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Abstract

The aim of this paper is to establish the correspondence between the twisted localised
Pestov identity on the unit tangent bundle of a Riemannian manifold and the Weitzenböck
identity for twisted symmetric tensors on the manifold.
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1. Introduction

The Weitzenböck and Pestov identities are two standard identities in Riemannian geom-
etry. While the former is usually phrased on the base manifold, the Pestov identity is given
in terms of functions on the unit tangent bundle. The latter can be further localised by con-
sidering specific functions which are spherical harmonics in restriction to every fiber of the
unit tangent bundle: this is known as the localised Pestov identity. There is a tautological
correspondence between trace-free symmetric tensors on the base manifold and spherical
harmonics; hence, it is conceivable that the Weitzenböck identity should be related to the
localised Pestov identity but this correspondence has never been established anywhere for-
mally. The purpose of this note is therefore to show that the localised Pestov identity is
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indeed equivalent to the Weitzenböck identity. More generally, we will consider this cor-
respondence for twisted objects, where we twist by an auxiliary vector bundle over the
Riemannian manifold. As both identities require a certain amount of notation before being
stated, we refer the reader to Proposition 3·1 below for the twisted Weitzenböck identity, and
Proposition 6·1 for the twisted localised Pestov identity. As for the introduction, we provide
a brief account on the history of these identities, and for which purposes they are used.

The Pestov identity is an L2 energy identity on the unit tangent bundle of a Riemannian
manifold which was first introduced by Mukhometov [24, 25] and Amirov [1], then in a more
general form by Pestov and Sharafutdinov [28, 35], and later written in an intrinsic way
by Knieper [23]

1
. More recently, a twisted identity (that is, involving an auxiliary vector

bundle) was obtained by Guillarmou, Paternain, Salo and Uhlmann [19, 32]. The Pestov
identity was found to play an essential role in two problems of Riemannian geometry on
negatively-curved manifold, namely:

(1) The marked length spectrum rigidity problem which consists in recovering a met-
ric from the knowledge of the lengths of its closed geodesics (marked by the free
homotopy of the manifold). Equally important and intimately related are the tensor
tomography question which asks to recover a tensor from its integrals along closed
geodesics, and inverse spectral problems, which ask if the spectrum of a geometric
operator determines the geometry; see [14, 16, 18, 30, 31] for references where the
Pestov identity is used; see also [7, 13, 20, 26] for further references on the marked
length spectrum.

(2) The ergodicity of the frame flow which consists in showing that the only measurable
functions that are invariant by the frame flow on the frame bundle are the constant
functions, see [9, 11, 12] for references where the Pestov identity is used; see also [2,
4, 6] for further references on frame flow ergodicity.

Let us also mention that there are other versions of the Pestov identity related to thermo-
stat flows [22], and that the (localised) twisted Pestov identity for non-metric connections
can be improved using Carleman estimates [29].

The Weitzenböck formula usually expresses a curvature term as a linear combination of
operators of the form P∗P, where P is a first-order differential operator, typically a projec-
tion of the covariant derivative. It is an important tool for combining differential geometric
aspects with topological aspects on compact Riemannian manifolds, see [5] for a nice review.
This is prominently illustrated in the Bochner method, where the vanishing of Betti numbers
follows under suitable curvature assumptions, and also for the non-existence of metrics of
positive scalar curvature on spin manifolds with non-vanishing Â-genus. Moreover, it is used
to prove eigenvalue estimates for Laplace and Dirac type operators.

In this note we give a self-contained proof of the Weitzenböck formula on trace-free sym-
metric tensors. This is a special case of a more general method introduced in [36]. Here
we will show in addition how to extend the Weitzenböck formula to the case of symmet-
ric tensors twisted with an auxiliary vector bundle E. Finally, we show that this twisted

1 We also remark that in [23, appendix], Knieper argues that the Pestov identity is a “formula of Weitzenböck
type”. Somehow, the present paper makes this intuition rigorous.
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Weitenzenböck formula translates into the localised twisted Pestov identity on the unit
tangent bundle.

2. Symmetric tensors

In this section we recall basic formulas for symmetric tensors as well as the definition and
first properties of conformal Killing tensors. More details can be found in [21].

2·1. The symmetric algebra of a vector space

Let (T, g) := Rn be the standard Euclidean vector space of dimension n. We denote
with SymkT ⊂ T⊗k the k-fold symmetric tensor product of T. Elements of SymkT are
symmetrised tensor products

v1 · . . . · vk :=
∑
σ∈Sk

vσ (1) ⊗ . . .⊗ vσ (k), (2·1)

where v1, . . . , vk are vectors in T. In particular we have v · u = v ⊗ u + u ⊗ v for u, v ∈ T.
Some authors (see [33, page 156]) use another convention for the symmetric product and
divide by k! in (2·1).

Using the metric g, one can identify T with T∗. Under this identification, g ∈ Sym2T∗ �
Sym2T can be written as g = (1/2)

∑
i ei · ei, for any orthonormal basis {ei}. The direct

sum Sym T :=⊕
k≥0 SymkT is endowed with a commutative product making Sym T into a

Z-graded commutative algebra. The scalar product g induces a scalar product on SymkT,
also denoted by g, defined by

g(v1 · . . . · vk, w1 · . . . · wk) =
∑
σ∈Sk

g(v1, wσ (1)) · . . . · g(vk, wσ (k)).

With respect to this scalar product, every element K of SymkT can be identified with a
symmetric k-linear map (i.e. a polynomial of degree k) on T by the formula

K(v1, . . . , vk) = g(K, v1 · . . . · vk).

For every v ∈ T, the metric adjoint of the linear map v · : SymkT → Symk+1T, K 
→ v · K
is the contraction v� : Symk+1T → SymkT, K 
→ v� K, defined by (v� K)(v1, . . . , vk−1) =
K(v, v1, . . . , vk−1). In particular we have v� uk = kg(v, u)uk−1, for all v, u ∈ T.

We introduce the linear map deg : Sym T → Sym T, defined by deg (K) = kK for K ∈
SymkT. Then we have∑

i

ei · ei� K = deg (K),
∑

i

ei�ei · K = nK + deg (K),

where {ei} denotes an orthonormal frame of (T, g). Note that if K ∈ SymkT is considered as
a polynomial of degree k then v�K corresponds to the directional derivative ∂vK and the last
formula is nothing else than the well-known Euler formula on homogeneous functions.

Contraction and multiplication with the symmetric tensor L :=∑
i ei · ei = 2g defines two

additional linear maps:

� : SymkT → Symk−2T, K 
→
∑

i

ei� ei� K
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and

L : Symk−2T → SymkT, K 
→ L · K,

which are adjoint to each other. It is straightforward to check the following algebraic
commutator relations

[�, L ] = 2n id + 4 deg, [ deg, L ] = 2 L, [ deg,� ] = − 2�, (2·2)

and for every v ∈ T:

[�, v · ] = 2 v � , [ v� , L ] = 2 v· , [�, v� ] = 0 = [ L, v · ]. (2·3)

For T =Rn, the standard O(n)-representation induces a reducible O(n)-representation
on SymkT. We denote by Symk

0T := ker (� : SymkT → Symk−2T) the space of trace-free
symmetric k-tensors.

