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Abstract

Kipnis and Varadhan (1986) showed that, for an additive functional, S, say, of a reversible
Markov chain, the condition E[S,%] /n — k € (0, 00) implies the convergence of the
conditional distribution of S, /+/ E[S,%], given the starting point, to the standard normal
distribution. We revisit this question under the weaker condition, E[S,%] = nf(n), where
¢ is a slowly varying function. It is shown by example that the conditional distributions
of Su/v/ E[S,%] need not converge to the standard normal distribution in this case; and
sufficient conditions for convergence to a (possibly nonstandard) normal distribution are
developed.
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1. Introduction

Consider a reversible Markov chain ..., W_;, Wy, Wy, ..., defined on a probability space
(2, A, P), with a Polish state space ‘W, transition function Q, and marginal distribution 7.
Thus, n{B} = P[W, € B], Q(w; B) = P[W,41 € B | W, = w], and (the reversibility
condition)

/AQ(w;B)n{dw}=/BQ(w;A)n{dw} (D

for Borel sets A, B € W, w € W, and n € Z. Using (and abusing) notation in a standard
manner, we write

Of(w) = / f(@)Q(w;dz) m-almost everywhere
W

for f € L'(m) and Q¥ = Q o -+ o Q for the iterates of Q. In addition, let L] () = {f €
LP(n): [y, fdm =0},

— 1
Va=1+Q+---+0"! and Vo= —Vit- 4 Vo),
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and let || - || denote the norm in an L? space, either L>(7r) or L>(P). Finally, ‘2 denotes
convergence in distribution and ‘2 denotes convergence in probability of conditional distri-
butions; that is, if the Z,, :  — R are random variables and G is a distribution function, then
Z, | Wo %> G means that the conditional distribution of Z,, given Wy converges in probability
to G.

The reversibility condition (1) is equivalent to requiring that (Wy, Wp) and (W7, Wy) have
the same distribution, since the left-hand side of (1) is P[Wy € A, W; € B] and the right-
hand side is P[Wy € B, W; € A]. An important consequence (also equivalent) is that the
restriction of Q to L%(xr) isa self-adjoint operator. For (f, g) = fw fgdm, where (-, -) denotes
the inner product in L?(x), (f, Qg) = E[f (Wo)g(W1)] = E[f (W1)g(Wo)] = (Qf. g) for all
f,g € L*(n).

Given g € L3(n), let X = g(Wi), Sy, = X1 + -+ + X,, and 02 = E[S?]. Kipnis and

Varadhan [7] showed that if
2

.o
lim 2 =« € [0, 00) 2)

n—oo n
then the conditional distribution of S,,/+/n given Wy converges in probability to the normal
distribution with mean 0 and variance k. We show in Proposition 1 that k > 0 except for
trivial special cases; then on_l Sy | Wo N Normal[0, 1]. Kipnis and Varadhan showed that S,
could be written in the form S,, = M,, + R,,, where 0 = My, M|, M>, ... 1s a square integrable
martingale with (strictly) stationary increments Dy = My — My_ and | R, || = o(y/n). The
result has applications to Monte Carlo Markov chains (see, for instance, [12]), since many
algorithms lead to reversible chains, and, to interacting particle systems [6], [7].
Here we consider the case in which (2) is weakened to

02 =nt(n), 3)

where £ is a slowly varying function, as defined in Chapter 1 of [2]. An example will show
that the main result from [7] does not extend completely. Some features do extend, however.
For the remainder of the paper, reversibility is assumed along with g € L%(n), and £ is defined

by (3).
Further developments under condition (2) may be found in [3], and [10] is a recent article
on asymptotic normality of sums of stationary processes with nonlinear growth of variance.

2. Generalities

In the first proposition below, we show that the case lim,_, £(n) = oo only needs to be
considered. The relation

op = [2(g, Vag) — llgl*In “
is used in its proof.
Proposition 1. If liminf,_ £(n) < oo then (2) holds, and if liminf,_, o £(n) = O then
Sy = 3[1 4+ (=1)"~'1X| with probability 1.
Proof. Since Q is self-adjoint, we may write Q = fA AdM()), where A C [—1, 1] is the
spectrum of Q and M is a countably additive, projection-valued set function defined on the Borel

setsof A. Then Qk = fA Ade(A) forallk > 1. See[5, Chapter2]. Letug(B) = (g, M(B)g).
Then ug is a measure, and

_— LA L= pg(dh)
<g,vng>—fA<1 nl_k>1_k. 5)
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Observe that the integrand on the right-hand side of (5) is nonnegative. So, if lim inf,_, o £(n)
< o0 then the limit inferior of the left-hand side of (5) is finite and, therefore,

[ o
o

by Fatou’s lemma. It is clear the integrands on the right-hand side of (5) are dominated by an
integrable function; hence, the integral converges to that on the left-hand side of (6), and (2)

holds with @ Lo
Mg 2 +

=2 —_ — = _ dr).

