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Abstract

This paper is concerned with the behavior of certain principal-value, singular integral operators
on L°° and BMO denned over a local field. It is shown that unless the definition of these
operators is changed appropriately, they may not be defined for some function in these spaces.
Direct, constructive proofs of the existence and boundedness of the altered operators under
certain smoothness conditions on the kernel are given.

1991 Mathematics subject classification (Amer. Math. Soc.): 43A70, 42B20, 42B30.

This paper is concerned with the behavior of certain principal-value, sin-
gular integral operators on L°° and BMO denned over a local field. We
show that unless the definition of these operators is changed appropriately,
they may not be defined for some functions in these spaces. We then give
direct, constructive proofs of the existence and boundedness of the altered
operators under certain smoothness conditions on the kernel. Previous work
has concentrated upon the properties of these operators relative to Lebesgue
and Hardy spaces, and then, providing results on L°° and BMO via duality
arguments.

Let K denote a local field, X the Haar measure on {K, + ) , and | • | the
associated modular function. There is a fixed prime power q so that for
each x e K, \x\-q" for some « e Z . For n e Z we let

B" = {x e K : \x\ < q~"} and Dn = {x € K : \x\ = q~"} •

The measure X is normalized so that X{Bn) = q~n. Since | • | is non-
Archimedean, each B" is a subgroup of K. Fix n € Dl; that is, \n\ = l/q.
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The standard results of local field analysis used here can be found in Taibleson
[6].

We say a locally integrable function / has bounded mean oscillation,
/ e BMO, if

(0.1) supinf ((l/X(B) f \f(x) - c\dx)
B c \ JB )

where the supremum is taken over all balls B c K and the infimum over
all constants c e C. (See Coif man and Weiss [1].) Identifying functions
which differ by an additive constant makes BMO into a Banach space with
norm given by the left hand side of (0.1). An equivalent norm for BMO is
obtained if the zZ-norm in (0.1) is replaced by the Z/-norm for 1 < p < oo.
Note that L°° is a proper subset of BMO.

Let k be the locally integrable function on K* = A"\{0} such that the
integral operator T denned by

Tf(x)=pvjk(y)f(x-y)dy

= limit limit / k(y)f(x - y) dy
n-xx> j-.oo Jq-"<\y\<gJ

= limit limit T .(x)

is a bounded operator on L2 . We say k satisfies condition Sr, 1 < r < oo,
if k is locally in ll on K*, k has mean value zero, and there exists a
non-negative function * on (0,1) such that

and / \k(x-y)-k(x)\rdx<s(q-"\y\)q
J -

-'"r'

for \y\ < q" . S^ is defined by the obvious modification. Note that k € Sr

implies k € St for all t < r. The pointwise behavior of these singular
integral operators on local field have been studied previously for Lebesgue
and Hardy spaces. See Daly and Phillips [2] and Taibleson [6]. In particular,
for / in L2 and k satisfying an Sr condition, then the sequence 7\. „/(•*)
converges pointwise almost everywhere.

A large class of kernels k that satisfy the condition Sr are smooth homo-
geneous kernels k(x) = (o(x)/\x\ where to(nJx) - co(x) for x # 0 and
j e Z and JDo co(x)dx = 0. In particular, if co is locally constant on K*
(that is co(x) = CD(X + y) for all x e D° and y e Bn for some n e N) then
co/\ • | satisfies the Sr condition with s(q~j) = 0 for j > n . These Calderon-
Zygmund singular integral operators with locally constant kernels are known
to map the Hardy space H1 to itself boundedly; and, consequently, by du-
ality, they are bounded on BMO. See Daly-Phillips [2] and Taibleson [6]
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for details. In this paper, we consider more general classes of kernels defined
by the Sr and related conditions, and give direct proofs of the boundedness
of the corresponding operators on BMO. Similar problems have been ad-
dressed by Garcia-Cuerva and Rubio de Francia [3] and Kurtz [4, 5] in the
Euclidean case, where results analogous to Theorems 2 and 3 can be found
for the case of L°° to BMO. Here we give extensions to the case of singular
integral operators mapping BMO to BMO.