It is well known that Symk
0T is an irreducible O(n)-representation and we have the

following decomposition into irreducible summands

SymkT ∼= Symk
0T ⊕ Symk−2

0 T ⊕ . . .

where the last summand in the decomposition is R for k even and T for k odd. The summands
Symk−2i

0 T are embedded into SymkT via the map Li. Corresponding to the decomposition
above any K ∈ SymkT can be uniquely decomposed as

K = K0 + LK1 + L2K2 + . . .

with Ki ∈ Symk−2i
0 T, i.e. �Ki = 0. We will call this decomposition the standard decomposi-

tion of K. In the following, the subscript 0 always denotes the projection of an element from
SymkT onto its component in Symk

0T. Note that for any v ∈ T and K ∈ Symk
0T we have the

following projection formula

(v · K)0 = v · K − 1
n+2k−2 L (v� K). (2·4)

Indeed, using the commutator relations (2·2) we have�(L (v� K)) = (2n + 4(k − 1)) (v� K),
since � commutes with v� and �K = 0. Moreover �(v · K) = 2 v� K. Thus the right-hand
side of (2·4) is in the kernel of �, i.e. it computes the projection (v · K)0.

2·2. Conformal Killing tensors

Let (Mn, g) be a Riemannian manifold with Levi-Civita connection ∇. All the algebraic
considerations above extend to vector bundles over M, e.g. the O(n)-representation SymkT
defines the real vector bundle SymkTM. The O(n)-equivariant maps L and � define bundle
maps between the corresponding bundles. The same is true for the symmetric product · and
the contraction �. We will use the same notation for the bundle maps on M.

Next we will define first order differential operators on sections of SympTM. We have

d : C∞(M, SymkTM) → C∞(M, Symk+1TM), K 
→
∑

i

ei · ∇eiK,
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where {ei} denotes from now on a local orthonormal frame. The symmetric tensor dK is the
complete symmetrisation of ∇K, in the sense that

g(dK, Xk+1) =
∑

i

g(∇eiK, ei�Xk+1) = (k + 1)
∑

i

g(∇eiK, g(ei, X)Xk)

= (k + 1)g(∇XK, Xk) (2·5)

for every X ∈ TM. The formal adjoint of d is the divergence operator d∗ defined by

d∗ : C∞(M, Symk+1TM) → C∞(M, SymkTM), K 
→ −
∑

i

ei�∇eiK.

As an immediate consequence of the definition we have that the operator d acts as a
derivation on the algebra of symmetric tensors, i.e. for any K1 ∈ C∞(M, SymkTM) and
K2 ∈ C∞(M, SymlTM) the following equation holds

d(K1 · K2) = dK1 · K2 + K1 · dK2.

Moreover, an easy calculation proves that the operators d and d∗ satisfy the commutator
relations:

[�, d∗ ] = 0 = [ L, d ], [�, d ] = −2d∗, [ L, d∗ ] = 2 d. (2·6)

We also consider the operator

d0 : C∞(M, Symk
0TM) → C∞(M, Symk+1

0 TM), K 
→ (dK)0.

According to (2·4), we have d0K = dK + (1/(n + 2k − 2)) L d∗K for every K ∈
C∞(M, Symk

0TM). The formal adjoint d∗
0 : C∞(M, Symk+1

0 TM) → C∞(M, Symk
0TM) is

clearly equal to the restriction of d∗ to C∞(M, Symk+1
0 TM).

A symmetric tensor K ∈ C∞(M, SymkTM) is called conformal Killing tensor if there
exists some symmetric tensor k ∈ C∞(M, Symk−1TM) with dK = L k. Note that K is con-
formal Killing if and only if its trace-free part is conformal Killing. Indeed, since d and L
commute, if K =∑

i≥0 LiKi, with Ki ∈ C∞(M, Symk−2i
0 TM) is the standard decomposition

of K, then dK =∑
i≥0 LidKi, so dK is in the image of L if and only if dK0 is in the image

of L. More precisely we have the following characterisation (see also [21, lemma 3·3]):
a symmetric tensor K ∈ C∞(M, SymkTM) is a conformal Killing tensor if and only if

dK0 = − 1
n+2k−2 Ld∗K0. (2·7)

or, equivalently, if and only if the symmetric tensor K satisfies the condition d0K0 = 0.
Let E be a real vector bundle over M with connection ∇E. We extend d and d0 to twisted

operators

d : C∞(M, SymkTM ⊗ E) → C∞(M, Symk+1TM ⊗ E),

d0 : C∞(M, Symk
0TM ⊗ E) → C∞(M, Symk+1

0 TM ⊗ E),

defined on decomposable elements by

d(K ⊗ ξ ) = dK ⊗ ξ +
∑

i

(ei · K) ⊗ ∇E
ei
ξ , d0(K ⊗ ξ ) = d0K ⊗ ξ +

∑
i

(ei · K)0 ⊗ ∇E
ei
ξ ,
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obtained from the tensor product of Levi–Civita and ∇E connections. In this case, sections
in ker d are called twisted Killing tensors and sections in ker d0 are called twisted conformal
Killing tensors.

3. Weitzenböck formulas

Let (Mn, g) be an oriented Riemannian manifold with Riemannian curvature tensor
R. Let R :�2TM →�2TM be the curvature operator defined by g(R(X ∧ Y), Z ∧ U) =
R(X, Y , Z, U). With this convention we have R = − id on the standard sphere.

Let P = PSO(n)M be the frame bundle of M and let VM be the vector bundle associated
to P via a SO(n)-representation ρ : SO(n) → Aut(V), where Aut(V) denotes the isometries
of a Euclidean vector space (V , gV ). Then the curvature endomorphism q(R) ∈ End VM is
defined as

q(R) := 1
2

∑
i,j

(ei ∧ ej)∗R(ei ∧ ej)∗. (3·8)

Here {ei}, i = 1, . . . n, is a local orthonormal frame of TM and for X ∧ Y ∈�2TM we define
(X ∧ Y)∗ = ρ∗(X ∧ Y), where ρ∗ : so(n) → End(V) is the differential of ρ. In particular, the
standard action of �2TM on TM is written as (X ∧ Y)∗ Z = g(X, Z) Y − g(Y , Z) X = (Y ·
X �− X · Y � )Z. This is compatible with

g((X ∧ Y)∗Z, U) = g(X ∧ Y , Z ∧ U) = g(X, Z) g(Y , U) − g(X, U) g(Y , Z).