K /Al_A gl fAl_km )

If liminf,, , o £(n) = O then the last integral is O and, therefore, u is a point mass at {—1}.
It follows that Qg = —g, E[(Xo + X% =0, X, = (—1)X,_; with probability 1, and
Sy = 5[1+ (=1)"~11X with probability 1.

As a consequence, there is no loss of generality in supposing that £(n) — oo, which we do
where convenient. For if lim inf,_, o, £(n) < oo then the Kipnis—Varadhan result is applicable.

The proof of the next proposition uses (4) and
v =§(1—5)Q" ™
’ k=0 n .
Proposition 2. [f ¢ varies slowly in (3) then |V, gl = o(oy).
Proof. Using the reversibility and (7),

n—1n-—1
IVagls =)D (e, 0*g)

j=0k=0
n—1 2n—2

=Y (i +1)g. 0'g)+ > @n—1-i)s. Qg
i=0 i=n
2n—2 n—1

=Y @n—1-i)g, Qg)—2) (n—1-i)g, Q'g)
i=0 i=0

= Log, 1+ @n = Dlgl*1 = o2 + (n — Dllgl*]

2 2 1 2
Oop—1 —0p_1t+ j”g” .

|
=

The proposition then follows directly from (3) and the slow variation of £.

Corollary 1. If £ varies slowly then there is a sequence of square integrable martingales
0 = M, 1, M,2,...with stationary increments D,y = My — My k-1, k > 1, for which
maxg<p [|Sk — My k|l = o(on).

Proof. The result follows from Proposition 2 and Theorem 1 of [13]. It is relevant that

Dy = Vng(wk) - QVng(Wk—l)

and My, y = D1 + -+ - + Dy k in the proof of the latter result.
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Corollary 2. If £ varies slowly and there is a A > 0 for which

) ZE wk | Wi—1] (8)
Tn k=1
and
_2 Z [D; 111D, x1>con) | Wim11 =70 ©)
Tn k=
for every € > 0, then
:—: ’ Wo > Normal[0, A]. (10)

Proof. The result follows from the martingale central limit theorem (see, for example,
[1, pp. 475-478]) applied conditionally given ¥y := o (..., W_1, Wp). For A = 1, the proof
is detailed in [13], and the extension to A # 1 presents no difficulty.

In the next proposition we write S, = S,(g) and o, = 0,(g) to emphasize the dependence
on g. We also use the following result.

Lemma 1. IfZ, | Wo — G and Z|, — Z, =" 0, then Z|, | Wy — G.

Proof. The result follows from the unconditional version of Slutzky’s theorem, by consid-
ering subsequences along which convergence in probability can be replaced by almost-sure
convergence.

Proposition 3. If £(n) — oo and (10) holds for a given g, then, for any j > 1, 0.(Q7g) ~
0, (g) and (10) holds with the same ) when g is replaced by Q’ g.

Proof. Tt suffices to prove the result for j = 1. In this case, the proof follows from
Sn(g) — Sn(Qg) = 24— 1[g(Wy) — Qg(Wi—1)]1+ Qg(Wo) — Qg(W,), which implies that

l04(8) — 0, (08)] < 15,(8) — Sn(Q8)
< llg(W1) — Qg(Wo)ll/n +2||Qg(Wo) |
= olo,(9)],

and Lemma 1.

Remark 1. The proof of Proposition 3 does not use the reversibility and, therefore, is valid for
any stationary process.

