v(P) = 0 (since Q ∈ G1(B) is contained in H if and only if
L(Q) is contained in L(H)). Therefore, L(H) is a closed hyperplane of B∗.

So, L sends closed hyperplanes to closed hyperplanes, and by Lemma 3.12,
L is linear or conjugate-linear. As in the proof of Theorem 3.8, we show that
the operator L−1 : B∗ → B is bounded. This means that L is bounded (it was
noted above that the Open Map Theorem [55, Theorem 2.11] holds also for
conjugate-linear maps).

Suppose that L is linear. Let x and y be linearly independent vectors of B.
We set l = L(x) and s = L(y). Then

L(x + ay) = l + as.

By (3), we have X ∩ X⊥ = 0 for every X ∈ L(B). This implies that each of the

1 We cannot state that the norm related to the inner product coincides with the primordial norm,
but these norms define the same topology on B.
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scalars

l(x), s(y), (l + as)(x + ay)

is non-zero. On the other hand,

(l + as)(x + ay) = l(x) + a(l(y) + s(x)) + a2s(y)

and the equation

l(x) + a(l(y) + s(x)) + a2s(y) = 0

has a solution for a. We get a contradiction. Therefore, L is conjugate-linear.
For all vectors x, y ∈ B we set

〈x, y〉 = l(x), where l = L(y).

Then the product 〈·, ·〉 is linear in the first variable and conjugate-linear in the
second. The condition (3) guarantees that 〈x, x〉 is non-zero for every non-zero
vector x ∈ B. Since L can be replaced by any non-zero scalar multiple, we
assume that for a certain vector x0 ∈ B the scalar 〈x0, x0〉 is a positive real
number.

It follows from (1) that for any two vectors x, y ∈ B we have 〈x, y〉 = 0 if and
only if 〈y, x〉 = 0. Suppose that 〈x, y〉 is non-zero. We choose non-zero scalars
a, b ∈ C such that

a〈x, x〉 + 〈x, y〉 = 0 = b〈y, y〉 + 〈x, y〉. (3.5)

Then 〈x, ax+ y〉 = 0, which implies that 〈ax+ y, x〉 = 0 and 〈ax + y, x〉 = 0, i.e.

a〈x, x〉 + 〈y, x〉 = 0. (3.6)

Similarly, we obtain that

b〈y, y〉 + 〈y, x〉 = 0. (3.7)

Using (3.5), (3.6) and (3.7), we establish that

〈x, x〉 : 〈x, x〉 = 〈y, y〉 : 〈y, y〉.

In other words, for any two vectors x, y ∈ B satisfying 〈x, y〉 � 0 the scalar
〈x, x〉 is real if and only if 〈y, y〉 is real. Recall that there is non-zero x0 ∈ B
such that 〈x0, x0〉 is real. Then 〈x, x〉 is real if 〈x0, x〉 is non-zero. In the case
when 〈x0, x〉 = 0, we take any vector y ∈ B such that 〈x0, y〉 and 〈x, y〉 both are
non-zero (for example, y = x0+ x is as required). So, for every non-zero vector
x ∈ B the scalar 〈x, x〉 is a non-zero real number. Then (3.5) and (3.6) imply
that

〈x, y〉 = 〈y, x〉.
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Now, we show that 〈x, x〉 is a positive real number for every non-zero vector
x ∈ B. If x = sx0 for a certain scalar s, then 〈x, x〉 = |s|2〈x0, x0〉 > 0. In the case
when x and x0 are linearly independent, we consider the real function

h(t) = 〈tx + (1 − t)x0, tx + (1 − t)x0〉

defined on the segment [0, 1]. The function is continuous (because L is bounded)
and h(t) is non-zero for every t ∈ [0, 1]. Since h(0) > 0, we have always
h(t) > 0.

So, 〈·, ·〉 is an inner product on B. Using the fact that L is bounded, we show
that the identity transformation of B is an invertible bounded linear operator of
the Banach space to the normed vector space with respect to the inner product
〈·, ·〉. This guarantees that the norm defined by the inner product is complete.

�

3.4 Extensions of Isomorphisms

For an infinite-dimensional complex Hilbert space H we denote by G∞(H) the
set of all closed subspaces of H whose dimension and codimension both are
infinite. Note that the partially ordered set (G∞(H),⊂) is not a lattice.

