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Abstract

Structural health monitoring (SHM) is increasingly applied in civil engineering. One of its primary purposes is
detecting and assessing changes in structure conditions to increase safety and reduce potential maintenance
downtime. Recent advancements, especially in sensor technology, facilitate data measurements, collection, and
process automation, leading to large data streams. We propose a function-on-function regression framework for
(nonlinear) modeling the sensor data and adjusting for covariate-induced variation. Our approach is particularly
suited for long-term monitoring when several months or years of training data are available. It combines highly
flexible yet interpretable semi-parametric modeling with functional principal component analysis and uses the
corresponding out-of-sample Phase-II scores for monitoring. The method proposed can also be described as a
combination of an “input–output” and an “output-only” method.

Impact Statement

Structural health monitoring (SHM) utilizes sensor technology to identify and detect potential damage to critical
infrastructure like bridges. However, the available measurements can be affected by external factors such as
temperature, requiring data-driven methods to account for these influences. This study presents an interpretable
framework based on functional data analysis to effectively utilize the data’s structure and characteristics,
including daily and seasonal patterns, when adjusting for confounding effects. Many existing methods for
removing environmental effects are encompassed as special cases. Additionally, damage-sensitive features are
readily accessible and can be monitored using state-of-the-art control charts.

1. Introduction

Structural health monitoring (SHM) employs sensor technologies to collect data from structures such as
bridges to detect, localize, or quantify damage (Deraemaeker et al., 2008; Kullaa, 2011; Hu et al., 2012;
Magalhães et al., 2012). These field measurements often exhibit missing data and are influenced by
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environmental and operational factors such as temperature, wind, humidity, or traffic load (Wang et al.,
2022).Multiple studies, includingWang et al. (2022), Han et al. (2021) and the references therein, identify
temperature as a predominant factor affecting structural stiffness and material properties due to thermal
expansion and contraction (Han et al., 2021). Consequently, data-driven methods are essential to take
these confounding effects in SHM data analysis into account.

With respect to separating temperature-induced responses from structural responses, it can be
distinguished between so-called “input–output” methods and “output-only” approaches (Wang et al.,
2022). In the first case, both the sensormeasurements and observations of the confounding variables, such
as temperature, are considered, while in the latter case, as the name suggests, only the responses of the
structures are used, often using projection methods such as principal component analysis (PCA). Among
input–output methods, a prevalent approach is regressing sensor measurements on environmental or
operational variables, also known under the name response surface modeling. Then, following the
so-called “subtraction method,” the predicted sensor data is subtracted from the actually observed data,
and the residuals are used for further analysis. For fitting regression function(s) to the data, various
methods have been used in the SHM literature, ranging from simple linear or polynomial regression to
advancedmachine learning approaches such as artificial neural networks, seeAvci et al. (2021). However,
often, these methods ignore that output data may exhibit daily or yearly patterns or that error terms are
correlated over time, e.g., if estimating unknown parameters through least-squares (Cross et al., 2013;
Maes et al., 2022). In other cases, rather restrictive parametric assumptions known from time series
analysis are made (Hou and Xia, 2021). Furthermore, input–output and output-only methods are typically
considered to be completely different approaches. An overarching framework is still missing where, for
instance, it is possible to switch from one approach to the other without changing the downstream
monitoring procedure, or the common situation can be handled where measurements are available only
for a few confounding variables while others are unobserved or unknown.

In light of this, we will present a novel functional data analysis (FDA) perspective to address these
challenges in SHM. FDA has been an area of intensive methodological research over the last two or three
decades. For an introduction to FDA in general and an overview of recent developments, the works by
Ramsay and Silverman (2005),Wang et al. (2016), and Gertheiss et al. (2024) are recommended. Existing
applications of FDAwithin SHM are reviewed by Momeni and Ebrahimkhanlou (2022). In SHM, so far,
FDA has primarily been used for distributional regression and change point detection. For instance, Chen
et al. (2020) used FDA to segment data by time and analyze corresponding probability density functions
through warping functions and functional principal component analysis (FPCA). Other notable contri-
butions include the works by Chen et al. (2018), Chen et al. (2019), andChen et al. (2021), who developed
methods for imputing missing data using distribution-to-distribution and distribution-to-warping func-
tional regression, and Lei et al. (2023a), Lei et al. (2023c), and Lei et al. (2023b) focused on outlier
detection and change-point detection in FDA. Jiang et al. (2021) modeled temperature-induced strain
relationships using warping functions and FPCA.

To elucidate our functional perspective, consider Figure 1. Similar plots in SHM studies, such as Xia
et al. (2012), Xia et al. (2017), and Zhou et al. (2011), have been used to illustrate the relationship between
natural frequencies, strain or displacement, and temperature. However, to the best of our knowledge, this
functional nature of the data has never been exploited in SHM when correcting for confounding effects.
The data in Figure 1 are from the KW51 railway bridge (Maes and Lombaert, 2020), near Leuven,
Belgium, monitored from October 2, 2018 to January 15, 2020, including a retrofitting period from May
15 to September 27, 2019. This dataset contains hourly natural frequencies and steel surface temperature
(more details on the bridge will be given in Section 4). The top-right panel of Figure 1 shows the bridge’s
natural frequency (mode 6) for selected days before retrofitting. It appears plausible to assume that there is
some underlying daily pattern common to all profiles, which might be caused by environmental
influences that may follow some recurring pattern as well. Those patterns and relationships can be further
analyzed through FDA, among other things, by regressing the natural frequency profiles on the
temperature curves shown in the bottom-left panel of Figure 1. From the colors, it is already visible that
there is a negative association between temperature and the natural frequency, meaning that lower
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temperatures lead to a higher frequency; compare, e.g., Xia et al. (2006), Xia et al. (2012). The bottom-
right panel shows the resulting error profiles when using a conventional, non-functional piecewise linear
model to account for this effect, as done by Maes et al. (2022).

If considering entire daily profiles rather than individual measurements as the sampling instances, this
regression task is called “function-on-function” regression. In the statistical process monitoring (SPM)
literature, it is part of so-called profile monitoring, seeWoodall et al. (2004),Woodall (2007),Maleki et al.
(2018) for detailed reviews on that topic. Current state-of-the-art methodologies, such as the (linear)
functional regression control chart (FRCC) by Centofanti et al. (2021), have limitations in SHM
applications, where the relationship between temperature and natural frequencies is often nonlinear
(Han et al., 2021). Additionally, by integrating over the entire domain (i.e., the entire day in Figure 1), the
employed functional linear model allows “future observations” to influence the current value of the
response (Wittenberg et al., 2024). Specifically, if (material) temperature data is available directly from
the structure itself instead of ambient temperature, it appears more plausible to use a so-called concurrent
model, where the response data at time point t depends only on the steel temperature at time t, not the
temperature over the entire day. Finally, the assumption of complete datasets, e.g., made in Capezza et al.
(2023), is impractical because SHM sensor data often exhibit dropouts due to power or sensor failure. To
address these challenges often found in SHM, this paper will consider the very general framework of
functional additive mixedmodels (Scheipl et al., 2015; Greven and Scheipl, 2017) instead of the common
functional linearmodels used byCentofanti et al. (2021) andCapezza et al. (2023). By doing so, this paper
also provides methodological novelty concerning profile monitoring in a more general sense. Besides the
regression task, the functional perspective on SHMdata offers an elegant way of “de-noising” the data and
extracting features through functional principal component scores that can be used as inputs to advanced
multivariate control charts. The methods presented in this article can be applied directly to sensor
measurements (e.g., strains, inclinations, accelerations) or extracted damage-sensitive features (e.g.,
eigenfrequencies). That is why this paper will use the more general term “system outputs.” In summary,
using the methods discussed, we can model (i) recurring daily and yearly patterns as well as

Figure 1. KW51 Bridge from the south side in September 2024 (top-left). The natural frequency of mode
6 for some selected days before the retrofitting started (top-right) and the corresponding steel temperature
curves (bottom-left). If a simple piecewise linear model is used for temperature adjustment, the error

profiles (bottom-right) are obtained.
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(ii) confounding effects flexibly and interpretably. Furthermore, the presented functional approach also
accounts for (iii) correlations and (iv) heteroscedasticity within error profiles. Finally, it will (v) extract
covariate-adjusted features from the system outputs and (vi) unify all these aspects within a coherent
statistical framework called Covariate-Adjusted Functional Data Analysis for SHM (CAFDA-SHM).
This combined approach includes subtractionmethods, PCA-based projections (both often used in SHM),
and the FRCC in one universal framework, encompassingmultiple aspects that have only been considered
partially in previous approaches.