For a locally integrable function f on K and ball B, we let

fB = l/X{B) f f{x)dx
JB

denote the average of / over B. We will use the following lemma.

LEMMA 1. Let 1 < p < oo. There is a constant C - C(p, q) such that if
f € BMO, x0 e K, and n>\, then

._ \f(y)-fB\Pdy<CPnpqn-

where B = xQ + Bj .

PROOF. Let Bo = xo + BJ for JC0 e K and j e Z. Define Bm = xo + BJ~m

for ffieZ. Consider the case m = 1. We have
(1.1)

/ \f{x)-fBfdx\ < I \f(x)-fBfdx) +X{Bx)
xlP-\fBi - / |

JB, i /

BMO+/tUV

Estimate the factor \fB - fB\ as follows:

K*)dx-fB

y ' <QlX{Bx)j \f{x)-fB\dx

<<HI/IIBMO'
Combining (1.1) and (1.2), we have

\f(x)-fB/dx<CpX(Bl)\\f\\
P

BMO.

We now proceed by induction. Suppose

\f(x) - fjdx < CpmpX(BJ\\f\\P
BMO.

L
I,
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Bm+\>

(1.3)

The first term in the sum of (1.3) is bounded as before using (1.1) and (1.2),
with B'0 = Bm and B[=Bm+l. Thus

(L(1.4) ( / \fix)-fBm\pdx\ <CliBm+l)
1/p-\\f\\BMO.

The factor \fB — fB\ can be bounded using the induction hypothesis:
(1.5)

\fB -4I = I ( W J ) / fix)dx-f \<(l/XiBJ) [ \f(x)-f\dx

\ i/p

\f(x)-fBfdxj

< C - m - i l / | |B M O.
Combining (1.3)—(1.5), the proof is finished.

Given a set B, let xB denote its characteristic function and Bc its com-
plement. Using the previous lemma, we prove the following theorem.

THEOREM 2. Let f e L°° and be supported on a set of finite measure. If
k satisfies Sl, then Tf exists a.e., Tf e BMO, and ||77]|BMO < C||/||oo,
where C is independent of f.

PROOF. Since / e L2, Tf exists a.e.. Let E = {x e K : Tf(x) exists}
and x0 be a point of density of E. For n0 e Z, consider the ball B =
x0 + Bn°. Write / as

fix) = fB + [fix) - fB]xBix) + [f(x) - fB]xAx)
= fB + SBix) + hB(x).

Since fB is a constant, T(fB) = 0 and hence exists a.e.. Using the fact T
is bounded on L2, we know TgB exists a.e. and

/ \T(gB)(y)\dy<A(B)l/2\\TgB\\2 < CX(B)1/2\\gB\\2
B

<Ck{B)-\\f\\.
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Since xQ is a point of density and TgB exists a.e., there is a point y0 e B
such that ThB(y0) exists and ThB(yQ) = Tf(y0) - TgB(y0). Set Dj =

x0 + D"-j = {\x0 -z\ = qj~n} . Note that (J~ i Dj = Bc. For x e 5 , we
have

*) - 77^0)1 < y \k{x - z) - k(y0 - z)\ \hB(z)\dz

(2.2) / ,

By (2.1) and (2.2),

f \Tf(y) - ThB(y0)\dy < (l/X{B)) f \TgB{y)\dy
JB JB

f \ThB(y)-ThB(y0)\dy
JB

since k e Sl. Therefore, Tf e BMO and \\Tf\\vuo <

Theorem 2 can be extended to the case / e BMO if we require additional
smoothness of the kernel k. We say that the kernel k satisfies the S*
condition if k satisfies Sr and YlT JS(Q~J) < °° • Using basically the same
proof as before, we prove

THEOREM 3. If k satisfies S* for some r, 1 < r < oo, and f e BMO,
then either Tf exists only on a set of measure zero or Tf e BMO with
Hr/IIBMO ^ CII/IIBMO'

 where c is independent off.