Theorem 3.17 (Pankov [42, 43]) Let H and H′ be infinite-dimensional com-
plex Hilbert spaces. Then every isomorphism between the partially ordered
sets (G∞(H),⊂) and (G∞(H′),⊂) can be uniquely extended to an isomorphism
between the lattices L(H) and L(H′).

Since the orthocomplementation map sends G∞(H) to itself, Theorem 3.17
implies the following.

Corollary 3.18 If H and H′ are as in Theorem 3.17, then every anti-isomor-
phism of (G∞(H),⊂) to (G∞(H′),⊂) can be uniquely extended to an anti-iso-
morphism between the lattices L(H) and L(H′).

Let f be an isomorphism of the partially ordered set G∞(H) to the partially
ordered set G∞(H′).

Lemma 3.19 For every X ∈ G∞(H) there is an invertible bounded linear or
conjugate-linear operator AX : X → f (X) such that

f (Y) = AX(Y)

for every Y ∈ G∞(H) contained in X.
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Proof Let X be the set of all elements of G∞(H) contained in X. Then f (X)
consists of all elements of G∞(H′) contained in X′ = f (X). We consider the
closed subspaces X and X′ as Hilbert spaces and write Y⊥ and Y ′⊥ for the
orthogonal complements of Y ⊂ X and Y ′ ⊂ X′ in these Hilbert spaces. Let Y
andY′ be the sets formed by all closed subspaces of infinite codimension in X
and X′, respectively. Then

Y ∈ Y ⇐⇒ Y⊥ ∈ X and Y ′ ∈ Y′ ⇐⇒ Y ′⊥ ∈ f (X).

Denote by g the bijection sending every Y ∈ Y to f (Y⊥)⊥. This is an isomor-
phism between the partially ordered sets (Y,⊂) and (Y′,⊂). The restriction of
g to G1(X) is an isomorphism of ΠX to ΠX′ and there is a semilinear isomor-
phism L : X → X′ such that g(Y) = L(Y) for every Y ∈ G1(X). The same holds
for all Y ∈ Y (since g is an isomorphism of partially ordered sets). Also, for
every Y ∈ Y the lattice L(Y) is contained in Y and the restriction of g to this
lattice is an isomorphism to the lattice L(g(Y)). Theorem 3.8 implies that L is
bounded on any infinite-dimensional subspace Y ∈ Y. Show that L is bounded.

We take any orthogonal Y,Z ∈ Y such that X = Y⊕Z. If a sequence {yi+zi}i∈N
converges to y0 + z0 and yi ∈ Y , zi ∈ Z for all i = 0, 1, . . . , then the sequences
{yi}i∈N and {zi}i∈N converge to y0 and z0, respectively. Since L is bounded on
Y and Z, the sequences {L(yi)}i∈N and {L(zi)}i∈N converge to L(y0) and L(z0),
respectively. This means that {L(yi + zi)}i∈N converges to L(y0 + z0). Therefore,
L is continuous and, consequently, bounded.

So, L : X → X′ is an invertible bounded linear or conjugate-linear operator.
We have

f (Y) = L(Y⊥)⊥

for every Y ∈ X. Proposition 3.7 shows that the operator AX = (L∗)−1 satisfies
the required condition. �

Lemma 3.20 Let X and Y be elements of G∞(H) satisfying

dim(X ∩ Y) < ∞.

Then there exists Z ∈ G∞(H) such that X ∩Z and Y ∩Z are elements of G∞(H)
containing X ∩ Y.

Proof Let X′ and Y ′ be the orthogonal complements of X ∩ Y in X and Y ,
respectively. The subspaces X′ and Y ′ both are infinite-dimensional and we
choose inductively a sequence of mutually orthogonal vectors {xn, x′n, yn, y′n}n∈N
such that

xn, x
′
n ∈ X′ and yn, y

′
n ∈ Y ′
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66 Lattices of Closed Subspaces

for every n ∈ N. Denote by Z′ the closed subspace spanned by {x′n, y′n}n∈N. The
subspace

Z = (X ∩ Y) + Z′

is as required. �

Proof of Theorem 3.17 For any finite-dimensional subspace S ⊂ H we take
any X ∈ G∞(H) containing S and set

g(S ) = AX(S ).

We need to show that the definition of g(S ) does not depend on the choice of
X ∈ G∞(H).