Let T =Rn be the standard representation of SO(n) defining the tangent bundle TM. Then
any SO(n)-equivariant endomorphism p ∈ EndSO(n)(T ⊗ V) induces an SO(n)-equivariant
element p̃ ∈ HomSO(n)(T ⊗ T ⊗ V , V) defined by

p̃(a ⊗ b ⊗ v) := (a �⊗ id) p(b ⊗ v), ∀ a, b ∈ T, v ∈ V .

We note at this point that equivariant objects give rise to global parallel sections which we
will denote by the same letter; for instance p defines a parallel section p ∈ C∞(M, End(TM ⊗
VM)). Important examples of such endomorphisms are the orthogonal projections pi, i =
1, . . . , N, onto the summands in an SO(n)-invariant decomposition T ⊗ V = V1 ⊕ . . .⊕ VN .
Another example is the so-called conformal weight operator B ∈ End(T ⊗ V) introduced in
[15] (see also [8]) and defined as

B(b ⊗ v) :=
∑

i

ei ⊗ (ei ∧ b)∗v.

The corresponding element B̃ ∈ Hom(T ⊗ T ⊗ V , V) is given by

B̃(a ⊗ b ⊗ v) = (a ∧ b)∗v.

For every equivariant orthogonal projector p ∈ EndSO(n)(T ⊗ V) we define a first order
differential operator P := p∇.

If K is a section of VM, then ∇2K =∑
i ei ⊗ ej ⊗ ∇2

ei,ej
K is a section of the bundle TM ⊗

TM ⊗ VM. Here for vector fields X, Y on M we denote ∇2
X,YK := ∇X∇YK − ∇∇XYK; then

the curvature endomorphism is given by RX,Y = ∇2
X,Y − ∇2

Y ,X . We can thus obtain natural
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second order operators by applying elements of the bundle Hom(TM ⊗ TM ⊗ VM, VM) to
∇2K.

LEMMA 3·1 ([34, proposition 3·1 and lemma 3·6]). The following relations hold:

B̃∇2 = q(R), p̃∇2 = −P∗P,

where P∗ is the formal adjoint of P.

Proof. Let (ei) be a local orthonormal frame of TM, parallel at the point where the com-
putations are done (i.e. satisfying ∇eiej = 0 for all i, j). The first formula is immediate:

B̃∇2 =
∑

i,j

(ei ∧ ej)∗∇2
ei,ej

= 1
2

∑
i,j

(ei ∧ ej)∗Rei,ej = q(R).

In order to prove the second one, we first compute the formal adjoint of ∇. For all sections
ϕ of VM and ψ of TM ⊗ VM we have

g(∇ϕ,ψ) = g

(∑
i

ei ⊗ ∇eiϕ,ψ

)
=
∑

i

g(∇eiϕ, (ei�⊗ id)ψ)

=
∑

i

ei(g(ϕ, (ei�⊗ id)ψ)) −
∑

i

g(ϕ, (ei�⊗ id)∇eiψ).

Since the first term in the last equation is the codifferential of the 1-form X 
→ −g(ϕ, (X�⊗
id)ψ), we obtain ∇∗ = −∑

i (ei�⊗ id)∇ei . Using this formula, together with the fact that
∇p = 0, p2 = p and p∗ = p, we then compute:

p̃∇2 = p̃

⎛
⎝∑

i,j

ei ⊗ ej ⊗ ∇2
ei,ej

⎞
⎠=

∑
i,j

(ei�⊗ id)p(ej ⊗ ∇2
ei,ej

)

=
∑

i,j

(ei�⊗ id)∇ei

(
p(ej ⊗ ∇ej)

)=
∑

i

(ei�⊗ id)∇ei(p∇)

= −∇∗p∇ = −∇∗p∗p∇ = −P∗P.

Let us now consider the orthogonal projections ps, s = 1, . . . , N, onto the summands
in an SO(n)-invariant decomposition T ⊗ V = V1 ⊕ . . .⊕ VN . The above result shows that
whenever the conformal weight operator B can be expressed as a linear combination of the
projections ps, i.e. B =∑

s asps for as ∈R, we obtain a corresponding Weitzenböck formula:

q(R) = −
∑

s

as P∗
s Ps (3·9)

on sections of VM, where Ps are the first order differential operators defined by Ps(K) :=
ps(∇K) for every section K of VM, giving a section of TM ⊗ VM.

This universal Weitzenböck formula was considered for the first time in [15] and later
extended and generalised for other holonomy groups in [36]. In fact, the irreducible sum-
mands Vs appearing in the decomposition of T ⊗ V are all pairwise non-isomorphic as SO(n)
representations. Thus the projections ps form a basis of EndSO(n)(T ⊗ V) and there is an
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450 M. CEKIĆ, T. LEFEUVRE, A. MOROIANU AND U. SEMMELMANN

explicit formula for expressing the coefficients as in terms of the highest weights of V and
Vs (see [36, corollary 3·4]).

We consider now another SO(n)-representation E with an invariant scalar product and
the corresponding vector bundle EM over M, together with the induced metric. Let ∇E

be any metric connection on E, with curvature tensor denoted by RE. For simplicity, we
still denote by ∇E the tensor product connection ∇ ⊗ idEM + idVM ⊗ ∇E on VM ⊗ EM. The
projections ps:T ⊗ V → T ⊗ V define projections ps ⊗ id:(T ⊗ V) ⊗ E → (T ⊗ V) ⊗ E and,
correspondingly, differential operators PE

s := (ps ⊗ id)∇E, acting on VM ⊗ EM.
Since

∑
s as(ps ⊗ id) = B ⊗ id on T ⊗ V ⊗ E, Lemma 3·1 yields at once

B̃ ⊗ id(∇E)2 = −
∑

s

as (PE
s )∗PE

s , (3·10)

acting on sections of VM ⊗ EM. It remains to compute the action of the left-hand side oper-
ator. If K ⊗ ξ ∈ C∞(M, VM ⊗ EM) is a decomposable section and (ei) is an orthonormal
frame parallel at the point of interest, we have

(B̃ ⊗ id(∇E)2)(K ⊗ ξ )

= B̃ ⊗ id

⎛
⎝∑

i,j

ei ⊗ ej ⊗ (∇E)2
ei,ej

(K ⊗ ξ )

⎞
⎠

= B̃ ⊗ id

⎛
⎝∑

i,j

ei ⊗ ej ⊗
(
∇2

ei,ej
K ⊗ ξ + ∇eiK ⊗ ∇E

ej
ξ +∇ejK ⊗ ∇E

ei
ξ + K ⊗ (∇E)2

ei,ej
ξ
)⎞⎠

=
∑

i,j

(
((ei ∧ ej)∗∇2

ei,ej
K) ⊗ ξ + ((ei ∧ ej)∗∇eiK) ⊗ ∇E

ej
ξ

+((ei ∧ ej)∗∇ejK) ⊗ ∇E
ei
ξ + (ei ∧ ej)∗K ⊗ (∇E)2

ei,ej
ξ
)