PROOF. Let E = {x e K : Tf{x) exists}. Assume E has positive mea-
sure, since otherwise there is nothing to prove. Using the notation of The-
orem 2, we fix x0 and B and write / = fB + gB + hB. The argument
for gB proceeds as before except one uses Lemma 1. For the estimate
\ThB(x) - ThB(y0)\ we use Lemma 1 and the fact k e 5r

+ :
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\ThB(x) - ThB(y0)\ < I \k(x - z) - k(y0 - z)\ \hB{z)\dz

\k(x - z) - k(y0 - z)\ \f(z) - fB\dz

l/r00 / r \
< £ ( / \k(x-z)-k(yo-z)\'dz\

*(jD\f{z)-fB\r'dz\

<c\\f\\BMO.
To complete the proof of the existence of ThB , we use a variation of the
previous argument for the boundedness of ThB , but consider

\(T-TnJ)hB(x)-(T-Tnj)hB(y0)\.

For n > n0, we have

\(T-TnJ)hB(x)-(T-TnJ)hB(y0)\

<C| | / | | B M O

However, (T - Tn j)hB(y0) goes to zero by assumption, thus so does
(T - Tn j)hB(x). Therefore, ThB exists a.e. on B and hence, Tf exists
a.e. on B. As the radius of B is arbitrary, Tf exists a.e. on K.

The norm boundedness follows as in Theorem 2 before using the estimate
(3.1) above in place of (2.2).

Theorem 3 shows that each operator T splits BMO into a subspace where
T is a bounded operator and a subspace where it is infinite for each function.
As an example of this we consider a special homogeneous kernel k. For the

https://doi.org/10.1017/S1446788700031815 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031815


[7] BMO and singular integrals 327

3-adic field K, the cosets 1 + Bx and - 1 + 5 1 of D° are disjoint. Since
each x e K* can be written uniquely as x = 3nx' where \x'\ - 1, we define
the disjoint sets Pi = {x : x e 1+ 51} and P2 = {x: x e - 1 +B1} . Note
that Pl U P2 = K*. The kernel k given by k(x) = (xP (x) - xP (x))/\x\ is
homogeneous of degree - 1 . The operator T is the 3-adic field analog of the
Hilbert transform and is known to be well-defined and bounded on the Hardy
spaces Hp for 0 < p < oo, and thus from BMO to BMO by duality. See,
for example, Daly-Phillips [2]. However, considering T(xP ){x), we have

T(x.){x)= f XP(x-y)dy/\y\- f Xp(x -y)dy/\y\
1
 JP1 ' JP2 '

= (I) + (II),

where the integrals are interpreted in the principal-value sense. Let x € Px.
Then x = 3"(1 + co) with \co\ < 1. For integral (II), we have y e P2, so
y = 3k(-l + fi) with |0 | < 1. Hence x-y = 3 " ( l + « ) - 3 * ( - l + y ? ) . If n ?
k (\y\ ? \x\), then with N = min(n, k), x-y = nN{\ + y) with \y\ < 1.
S o j c - y e / > , . I f / i = fc (|y| = |x|) , then x -y = 3"(-l + (3 + co - 0) ) .
Sox-yeP2. Thus integral (II) is JPj -X{\yWx\}(y)dy/\y\. For integral (I),

x-y €P2 if \x\ < \y\. This can be seen from x-y = 3"(l+co)-3k(l+P) =
3k(-l + (-fi + 3"~k + 3"~kto)) = 3k(-l + y) with |y| < 1. So integral (I)
becomes JPiXm<lxl)(y)dy/\y\. Combining these,

T(xPi)(x)= f x{lyHxl){y)dy/\y\- f x{M>[x]}(y)dy/\y\,
JP1 JP2

which is infinite. The case of y € P2 is analogous. Hence T(xP ) is infinite

everywhere on K* as Px U P2 = K*. This example can be easily adapted to
any local field K.

