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AN IMPLICIT FUNCTION THEOREM WITH SYMMETRIES

AND ITS APPLICATION TO NONLINEAR EIGENVALUE EQUATIONS

E.N. DANCER

In this paper we prove a G-lnvariant implicit function theorem

and indicate how it can be used to improve an earlier result of

the author on the bifurcation of solutions of nonlinear equations

in the presence of continuous groups of symmetries. We also use

our theorem to show that, under reasonable hypotheses, the method

of looking for solutions in invariant subspaces yields all

solutions. This can be used to answer a question raised by

Sattinger [J. Math. Phys. 19 (1978), 1729]. The abstract result

is also of interest because it provides a theorem which should be

of use in other symmetric situations.

We assume that G is a compact Lie group, B is a finite-dimensional

linear space with norm II || and {T } .„ is a representation of G in

B(E) , the linear operators on E . Assume that f : E x R -*• E is

continuous, that the partial derivative /'(«, t) exists and is continuous

and that f is T -invariant. (in other words, / ( T I , t) = Tf(x, t)

for g $. G , x € E and t € R ) . In addition, suppose that f(k, 0) = 0

and that the dimension of the kernel of the partial derivative f!(k, 0)

is equal to the dimension of the manifold M = {? k : g € G) . (By the

symmetries, f(m, 0) = 0 if m € M . Hence f'(k, 0)h = 0 if

h € T,(M) , the tangent space to M at k . Thus we are assuming the
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kernel is as small as possible.) Finally, following the notation in [4],

we assume that M and G have Property P, that is that

[h € Tk(M) : T h = h for all g € Gfe} = {0} ,

where GV = {g € G : T k = k} . Geometrically, this is the same as
y

assuming that the only G-invariant vector field on M is the trivial one.

(This is proved in §2 of [4].) Note that we are abusing the notation

slightly because we should really speak of the action of G on M having

Property P.

THEOREM (G-invariant implicit function theorem). Under the above

assumptions, there is a continuous function w : M x (-£, e) •+ E such that

f{w(m, t), t) = 0 if m € M and \t\ < e , w(m, 0) = m , w is T -
y

invariant and, if fix, t) = 0 with x near M and t near zero, then

x = w{m, t) for some m € M .

REMARK. I t follows easi ly from the proof tha t , for each t near

zero , the zeros of fix, t) = 0 near M form a manifold diffeomorphic to

M (where, in fac t , wi , t) i s the diffeomorphism] .

Before proving the theorem, we prove two simple technical lemmas. The

f i r s t i s well-known but we give a proof for completeness.

LEMMA 1 . Assume that H is a finite-dimensional normed linear

space, S : H -*• H is linear, {T } „ is a continuous representation of a

compact group Y in B(#) and S is T -invariant. Then there exist
y

projections P and P onto KiS) and RiS) such that P and P

commute with T for g in Y . [Here KiS) and i?(5) denote the

kernel and range of S respectively.)

Proof. Since H is finite-dimensional, we may assume that H is a

Hilbert space. Then, by [3, Theorem 6.2.1], we may assume that the scalar

product on H is T -invariant. We then simply define P and P to be
y

orthogonal (with respect to this scalar product) projections on KiS) and

RiS) respectively. It is easy to check icf. [4, §1]) that P and P

have the required invariance.

REMARK. The result remains true if H is a Banach space, S £ fl(ff)

(where B(ff) now denotes the bounded linear operators on H j and 5 is

https://doi.org/10.1017/S000497270001131X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001131X


An i m p l i c i t f u n c t i o n t h e o r e m 83

Fredholm (in the notation of [5 ] ) . For example, i f P i s a projection on

K(S) , we simply define P = T PT d\i(g) , where u i s an invariant
>gZY g-1 g

Haar measure on Y .

LEMMA 2. Assume that the conditions of Lemma 1 hold. Let

C = R(I-P) . Then there exists a linear isomorphism B : K(S) -*• C which

commutes with T for g in Y .

Proof. We use some elementary representation theory (as in [I/]). By

Lemma 1, H = K(S) © F where F = R{l-P) is T -invariant for g in Y .

Similarly, H = R(S) © C where C is T -invariant for g in Y . Now,

since F is T -invariant for g in Y , F is a direct sum

F = Y © F. , where each F. is invariant and \T } .„ act irreducibly

on each F. . (in other words, we are writing F as a direct sum of

irreducible representations.) Similarly K(S) = £ @ ff. where each N.

is invariant and Y acts irreducibly on each N. . Hence
tr

(1) E = K(S) ®F=fi@Ni®Y,@Fi-

Since S|_ is a T -invariant isomorphism of F onto R(S) , we have that

(up to isomorphism) R(S) = £ © F. . Hence, if we write C = £ © C.

where each C. is invariant and irreducible, we find that

t p

(2) E = X © C. © £ © F. .

