
Journal of Functional Programming 1 (3): 329-366, July 1991 329

Implementing the evaluation transformer model
of reduction on parallel machines

G. L. BURN
Department of Computing, Imperial College of Science, Technology and Medicine,

London SW7 2BZ, UK

Abstract

The evaluation transformer model of reduction generalizes lazy evaluation in two ways: it can
start the evaluation of expressions before their first use, and it can evaluate expressions further
than weak head normal form. Moreover, the amount of evaluation required of an argument
to a function may depend on the amount of evaluation required of the function application.
It is a suitable candidate model for implementing lazy functional languages on parallel
machines.

In this paper we explore the implementation of lazy functional languages on parallel
machines, both shared and distributed memory architectures, using the evaluation transformer
model of reduction. We will see that the same code can be produced for both styles of
architecture, and the definition of the instruction set is virtually the same for each style. The
essential difference is that a distributed memory architecture has one extra node type for non-
local pointers, and instructions which involve the value of such nodes need their definitions
extended to cover this new type of node.

To make our presentation accessible, we base our description on a variant of the well-known
G-machine, an abstract machine for executing lazy functional programs.

Capsule review

The current consensus among functional programming researchers is that in order to obtain
sufficient parallelism from lazy functional programs, strictness analysis of some form is
required. This paper describes one such approach, the evaluation transformer model, and an
implementation of it using an extension of the Spineless G-machine. (The author's PhD thesis
work treats the theory behind the evaluation transformers.)

The evaluation transformer approach is based on the observation that an expression can
often be reduced more than just to weak head normal form. For instance, to evaluate
(sumlist e), which sums all the elements in a list, it is possible to start evaluation in parallel of
all the elements in the argument list e. Thus in general we have evaluators of different strengths;
for lists we have ^ which evaluates to weak head normal form, h,2 which evaluates the 'spine'
of the list (but not the elements), and t,3 which also evaluates all the elements.

The bulk of the paper is devoted to explaining the technical details of compilation to and
execution of code for the parallel Spineless G-machine, and discusses such issues as the code
for different evaluators, synchronization via nodes in the heap, the interaction between
evaluators of different strength, etc.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

330 G. L. Burn

1 Introduction

Lazy evaluation is a restrictive evaluation mechanism in two ways. Firstly, it always
chooses to reduce a particular redex, usually the leftmost one, at each step in the
execution of a program. Secondly, it only ever evaluates expressions to weak head
normal form (WHNF).

The evaluation transformer model of reduction lifts both of these restrictions, and
is therefore a suitable candidate model for implementing lazy functional languages on
parallel machines. It introduces the concept of an evaluator, which specifies the
amount of evaluation to do to an expression. With each argument to a function, we
associate an evaluation transformer, a mapping from the amount of evaluation
required of the function application to that which is allowed of the argument. Using
this information, we may know that there are several expressions which must be
evaluated, and that they need more evaluation than to WHNF.

This paper discusses compiling code for the evaluation transformer model of
reduction for both shared and distributed memory architectures.

To make the work more accessible, we have described the compilation of lazy
functional languages to abstract machines based on a variant of the G-machine
(Johnsson, 1983, 1987; Augustsson, 1987 a), called the Spineless G-machine (Burn
et al,, 1988).

The key features of the implementations are:

• They support the evaluation transformer model of reduction.
• An independent parallel process is created to evaluate an argument to a user-

defined function when it is known that the expression must eventually be evaluated.
No coordination is needed between the spawning and spawned processes.

• The code produced for shared and distributed memory architectures is the same.
• Slightly better code can be produced for a distributed memory architecture if we

distinguish between the tasks created for arguments to user-defined and base
functions (such as +). In the first case, all we know is that some task will need the
value in the future, whilst in the second we know that the current task will need the
value. If the spawned argument1 to a base function lies on a remote processor, then
the spawning instruction can set up a link to return the value, rather than waiting
to fetch it when the current task actually needs the value.

• In a distributed memory architecture, the addition of an extra node type to
represent non-local pointers simplifies the definition of a distributed memory
machine significantly. This idea arose originally out of the design of a garbage
collection algorithm in Lester (1989 a).

• We make a proper account of the use of context-free and context-sensitive
evaluation transformer information. Context-sensitive information takes into
account the textual context of an expression, and generally gives more information
about an argument to a function than the context-free evaluation transformers,

1 We will see that the code produce for + will spawn one of the argument expressions and have the
process evaluating the application of + try to evaluate the other itself. It is therefore possible that the
spawned argument will be evaluated while the process evaluating the application of + evaluates the
other argument.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 331

which are valid in any context. We will see that context-free information can be
used to capitalize on some of the information which becomes available at run-time.

• An expression only needs to be marked as being evaluated when its evaluation
begins, and unmarked at the end.

At the time of doing the work, many of these features were novel; some similar ideas
now appear in publications of work that was proceeding concurrently with ours - see
Peyton Jones et al. (1989), Augustsson and Johnsson (1989), and Loogen et al. (1989),
for example.

We have purposely ignored the issues of load balancing and restricting the number
of parallel tasks produced by a machine. The first is lower-level than the concerns of
this paper, but we are encouraged by the results of Eager et al. (1986), which seem to
indicate that any load balancing strategy will be reasonably close to an optimal
strategy. Regarding the second, we believe that the most effective way of managing
a parallel machine is to have two versions of the code for each function: one parallel
and one sequential; when the number of tasks in the machine reaches a certain level,
each processor switches to running the sequential code, switching back again when
the load drops below a certain level, and so on. This idea seems to have also appeared
in most other implementation projects, and is encouraged by the theoretical results on
general purpose parallel architectures of Valiant (1988).