The remainder of the article is structured as follows. In Section 2, our functional data approach is
introduced, and our model training and monitoring workflow is presented. The results of a Monte Carlo
simulation study validating the developed methods are presented in Section 3. A structural health
monitoring application for dynamic response data of the KW51 railway bridge and a second case study
for a quasi-static response of a reinforced concrete bridge can be found in Section 4, respectively.
Section 5 offers some concluding remarks. Appendix A provides some further modeling options beyond
Section 2. For researchers and practitioners who want to apply the newly proposed methods, the code is
open source and publicly available at https://github.com/wittenberg/CAFDA-SHM_code.

2. A functional data approach for modeling and monitoring system outputs

2.1. Basic model structure

The model we assume for “in-control” (IC) data has the following basic form. To keep things simple, we
first restrict ourselves to a single, functional covariate zj tð Þ, e.g., denoting the temperature at time
t∈ T ,T ¼ 0h,24hð �, and day j, and a single system output uj tð Þ. The latter could be a rather raw sensor
measurement (yet preprocessed in some sense), such as strain or inclination data, or extracted features,
such as natural frequencies. Then, we assume the basic model

uj tð Þ¼ α tð Þþ f zj tð Þ
� �þEj tð Þ, (1)

where α tð Þ is a fixed functional intercept, f zj tð Þ
� �

is a fixed, potentially nonlinear effect of temperature,
and Ej tð Þ is a day-specific, functional error term with zero mean and a common covariance,
i.e., E Ej tð Þ

� �¼ 0, Cov Ej sð Þ,Ej tð Þ
� �¼Σ s, tð Þ, s, t∈ T . In the FDA framework used here, sampling

instances are days instead of single measurement points, and the daily profiles are considered the
quantities of interest. This model has two advantages over scalar-on-scalar(s) regression as typically
used for response surface modeling in SHM:

• The functional intercept α tð Þ captures recurring daily patterns that cannot be explained through the
available environmental or operational variables, e.g., because the factors causing them are not
recorded/available. In the case of long-term monitoring, we may extend the one-dimensional α tð Þ to
a two-dimensional surface α t,dj

� �
, where dj denotes the time/date of the year corresponding to day j

in the dataset. The latter accounts for a potential second, i.e., yearly level of periodicity.
• The error term Ej tð Þ is typically not a white noise process but correlated over time, i.e., in the t-
direction. Furthermore, variances may vary over the day. For instance, error variances may be lower at
night (e.g., because there is less traffic, no influence by the sun, etc.). In other words, Σ s, tð Þ is not
necessarily zero for s ≠ t, and Σ t, tð Þ is not constant. For illustration, the (estimated) error process for
some selected days for the KW51 data is shown in Figure 1 (bottom-right), where a piecewise linear
model with one breakpoint was used for temperature adjustment, as suggested in the literature (Moser
and Moaveni, 2011; Worden and Cross, 2018; Maes et al., 2022). Apparently, those profiles exhibit
some more structure than pure white noise. However, ignoring this correlation when fitting α and f
through ordinary least squares or common maximum likelihood, assuming conditional independence
between measurements, will typically lead to less accurate estimates. More importantly, if
(conditional) independence is assumed but not given, measures of statistical uncertainty, such as
confidence and prediction intervals or control limits, will be biased. In SHM, this can be particularly
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harmful as these quantities are used to determine if measurements are “out-of-control.” For instance, if
a memory-based control chart with the assumption of independence is used to detect a mean shift in an
error process, as shown in Figure 1, the false positive rate will be substantially increased (Knoth and
Schmid, 2004). The big advantage of the FDA framework over standard parametric assumptions
known from time series analysis, such as auto-correlation of some specific order, is that the error
process can be modeled in a very flexible, semiparametric fashion through functional principal
component analysis.

In the case of SHM, there is another important aspect to consider with respect to Ej tð Þ: This process
contains the relevant information for the monitoring task since it captures deviations from the system
output α tð Þþ f zj tð Þ

� �
that would be expected for a specific, let us say, temperature at time t if the structure

is “in-control.” For exploiting this information, it is beneficial to further decompose this process into a
more structural component wj tð Þ and white noise ϵj tð Þ with variance σ2, i.e.,

Ej tð Þ¼wj tð Þþ ϵj tð Þ: (2)

Since ϵj tð Þ is assumed to be pure noise, it does not carry relevant information, andwj tð Þ should be the part
to focus on for monitoring purposes. To decompose Ej tð Þ into wj tð Þ and ϵj tð Þ, we use functional principal
component analysis (FPCA). It is based on the Karhunen–Loeve expansion (Karhunen, 1947; Loève,
1946), which allows us to expand the random function Ej tð Þ as

Ej tð Þ¼
X∞
r¼1

ξrjϕr tð Þ, (3)

where ϕr are orthonormal eigenfunctions of the covariance, i.e.,
R
T ϕr tð Þϕk tð Þdt¼ 1 if and only if k¼ r and

zero otherwise. In particular, according to Mercer’s theorem (Mercer, 1909),

Cov Ej sð Þ,Ej tð Þ
� �¼Σ s, tð Þ¼

X∞
r¼1

νrϕr sð Þϕr tð Þ (4)

with decreasing eigenvalues ν1 ≥ ν2 ≥…≥ 0. Furthermore, ξrj are uncorrelated random scores with mean
zero and variance νr, r¼ 1,2,…, and are independently normal if Ej is a Gaussian process.

In FPCA, the sum in (3) is typically truncated at a finite upper limit m, which gives the best
approximation of Ej with m basis functions (Rice and Silverman, 1991). Looking at the fractionPm

r¼1νr
� �

=
P∞

r¼1νr
� �

allows a quantitative assessment of the variance explained by the approximation.
For choosing the concrete valuem, there are various methods available (compare, e.g.,Wang et al., 2016).
One possibility is to use a value ofm such that a high proportion, e.g., 95% or 99%, of the overall variance
is explained (e.g., Sørensen et al., 2013;Gertheiss et al., 2024), herewewill use 99% throughout the paper.
By choosing such a large value, it is reasonable to assume that the selected m eigenfunctions account for
all relevant features in the data, and the remainder is merely noise. Consequently, we set

wj tð Þ¼
Xm
r¼1

ξrjϕr tð Þ, (5)

and use the scores ξ1j,…,ξmj as damage-sensitive features for monitoring. As the functions α, f ,ϕ1,…,ϕm
are estimated from IC data in the model training phase, it is the scores obtained for future data that tell us
whether the system outputs deviate from the values that would be expected for an IC structure over the day
for given values of the covariate (and the specific time of the year, if α t,dj

� �
instead of α tð Þ is used in

model (1)). How to estimate the different model components, such as α, f ,ϕ1,…,ϕm from the training data,
and how to estimate the scores on future data, will be described in Section 2.2 below. At this point, it is
important to note that if environmental and operational variables are present beyond z, and those variables
are measured, model (1) can be extended to include multivariate covariates, see Section 2.4. If there are
additional confounding effects that are not measured or not known at all, we can proceed analogously to
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the popular output-only method using (multivariate) PCA. That means we assume that the first, let us say,
ρ components mainly account for variation induced by latent factors (Cross et al., 2012), so we only use
the remaining scores ξ jr, r > ρ, for monitoring. An important advantage of model (1) over output-only
methods is that available covariate information can still be exploited through f . How to modify our
approach in terms of a pure output-only method if no covariate information is available at all will also be
described in Section 2.4.

2.2. Model training

Model fitting is carried out on in-control/Phase-I training data only. This will be described in Sections
2.2.1 and 2.2.2. In Section 2.2.3, wewill discuss how to obtain the scores for Phase-II data that can be used
for monitoring.