If a finite-dimensional representation is expressed as a direct sum of

irreducible representations, then the number of times each irreducible

representation occurs (that is i ts weight) is uniquely determined. Hence

i t follows from (l) and (2) that £ @N. and £ @c. are equivalent

representations. Thus there is an invariant isomorphism of K(S) and C .
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This proves Lemma 2.

Note that most books on representation theory discuss complex

representations. However, the part of the theory that we require is true

for real representations. Alternatively, Lemma 2 can be proved by using

complexifications.

REMARK. Simple examples show that Lemma 2 may fail if 5 is a

bounded linear operator on a Banach space even if S is Fredholm of index

zero. However, it is true if S is Fredholm of index zero and zero is an

isolated point of the spectrum of 5 .

Proof of Theorem. First note that, by the tubular neighbourhood

theorem (af. Bredon [3], Theorem 6.2.2), there is a G-invariant

neighbourhood U of M in E such that every point x in M can be

uniquely expressed in the form m + n , where m € M and n € N (M) .

(Here N (M) denotes the orthogonal complement of T (M) in E with

respect to a G-invariant scalar product on E .) We look for solutions of

f(x, A) = 0 of the form x = m + u , where u € N (A/) . (For the moment

we keep m fixed.) Consider the equation

(3) P/(m+w, t) = 0 ,

where P is a G -invariant projection onto R[f!(m, 0)) . Note that

(i) G denotes the isotropy group,

(ii) f'(m, 0) is G -invariant because g is and because m

is fixed by G , and

(iii) there is such a projection by Lemma 1.

Since f'(m, 0) is an isomorphism of #m(M) onto R{f '{m, 0)) , the

implicit function theorem implies that there exist e > 0 and 6 > 0

such that equation (3) has a unique solution u = n(m, t) in

{u € N (M) : IIMII < <5 } for each t in (-6 , 6 j . As in [4], we find

from the group invariance that 6^ and e^ are independent of m and

that n commutes with the J"s for g in G . There is one point to
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be noted here. To ensure that P 's commute with the T ' s , we find a
m g

suitable P, and then we define P^ = TP^T _x where T k = m . It is

easy to check that P is well-defined.J Hence the solutions of

fix, t) = 0 near M x {0} are the solutions of

(U) (j-Pj/(m-w(m, t), t) = 0 .

Now, as we mentioned before, flik, 0) is a (^-invariant linear mapping

of E into itself. Hence, by Lemma 2, there is a G, -invariant linear

isomorphism W, of i?(X-P~J onto K(f^(k, 0)) = TAM) . We define

W : R[l-Pj * Tm{M) by the formula W^ = T WjT _x , where T k = m . It

is easy to see that W is well-defined and is an isomorphism of R(l-P J

onto T (M) . Thus equation (1+) is equivalent to the equation

(5) s(m, t) i Wm[l-Pm)f[m+n(m, t), t) = 0 .

From its construction, s(m, t) € T (M) and a simple calculation shows

that T s(m, t) = s[T m, t) . Thus s is a G-invariant vector field on

M . Since Property P holds, s = 0 . Hence [m+n(m, t), t) is a solution

of f(x, t) = 0 . Since n is ff-invariant and since our proof shows

these are the only solutions near M x {0} , the result follows.

GENERAL REMARK. Most of the remarks in §§1-3 of [4] have analogues

here.

REMARKS, l. The remarks in §3 of [4] concerning the necessity of

Property P still hold here. It is also possible to prove that our

conditions on f(x, 0) are the weakest for which we can expect both an

existence and uniqueness result. As in §2 of [4], Property P places

restrictions on the manner in which the group G can act on M . For

example, if Property P holds, then G is not abelian (unless M is

discrete).

2. Our proof above is based on an idea in [4]. (A special case was

considered there.) The proof there also assumes that

K[f^(k, 0)) n R(f^(k, 0)) = {0} . Property P could be replaced by an

equivalent condition on i?(j-P, J but Property P has the great advantage
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that it is independent of / . It is also more convenient to work with

tangent vectors.

3. One major use of the theorem is as follows. In applications, (for

example, in [£], [9] and [70] where further references can he found), many

authors have looked for solutions of f(x, t) = 0 by choosing k in M

and then looking for solutions near k in the subspace

FT =• {x Z E : T x = x for all g € G, } by using the implicit function
9 K

theorem. They then use the symmetries to generate orbits of solutions.