= (q(R)K) ⊗ ξ + 1
2

∑
i,j

(ei ∧ ej)∗K ⊗ RE
ei,ej
ξ ,

where the two middle terms cancel each other due to the skew-symmetry in i,j. Denoting by
q(R)E the linear operator acting on (decomposable) sections of VM ⊗ EM by

q(R)E(K ⊗ ξ ) := (q(R)K) ⊗ ξ + 1
2

∑
i,j

(ei ∧ ej)∗K ⊗ RE
ei,ej
ξ , (3·11)

the previous relation (3·10) implies the twisted Weitzenböck-type formula

q(R)E = −
∑

s

as(P
E
s )∗PE

s on C∞(M, VM ⊗ EM). (3·12)

We now consider the case of interest for us, namely V = Symk
0T, where T :=Rn

is the standard O(n) representation of highest weight (1, 0, . . . , 0). Recall the classical
decomposition into irreducible O(n) representations (e.g. see [36, p. 511-512]):

T ⊗ Symk
0T ∼= Symk+1

0 T ⊕ Symk−1
0 T ⊕ Symk,1T, (3·13)
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where Symk
0T is the irreducible representation of highest weight (k, 0, . . . , 0) and Symk,1T

is the irreducible representation of highest weight (k, 1, 0, . . . , 0). We note that Symk+1
0 T is

the so-called Cartan summand. Its highest weight is the sum of the highest weights of T and
Symk

0T.
For later use, let us first express the operator q(R) on symmetric tensors in a more

convenient way.

LEMMA 3·2. For every K ∈ SymkTM, the following relation holds:

q(R)(K) = −
∑
i,j,k

Rei,ejek�(ej · ek · (ei�K)).

Proof. For every skew-symmetric endomorphism A of TM (identified with a section of
�2TM) we have A∗K =∑

Aei · (ei�K). In particular, for A = X ∧ Y we get (X ∧ Y)∗K =
Y · (X�K) − X · (Y�K). We then compute using the symmetries of the Riemannian curvature
tensor:

q(R)(K) = 1
2

∑
k,l

(el ∧ ek)∗(Rel,ek )∗K = 1
2

∑
i,k,l

(el ∧ ek)∗(Rel,ek ei · (ei�K))

=
∑
i,k,l

ek · el�(Rel,ek ei · ei�K) =
∑
i,k,l

el�(ek · Rel,ek ei · (ei�K))

=
∑
i,j,k,l

el�(ek · ej · ei�K)g(Rel,ek ei, ej) = −
∑
i,j,k

Rei,ejek�(ek · ej · (ei�K)).

Next we want to describe projections and embeddings of the three summands. By (2·4),
the map q1 : T ⊗ Symk

0T → Symk+1
0 T onto the first summand is defined as

q1(v ⊗ K) := (v · K)0 = v · K − 1
n+2k−2 L (v� K). (3·14)

The adjoint map q∗
1 : Symk+1

0 T → T ⊗ Symk
0T is easily computed to be

q∗
1(K) =

∑
i

ei ⊗ (ei� K). (3·15)

Note that for any vector v ∈ T, the symmetric tensor v� K is again trace-free, because v�
commutes with �. Since q1 q∗

1 = (k + 1) id on Symk+1
0 T, we conclude that

p1 := 1
k+1 q∗

1 q1 : T ⊗ Symk
0T → Symk+1

0 T ⊂ T ⊗ Symk
0T (3·16)

is the orthogonal projection onto the irreducible summand of T ⊗ Symk
0T isomorphic to

Symk+1
0 T.

Similarly the map q2 : T ⊗ Symk
0T → Symk−1

0 T onto the second summand in the decom-
position (3·13) is given by the contraction map

q2(v ⊗ K) := v� K. (3·17)

In this case the adjoint map q∗
2 : Symk−1

0 T → T ⊗ Symk
0T is computed to be

q∗
2(K) =

∑
i

ei ⊗ (ei · K)0 =
∑

i

ei ⊗
(

ei · K − 1
n+2k−4 L (ei� K)

)
. (3·18)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004125000210
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 11:38:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000210
https://www.cambridge.org/core
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It follows that

q2 q∗
2 = (n + k − 1) id − 2k−2

n+2k−4 id = (n+2k−2)(n+k−3)
n+2k−4 id,

so the projection onto the irreducible summand in T ⊗ Symk
0T isomorphic to Symk−1

0 T is
given by

p2 := n+2k−4
(n+2k−2)(n+k−3) q∗

2 q2 : T ⊗ Symk
0T → Symk−1

0 T ⊂ T ⊗ Symk
0T, (3·19)

valid for n ≥ 3 and k ≥ 1. The projection p3 onto the third irreducible summand in T ⊗
Symk

0T is obviously given by p3 = id − p1 − p2.
The algebraic considerations above extend to vector bundles over M. In particular,

the operators d0 : C∞(M, Symk
0TM) → C∞(M, Symk+1

0 TM) and d∗
0 : C∞(M, Symk

0TM) →
C∞(M, Symk−1

0 TM) introduced above can be described as

d0K = q1∇K, d∗
0K = −q2∇K, (3·20)

for every section K ∈ C∞(M, Symk
0TM). By (2·7) together with (3·14) and (3·16) we see that

the kernel of P1 = p1∇ consists exactly of trace-free conformal Killing tensors. The kernel
of P2 = p2∇ are the divergence free tensors, i.e. tensors in ker d∗

0.
An easy calculation using the explicit formulas for q1 and q2 proves the following relation

on T ⊗ Symk
0T (see [21, proposition 6·1]):

B = k p1 − (n + k − 2) p2 − p3.

As explained above, this yields the Weitzenböck-type formula.

q(R)K = −k P∗
1P1K + (n + k − 2) P∗

2P2K + P∗
3P3 K, (3·21)

for any section K of Symk
0 TM. In the present situation it is easy to get the coefficients for

B by a direct calculation. Alternatively one can use the general formula in terms of highest
weights mentioned above.

Now, if EM is a Euclidean vector bundle associated to a representation E of SO(n) with
metric connection ∇E, we denote by pE

i := pi ⊗ idE, by qE
i := qi ⊗ idE and by

PE
i := pE

i ∇E, i = 1, 2, 3, (3·22)

and obtain as before the twisted counterpart of (3·21)

q(R)E = −k (PE
1 )∗PE

1 + (n + k − 2) (PE
2 )∗PE

2 + (PE
3 )∗PE

3 , (3·23)

acting on sections of Symk
0 TM ⊗ EM.