2.2.1. Basic model training strategy
For estimating functions such as α or f in (1), we follow an approach popular in functional data analysis
and semiparametric regression, compare Greven and Scheipl (2017) and Wood (2017). The unknown
function, say f , is expanded in basis functions such that

f zð Þ¼
XL
l¼1

γlbl zð Þ: (6)

A popular choice for b1 zð Þ,…,bL zð Þ is a cubic B-spline basis, whichmeans that f is a cubic spline function
(de Boor, 1978; Dierckx, 1993). For being sufficiently flexible with respect to the types of functions that
can be fitted through (6), typically, a rich basis with a large L is chosen. A large L, however, often leads to
wiggly estimated functions if the basis coefficients γ1,…,γL are fit without any smoothness constraint.
The latter is typically imposed by adding a so-called penalty term when fitting the unknown coefficients
through least-squares or maximum likelihood. A popular penalty is the integrated squared second

derivative
R
D f 00 zð Þ� �2

dz, where D is the domain of f . An alternative is a (quadratic) penalty on the
discrete second- or third-order differences of the basis coefficients γl, which gives a so-called P-spline, see
Eilers and Marx (1996) for details. If we assume that the eigenfunctions ϕ1,…,ϕm from (5) are known,
model (1) becomes

uj tð Þ¼
XL αð Þ

l¼1

γ αð Þ
l b αð Þ

l tð Þþ
XL fð Þ

l¼1

γ fð Þ
l b fð Þ

l zj tð Þ
� �þXm

r¼1

ξrjϕ tð Þþ ϵj tð Þ, (7)

where γ αð Þ
l , b αð Þ

l , γ fð Þ
l , and b fð Þ

l are the basis coefficients and basis functions for α and f , respectively, and
ξrj are day-specific random effects. Given a training dataset of system outputs and covariate infor-
mation uj tji

� �
,zj tji
� �� �

for days j¼ 1,…,J and time points tji ∈ T , i¼ 1,…,Nj, the unknown param-

eters γ αð Þ
l ,γ fð Þ

l can be estimated through penalized least-squares, whereas the random effects ξrj can be
predicted using (linear) mixed models approaches. Specifying ξrj as random effects makes this part of
the model robust against over-fitting, thanks to the implicit shrinkage of random effects; compare, e.g.,
Fahrmeir et al. (2013). The trade-off betweenmodel complexity concerning α and f and fit to the data is
controlled through the strength of the penalty on α and f . Instead of using a penalty, model complexity
could also be controlled through the number of basis functions L αð Þ and L fð Þ, but using a penalty makes
the method robust against the concrete choice of L αð Þ and L fð Þ as it allows using large numbers (e.g.,
around 20), while controlling model complexity through smoothing; compare, e.g., Gertheiss et al.
(2024) and Wood (2017). There are a couple of options for choosing the strength of the penalty in a
specific application, such as (generalized) cross-validation. In our case, the quadratic penalties used
can also be incorporated into the mixed model framework, such that the strength of the penalty can be
determined through (restricted) maximum likelihood, analogously to the variance components
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ν1,…,νm and σ2, see Wood (2011) and Wood (2017) for details. An in-depth discussion of these
methods is beyond the scope of this paper. However, an important point to note is that model (1) and
hence (7) is not identifiable in this general form given above because we may simply add some
constant c to α while at the same time subtracting c from f . Then, the two models are equivalent. In
other words, α and f are only identifiable up to vertical shifts. That is why an overall constant α0 is
typically introduced in terms of

uj tð Þ¼ α0þ~α tð Þþ f zj tð Þ
� �þEj tð Þ, (8)

and ~α and f are centered in some sense. The constraint used in the R package mgcv (Wood, 2017), which
we use here for model training, is

P
i,j~α tji

� �¼ 0 and
P

i,jf zj tji
� �� �¼ 0, respectively. Furthermore, it is

worth noting that measurement points tji neither need to be the same for each day nor on a regular grid. As
a consequence, missing values in the output profiles or the covariate curves are allowed.

2.2.2. Estimation of eigenfunctions
In Section 2.2.1, we assumed that the eigenfunctions ϕr, r¼ 1,…,m, are known. In practice, those functions
need to be estimated from the training data in some way. To do so, we first fit model (1), or a modification
from below, with a working independence assumption concerning Ej tð Þ (Scheipl et al., 2015). Specifically,
this means that Ej tð Þ from (1) is white noise and wj tð Þ from (2) is omitted; compare, e.g., Ivanescu et al.
(2015). Then, we use the resulting estimates of the error process for FPCA, plug in the estimated

eigenfunctions ϕ̂r, and fit the final model as discussed above. Such a two-step approach has worked well
in the past (Gertheiss et al., 2017). For FPCA, we use an approach based on Yao et al. (2005) that
accommodates functions with additional white noise errors and thus works relatively generally
(Gertheiss et al., 2024). The idea is to incorporate smoothing into estimating the covariance in (4). The
estimation is based on the cross-products of observed points within error curves, Ej tji

� �
Ej tji0
� �

, which are

rough estimates ofCov E tji
� �

,E tji0
� �� �

. All cross-products are pooled, and a smoothing method of choice is
used for bivariate smoothing. Yao et al. (2005) used local polynomial smoothing, while the refund R
package (Goldsmith et al., 2022) used here employs penalized splines. If an additional white noise error is
assumed (as we do here), the diagonal cross-products approximate the variance of the structural component
plus the error variance. The diagonal is thus left out for smoothing. Once the smooth covariance is
available, the orthogonal decomposition (4) is done numerically on a fine grid using the usual matrix
eigendecomposition.

The entire model training workflow is summarized in the orange part of Figure 2. We first use the
Phase-I data (step 0) to fit the initial model with working independence in step 1. On the resulting
residuals, the “observed” error process, we carry out FPCA to obtain estimates of the eigenfunctions
(step 2). For choosing the number of components, we use the usual threshold of 95% or 99% of the
variance explained. Then, the eigenfunctions are used to train the final model in step 3. From this model,
we obtain estimates of the fixed and random effects, the variance components, and the residuals.
Particularly, the fixed effects, the eigenfunctions, and the variance components will be needed to estimate
Phase-II component scores and implement a monitoring scheme as described below.

2.2.3. Estimation of phase-II scores
Once the mixed model for function-on-function regression has been trained, it can be used to monitor
future system outputs if the covariates in the trainedmodel are available as well. The corresponding data is
denoted as “new covariate data z” and “new system output data u” in Figure 2. An essential input for the
monitoring scheme described in the next subsection are the principal component scores ξ1,g,…,ξm,g for a
new day g in Phase II. To estimate those scores from the new data, we first use the fixed effects from the

Phase-I model, α̂ tgi
� �

and f̂ zg tgi
� �� �

from (1), to obtain a prediction for the system outputs ug tgi
� �

. Here,

tgi, i¼ 1,…,Ng, denote the time instances of the covariate zg tgi
� �

available at day g. Then, those
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predictions are subtracted from the actually observed ug tgi
� �

to obtain estimated measurements Êg tgi
� �

of
the error process. If those time points are sufficiently dense over the course of day g, which is typically the
case if day g is (nearly) over, the scores can be estimated through numerical integration such that

ξ̂r,g ¼
Z
T
Êg tð Þϕ̂r tð Þdt: (9)

However, sometimes there is a substantial amount ofmissing values in the u or z data, e.g., due to technical
problems, or—more importantly— the score estimates have to be available before the new day is over. In
the latter case, we may say that all the data points after some time point are “missing.” In both situations,
the interpretation as a mixed model is helpful, as this also allows for predicting the random effects for a
reduced set of measurement points tgi.

For that purpose, let ϕgr ¼ðϕrðtg1Þ,…,ϕrðtgNgÞÞT be the rth eigenfunction evaluated at time points tgi,
i¼ 1,…,Ng, r¼ 1,…,m, and ΣEg the covariance matrix of the error vector

Eg ¼ Eg tg1
� �

,…,Eg tgNg

� 	� 	Τ
. Then, assuming a Gaussian distribution, the conditional expectation of

the score ξr,g given Eg is E ξr,gjEg
� �¼ νrϕΤ

grΣ
�1
Eg
Eg,r¼ 1,…,m (Yao et al., 2005). Due to (2) and (5), the

matrix ΣEg can be estimated as bΣEg ¼ bΦgdiagðbν1,…,bνmÞbΦT

g þbσ2INg , with bΦg ¼ðbϕg1j…jbϕgmÞ. After
plugging in the estimates σ̂2, ν̂r, ϕ̂r, r¼ 1,…,m, from the model training phase and

Êg ¼ Êg tg1
� �

,…, Êg tgNg

� 	� 	Τ
from above, we obtain the estimated scores

5.3 Compute
scores

6. MEWMA and
T² statistic

1. Initial model with
working independence

3. Functional model with
functional random effects

2. Functional principal
component analysis

Model training
pipeline

5.1 Prediction

Monitoring
scheme

5.2 Estimate error
process

0. Training data
system output u,

covariate z,

Residuals

Eigenfunctions

3.3 Variance components

3.1 Fixed effects

3.2 Random effects

4.1 New
covariate data z

7. Control chart

4.2 New system
output data u

Figure 2. Visual summary of the CAFDA-SHM framework.
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ξ̂r,g ¼ ν̂rϕ̂
Τ
grΣ̂

�1
Eg
Êg, r¼ 1,…,m: (10)

These scores can then be used as input to a control chart. The workflow of estimating Phase-II scores is
also summarized in Figure 2 (steps 4.1–5.3). The dashed arrow towards the scores (5.3 in Figure 2)
indicates that variance components ν̂1,…, ν̂m and σ̂2 are needed if using (10) but not for (9).