Remark 2. Proposition 3 illustrates an important difference between the cases £(n) — oo and
£(n) — «k, considered in [7]. For if (2) holds then

Kk =k(g) =2 lim Z( )g 0*g) — ligl®. (11)

It is then not difficult to see that (11) holds when g is replaced by Q/g, and that [k (g) + - - - +
k(Q"g)]/n approaches 0 as n — 0o, by Theorem 2 of [14].
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Remark 3. Kipnis and Varadhan [7] showed that if (2) holds then D, ; converges in L?(P)
for every k. Clearly, this is impossible if £(n) — oo. However, if D, 1/+/€(n) converged in
L2(P), then (8) and (9) would follow easily with A = 1, and the conditional distributions of
S, /o, would converge to the standard normal distribution, as noted in [13]. This hope cannot be
realized either, however, if lim,_, o, £(n) = oo. For, D, 1/+/£(n) cannot be a Cauchy sequence,
in this case. To see this, first observe that

1 2
H VZ(n «/Z( H ”D" P+ o “(m) Y W(Dm,l, Dy 1)
(Dm.1, Dp.1) = (Vug(w1) — QVyg(wo), Vimg(wi) — QVimg(wp))

s mg) (QVng QVmg>

Vag. V,
Vg, Ving) — (Q*Vig, Ving)

%

=

=< n

=(I-0Q? )Vng, Ving)
<<V2 - —QV V2>g, Vmg>-

So, for any fixed m,

2
IIDm =,

s | - | =

and, therefore,

lim

n,1 m 1
m—>oon—>oo H ,/g(n ‘/@( H
3. Examples

For a simple reversible chain, let v be a probability measure on the Borel sets of R, let
p: R — (0, 1) be a measurable function for which

/ dv
6 = < 00,
rR1-—p

and let
Q(w; B) = p(w)lg(w) +[1 — p(w)]v{B} (12)
for Borel sets B € R and w € R. Then Q is a stochastic transition function with stationary
distribution
_ dv
61— p)’
and (1) is satisfied. Thus, there is a reversible Markov chain ..., W_;, Wy, Wi, ... with

transition function Q and marginal distribution 7. This construction is classical, and is described
in [11, pp. 134-135].
Now let 19, 71, T2, . . . be the times before the process jumps, where

1o =max{n > 0: W, = Wy} and v =max{n > t_1: W, = Wg_ 11}.
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Then W, = Wy,_, 41, and
St =10X0 + (11 — 1) Xpy + -+ (T — T—1) X g, -

By the Markov property, (to, Wo) and [(t; — 7j-1), Wr_,.], j > 1, are independent random
vectors for which ij ~ v and

Pt —tj_1 2 k | Wy, = w] = p(w)*!

forallw € W,k > 1,and j > 1. Itfollows that E[t; — 7;_1 | er =w]=1/[1 — p(w)]and

E[ ]_f dv =6
T —Ti—1] = =6.
! ! wl—p

By way of contrast, W, = Wp ~ m, and E[7] = fp dr /(1 — p), possibly infinite. Let
Y =(7; — rj_l)er andT,,, =Y +---+Yy,sothatS;, = 19oWo + T,,,. Then Y1, Y>, ... are
independent and identically distributed (i.i.d.); moreover, E[Y;] = 0, since

_ g(ij) . § _
El(j = 7j-1) Xyl = E[l - p(sz)} B /w I-p dv= O/Wg o

and g € L2 o(m). Let

H(y) = / Y;dP,
Yjl<y °

and recall the following version of the central limit theorem for i.i.d. variables (with possibly
infinite variances); see, for example, [4, pp. 576-578]. If Y1, Y», ... are (any) i.i.d. random
variables for which E[Y;] = 0 and H (y) varies slowly at oo, then there are y;, for which

2 Tm D
Ym ~ mH(ym) and o — Normal[O0, 1].
m

The following lemma is intuitive, and the proof'is presented after Proposition 4 is established.

To state it, define integer-valued random variables m,, such that 7,,, <n < 1,41 for n =
1,2....

Lemma 2. As n — oo, S, — Ty, = Op(1). If H varies slowly at oo then Ty, — T|nj9) =
0p(Yn)-

Proposition 4. [If H(y) varies slowly and yn% ~ mH (ym), then

n
n

1
Wo 2 Normal [O, 5:|

Pmof That T, / Vi 2 Normal[0, 1] was noted above. So, since y|,/8] ~ ¥u/ V0, 0,T\ns01/Vn
2 Normal[0, 1/6], and since W and T,,, are independent for all m, the conditional distributions
have the same limit. The proposition now follows directly from Lemmas 1 and 2.