Since pE
i are orthogonal projectors, we have (pE

i )∗pE
i = pE

i , so using (3·16) and recalling
that d0 = qE

1 ∇E (similarly to (3·20)), we obtain

(PE
1 )∗PE

1 = (∇E)∗(pE
1 )∗(pE

1 )∇E = (∇E)∗(pE
1 )∇E = 1

k+1 (∇E)∗(qE
1 )∗qE

1 ∇E = 1
k+1 d∗

0d0,

and similarly using (3·19), yields

(PE
2 )∗PE

2 = n+2k−4
(n+2k−2)(n+k−3) d0d∗

0.
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From these last two equations, together with (3·23) we obtain the following:

PROPOSITION 3·3. (Twisted Weitzenböck formula). The following formula holds for
sections of Symk

0 TM ⊗ EM:

q(R)E = − k
k+1 d∗

0d0 + (n+k−2)(n+2k−4)
(n+2k−2)(n+k−3) d0d∗

0 + (PE
3 )∗PE

3 . (3·24)

4. Fourier analysis in the fibers of the unit tangent bundle

Further details on this section can be found in [27], [32, section 2].

4·1. Functions on the unit tangent bundle

We denote by SM the unit tangent bundle of (M,g) and by π : SM → M the projection on
the base. There is a canonical splitting of the tangent bundle to SM as:

T(SM) =V⊕H⊕RX,

where X is the geodesic vector field, V := ker dπ is the vertical space and H is the horizontal
space defined in the following way. Define the connection map K : T(SM) → TM as follows:
let v ∈ SM, w ∈ Tv(SM) and a curve ( − ε, ε) � t 
→ v(t) ∈ SM such that v(0) = v, v̇(0) = w.
Denoting x(t) := π(v(t)), we have Kv(w) := ∇ẋ(t)v(t)|t=0. We denote by gSas the Sasaki
metric on SM, which is the canonical metric on the unit tangent bundle, defined by:

gSas(w, w′) := g(dπ(w), dπ(w′)) + g(K(w), K(w′)).

Then the horizontal bundle H is defined as the orthogonal complement of X inside ker K.
We define the normal bundle N→ SM whose fiber at v ∈ SM is given by Nv := v⊥ ⊂

Tπ(v)M. Then dπ : H→N, K : V→N are both isometries and all these bundles over SM
are isomorphic. We will freely identify them in the following. In particular, we will think of
the normal bundle N as the tangent bundle to the spheres.

For x ∈ M, the unit sphere

SxM =
{

v ∈ TxM | |v|2x = 1
}

⊂ SM

(endowed with the Sasaki metric) is isometric to the canonical sphere (Sn−1, gcan). We
denote its Laplace operator by �x. Let �V be the vertical Laplacian acting on f ∈ C∞(SM)
as �Vf (v) :=�π(v)(f |Sπ(v)M)(v), for every v ∈ SM. For k ≥ 0 and x ∈ M, we introduce

�k(x) = ker (�x − k(n + k − 2)id) ,

the spherical harmonics of degree k. Observe that �k → M defines a vector bundle over M,
and that C∞(M,�k) is naturally identified with a subspace of C∞(SM). Given f ∈ C∞(SM),
it can be decomposed as f =∑

k≥0 fk where fk ∈ C∞(M,�k) is the projection of f onto
spherical harmonics of degree k. We call Fourier degree of f , denoted by deg(f ), the maximal
integer k0 ∈Z≥0 (if it exists) such that fk0 �= 0; otherwise we set deg (f ) = ∞. We will also
say that f has finite Fourier content if its degree is finite, that it is odd (resp. even) if it only
contains odd (resp. even) spherical harmonics.

It can be proved that the operator X has the following mapping properties (see [32,
section 3]):

X : C∞(M,�k) → C∞(M,�k+1) ⊕ C∞(M,�k−1).
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This is understood in the following sense: a section fk ∈ C∞(M,�k) defines in particular a
smooth function in C∞(SM) which we can differentiate in the X-direction and this only con-
tains spherical harmonics of degree k − 1 and k + 1. Taking the projection on higher degree
(resp. lower degree), we obtain an operator X+ : C∞(M,�k) → C∞(M,�k+1) of gradient
type i.e. with injective principal symbol (resp. X− : C∞(M,�k) → C∞(M,�k−1) of diver-
gence type) such that X = X+ + X− and X∗+ = −X− (the latter being a mere consequence
of the fact that X∗ = −X as X preserves the Sasaki volume (also known as the Liouville
measure) on SM). As X+ acting on spherical harmonics of degree k has injective principal
symbol, its kernel is finite dimensional by elliptic theory. As a consequence of Lemma 5·3
we will later see that elements in the kernel of X+ correspond to conformal Killing tensors,
i.e. elements in the kernel of d0 as defined in Section 2·2.

4·2. Twist by a vector bundle

Let E → M be a real vector bundle over M equipped with a metric connection ∇E.
Consider the pullback bundle E := π∗E → SM equipped with the pullback connection
∇E := π∗∇E and introduce the first order differential operator

X := ∇E
X : C∞(SM, E) → C∞(SM, E).

The connection ∇E also gives rise to differential operators:

∇E
H

, ∇E
V

: C∞(SM, E) → C∞(SM, N⊗ E),

defined in the following way: for every section f ∈ C∞(SM, E), the covariant derivative
∇Ef ∈ C∞(SM, T∗(SM) ⊗ E) can be identified with an element of C∞(SM, T(SM) ⊗ E) by
applying the musical isomorphism T∗(SM) → T(SM) induced by the Sasaki metric. Using
the orthogonal projections •H and •V of T(SM) onto H and V, respectively, one can then
define the operators:

∇E
H

f := dπ((∇Ef )H), ∇E
V

f :=K((∇Ef )V),

which take values in the bundle N⊗ E→ SM. In local coordinates, these operators have
explicit expressions in terms of the connection 1-form and we refer to [19, lemma 3·2] for
further details.

If (ξ1, . . . , ξr) is a local orthonormal frame of E, then smooth local sections f of E can be
written as:

f (v) =
r∑

j=1

f (j)(v)ξj(x) ∈ Ex, ∀v ∈ SxM,

where f (j) ∈ C∞(SM) are locally defined functions. As before, each f (j) can be in turn
decomposed into spherical harmonics. In other words, we can write f =∑

k≥0 fk, where
fk ∈ C∞(M,�k ⊗ E).

As before, we can define the degree of f ∈ C∞(SM, E) and we say that f has finite Fourier
content if its expansion in spherical harmonics only contains a finite number of terms. The
operator X maps

X : C∞(M,�k ⊗ E) → C∞(M,�k−1 ⊗ E) ⊕ C∞(M,�k+1 ⊗ E) (4·25)
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and can be decomposed as X = X+ + X−, where, if u ∈ C∞(M,�k ⊗ E), X±u ∈
C∞(M,�k±1 ⊗ E) denote the orthogonal projections on the twisted spherical harmonics of
degree k ± 1. The operator X+ is elliptic and thus has finite-dimensional kernel whereas X−
is of divergence type. Moreover, X∗+ = −X−, where the adjoint is computed with respect to
the canonical L2 scalar product on SM induced by the Sasaki metric and the metric on E. We
also refer to the original articles of Guillemin–Kazhdan [16, 17] for a description of these
facts and to [19] for a more modern exposition. It was shown in [19, theorem 4·1] (see also
[10, corollary 4·2] for a short argument) that flow-invariant sections, i.e. smooth sections in
ker X have finite Fourier content.