2.3. Control charts

After accounting for environmental influences through appropriate modeling, the system outputs can be
monitored by applying a control chart. A multivariate Hotelling control chart is often used to quickly
detect a shift in the structural condition (Deraemaeker et al., 2008; Magalhães et al., 2012; Comanducci
et al., 2016). Here, we employ a memory-type control chart, the Multivariate Exponentially Weighted
Moving Average (MEWMA) introduced by Lowry et al. (1992) to the Phase-II scores ξ1,g,…,ξm,g,
g¼ 1,2,…, from Section 2.2.3. The MEWMA contains the Hotelling chart as a special case. The
MEWMA chart assumes serially independent, normally distributed vectors ξ1,ξ2,… of dimension m
with ξg �N ðμ,ΛÞ.We followKnoth (2017) and define amean vector μ that follows a change pointmodel
μ¼ μ0 for g< τ and μ¼ μ1 for g≥ τ for an unknown time point τ and by definition μ0 ¼ 0, see Section 2.1.
For in-control data, the scores ξ1,g,…,ξm,g are assumed to be uncorrelated with variances ν1,…,νm, see
also Section 2.1. Hence, the covariancematrixΛ is diagonal withΛ¼ diagðν1,…,νmÞ. Then, we apply the
following smoothing procedure to compute the MEWMA statistic (step 6 in Figure 2)

ωg ¼ 1� λð Þωg�1þ λξ̂g, ω0 ¼ 0 (11)

with g¼ 1,2,…, smoothing constant 0< λ≤ 1, and the estimated scores ξ̂r,g from (9) or (10) collected in

ξ̂g such that ξ̂g ¼ ξ̂1,g,…, ξ̂m,g
� 	Τ

. The smoothing parameter λ controls the sensitivity of the shift to be

detected. Smaller values of λ such as λ∈ 0:1,0:2,0:3f g, are usually selected to detect smaller shifts
(Hunter, 1986), while λ¼ 1 results in theHotelling chart. In this study, we use λ¼ 0:3. The control statistic
is the Mahalanobis distance

T2
g ¼ðωg�μ0ÞTΛ�1

ω ðωg�μ0Þ, (12)

with an asymptotic covariance matrix of ωg, Λω ¼ lim g!∞CovðωgÞ¼ f λ
2�λgΛ. Note, if the scores in ξ̂g

are estimated on a reduced set of measurement points (e.g., due to missing values), the model-based
estimates ν̂1,…, ν̂m (step 3.3 in Figure 2)may not give the correct variances of the scores. In a case like this,
it is recommended to run steps 5.1–5.3 from Figure 2 on the training data but with the reduced set of
measurement points to obtain adjusted estimates of the variances (through the empirical versions), which
can then be used in Λ.

TheMEWMA chart issues an alarm if T2
i > h4, i.e., the control statistic is above the threshold value h4.

The stopping time N¼minfg≥ 1 : T2
g > h4g, also known as average run length (ARL), is often used to

measure the control chart’s performance. It is defined as the average number of observations until the chart
signals an alarm. If the process is in-control, the ARL (ARL0) should be high to avoid false alarms. If there
is a change in the underlying process, the ARL (ARL1) should be low to detect changes quickly. To
determine the threshold value, the ARL must be calculated when the process is in-control, usually
applying a grid search or a secant rule. This ARL0 can be calculated as described in Knoth (2017) and is
implemented in R packagespc (Knoth, 2022). An evaluation of our CAFDA framework on artificial data
is demonstrated in Section 3.

2.4. Modified and extended models

Our basic model (1) is a particular case of a functional additive mixed model, as introduced and discussed
by Scheipl et al. (2015), Scheipl et al. (2016), and Greven and Scheipl (2017), which can be simplified,
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modified, or extended in various ways depending on the available data and prior knowledge. Some
alternative specifications that may be an option with the data available in our case studies in Section 4 are
recapped as follows.

• Standard linear models: If we have reason to believe that potential daily patterns can be explained
entirely through variations in z, we can replace α tð Þwith a constant α0. Similarly, if it is believed that
the association of the confounder z and system output u is linear, we can replace f zj tð Þ

� �
in (1) with

βzj tð Þ. So, the standard linear regressionmodel is a special case in our broader framework. Typically,
if fitting themore flexiblemodel (1) to the data, a nearly constant α and a close to linear f will indicate
that the simpler model is sufficient.

• Unmeasured covariates: If covariate information is unavailable, f zj tð Þ
� �

can be omitted, and our
approach turns into an output-only method using FPCA. In that case, replacing α tð Þ with α t,dj

� �
is

highly recommended. The reason for this is that variables such as temperature typically vary over the
day and year, imposing a specific yearly pattern on u as well. The latter can be modeled through
α t,dj
� �

.
• Multiple covariates: If p covariates zj1 tð Þ,…,zjp tð Þ, e.g., temperature, relative humidity, wind speed,
solar radiation, have an effect, or if several temperature sensors are used to account for the local
temperatures at different spatial locations in the construction material, their effects can be combined
additively in (1) by replacing the term f zj tð Þ

� �
with

Pp
k¼1f k zjk tð Þ� �

.
• Covariate interactions: If zjk tð Þ,zjl tð Þ are believed to have an interacting effect on the system output,
e.g., temperature and relative humidity,model (1) can also contain (two-way) interactions in terms of
f kl zjk tð Þ,zjl tð Þ
� �

. In theory, interactions of higher order are possible as well. However, it can be
challenging to estimate the corresponding parameter functions due to the computing resources and
amount of data needed to learn those interactions reliably, compare Section 2.2.

While all those models are so-called concurrentmodels, which are useful to adjust for the temperature of
the structure itself, the framework of functional additive mixed models is flexible enough to cope with
delayed effects (as, e.g., plausible for ambient temperature) using so-called historical functional effects
(Scheipl et al., 2016). Also, the very popular linear function-on-function regression approach (Centofanti
et al., 2021) is included as a special case. An overview of various modeling options beyond those
discussed above is provided in Appendix A. The decision about the model to use should be based on
subject matter knowledge, the available data, the goodness-of-fit, and the parameter estimates. As pointed
out, concurrent models are particularly useful if the structure’s temperature is measured. If more than one
(potential) confounder is measured, the model should be able to include multiple covariates. To
distinguish between additive effects and interactions, the model fits should be compared, and the
estimated (two-dimensional) surface f kl should be inspected visually. The less complex (additive) model
should be chosen if the two model fits are similar and the surface looks like two additive effects; see also
Section 4.1. Sometimes, it may even be known from prior studies that a particular confounder effect is
(almost) linear. In a case like this, however, choosing a more complex model like (1) is usually fine, too,
because due to the penalty, the estimated f will typically turn out to be (nearly) linear if the data point in
that direction (compare Section 4.2).

The resulting modifications concerning model fitting can be summarized as follows. If model (1) is
simplified, parameterization (7) simplifies, aswell. For instance, if an output-only approach based entirely
on FPCA is used, the part in (7) referring to the regression function f vanishes. If the latter is assumed to be
linear, only the corresponding β has to be estimated. If β is allowed to change over the course of the day in
terms of β tð Þ, this function can be expanded in basis functions as it was done with f in (6) and estimated
analogously. If, on the other hand, multiple covariates are given, and model (1) is extended toPp

k¼1f k zjk tð Þ� �
instead of a single f zj tð Þ

� �
, we have to add basis representations

PL f kð Þ
lk¼1 γ

f kð Þ
lk b f kð Þ

lk zjk tð Þ� �
for each component f k , k¼ 1,…,p, in (7). If we want to account for both daily and yearly patterns in a
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purely additive way, that is, α t,dj
� �¼ α0þ~α1 tð Þþ~α2 dj

� �
, the procedure is completely analogous.

However, if α t,dj
� �

is supposed to be a surface, or if a two-way interaction, say f zj1 tð Þ,zj2 tð Þ� �
in (1),

is to be fitted, some minor modifications are necessary. The unknown functions (α and f , respectively)
now have two arguments, meaning that the basis needs to be chosen appropriately, e.g., as a so-called
tensor product basis. For instance, if considering f , equation (6) turns into

f z1,z2ð Þ¼
XL1
l1¼1

XL2
l2¼1

γl1,l2bl1 z1ð Þbl2 z2ð Þ, (13)

and smoothing is typically done in both the z1- and z2-directions. Having said that, the model complexity
increases in terms of the number of basis coefficients γl1,l2 that need to be fitted. As pointed out earlier,
higher-order interactions can also be estimated, but the number of coefficients increases even further.
Bivariate (or even higher dimensional) smoothers allowing for terms such as (13) are available in mgcv,
and corresponding estimates will be shown in the real-world data evaluations in Section 4. The approach
for bivariate α t,dj

� �
or f zj tð Þ, t

� �
cases, where the potentially nonlinear covariate effect is allowed to

change over the course of the day, is analogous. In summary, in any of the cases considered here, the final
model is linear in the basis coefficients and random effects, and all those quantities can be estimated/
predicted through penalized least squares in a mixed model framework.