Proof of Lemma 2. First observe that S, — T, = toWo + (n — tjn,,) W, +1. It is clear that
7o W) is stochastically bounded and that |(n — 7, )Wz, | < (T, +1 — T, ) W, |- To see
that the latter term is stochastically bounded, let f denote the marginal mass function of 7; —
Tj_1, j = 1,2,.... Then the asymptotic distribution of 7,41 — T, has probability mass
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function f (k) = kf (k)/0, by the renewal theorem, [4, p. 271], and the conditional distribution
of W, ., given Ty, +1 — Ty, does not depend on n. That (T, +1 — Tm,)|Wx,, | = Op(1)
follows easily.

The proof of the second assertion uses the following version of Lévy’s inequality [9, p. 259]:
if H varies slowly at co then K !:= inf{min(P[T; < O],P[T; > 0]): k> 1} > 0, and

P[max T > t] < KP[|T,| > 1] (13)
k<n

26n:|

* |k9—'rlr\1§ag5n+0| k= Tino)| = €vn (14)

for all + > 0. Observe that

n
P[|Tm,, - TLn/9J| > eyl < P|: ’mn - \‘EJ

The first term on the right-hand side approaches O for any § > 0 by the law of large numbers.
Letting N, = [n6/0] + 4 and using (13), the second term is at most 2K P[|Ty, | > €yxl.
So, by the central limit theorem, the limit superior of the right-hand side of (14) is at most
4K([1 — CD(E/\/E)], which approaches 0 as § — O.

For the example below, observe that if f € L'(7) then Of(w) = pw)f(w) + [1 —
p(w)] f'w fdv. So, if W = R, v is a symmetric measure, p is a symmetric function, and f is
an odd function, then Q" f = p" x f.

Example 1. Consider (12) with p(w) = e~ /"I and

[1 - p(2)]dz
e—

v{dz} = 22

for |z| > 1. (15)

In which case = e and 7{dw} = dw/2w? for [w| > 1. Let g(w) = sgn(w). Then
g€ LiP(m), Q"¢ = p" x g,and

o0 d 1 [ 1
(8, 0"g) =/p”d7r =/ e /v uz} = —/ e dx ~
R 1 w n Jo n

It follows that (g, V,g) ~ (g, Vag) ~ log(n) anda = [2(g, Vng) — lgl*In ~ 2n log(n). So,
(3) is satisfied with £(n) ~ 210g(n)
Recall the definition of the 7; and the distribution of [7; — 71, Wr;]. Then

Pll(tj — 1j—1)X¢;| > kI =Pl(r; —7j—1) > k]l = /Rpkdv = C/R(l — p)p*dr.

The last integral in the previous display is just

d 1
/ (1—e%e —k/z ‘- / (1 —e /My de~—/ ey = 75

thus,
e
Pll(tj — 1j—1) X¢;| = k] ~ =k (16)
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It follows easily that H(y) ~ 2elog(y) = ef(y), ynz = 2enlog(y,) ~ enlog(n) = %eanz, and,

therefore,

& 2 Normal |:O, l:|

oy 2
(a nonstandard normal distribution).
_ Since E[o, 252] is bounded, it follows that E |S,| ~ 7 ~!/25,, and, therefore, that S,,/ E |, |
— Normal[O, %JT]. The latter convergence can also be deduced from Theorem 4 of [10]. To
this end, it suffices to verify Equation (3.2) of that paper. Since |g| < 1, it is not difficult to
see that the term whose limit is taken in [10, Equation (3.2)] is at most o, 2 ZZ:I kB, where
Br 1s the coefficient of absolute regularity. So, it suffices to show that 8, is of order 1/n, and
this may be deduced from the equation at the top of page 136 of [11] together with the relation
Pltg > n] = fR p"dr ~ 1/n. (The 7 in [11] is our 79 4+ 1.) Conditional convergence is not
asserted in Theorem 4 of [10], but is implicit in the proof; E |S, | ~ a~ 2(7” is not deducible
from that theorem, however, because S, is not normalized by o, there.

Example 2. A slight modification of Example 1 produces a very simple bounded stationary
sequence whose normalized partial sums converge in distribution to a stable distribution. Other
examples may be found in [8]. If (15) is changed to

1 — p(z)]dz
b(dz) = [1—p()]
2Vulz|®
for|z] > 1,where ]l <@ <2andy, = fol y"‘_Z(l —e V)dy, thenr{dz} = (¢ — 1)/(2]z]%)dz
for |z] > 1, and
IN'a)
P[Y > y] ~
VaY*

as y — oo. It then follows that n=1/§, > Z, where Z has a symmetric stable distribution
with characteristic function e =!I and ¢, = (@ — DI (@) fooo X% sin(x)dx.
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