Suppose that S is contained in X ∈ G∞(H) and Y ∈ G∞(H). In the case when
X ∩ Y is an element of G∞(H), take X′,Y ′ ∈ G∞(H) contained in X ∩ Y and
such that X′ ∩ Y ′ = S . Then

AX(S ) = AX(X′) ∩ AX(Y ′) = f (X′) ∩ f (Y ′) = AY (X′) ∩ AY (Y ′) = AY (S ).

If X ∩ Y is finite-dimensional, then, by Lemma 3.20, there is Z ∈ G∞(H) such
that X ∩ Z and Y ∩ Z are elements of G∞(H) containing X ∩ Y . Applying the
above arguments to the pairs X,Z and Y,Z, we establish that

AX(S ) = AZ(S ) = AY (S ).

The map g is an isomorphism between the lattices Lfin(H) and Lfin(H′),
hence it is induced by a semilinear isomorphism A : H → H′. For every
X ∈ G∞(H) we have f (X) = A(X) and the restriction of A to X is a scalar
multiple of AX . Since each AX is bounded and H can be presented as the sum
of two orthogonal elements of G∞(H), the operator A is bounded, i.e. it is an
invertible bounded linear or conjugate-linear operator. �

Remark 3.21 The above proof is an essential modification of the proof given
in [42, 43].

Remark 3.22 Let H be a complex Hilbert space and let I(H) be the set of all
idempotents of the algebra B(H). The set I(H) is partially ordered as follows:
for P,Q ∈ I(H) we have P ≤ Q if

Im(P) ⊂ Im(Q) and Ker(Q) ⊂ Ker(P).

Since every closed subspace X ⊂ H can be identified with the projection PX ,
the lattice L(H) is contained in this partially ordered set. Ovchinikov [41]
proved that every automorphism of the partially ordered set I(H) is of type

P→ APA−1 or P→ AP∗A−1,
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where A is an invertible bounded linear or conjugate-linear operator on H.
Now, we suppose that H is infinite-dimensional and consider the partially or-
dered set I∞(H) formed by all idempotents fromI(H) whose image and kernel
both are infinite-dimensional. Plevnik [51] showed that every automorphism of
this partially ordered set can be uniquely extended to an automorphism of the
partially ordered set I(H).

For an infinite-dimensional complex Hilbert space H we denote by Γ∞(H)
the graph whose vertex set is G∞(H) and whose edges are pairs of adjacent
elements X,Y ∈ G∞(H), i.e. such that X ∩ Y is a hyperplane in both X and Y .
This graph is not connected. A connected component containing X ∈ G∞(H)
consists of all Y ∈ G∞(H) satisfying

dim X/(X ∩ Y) = dim Y/(X ∩ Y) < ∞.

The restriction of every automorphism or anti-automorphism of the lattice
L(H) to G∞(H) is an automorphism of Γ∞(H), but there are automorphisms
of Γ∞(H) which cannot be extended to automorphisms or anti-automorphisms
of L(H) (a simple modification of Example 2.18).

Let C be a connected component of Γ∞(H). As in Chapter 2, we denote by
C± the set of all X ∈ G∞(H) such that X is a subspace of finite codimension
in a certain element of C or X contains an element of C as a subspace of finite
codimension. Note that (C±,⊂) is an unbounded lattice.

Theorem 3.23 Let C and C′ be connected components of the graph Γ∞(H). If
an automorphism of Γ∞(H) sends C to C′, then the restriction of this automor-
phism to C can be uniquely extended to an isomorphism or anti-isomorphism
of (C±,⊂) to (C′±,⊂). Every automorphism or anti-isomorphism between these
lattices can be uniquely extended to an automorphism or, respectively, an anti-
automorphism of the lattice L(H).

The proof of the first part of Theorem 3.23 is similar to the proof of Theorem
2.19. Using arguments from the proof of Theorem 3.17, we establish that every
isomorphism of (C±,⊂) to (C′±,⊂) is uniquely extendable to an automorphism
of L(H). The composition of every anti-isomorphism f of (C±,⊂) to (C′±,⊂)
and the orthocomplementation is an isomorphism of (C±,⊂) to (C′′± ,⊂), where
C′′ is the connected component of the graph Γ∞(H) formed by the orthogonal
complements of elements from C′±. This composition can be uniquely extended
to an automorphism of L(H), which implies that f is uniquely extendable to
an anti-automorphism of L(H).
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