3. Illustration on artificial data

The aim of this section is to validate the methodology proposed in Section 2 on artificial data in a Monte
Carlo simulation study. To this end, we first describe the data-generating process (DGP) of the functional
data in the following Section 3.1. We then apply the modeling part of our framework to the artificially
generated data in Section 3.2 to provide insight into the modeling performance. In the last Section 3.3, we
evaluate the proposed monitoring scheme (the “green part” in Figure 2) in the CAFDA-SHM framework.

3.1. Data generation

We consider the basic model (1) with one system output and one covariate. To generate the data, we
consider each component of the model separately. The eigenfunctions ϕr, r ¼ 1,2,3, are obtained using
orthonormal Legendre Polynomials (Abramowitz and Stegun, 1964) up to an order of two. Following (2),
we split Ej into two parts. First, the structural component wj tð Þ, t∈ T , T ¼ 0,24ð Þ, is generated by

wj tð Þ¼ ξ1jϕ1 tð Þþ ξ2jϕ2 tð Þþ ξ3jϕ3 tð Þ, where the individual scores are obtained through ξr,j �iidN μ,νrð Þ
r¼ 1,2,3, j¼ 1,…,J, and mean μ¼ 0. The eigenvalues νr ¼ exp � rþ1

2

� �
are decreasing exponentially

towards zero (Happ-Kurz, 2020). The second component ofEj, the white noise at the measurement points

ti, i¼ 1,…,24, is generated by ɛjðtiÞ�iidN ð0,0:2Þ. That means the covariance of the error process is
(implicitly) given by (4) (with “∞” replaced by “3”) plus the additional variance of 0.2 on the diagonal.
A functional intercept α is also created, separated into α0 and ~α tð Þ. While the functional component
is ~α tð Þ¼ sin πt

48

� �þ cos πt
6

� �
, t∈ T , and centered by subtracting its mean value, the overall intercept

is set to α0 ¼ 5. To form a functional covariate that can represent different shapes of cyclic daily
profiles analogous to temperature profiles at different times of the year, a sine function in

zj tð Þ¼ ζ 0jþ ζ 1j sin
πt
12þ0:3
� �

, t∈ T , with ζ 0j,ζ 1j �iidU a,bð Þ is used, where U a,bð Þ denotes the uniform
distribution over the interval a,bð Þ. Thus, the covariate profile level is set by ζ 0j with a¼ 2 and b¼ 12, and
its shape by ζ 1j, here with a¼ 0 and b¼ 4. Subsequently, the covariate data zj tð Þ is transformed by the

regression function f zð Þ¼ exp �11
5 z

� ��0:5 and the output uj for day j at the measurement points ti is
generated through uj tið Þ¼ α0þ~α tið Þþ f zj tið Þ� �þwj tið Þþ ϵj tið Þ, see Equations (2) and (8). Figure 3
shows a sample of 20 generated profiles of the output uj, the covariate zj, and the error process Ej similar
to the real data in Figure 1. For our evaluations below, the sample size was J¼ 300.
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3.2. Model training simulation results

Next, we perform the model training pipeline of the CAFDA-SHM framework (steps 0–3, the “orange
part” in Figure 2). We repeated the procedure of generating data (according to Section 3.1) and model
training 100 times to gain insights into the model performance and possible parameter estimation
variability. Figure 4 illustrates the results comparing the true functions ~α tð Þ, α0þ f zð Þ, and ϕr tð Þ,
r¼ 1,…,3, drawn in blue, to the estimates b~α tð Þ, α̂0þ f̂ zð Þ, ϕ̂r tð Þ from the 100 simulation runs (gray),
where each run consisted of a training set of J¼ 300 u- and z-profiles. The respective mean functions of
the estimates are shown in red. The top-left figure shows the results for the centered functional intercept

Response data

0 6 12 18 24

4.0

4.5

5.0

5.5

Time of day [h]

u j

Covariate data

0 6 12 18 24
0

3

6

9

12

Time of day [h]

z j

Error process

0 6 12 18 24

−0.5

0.0

0.5

1.0

Time of day [h]

E j

Figure 3. Sample of 20 generated output profiles (left), covariate profiles (middle), and error profiles
(right).

Figure 4. The estimates of the functional intercept (top-left) and the nonlinear covariate effect (top-right),
as well as the estimated eigenfunctions of the structural component of the error process (bottom row).
Shown in gray are the results for each of the 100 simulation runs, while the blue curves give the true

functions, and the red curves the mean across the 100 runs.
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~α tð Þ and the top-right figure for the covariate effect plus the overall intercept α0þ f zð Þ. The three figures in
the bottom row show the results for eigenfunctions ϕr tð Þ, r¼ 1,2,3. The red and blue curves are close,
meaning that the trained models and their estimated functional components can approximate the true
underlying functions well on average. In other words, the estimates are (nearly) unbiased. Also, the
variation is relatively small, see the gray curves.

3.3. Monitoring simulation results

In this section, the monitoring scheme (green part in Figure 2) is evaluated concerning the ARL
performance in a Monte Carlo simulation. Specifically, for each of the 100 models from Section 3.2,
the out-of-sample ARL is calculated by taking the average of the observed run lengths N over 10,000
replicates of the procedure with steps 1–7 given below. The control limit h4 is determined based on a
prespecified ARL0 ¼ 100 (days), and the ARL is computed by the following procedure for Phase-II days
g¼ 1,2,…:

1. Generate new covariate data zg tð Þ according to Section 3.1 (which produces the data in step 4.1 of
Figure 2).

2. Add a shift δ in one of the three components of μ0 to create μ1 and draw scores from the
corresponding normal distribution to simulate the functional random effect wg tð Þ.

3. Generate the output data ug tið Þ at measurement points t1,…, t24 by adding the functional intercept,
the fixed effect of temperature f zg tið Þ� �

, the functional random effect wg tið Þ, and white noise error
ϵg tið Þ, analogously to Section 3.1. This produces the data in step 4.2 of Figure 2.

4. Predict the system output using the model from Phase I (compare Section 3.2) and compute the

resulting Êg tið Þ by subtracting the predicted from the observed system output.
5. Calculate the scores ξ̂r,g according to Eq. (10).
6. Compute MEWMA and T2 statistic according to Eqs. (11) and (12).
7. If T2 > h4, note the run-length N, else repeat steps 1–6 for the next profile (day).

The upper panel of Figure 5 showsARL profiles on a logarithmic scale for shifts in the scores’mean on
a fine grid for δ∈ 0,3½ �with three different smoothing parameters λ∈ f0:1,0:3,1g. For a fair comparison,
all three charts are calibrated to the same ARL0 ¼ 100. However, note that the ARL of all three charts is
slightly above 100 for the in-control scenario. This can be explained by the fact that the prediction (10) of
the scores in the mixed model framework imposes a Ridge-type penalty and, hence, a form of shrinkage
toward zero. Furthermore, it can be seen that the choice of the smoothing parameter λ influences the ARL1

profiles and, thus, the detection speed of the out-of-control scenario. As mentioned in Section 2.3, small
values of λ lead to quicker detection of small changes, while charts using, e.g., λ¼ 1 (the pink curves in
Figure 5) have a shorter run length on average for substantial shifts. Comparing, for example, the crossing
points of the ARL profiles for different shift sizes δ for the three components in the upper row, one could
conclude that a shift in the third score would be detected more quickly than in the first component.
However, this effect is blurred as the variances νr of the principal components decrease for larger r, see
Section 3.1. Hence, a version with standardized shift size δ

νr
is plotted in Figure 5 (bottom row) to give a

clearer picture of the detection speed in regards to each component. It shows that the detection speed is
comparable for all three components.