5. Symmetric tensors versus polynomial functions

Considering symmetric tensors in SymkTM as (pointwise) homogeneous polynomials of
degree k on TM, gives linear maps

π∗
k : C∞(M, SymkTM) → C∞(SM), (π∗

k K)(v) := 1
k!g(K, vk). (5·26)

Note here that (1/k!)vk = v ⊗ · · · ⊗ v, where the tensor product is repeated k times.

LEMMA 5·1. The linear map

π∗ :=
⊕
k≥0

π∗
k :C∞(M, SymTM

)→ C∞(SM)

is an algebra homomorphism.

Proof. Using the bilinearity of the symmetric product it suffices to prove π∗(a · b) =
(π∗a)(π∗b) where a = a1 · · · ak and b = b1 · · · bl, for some ai, bj ∈ C∞(M, Sym1TM). But
this follows from

(π∗a)(π∗b) = 1
k!g(a, vk) 1

l!g(b, vl) = g(a1, v) · · · g(ak, v)g(b1, v) · · · g(bl, v)

= 1
(k+l)!g(a · b, vk+l) = π∗(a · b),

which completes the proof.

The following is standard and is a consequence of the identification of spherical harmonics
with harmonic homogeneous polynomials (e.g. see [3, chapter C·I]).

LEMMA 5·2. The above maps induce pointwise isomorphisms

π∗
k : Symk

0TxM
∼−→�k(x), (5·27)

for every x ∈ M and for every integer k ≥ 0.

If E is any vector bundle over M and E is its pull-back to SM, the spaces of sections
C∞(M, SymTM ⊗ E) and C∞(SM, E) are modules over the algebras C∞(M, SymTM) and
C∞(SM) respectively, and we can extend the linear maps above to linear maps

π∗
k : C∞(M, SymkTM ⊗ E) → C∞(SM, E), π∗

k (K ⊗ ξ )(v) := π∗
k (K)π∗ξ (5·28)

compatible with the module structures in sense that

π∗
k (K) · π∗

l (K′ ⊗ ξ ) = π∗
k+l((K · K′) ⊗ ξ ) (5·29)
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for every K ∈ C∞(M, SymkTM), K′ ∈ C∞(M, SymlTM) and ξ ∈ C∞(M, E). In particular,
since

π∗
2 (L)(v) = 1

2 g(L, v · v) = 1
2 g(v�L, v) = 1

2 g(2v, v) = 1, ∀v ∈ SM,

we have π∗
k+2(LK) = π∗

k (K) for every K ∈ C∞(M, SymkTM).
We now relate the operators X, X+ and X− with the operators d, d0 and d∗

0 defined in
Section 2·2.

LEMMA 5·3. The following relation holds on sections of SymkTM ⊗ E:

Xπ∗
k = π∗

k+1d, (5·30)

while on sections of Symk
0TM ⊗ E we have:

X+π∗
k =π∗

k+1d0, (5·31)

X−π∗
k = − 1

n+2k−2π
∗
k−1d∗

0. (5·32)

Proof. For the first equation, it is enough to check it on decomposable sections  = K ⊗ ξ ,
with K ∈ C∞(M, SymkTM) and ξ ∈ C∞(M, E). Then

Xπ∗
k = ∇E

X(π∗
k (K)π∗ξ ) = X(π∗

k (K))π∗ξ + π∗
k (K)π∗(∇E

X ξ )

and

π∗
k+1d = π∗

k+1(dK ⊗ ξ + ei · K ⊗ ∇E
ei
ξ ) = π∗

k+1(dK)π∗ξ + g(ei, v)π∗
k (K)∇E

ei
π∗ξ

= π∗
k+1(dK)π∗ξ + π∗

k (K)∇E
Xπ

∗ξ = π∗
k+1(dK)π∗ξ + π∗

k (K)π∗(∇E
v ξ ),

where we identified ei with their horizontal lifts to SM and used that dπ(X) = v. It remains
to prove that X(π∗

k (K)) = π∗
k+1(dK). Let v ∈ SM be any vector and denote by x := π(v). The

geodesic in M determined by (x,v) will be denoted by γt. Then the integral curve of X through
v is γ̇t. We can thus compute

X(π∗
k (K))(v) = d

dt

∣∣∣∣
t=0
π∗

k (K)(γ̇t) = 1

k!
d

dt

∣∣∣∣
t=0

g(K, γ̇ k
t )

= 1

k!g(∇γ̇0K, γ̇ k
0 )

2·5= 1

(k + 1)!g(dK, vk+1) = π∗
k+1(dK)(v),

where in the third equality we used that ∇γ̇0 γ̇0 = 0. This proves (5·30). Using this equation
applied to some twisted trace-free symmetric tensor  ∈ C∞(M, Symk

0TM ⊗ E) together
with (2·4) we then obtain

X+π∗
k + X−π∗

k = π∗
k+1d = π∗

k+1

(
d0() − 1

n+2k−2 Ld∗
0()

)
= π∗

k+1(d0()) − 1
n+2k−2π

∗
k−1(d∗

0()).

Comparing the components in �k+1 ⊗ E and �k−1 ⊗ E yields (5·31)–(5·32) at once.

Consider now the operator ∇V:C∞(SM, E) → C∞(SM, N⊗ E) ⊂ C∞(SM, π∗(TM) ⊗ E)
and its formal adjoint ∇∗

V
:C∞(SM, π∗(TM) ⊗ E) → C∞(SM, E). Define the bundle map

Sk : SymkTM ⊗ E → Symk−1TM ⊗ (E ⊗ TM), Sk(K ⊗ ξ ) :=
∑

i

(ei�K) ⊗ (ξ ⊗ ei),
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where (ei) is some local orthonormal frame of TM. Let πN:π∗TM →N be the orthogonal
projection. By definition, for every section K ⊗ ξ of SymkTM ⊗ E and at any v ∈ SM we
have:

π∗
k−1Sk(K ⊗ ξ ) = πNπ∗

k−1Sk(K ⊗ ξ ) +
∑

i

1
(k−1)!g(ei�K, vk−1) (g(ei, v)v ⊗ ξ )

= πNπ∗
k−1Sk(K ⊗ ξ ) + kπ∗

k (K ⊗ ξ ) ⊗ v,

thus showing that for every  ∈ C∞(M, SymkTM ⊗ E),

π∗
k−1Sk = πNπ∗

k−1Sk + k π∗
k ⊗ v. (5·33)

It is possible to give a formula relating Sk and ∇V:

LEMMA 5·4. The following relation holds for sections of Symk
0TM ⊗ E:

∇Vπ
∗
k = πNπ∗

k−1Sk. (5·34)