From the above example and Theorem 3, we know that an unaltered singu-
lar integral operator of the type under consideration may not be well-defined
for a specific bounded function, much less one of bounded mean oscillation.
To modify the operator and make the principle value integrals well-defined
and bounded on BMO, we will exploit the facts that functions in BMO are
equivalent up to additive constants and T(l) — 0 . For a kernel k, we define
the singular integral operator T1 by

T'Ry) = J(k(y -x)- k(-x)X(x))f(x)dx

where x denotes the characteristic function of (B°)c. We will show that T'
is bounded both from L°° and BMO to BMO under suitable smoothness
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conditions on the kernel k. Note that if

cf = f k(-x)X(x)f(x)dx = f k(-x)f(x)dx
1 J J\x\>\

exists, then T'f(y) = Tf(y) -cf. In this case, T'f and Tf represent the
same (equivalence class of) function(s) in BMO. In fact, the finiteness of cf

is exactly the condition on T that makes T itself well-defined and bounded
on BMO.

First suppose that / is bounded. Then

T'fiy) = J(k(y -x)- k{-x)X{x))f{x)dx

= f (k(y - x) - k(-x)X(x))f(x)dx
J\x\<\y\

+ f (k(y-x)-k(-x)X(x))f(x)dx

+ I (k(y -x)- k(-x)X(x))f(x)dx
J\x\>\y\

= (I) -H (II) + (III) -

For (I), we have

(I) = / k(y- x)f{x)dx + f (k(y -x)- k{-x))f{x)dx.

As / restricted to each of the sets {x : \x\ < \y\ and \x\ < 1} and {x :
1 < \x\ < \y\} is in L2, each of the above two integrals is finite. Next, write
(II) as

k(y - x)f{x)dx - f k(-x)f(x)dx.
\ •>1<W<|J'I

/
\x\=\y\

If |y| < 1 > the second integral is 0 . If \y\ > 1, it is finite as before. The
first integral can be identified as T{fxD"){y) where \y\ — q~n . Since fxD*
is in L2 and T is bounded on L2, the first integral is also finite. Finally,
(II) is equal to

/ k(y-x)Xn.,>M](x)f(x)dx+f (k(y - x) - k(-x))f(x)dx.
J\*\<1 *" ./W»nax(b|,l)

The first integral is either 0 (if |y| > 1) or finite by the local integrability of
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k and the boundedness of / . The second integral is bounded by

/ \k(y - x) - k(-x)\dx
J\x\>max(\y\,l)

/
\y\<inJD"

E / \k(y-x)-k(-x)\dx

£ J n\k(x + y)-k(x)\dx
\y\<Qn D

— »J llQO

which is finite as long as k satisfies the condition 5 , . Thus T'f is finite
a.e. if / e L°° . In fact, arguing as in Theorem 2, T' is a bounded operator
from L°° into BMO. We state this as Theorem 4.

THEOREM 4. If f & L°° and k satisfies S{, then T'f exists a.e., T'f e

BMO, and ||r7llBMO ^ cll/lloo' where c is independent off.

PROOF. We again write / as f(x) = fB + gB(x) + hB(x) for a fixed ball
B. To show that T' : L°° -> BMO, we note that T'ifg) = 0 since fB is
constant and k has the mean value zero property. Since gB = (f-fB)xB is
bounded and has compact support,

c, = / k(-x)gB(x)dx < oo

by the local integrability of k. Therefore,

\?gBiy)-cx\dy = f \TgB(y)\dy < y/X(B)\\Tg
JB

B\\2

Since hB e L°°, T'hB < oo a.e.. Fix y0 e B such that T'hB(y0) < oo.
Then,

\?hB{y) - ?hB{yQ)\ - |y(fe(y - x) - k{-x)X{x))hB{x)dx

- J(k(y0 -x)- k(-x)X(x))hB(x)dx

= J(k(y-x)-k(yo-x))hB(x)dx

and now we can proceed as before.
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We now prove the analog of Theorem 3.

THEOREM 5. If k satisfies S* for some r, 1 < r < oo, and f e BMO,
then T'f e BMO and | | r ' / | |B M O < C||/ | |BMO, where C is independent of
f-

PROOF. We first show that T'f exists a.e. for all / e BMO. We write,
as before,

/=/*•> + ( / - fBo)XBo + ( /

Then

(5.1) T>f=T>fB. + f[(f-fBo)xBo] + T'[(f-fBO)x{BoY].