For comparison, we show the results for two competing/existing approaches popular in SHM in brown
and green in Figure 5. Specifically, the effect of temperature (compare the top-right panel of Figure 4) is
captured through a so-called “bilinear” model, i.e., a piecewise linear model with one breakpoint. Then,
the so-called “misfits” are calculated by subtracting the predicted values (hourly) from the measured
eigenfrequencies. Finally, the (squared) normalizedmisfits can be used for monitoring, with control limits
typically obtained as quantiles of a χ2 distribution. This approach is also called “Shewhart control chart”
(see, e.g.,Montgomery, 2009). FollowingMaes et al. (2022), we consider two versions: (i) hourly data are
monitored directly (the brown lines in Figure 5), and (ii) hourly misfits are averaged over 24 h (i.e., days)
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before calculating the normalizedmisfits (the green lines in Figure 5). It is seen that averagingmisfits over
24 h works very well for detecting shifts in the first (functional) principal component. The reason is that
the averaged misfit approximates the first score well, i.e., it is nearly proportional to the first score;
compare equation (9) and the first eigenfunction in Figure 4 (bottom-left), which is constant over the day.
However, if the shift occurs in the second or third component, the averaged misfits cannot detect this
(compare the results/green lines for FPC1 and FPC2/FPC3 in Figure 5). This is because the eigenfunctions
are orthogonal (see the bottom row of Figure 4). The approach (i), which monitors the hourly misfits, on
the other hand, can detect shifts in all three components.1 However, it is severely miscalibrated, as the
average time-to-signal on the in-control data (i.e., for a shift size δ¼ 0) is below 50 days (instead of 100).
The reason is that the common assumption of uncorrelated misfits was used to determine the control
limits. The hourly misfits, however, are strongly correlated. Of course, one could try to account for this
using some parametric model, such as first-order autocorrelation, when calculating the control limits. In
practice, however, it is typically unclear which (parametric) model to use. As pointed out, one advantage
of the FPCA-based approach is that the correlation structure is estimated semiparametrically from the
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Figure 5. ARL profiles (averaged over the 100 models/training datasets from Section 3.2) on a
logarithmic scale for a shift in the scores’ mean. Considered are MEWMA control charts as proposed in
Section 2.3 with different smoothing parameter λ (blue, orange, pink) and Shewhart charts based on
hourly (brown) or 24 h averaged (green) misfits of a piecewise linear model, displayed for absolute shift
size δ (top row) and standardized shift size δffiffiffi

νr
p (bottom row). The shaded regions give the uncertainty

concerning the ARL approximation in terms of ± one standard deviation across the 100 models/training
datasets from Section 3.2.

1 Note, an ARL below one according to the brown curves for the hourly misfits means that (on average) a shift is already detected
within the first day. But this only happens for extremely large shifts δ of more than 6(!) standard deviations.
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data. So, generally speaking, it can be concluded that the proposed FDA-based approach can extract much
more information from the data in a statistically sound way than simpler approaches considering misfits.

4. Applications to structural health monitoring data

In what follows, we will apply our CAFDA-SHM framework to the data from the KW51 bridge in a first
case study in Section 4.1. We focus on the system’s dynamic response in terms of natural frequencies.
Section 4.2 provides a second case study considering displacement measurements from a reinforced
concrete motorway bridge, the so-called “Sachsengraben viaduct.”

4.1. The KW 51 railway bridge

KW51 is a steel railway bridge of the bowstring type, with two curved, ballasted, electrified tracks. It is
115 m long, 12.4 m wide, and located between Leuven and Brussels, Belgium, on the railway line L36N.
The bridge was monitored fromOctober 2, 2018 to January 15, 2020, with a retrofitting period fromMay
15 to September 27, 2019. Various quantities, such as the steel surface temperature or relative humidity,
weremeasured on an hourly basis (Maes andLombaert, 2020;Maes et al., 2022). Due to the large amounts
of data, only fragments of the raw acceleration and inclination data are available for reuse/download.
Maes and Lombaert (2020) employed operational modal analysis (OMA) to determine the modal
parameters with the reference-based covariance-driven stochastic subspace (SSI-cov/ref) algorithm on
an hourly basis as well. The natural frequencies of 14modes are available for the entire monitoring period
and are described in detail inMaes and Lombaert (2021). Here, we will focus on the data for mode 6, with
parts of it already shown in Figure 1. In addition, we will consider two potentially confounding variables,
temperature at the bridge deck level and relative humidity, both measured directly at the bridge. In a
preprocessing step, some extreme outliers were removed from the dataset. Those outliers correspond to
some data points that resulted from abnormal bridge behavior on particularly cold days (Maes and
Lombaert, 2021; Maes et al., 2022). Eventually, 225 daily profiles were available for modeling before the
retrofitting started. In Sections 4.1.1–4.1.2 below, we will discuss the CAFDA results for different model
specifications, including the basic model with one covariate “temperature” only and two versions of an
extended model with both temperature and relative humidity included as covariates. All those models
allow for nonlinear covariate effects, whereas earlier analyses of the KW51 data (Anastasopoulos et al.,
2021; Maes et al., 2022) focused on linear modeling. Finally, some results for monitoring Phase-II data
will be shown in Section 4.1.3. To prevent the end of the in-control phase from coinciding with the start of
the retrofitting, Phase I is limited to 200 observed profiles (between October 2, 2018, and April 19, 2019)
for themodel training. Out of those 200 profiles of natural frequencies, 129 profiles are observed over 24 h
of the day, while the rest have between 4% and 100% of missing values. Concerning the temperature and
humidity curves, 57 and 66 profiles have 4%–100%missing values, respectively. Overall, the percentage
of missing values is high, at 63%.

4.1.1. Results for the basic model
We start with the basic model and the parametrization in (8). It includes an overall intercept α0, a
functional intercept ~α tð Þ, a potentially nonlinear temperature effect f zð Þ, and the structural component
wj tð Þ of the error process. After estimating the fixed effects of the initial model in step 1 of Figure 2, we
apply the FPCA on 148 residual profiles (those with sufficient data points of both the natural frequencies
and temperature curves available) to extract the eigenfunctions of the functional random effects as
described in Section 2.2.2. The number of components to extract is chosen such that 99% of the variance
with respect to the smoothed covariancematrix is explained. In step 3 of ourmodeling framework, we refit
the basic model, incorporating the eigenfunctions to account for the functional random effects.

Figure 6 shows the estimates ϕ̂1 tð Þ,…, ϕ̂4 tð Þ of the eigenfunctions. Note that the first two eigenfunc-
tions already explain about 85.6% of the variance of the structural part wj tð Þ of the error process. The first
three eigenfunctions have straightforward and physically interpretable shapes. The first eigenfunction has
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almost the shape of a horizontal line, whichmeans that the first principal component represents the overall
extent of the daily error in terms of a weighted average with maximumweights in the early afternoon. The
second component describes the difference in the errors between themorning and evening hours, whereas
the third component corresponds to the contrast between night and day. The last component, component
4, is less clear, but this component accounts for less than 5.6% of the variance of wj tð Þ.

Figure 7 shows the centered functional intercept ~α and the nonlinear fixed effect f zð Þ of temperature z
on the natural frequency of mode 6, which is also centered across the data observed. The functional
intercept can be interpreted as a recurring daily pattern. The gray-shaded areas represent the estimated
effects’ uncertainty in terms of pointwise 95% confidence intervals. Comparing both effects, we find that
the effect of the functional intercept is flat over the day, which means that a recurring daily pattern, if any,
is very weak if the steel temperature is taken into account. In contrast, the temperature effect shows a
pronounced nonlinear shape with a kink between 2°C and 3°C. This confirms statements in the literature
that the influence of temperature on the dynamic response is stronger at lower temperatures (Xia et al.,
2012; Han et al., 2021). Figure 7 (right) also shows another benefit of the nonlinear approach compared to
classical linear regression byMaes et al. (2022), who simply omitted the data below 2°C. Our method can
also utilize the data from the colder days and thus capture the nonlinear temperature effect well.

4.1.2. Results for extended models
Next, we extend the basic model by including relative humidity as a second covariate in an additive way.
We now have uj tð Þ¼ α0þ~α t,dj

� �þ f 1 z1 tð Þð Þþ f 2 z2 tð Þð ÞþEj tð Þ, j¼ 1,…,J, t∈ T , where f 1 and f 2

Eigenfunction φ1(t) Eigenfunction φ2(t) Eigenfunction φ3(t) Eigenfunction φ4(t)
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Figure 6. Estimates of the eigenfunctions of the functional random effects in the basic model for the
KW51 data.
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Figure 7. Results of the basic functional modeling approach (1) for the functional intercept (left) and the
nonlinear effect of temperature (right) on the natural frequency (mode 6) of the KW51 bridge.
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denote the potentially nonlinear effects of temperature and relative humidity, respectively. Due to the
limited number of datasets where the two covariates are measured jointly, the number of daily profiles that
can be used for parameter estimation reduces to J¼ 100 days. As before, we proceed with the model
training steps 1–3 from Figure 2. Figure 8 shows the results for the final model, the (centered) two-
dimensional functional intercept (left), and the effects of temperature (middle) and relative humidity
(right). The flat intercept indicates that there are no daily and yearly patterns, such as seasonal effects, that
cannot be explained through the covariates in the model. The (explicit) temperature effect f 1 shows a
similar nonlinear behavior as seen with the basic model in Figure 7. The effect f 2 for relative humidity is
much smaller but still present, as can also be seen from the increased R2 of 0:52, compared to 0:43 for the
basic model with temperature as the only covariate, see Table 1.