Moreover, for every K ⊗ ξ ∈ C∞(M, Symk
0TM ⊗ E), and w ∈ C∞(M, TM),

∇∗
V
π∗

k (K ⊗ (w ⊗ ξ )) = −π∗
k−1((w�K) ⊗ ξ ) + kπ∗

k+1((w · K) ⊗ ξ ). (5·35)

Proof. Let v, w ∈ SxM with w ⊥ v. We denote by vt := cos t v + sin t w the curve in SxM
which satisfies v0 = v and v̇0 = w. We then compute

w(π∗
k (K)) = d

dt

∣∣
t=0π

∗
k (K)(vt) = 1

k!
d
dt

∣∣
t=0g(K, vk

t ) = 1
(k−1)!g(K, w · vk−1)

= 1
(k−1)!g(w�K, vk−1), (5·36)

whence for  := K ⊗ ξ we have

∇Vπ
∗
k ()(w) = ∇E

w(π∗
k (K)π∗ξ ) = w(π∗

k (K))π∗ξ = 1
(k−1)!g(w�K, vk−1)π∗ξ ,

where we identified w with its vertical lift. Then, computing the right-hand side at the point
v yields

πNπ∗
k−1Sk()(w) = π∗

k−1

(∑
i

(ei�K) ⊗ (ei ⊗ ξ )

)
(w) =

∑
i

π∗
k−1(ei�K)g(ei, w)π∗ξ

= 1
(k−1)!

∑
i

g(ei�K, vk−1)g(ei, w)π∗ξ = 1
(k−1)!g(w�K, vk−1)π∗ξ ,

thus proving (5·34).

We now remark that since SM → M is a Riemannian submersion, the formal adjoint of
the operator ∇V can be written as ∇∗

V
(σ ⊗ψ) = −∑

i fi�∇E
fi

(σ ⊗ψ) for all sections σ ∈
C∞(SM, π∗TM), and ψ ∈ C∞(SM, E), where (fi) denotes a local orthonormal frame of V⊂
T(SM) and the interior product is taken with respect to the bilinear form V⊗ π∗TM →R

determined by the metric g, after identification of Vv with the orthogonal complement of v
in π∗(TM)v for every v ∈ SM. We then denote by w⊥ := w − g(w, v)v ∈Vv at some v ∈ SM
and compute:
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∇∗
V
π∗

k (K ⊗ (w ⊗ ξ )) = −
∑

i

fi�∇E
fi

(
π∗

k (K ⊗ (w ⊗ ξ ))
)= −

∑
i

fi�
(
fi(π

∗
k (K))π∗(w ⊗ ξ )

)

= −w⊥(π∗
k (K))π∗(ξ )

(5·36)= − 1
(k−1)!g(w⊥�K, vk−1)π∗(ξ )

= −π∗
k−1(w�K)π∗(ξ ) + 1

(k−1)!g(K, vk)π∗
1 (w)π∗(ξ )

= −π∗
k−1((w�K) ⊗ ξ ) + kπ∗

k+1((w · K) ⊗ ξ ).

Finally, we compute the action of the operator PE
3 pulled back to the unit sphere bundle.

LEMMA 5·5. For every  ∈ C∞(M, Symk
0TM ⊗ E), and w ∈ C∞(M, TM),

Zkπ
∗
k = π∗

k PE
3, Z∗

kπ
∗
k (w ⊗) = π∗

k ((PE
3 )∗(w ⊗)) (5·37)

where Zk:C∞(M,�k ⊗ E) → C∞(SM, N⊗ E) ⊂ C∞(SM, π∗TM ⊗ E) is the operator
defined by

Zkf := ∇Hf − 1
k+1∇VX+f + 1

n+k−3∇VX−f (5·38)

and

PE
3 : C∞(M, Symk

0TM ⊗ E) → C∞(M, Symk
0TM ⊗ (TM ⊗ E))

is the first order differential operator appearing in (3·22).

Proof. It is enough to check the first relation, the second following by taking the met-
ric adjoints. By definition we have PE

3 = ∇E − PE
1 − PE

2 . Let us first explicit the last two
operators. Using (3·14)–(3·16) we compute

PE
1 = 1

k + 1
(qE

1 )∗qE
1 (∇E) = 1

k + 1

∑
i

(ei�d0) ⊗ ei = 1

k + 1
Sk+1d0.

From (5·31), (5·33) and (5·34) we thus get at any v ∈ SM:

π∗
k PE

1 = 1

k + 1
πNπ∗

k Sk+1d0 + π∗
k+1d0 ⊗ v = 1

k + 1
∇VX+π∗

k + X+π∗
k ⊗ v.

(5·39)
Similarly, from (3·17)–(3·19) we obtain

PE
2 = n+2k−4

(n+2k−2)(n+k−3) (qE
2 )∗qE

2 (∇E) = − n+2k−4
(n+2k−2)(n+k−3) (qE

2 )∗d∗
0

= − n+2k−4
(n+2k−2)(n+k−3)

∑
i

(
(ei · d∗

0) ⊗ ei − 1
n+2k−4 L(ei�d∗

0) ⊗ ei

)
.

Applying this equation at some v ∈ SM and using (5·32), (5·33) and (5·34) we get:

π∗
k PE

2 = − n+2k−4
(n+2k−2)(n+k−3)

∑
i

(
(π∗

1 ei · π∗
k−1d∗

0) ⊗ ei − 1
n+2k−4π

∗
k−2(ei�d∗

0 ⊗ ei)
)

= n+2k−4
n+k−3

∑
i

(g(ei, v) · X−π∗
k) ⊗ ei + 1

(n+2k−2)(n+k−3) (π∗
k−2Sk−1d∗

0)

= n+2k−4
n+k−3 X−π∗

k ⊗ v + 1
(n+2k−2)(n+k−3) (∇Vπ

∗
k−1d∗

0 + (k − 1)π∗
k−1d∗

0 ⊗ v)

= X−π∗
k ⊗ v − 1

n+k−3∇VX−π∗
k. (5·40)
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Finally, using the fact that π : SM → M is a Riemannian submersion, we readily obtain at
any v ∈ SM:

π∗
k (∇E) = ∇Hπ

∗
k + Xπ∗

k ⊗ v. (5·41)

From (5·39)–(5·41) we thus get:

π∗
k PE

3 = π∗
k (∇E − PE

1 − PE
2) = ∇Hπ

∗
k − 1

k + 1
∇VX+π∗

k + 1
n+k−3∇VX−π∗

k,

which proves the lemma.

We note that as a consequence of the preceding lemma, the operator Zk defined in (5·38)
does not change the degree of the section it acts on (since PE

3 does not change the degree).

6. Twisted Pestov identity

The Pestov identity is a classical identity in Riemannian geometry, see [14, 16, 19, 32] for
the twisted version. Our aim is to obtain a pointwise version of this identity from the twisted
Weitzenböck formula. Let us start with introducing the relevant curvature operators in our
setting.