Since fBo € L°° , T1fBo exists a.e. by Theorem 4. Next, we see that

T'iif - fBo)xBo](y) = J{k{y -x)- k(-x)x(x)(f(x) - fBo(x)xBo(x)dx

— j ("(y - x)U(x) - jB°)xB°(x))«x

= T[(f-fBo)xB°](y),

because x is supported on the complement of B . Since T is bounded on
L2 , this term is finite a.e. For the last term of (5.1), we consider the integrals
over over the sets {1 < |x| < |y|} and {\x\ > max(|y|, 1)} separately. First,

I fI (k(y ~ x) ~ k(—x)(f(x) — fBo)dx
|^|>max(|y|,l)

J3 / \k{y -x)- k{-x)\ \f(x) - fBo\dx
, \)<qn

(5.2) <
Vr r r - I xl'

\ I . _ . .r . \\f \Kx + y)-k(x)\rdx] \f \f(x)-fBo\r'dx\

i

The last term is finite since k satisfies S* . Next choose W such that |y| =
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qN. Then, we have

Ll\<\x\<\y\

(5.3) = / k(y - x)(f(x) - fB*)dx + fBo • f k{-x)dx

- f k(-x)f(x)dx.
'l<\x\<qN

The first term is finite for a.e. y, \y\ = qN, since (f-fBo)Xi<M<q
N is in L2

and T is bounded on L2 . The second term is finite by the local integrability
of k; and finally, the third term is finite by the facts that k is locally in Lr

on K* and / is locally in Lr on K. Consequently, T'f is finite a.e.
The proof of the norm boundedness of T1 is the same as that in Theorem

4 with the exception that the local integrability of k on K* is replaced by
the local integrability of \k\r.

Theorem 5 can be extended to a more general class of kernels. We say
k is locally in the Hardy space H1 if kxDn € H\Dn) for all n e Z. The
locally Hx kernel k is said to satisfy the smoothness condition SH{ if
\\k(--y)-k(-)\\Hl{Dn)<s(q-n\y\) for \y\ < q'" with £"*(«-") < oo. This
is the natural generalization of the 5, condition for local integrability to the
Hardy space Hl.

THEOREM 6. / / k satisfies SHX and f £ BMO, then T'f e BMO and
< C||/ | |BMO, where C is independent of f.

PROOF. The proof of Theorem 5 remains the same with the following
exceptions. To estimate (5.2), one has

(k(y - x) - k(-x))(f(x) - fBo)dx
x\>mia(\y\,l)

E fii(k(y-x)-k(-x))(f(x)-fBo)dj
WAXq" JD"
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which is finite as A: € 5/f, . Also, for (5.3), one needs

k(-x)f(x)dx
l<\x\<q"

to be finite. This follows as k is locally in Hl on K* and / is in BMO.

For homogeneous kernels slightly more is known. Suppose k(x) —
co(x)/\x\, where co is homogeneous of degree zero (co(njx) — io(x) for
j e Z), has integral zero on D°, and satisfies the S{ condition. Thus, if
|y| = 1 and n > 1, k satisfies

\k(x-y)-k(x)\dx<s(q-");/
JD—

or, equivalently,

f \(o{x-y)-(o(x)\dx/\x\<s(q-").
JD-"

Writing x as n~nx with |JC'| = 1 and using the homogeneity of co, the
smoothness condition becomes

/ \(o(x'- 7i"y) - co(x')\dx < s(g~n).
JD"

Thus

J J - nny) - co(x')\dxdy < f ] 5(<T"),

which is finite since k satisfies the 5", condition. The finiteness of the left
side of this inequality is precisely the smoothness condition on homogeneous
kernels that was considered by Daly and Phillips [2]. There, it was proved that
if this smoothness condition is satisfied then the Calderon-Zygmund singular
integral operator T maps the Hardy space H1 to itself boundedly. By the
duality of Hl and BMO and the fact that the adjoint T*, T maps BMO
to itself boundedly, where T is defined on BMO by (g, Tf) = (T*gf) for
g e Hx and / e BMO. It would be instructive to have a construction of T
and T' and a direct proof of boundedness as in Theorems 5 and 6 that does
not use duality and is valid for a wider class of kernels than the homogeneous
ones. The methods used in the proofs presented here are not adequate.
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