As a second extension, we replace the additive effects from above by the term f 12 zj1 tð Þ,�
zj2 tð ÞÞ for

the two covariates, allowing for an interacting effect on the system outputs. Figure 9 shows the resulting
(centered) two-dimensional functional intercept ~α t,dj

� �
and the surface f 12 taking interactions of

temperature and relative humidity into account in a smooth, nonparametric way. As we can see, the
strongest effect is along the temperature axis, but humidity is also relevant, with its most substantial
effect around 10°C. As before, the functional intercept is flat, indicating no further daily or seasonal
patterns. The reason why the yellow color of the surface in the right plot of Figure 9 is only seen for low
humidity is that no data points with negative temperatures and high humidity are available. That is why
f 12 cannot be fitted in that area, whereas data points with negative temperature and low humidity are
found in the dataset. For the latter, the highest natural frequency values (of mode 6) are predicted as
indicated by the yellow color. The overall model fit (R2 ¼ 0:54) is slightly better than with the additive
model (compare Table 1) and, as such, considerably better than the basic model. In summary (see also
Table 1), the temperature appears to be the most influential covariate. For comparison, using the two-
dimensional intercept only in terms of an output-only approach leads to an R2 ¼ 0:25, which is
substantially lower than the R2 ¼ 0:43 obtained with the basic model. Further note: If the monitoring
as proposed here (the green part of Figure 2) is to use the results of the output-only model, training data
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Figure 8. Results of the extended functional modeling approach showing a two-dimensional functional
intercept (left) and the additive, potentially nonlinear effects of temperature (middle) and relative

humidity (right) on the natural frequency (mode 6) of the KW51 bridge.

Table 1. Summary of the R2, overall number of observations, and number of profiles used in Phase I
for the different compared models

Basic Output only Additive Interactions

R2 0.43 0.25 0.52 0.54
No. of observations 3,411 4,488 2,268 2,268
No. of profiles 148 195 100 100
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over an entire year must be available because otherwise, for some future Phase-II days, no predictions
and, thus, no error profiles for calculating the scores are available. In general, this is also true for other
models like Figures 8 and 9 with two-dimensional intercepts, but in the specific case of KW51
considered here, those intercepts are flat, meaning that they are irrelevant for prediction. Consequently,
those models can be used for monitoring, as illustrated in Section 4.1.3 below. Monitoring with an
output-only model will be considered in Section 4.2.

4.1.3. Anomaly detection
Finally, we apply the second part of the CAFDA-SHM framework, the monitoring scheme, to the natural
frequency data (mode 6) of the KW51 bridge, including the retrofitting data for online monitoring as in
Maes et al. (2022). Two MEWMA chart configurations with different λ are chosen, and two functional
models are compared: the basic model (Section 4.1.1) and the best-performing model according to
Table 1, the extended model with interaction term. As mentioned, Phase I consists of the first 200 days.
However, only 3411 and 2268 observations, or 148 and 100 profiles, could be used for the basic and the
extended model, respectively, due to data availability, compare Table 1. The control charts are calibrated
to an ARL0 ¼ 370:4 applying thresholds h4 ¼ 16:25 and h4 ¼ 15:83 for λ¼ 1 and λ¼ 0:3, respectively.
Utilizing the estimated parameters of the basic model and the extended model, respectively, and the
incoming data, the scores ξ̂r,g from (10),m¼ 4, are used in (12) to calculate the control statistic T2

g for day
g (compare Section 2.3).

Figure 10 displays the resulting control charts. In all MEWMA charts, online monitoring begins in
Phase II after the dashed line, with the retrofitting period marked through the gray shaded area. If using
the basic model and the control chart with λ¼ 1 (top-left), the first signal is seen on June 8, 2019, while
the chart, which uses the extended model (top-right) issues the first signal 6 days earlier on June
2, 2019, thus showing a higher sensitivity. Thereafter, both charts indicate a clear shift in the natural
frequency of mode 6. The control charts with λ¼ 0:3 (bottom-row) show a false alarm on January 24–
27, 2019, for the basic model, and on January 26 and 27, 2019 for the extended model, respectively.
The bottom-row panels also reveal that compared to λ¼ 1, an alarm was triggered onMay 26, 2019, so
11 days earlier in both charts. However, comparing the different scenarios, it is noticeable that all four
control charts issue several signals in a row, indicating a sustained change in the process within the
retrofitting (gray shaded area).

Figure 9. Results of the extended functional modeling approach showing a two-dimensional functional
intercept α t,dj

� �
(left) and a two-dimensional functional interaction of temperature and relative humidity

f 12 zj1 tð Þ,zj2 tð Þ� �
(right) on the natural frequency (mode 6) of the KW51 bridge.
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In summary, employing our CAFDA-SHM framework, the control charts detect a change in the
bridge’s behavior caused by retrofitting, with faster detection being achieved through MEWMA param-
eterizations with λ< 1. Note, if using the misfits from the piecewise linear model, analogously to the
simulation study in Section 3 andMaes et al. (2022), not only the hourly (as in Section 3) but also the 24 h
averagedmisfits are highly correlated in time, leading tomiscalibrated control limits. That is whywe only
showed the results for CAFDA-SHM here. Also note that we considered mode 6 for illustration and
evaluation because the corresponding eigenfrequencies show the typical, nonlinear behavior reported in
the literature (Han et al., 2021; Maes et al., 2022; Peeters and De Roeck, 2001). Similar behavior is found
for modes 3, 9, and 13 of the KW51, and results obtained through CAFDA-SHM are also very similar.

4.2. The Sachsengraben viaduct

This section presents an application of the CAFDA-SHM framework on a second real-world SHM
dataset, the OSIMAB2 dataset (Bundesanstalt für Straßenwesen (BASt), 2023), which contains meas-
urements from the Sachsengraben bridge, see Figure 11. The bridge is located on the A45 motorway in
Germany and was constructed in 1971. It spans 98 m and is made of prestressed concrete. The bridge’s
cross-section consists of a single-cell box girder with a construction height of 2.8 m. The webs, floor, and
deck slab also have coves; the end and support cross girders are stiffened. There are two separate
substructures, and we will only focus on the northern one. The superstructure has three fields, divided
by pillars. The two outer fields are 30 m long, while the middle field is 38 m long (Bundesanstalt für
Straßenwesen (BASt), 2021).

Displacement was measured with eight displacement sensors per superstructure for 18 months, from
January 1, 2020 to August 1, 2021 and with a sampling frequency of 100 Hz for the first 191 days and a
40-minute integration interval every hour. On day 191, the measurement switched to a 1 Hz sampling

MEWMA chart (λ = 0.3) Basic model MEWMA chart (λ = 0.3) Interactions model

MEWMA chart (λ = 1) Basic model MEWMA chart (λ = 1) Interactions model
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Figure 10.MEWMA control charts for λ¼ 1 (top row) and λ¼ 0:3 (bottom row), on a logarithmic y-axis,
using the basic (left column) and extended functional model with interactions (right column) for the KW51
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scheme, recording the data continuously. Ambient air temperature data recorded by a weather station and
data from ten material temperature sensors with a sampling frequency of 1 Hz are also available. The
entire dataset was collected in the OSIMAB project. A sample of the recorded measurement data is
publicly available (Bundesanstalt für Straßenwesen (BASt), 2020), and the complete dataset is accessible
via the Bundesanstalt für Straßenwesen (BASt) (2023).

Figure 12 shows the Phase-I profiles of one displacement sensor (N_F3_WA_NO, left) and measure-
ments from the closest temperature sensor (N_F1_T_1, right) for 369 days. The dashed lines represent the
first 191 days, from February 10, 2020 to August 19, 2020. The displacement and temperature measure-
ments were resampled from the higher frequencies (100 and 1 Hz, respectively) by taking the median of the
measurementswithin a 10-minute interval. This leads to a substantially larger number (144) ofmeasurement
points per day than with the KW51 bridge data, where the eigenfrequencies were obtained at 1-hour
intervals. Furthermore, the 1.5-year measurement period means that data from each time of the year is
available, and a two-dimensional intercept can be fitted that spans the entire year. The temperature values
observed range from –10°C to 30°C. Out of 538 profiles in total, 287 displacement profiles and 461 tem-
perature profiles did not exhibit any missing values, and overall, 20% of the data is missing.3 This makes
clear again that for SHM data, the methods used must be able to deal with missing data.

Figure 11. Schematic representation (left) of the Sachsengraben viaduct from the OSIMAB report
(Bundesanstalt für Straßenwesen (BASt), 2021) and a photo of the bridge in 2023 (right).
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Figure 12. Phase-I profiles of displacement sensor N_F3_WA_NO (left) and temperature sensor
N_F1_T_1 (right) with a 10-minute sampling rate. The profiles are highlighted in color according to their

average daily temperature.