Because T {k+nv(A)) = k + n,(X) for g in G, , our theorem shows that,
g K K K

under natural hypotheses, this method yields all solutions. This result

can easily be used to answer a question raised on p. 1729 of LSI. However,

an example in §5 of [4] shows that it is sometimes easier to apply our

theorem directly rather than to use this method. There are two other cases

where it can be proved that the method of looking for solutions in

invariant subspaces yields all solutions near M x {0} . We delete our

assumption on the dimension of the kernel of f'(k, 0) . The result is

true if either

(i) M is a principal orbit or, more generally,

(ii) K{f^(k, 0)) n Nk(M) c / .

(One proves that, if P,f(k+n, t) = 0 , (n, t) is small and n f NAM) ,

then T n = n for all g in G, . Here P, is a suitable invariant
g . K K

projection.)

k. There is one case where Property P can be deleted. Assume that

there is a G-invariant scalar product < , > and a map F : E x B -*• R

such that f is the gradient of F (with respect to the first variable

for the above scalar product). Property P is unnecessary in this case

because it turns out that, in this case, our vector field on M is

essentially the gradient of F{m+n(m, t), t) and thus has a zero. (For

technical reasons, it is convenient to use the method in [2].)

5. For simplicity, we assume that f-!(k, 0) is self adjoint in this

remark. It is natural to conjecture that we at least have existence of
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solutions if we replace our condition that dim K[f'(k, 0)] = dim M by the

assumption that index [[l-P,)f{k+ , 0) | . . , „•> , 0) is defined and non-zero,
K.

where P, is the orthogonal projection onto TAM) . Unfortunately, this

is false. There are examples where this holds but the equation

fix, t) = 0 has no solutions near M for every small non-zero t .

However, as in £4, §1], it is possible to prove the existence of solutions

under weaker assumptions than those of the theorem. (The conditions in [4]

can be greatly improved.)

6. Our methods can be used to obtain a similar theorem for a

G-invariant mapping f : E x R ->• F , where E and F are two finite-

dimensional spaces of the same dimension, {T } „ is a representation of

G on E and {T } „ is a representation of G on F . The one

difference is that, except when the two representations are equivalent as

G, representations , the theorem is only true with Property P replaced by

the analogous condition on i?(j-P,). Note that the assumptions that

dim M = dim K[F'(k, 0)) and that the analogue of Property P holds forces

the representations to be G-, -equivalent in many cases. Moreover, in many

problems, other assumptions imply that /'(0, t) is a G-invariant

isomorphism of E onto F for some t and hence the representations are

G-equivalent.

7. Our result can also be generalized to the case where E is a

Banach space provided that B(E) now denotes the bounded linear operators

on E , we assume that the mapping g -*• T is smooth (as a mapping of G

into B(E) ) and we assume that f!{k, 0) is Fredholm of index zero. We

merely sketch this as the proof requires a little more care. Firstly, by a

comment after Lemma 1, there exist (7,-invariant projections P. and P.

onto K[f^{k, 0)) and R{f!Ak, 0)) respectively. We then define a

projection P^ onto K[f'(m, 0)) by the formula P = T P,T with

T k - m . It can be shown that the mapping m •*• P is smooth. We replace

#w(M) by R[I-P' ) . We use the implicit function theorem (as in the usual

https://doi.org/10.1017/S000497270001131X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001131X


88 E.N. Dancer

proof of the tubular neighbourhood theorem) to show that every x near M

in E can be uniquely expressed in the form m + n where n € R[l-P )

and n is small. The rest of the proof proceeds as before.

The only other difference is that, as in Remark 6, we can only prove

the result with Property P replaced by the analogous condition on

/?(j-P,J . (However, if zero is an isolated point of the spectrum of

f'(k, 0) , the remark after the proof of Lemma 2 enables us to prove the

analogue of our theorem.)

We now obtain a proposition which clarifies the role of Property P.

For our purposes, the second part is probably the most important. The

first part was pointed out to me by Dr M. Field.

PROPOSITION, (i) M and G have Property P if and only if

dim ^(^) > dim Gj, i where (̂̂ r.) denotes the normalizer of G, .

(ii) If k is an isolated solution of f(x> 0) = 0 in / x {0} ,

then M and G have Property P.

Proof, (i) We first prove that, if dim tf(<?J > dim G, , then M

and G do not have Property P. To see this, note that, if

dim N(GiJ > dim G, , then the same is true of the dimensions of their

corresponding Lie algebras. Thus we can choose a one parameter subgroup

g(s) = exp su of #(<?,) with u not in the Lie algebra of G, . Since

0(8) € N[Gk) , ThTg{e)k = Tg{s)Th , k = Tg{e)k if ft € Gfc (where

h' € G, ) . Thus, by differentiating, v = -7- T ( xk\ satisfies TjV = v
K. CIS Q\ S) S—0 ft

for a l l h € Gfe and v € T^M) (since T , , k € M and T ,Q,k = k ) .