If (E, ∇E) is a vector bundle with metric connection, we denote by

RE ∈ C∞(M,�2T∗M ⊗ End(E)),

its curvature. Let E := π∗E denote as before the pull-back of E to SM endowed with the
pull-back connection ∇E := π∗∇E and curvature

RE ∈ C∞(SM,�2T∗M ⊗ End(E)),

satisfying RE
X,Y (π∗ξ ) = π∗(RE

X,Yξ ) for all X, Y ∈ TM (identified with their horizontal lifts)
and ∀ξ ∈ C∞(M, E). Consider the vector bundle morphism FE:E→N⊗ E defined by:

〈FE(ψ), w ⊗ψ ′〉 := 〈RE
v,wψ ,ψ ′〉, (6·42)

for every v ∈ SM, w ∈Nv and ψ ,ψ ′ ∈ Ev. The value of FE on pull-backs of sections of E
can be explicitly computed as

FE(π∗ξ ) =
∑

i

e⊥
i ⊗ π∗(RE

v,ei
ξ ), (6·43)

where (ei) is a local orthonormal frame. We also define a vector bundle morphism R:N⊗
E→N⊗ E by:

R(w ⊗ψ) := (Rw,vv) ⊗ψ , (6·44)

for every v ∈ SM, w ∈Nv and ψ ∈ Ev, where R is the Riemann curvature tensor of (M,g).
We will now give the relations between the operators R and FE on one side, and q(R) and

RE on the other side.

LEMMA 6·1. For every K ∈ C∞(M, Symk
0TM) and ξ ∈ C∞(M, E), the following relations

hold:

∇∗
V
R∇Vπ

∗
k (K ⊗ ξ ) = π∗

k ((q(R)K) ⊗ ξ ), (6·45)
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460 M. CEKIĆ, T. LEFEUVRE, A. MOROIANU AND U. SEMMELMANN

∇∗
V
FEπ∗

k (K ⊗ ξ ) = 1

2
π∗

k

⎛
⎝∑

i,j

(ei ∧ ej)∗K ⊗ RE
ei,ej
ξ

⎞
⎠ . (6·46)

Proof. Using (5·34) we compute at some v ∈ SM the left-hand side of (6·45) as:

∇∗
V
R∇Vπ

∗
k (K ⊗ ξ ) =

∑
i

∇∗
V
R (

πN
(
π∗

k−1(ei�K) ⊗ (ei ⊗ ξ )
))

=
∑

i

∇∗
V
R (

π∗
k−1(ei�K)πN(ei) ⊗ π∗ξ

)
=
∑

i

∇∗
V

(
π∗

k−1(ei�K)Rei,vv ⊗ π∗ξ
)

=
∑
i,j,l

∇∗
V

(
(π∗

1 ej)(π
∗
1 el)π

∗
k−1(ei�K)Rei,ejel ⊗ π∗ξ

)
=
∑
i,j,l

∇∗
V

(
π∗

k+1(ej · el · (ei�K))Rei,ejel ⊗ π∗ξ
)

.

Using (5·35) we can rewrite this last sum as

−
∑
i,j,l

π∗
k

(
Rei,ejel�(ej · el · (ei�K)) ⊗ ξ

)+ (k + 1)
∑
i,j,l

π∗
k+2

(
Rei,ejel · ej · el · (ei�K) ⊗ ξ

)
.

By Lemma 3·2 the first summand is equal to π∗
k ((q(R)K) ⊗ ξ ). The second summand van-

ishes since
∑

l Rei,ejel · el = 0. This proves (6·45). Similarly, using (6·43) we compute at
v ∈ SM:

∇∗
V
FEπ∗

k (K ⊗ ξ ) =
∑

i

∇∗
V

(
π∗

k (K)(e⊥
i ⊗ π∗(RE

v,ei
ξ ))
)

=
∑

i

∇∗
V

(
π∗

k (K)(ei ⊗ π∗(RE
v,ei
ξ ))
)

=
∑

i,j

∇∗
V

(
π∗

k (K)π∗
1 (ej)(ei ⊗ π∗(RE

ej,ei
ξ ))
)

=
∑

i,j

∇∗
V

(
π∗

k+1(ej · K)(ei ⊗ π∗(RE
ej,ei
ξ ))
)

(6·46)= −
∑

i,j

π∗
k (ei�(ej · K))π∗(RE

ej,ei
ξ )

+(k + 1)
∑

i,j

π∗
k+2(ei · ej · K)π∗(RE

ej,ei
ξ ).

The second summand vanishes because of the skew-symmetry of RE
ej,ei

in i and j, whereas
the first summand is equal to

−
∑

i,j

π∗
k

(
ei�(ej · K) ⊗ RE

ej,ei
ξ
)

=
∑

i,j

π∗
k

(
ej · (ei�K) ⊗ RE

ei,ej
ξ
)

= 1

2

∑
i,j

π∗
k

(
(ei ∧ ej)∗K ⊗ RE

ei,ej
ξ
)

.
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Combining (3·11) with Lemma 6·1, we obtain for every section of Symk
0TM ⊗ E:

π∗
k q(R)E = (∇∗

V
R∇V + ∇∗

V
FE)π∗

k . (6·47)

Then, using Lemma 5·3 we compute for every section of Symk
0TM ⊗ E:

π∗
k d∗

0d0 = −(n + 2k)X−π∗
k+1d0 = −(n + 2k)X−X+π∗

k , (6·48)

and similarly

π∗
k d0d∗

0 = X+π∗
k−1d∗

0 = −(n + 2k − 2)X+X−π∗
k . (6·49)

Finally, by (5·37) we obtain

π∗
k (PE

3 )∗PE
3 = Z∗

kπ
∗
k PE

3 = Z∗
k Zkπ

∗
k . (6·50)

Altogether, we obtain the following:

PROPOSITION 6·2 (Pointwise localised Pestov identity). On C∞(M,�k ⊗ E) ⊂
C∞(SM, E), the following relation holds:

∇∗
V
R∇V + ∇∗

V
FE = k(n+2k)

k+1 X−X+ − (n+k−2)(n+2k−4)
(n+k−3) X+X− + Z∗

k Zk. (6·51)

Proof. Every section of �k ⊗ E can be written as π∗
k for some twisted symmetric ten-

sor  ∈ C∞(M, Symk
0TM ⊗ E). Then the twisted Weitzenböck formula (Proposition 3·1)

together with (6·47)–(6·50) gives directly (6·51).

Applying (6·51) to  ∈ C∞(M,�k ⊗ E), pairing with  and then integrating over SM
with respect to the Liouville measure, we retrieve the localised Pestov identity in its
integrated version [11, lemma 2·3].
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[11] M. CEKIĆ, T. LEFEUVRE, A. MOROIANU and U. SEMMELMANN. On the ergodicity of the frame
flow on even-dimensional manifolds. Invent. Math. 238 (2024), 1067–1110.
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