3 17 days (out of 538) have less than 13 observations per profile. Those days were excluded from model training.
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As mentioned above, the measurement recording process changed during Phase I. Nevertheless, we
can still exploit the complete information available and capture a complete annual cycle in our framework.
For doing so, we assume that changing the measurement systems’ sampling rate does not impact the
external influence of the covariates — the fixed effects in our model
uj tð Þ¼ α0þ~α t,dj

� �þ f zj tð Þ
� �þEj tð Þ, j¼ 1,…,J, t∈ T , where ~α is the two-dimensional intercept

(potentially) varying over both the course of the day and the year, and f denotes the effect of the
temperature. However, the functional random effects may show different behavior for the two time
periods, whichmeans that the eigenfunctions and variance componentsmay differ. That is why two sets of
residuals, before and after switching the sampling rate, were extracted to estimate two sets of eigenfunc-
tions. It turned out that the eigenfunctions from the two time periods are very similar, but the variances
differ substantially. Therefore, data were pooled to estimate a joint set of eigenfunctions, but variance
components were allowed to differ between the two time periods when refitting the model in step 3 of
Figure 2. Furthermore, as described in Sections 2.1 and 2.4, ourmodel framework contains an output-only
method as a special case in which only the system output of interest and its recorded timestamp are used,
but no covariate data has to be recorded. In this case, the f zj tð Þ

� �
from themodel above is omitted, and the

only fixed effects left are the overall intercept α0 and the two-dimensional surface ~α t,dj
� �

, taking seasonal
patterns into account. The latter function ~α is parameterized using a tensor product basis analogously to
(13) with cyclic cubic regression splines in the dj-direction, which means that the function’s ends at the
beginning and end of the year match up to the second derivative (Wood, 2017). Using this reducedmodel,
we could use all available Phase I data from the displacement sensor, without being limited by possibly
missing covariate information.

The left panel in Figure 13 visualizes ~α t,dj
� �

of the final output-only model with an R2 ¼ 0:70 for the
fixed effects. We can clearly see a yearly pattern with (on average) lower output values in the winter and
higher values in the summer. The reason for these seasonal effects in the output-only model becomes clear
from the middle and right panels of Figure 13, where the resulting estimates of the fixed effects in the
extended model with the temperature included are shown. Now the two-dimensional intercept (middle) is
rather flat over the year, indicating that the seasonal effects seen before were mainly caused by temperature
variation. The explicit temperature effect on displacement in terms of the estimated f is shown in the right
panel of Figure 13. This effect is almost linearwith a tinykink at around15°C,which confirms similar results
found in the literature, compare, e.g., Han et al. (2021). In summary, it can be concluded that by specifying a
two-dimensional functional intercept in the output-only model, we can already account for some of the
environmental effects without the need to record corresponding covariate information. Consequently, if
using an output-only approach to adjust for environmental influences, such a functional intercept should
always be included if training data are available over a sufficiently long period.
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Figure 13. Results of the functional output-only model (left) and the extended functional modeling
approach (middle) showing a two-dimensional functional intercept ~αðt,djÞ and the (non)linear effect of

temperature sensor N_F1_T_1 (right) on the displacement sensor N_F3_WA_NO.
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Similar to applying the control chart for anomaly detection in Section 4.1.3 and as shown in Figure 2, we
set up the control charts, calibrating them to anARL0 ¼ 370:4. Formonitoring purposes, only the second set
of variance components is used, as those refer to the reconfigured measurement system with the new
sampling rate. Figure 14 displays the control charts for λ¼ 1 and a chart threshold h4 ¼ 20:06 for the
extendedmodel and h4 ¼ 11:83 for the output-onlymodel. It is visible fromboth control charts that, besides
the three false alarms inAugust and September 2021 in the Phase I data, themeasurements before the dashed
vertical line seem to be in control. The dashed linemarks the beginning of the onlinemonitoring onFebruary
13, 2021. Bundesanstalt für Straßenwesen (BASt) (2021) reported that a sensor malfunction induced by a
rust film blocking the sensor was noticed and confirmed at the end ofMarch. The control chart utilizing the
extendedmodel in Figure 14 (left) detects this anomaly. However, it additionally detects some irregularities
at the end of February. An explanation for this could be that the sensormalfunction already started before the
end of March, and the control chart detected this. In contrast, the control chart using the output-only model
(right) slightly fails to detect the anomaly. However, a modified control chart setup with λ< 1 (not shown
here) would increase the chart’s detection sensitivity and lead to signals in Phase II. In summary, it can be
stated that although the output-only model takes seasonal patterns caused by environmental effects into
account, it is beneficial to account for these effects more explicitly.

5. Concluding remarks

The modeling and monitoring methodology presented in this paper combines several parts of a structural
health monitoring system in one unified framework (CAFDA-SHM). It is of high practical relevance, as it
tackles important challenges in SHM. The discussed functional data approach offers the flexibility to
model recurring daily and yearly patterns alongside environmental or operational influences in a highly
adaptable and interpretable semiparametric manner. It can handle missing observations and effectively
accounts for variations and correlations in the error process through functional principal components.
Furthermore, FPCA extracts interpretable, data-based features, which are then utilized for monitoring
within a sound statistical framework, thus providing a reliable basis for decision-making. Our real-world
data analyses showed that CAFDA-SHMcan be used for covariate adjustment andmonitoring of different
types of response variables: dynamic responses, as shown in Section 4.1, and quasi-static responses, as
demonstrated in Section 4.2. It is hence planned to implement and test themethods presented in this article
as part of a larger online SHM system (Kessler et al., 2024).

Although the proposed modeling approach is an input–output method, it contains an output-only
FPCA-based version as a particular case. The latter has advantages over existing approaches as it accounts
for daily and yearly patterns typically ignored by common PCA-based methods. Utilizing state-of-the-art
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Figure 14.MEWMA Control chart for λ¼ 1 on a logarithmic y-axis, using an extended functional model
(left) and the output-only functional model (right) for the Sachsengraben viaduct.
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functional additive mixed models enables nonlinear modeling, as often needed in SHM. Our approach is
flexible in handling diverse data types, from sparse and aggregated to high-resolution, dense data.
Although the focus of this article was on concurrent models, the framework of functional additive mixed
models includes various other options, such as historical functional effects or the common linear function-
on-function approach (compare Appendix A).

Finally, there are three noteworthy limitations. First, if the error process becomes close to white noise,
e.g., because the covariates’ explanatory power is very high, the functional approach no longer provides
much of an advantage over a standard, non-functional response surface model. Second, in the functional
additive mixed model, we implicitly assume that the error process and the functional random effects are
(at least approximately) Gaussian. However, if outliers are present in the data (compare, e.g., Capezza
et al., 2024), an additional step to identify these outliers would need to be included in a preprocessing step
in our framework. Third, the framework presented in this paper is designed for univariate functional
responses. Future research will involve modeling multiple system outputs simultaneously, such as natural
frequencies of multiple modes.
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Appendix

A. Further modeling options
This Section provides an overview of various modeling options beyond the models discussed in the main paper. All models
considered in Sections 2, 3, 4.1, and 4.2 were so-called concurrent models, where it is assumed that the system output at time t is
influenced by covariate zmeasured at the same time t only. This makes sense for covariates such as the temperature of the structure
itself, as available for the KW51 bridge and the Sachsengraben viaduct. However, if only ambient temperature is given, it seems
more reasonable to assume that the temperature over the recent past, let us say three hours, is relevant. Appropriate models can be
specified through so-called historical (functional) effects.

• In the simplest case of a linear effect that does not change over the day, we have

uj tð Þ¼…þ
Z h

0
β sð Þzj t� sð Þdsþ…,

where h denotes the time limit to look into the past, e.g., three hours. Typically, it is recommended to choose a rather large
value here because, if z in that time region is not relevant for u anymore, β sð Þwill be fit to tend towards zero for s! h (given
there is enough data available to learn from).

• If the effect of z is allowed to change over the course of the day
R h
0 β sð Þzj t� sð Þds turns into R h

0 β s, tð Þzj t� sð Þds.
• In the nonlinear setting, we have

R h
0 f zj t� sð Þ,s� �

ds if the (historical) effect is constant across t (i.e., the course of the day) andR h
0 f zj t� sð Þ,s, t� �

ds otherwise.

All those models fit into the framework of functional additive mixed models as well. Instead of the historical functional effects, we
could also write

uj tð Þ¼…þ
Z
T
β s, tð Þzj sð Þdsþ…,

which is typically denoted as “linear function-on-function regression.” In fact, this is the most popular model for function-on-
function regression, and, e.g., used by Centofanti et al. (2021). The corresponding nonlinear/smooth version would be

uj tð Þ¼…þ
Z
T
f zj sð Þ,s, t� �

dsþ…:

However, both models do not seem sensible approaches for SHM data as considered here because “future” observations zj sð Þ, with
s > t, would be allowed to affect “present” uj tð Þ.
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