Moreover v t 0 . (This follows by examining the arguments on pages

302-303 of [3 ] . ) Hence u i s non-zero, u € TfSM) a n d Tuv = v f o r a l l

h € G, . Hence, by the discussion in §2 of [ 4 ] , M and G do not have

Property P.

Conversely, we prove t ha t , if M and G do not have Property P, then

dim N{GJJ > dim <?, . Since M and G do not have Property P, there i s a

G-invariant vector f ie ld V on M with no zeros. (This i s proved in §2
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of [4 ] . ) Since G acts t r ans i t ive ly and smoothly on M , i t is easy to

show that V i s smooth. Consider the corresponding flow F on M . [F

i s obtained by solving the d i f fe ren t ia l equation x'(s) = v(x(s)) .) Since

V i s G-invariant, i t i s easy to show that F i s G-invariant. Since

T F(s, k) = F[s, T k) = F(s , k) if g € G ,
9 9 'Si .

F(s, k) £ {x € M : T x = x for all g € Gfe} .

Now i t is easy to see that there is an e > 0 and a continuous function

r : [0, e] -»• G such that T
ris)

k = F(s. fe) o n [0, E] and r(0) = e .

(This follows since fibre bundles have local cross-sections.) Wow, if

T, , 1 k = (Tr(s))~\Tr(s)k = K(sJ~\F{s' k)

> k) ( s i n c e T k = k )

= fc
= fc .

Thus r(s)~ to"(s) € G, . Hence r(s) is a curve in #(G,) . Since

F'(0, k) = v(k) * 0 , r(s) is not completely contained in G, . Hence

every neighbourhood of e in ^(^T,) contains points not in G, and thus

dim ̂ /(G,) > dim G, .

(ii) Suppose by way of contradiction that M and G do not have

Property P. By the proof of part (i) , there is a non-constant curve

F(8, k) contained in IT n M such that 'F(0, k) = k . (it is non-

constant because v(k) # 0 .) Since each point in M is a solution of

f(x, 0) = 0 , it follows that k is a non-isolated solution (in N ) of-

f{x, 0) = 0 . Since this contradicts our assumption, we have completed the

proof.

The results on normalizers in §3.9-^ of ['] can now be used to obtain

a necessary condition for M and G to have Property P which is expressed

in terms of the Lie algebra of G . If G, is connected, this condition
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is also sufficient.

Our theorem applies in particular to the bifurcation problem in [4],

There it was assumed that E is a real. Banach space, A : E •*• E is

Frechet differentiable, A{0) = 0 and there is a continuous representation

} ,£ of G in B(E) such that A is T -invariant. There, under

appropriate hypotheses, it was shown that the study of the small solutions

of A{x) = Ax with X near A reduces to the study of the solutions

near (0, A.J of an equation

(6) [x-x0)
u = QCM + Rem(w, A) ,

where u is in a finite-dimensional subspace T of E , QC is an

s-homogeneous operator, Rem is a higher order term and each term commutes

with the symmetries. For simplicity, we now only look for solutions with

A > AQ . If QC(u) t 0 for u i. 7\{p} , it is shown in [4] that every

solution of (6) with ||u|| + |*-*ol small, u t 0 and A > A is of the

form ((^-^0)/T) y , where T > 0 and y is near a solution s of

QC(x) = TX with ||3|| = 1 . Hence, by a change of variable

u = (̂ -̂ 0) ~ x , we can reduce this problem to one where our theorem

applies (if certain hypotheses hold). If we apply our theorem we find that

Theorem 1 in [4] still holds if Assumption H6 there is weakened to

dim K[iI-QC'i,k)) = dim M .

Our method of weakening Assumption H6 in Theorem 1 of [4] can also be

used to correspondingly weaken Assumption H6 in Theorem 3 of [4]. More

generally, the method in part (ii) of §1* of [4] could be combined with the

methods here to study the case where /( , * ) - / ( , 0) is only invariant

under a closed subgroup G' of G .

To complete this paper, we want to make a remark on a result in [4],

We follow the notation there. It can be proved that in Remark 1 at the end

of §1, the assumption that T L = J for every g € G, implies that

indexff-, , o) = ± index(F, | , o) . Hence the first method there is

contained in the second.

Added in Proof. Remark 5 can be improved to obtain a "best possible"

result on the existence of solutions.
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