This paper is strongly based on Burn (19886), which gave a complete definition of
a shared memory parallel G-machine that implemented the evaluation transformer
model. Unfortunately, the description of the machine instructions in that paper is
almost unreadable, pushing the register transfer notation beyond its usefulness. The
machine definition was modified to a distributed memory architecture, and specified
using a functional program in Lester and Burn (1989). This latter paper also included
a number of significant improvements over the definition of the original shared
memory architecture. Since then our understanding has matured further, so this
paper presents a simpler view of the important issues, without getting bogged down
in the precise definition of the instruction set of a particular abstract machine. Those
who are interested in more detail are referred to Lester and Burn (1989), but be
warned that the instruction set we introduce and use in this paper is slightly different
to the one appearing in that paper!

Evaluation transformer information can also be used for generating code for
sequential machines (Burn, 1990, 1991).

In the next section we give an introduction to the evaluation transformer model of
reduction. Our examples will be in terms of functions over lists. To set the scene for
discussing parallel implementations, we describe some of the features of the Spineless
G-machine in Section 3. Section 4 describes the structures that are needed in shared
and distributed memory architectures to support parallel graph reduction using the
evaluation transformer model of reduction. They are specified using a functional
language. In Section 5 we show how to extend the instruction set of the Spineless G-
machine in order to support the evaluation model on parallel machines, and in
Section 6 we show how to compile code for these machines. As our descriptions are
in terms of abstract machines, they contain some inherent 'inefficiencies'. Section 7

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

332 G. L. Bum

discusses two of them briefly, showing how the work of this paper can be used as the
basis for a real implementation. Finally, we take the opportunity in Section 8 to set
this work in the wider context of other implementations of lazy languages on parallel
machines. In the Appendix we give the complete compilation rules for a simple
combinator language.

2 The evaluation model

There are two broad classes of methods we may choose to obtain parallelism in the
evaluation of lazy functional languages which have no explicit parallel constructs. A
machine may employ speculative parallel evaluation, where any redex in a graph is a
possible candidate for reduction, or it may use conservative parallel evaluation, where
only expressions whose values are known to be needed are evaluated.

Speculative parallelism wastes machine resources by evaluating expressions which
may eventually be discarded. For example, in the expression

i f c o n d i t i o n then e l e l s e e2

the value of only one of e l and e2 will be needed, depending on the truth of the
cond i t i on , so any evaluation of the other expression is wasted work. The problem
is compounded in languages which allow the writing of expressions denoting infinite
computations, for such computations may try and consume infinite amounts of
resources.2 This would imply the need to garbage collect infinite processes, which is
a difficult problem we would like to avoid. Therefore, we have investigated a
conservative parallel reduction model. Nevertheless, others have defined imple-
mentations using speculative evaluation, Partridge (1991), for example. It remains
to be seen whether the extra parallelism made available by speculative evaluation is
needed.

The purpose of this section is to give an intuitive development of the evaluation
transformer model of reduction. We will see that each argument of a function has an
evaluation transformer associated with it. Given the amount of evaluation allowed of
an application of the function, the evaluation transformer model says how much
evaluation needs to be done to the argument expression (which may be no
evaluation). This is useful for two reasons. Firstly, knowing that a function needs to
evaluate an argument means that the evaluation order can be changed, either creating
a parallel process to evaluate it, or generating code which will evaluate it straight
away, saving the cost of building a closure. Secondly, knowing that an expression
needs more evaluation than to WHNF allows us to make further optimizations, for
example, increasing the granularity of a process, or saving the cost of building
closures for substructures, or generating more parallelism in the case of a parallel data
structure such as a binary tree.

We will develop the evaluation model using our intuitions about how certain
functions behave. We note, however, that evaluation transformers can be determined
by a semantically sound analysis technique, such as abstract interpretation (Burn

2 An infinite computation does not necessarily mean no result is produced. When one has structured data
types, a computation may produce a finite or unbounded amount of output as well as proceeding
forever.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 333

1987, 1991), or projection analysis (Wadler and Hughes, 1987; Burn, 1990), which
can be implemented in a compiler (Hunt, 1989). The evaluation transformers found
using these analyses can be used in a conservative parallel evaluation model, as they
will only allow the evaluation of expressions which would eventually have been
evaluated using lazy evaluation.

2.1 Evaluators

We know that in some function applications, the argument will need more reduction
than just to WHNF. Suppose that the data type l i s t has been declared as3

l i s t * : : = Ni l | Cons * (l i s t *)

and the function length denned by

l e n g t h Nil =0
leng th (Cons h t) = 1 + (l eng th t)

To evaluate an application of l ength , the whole of the structure of the argument list
will need to be traversed, but the values which are the first argument to the
constructor Cons will never have to be evaluated. The function sum, however, also
has to evaluate the first argument to the constructor Cons for each element in the list

sum Nil =0
sum (Cons h t) = h + (sum t)

We call the process of recursively evaluating the expressions which are in the recursive
places in a data type definition, creating the structure of the expression. The process
will only terminate if the structure of the object is finite.

We say that we can evaluate an expression using a particular evaluator, and call an
evaluator which evaluates expressions to WHNF £15 an evaluator which evaluates the
structure of a data type £2, and an evaluator which evaluates the structure of a data
type and every non-recursive element of the data type to WHNF i;3. For completeness,
the evaluator t,N0 does no evaluation. There is an obvious generalization of the
concept of evaluators to the situation where more evaluation is done to substructures
than that done by i;3, and to other recursively defined data types.

Note that although £2 and %z are defined in terms of evaluating the whole structure
of an expression, they could be implemented so that they only evaluated a certain
number of elements of the data structure at a time; when the evaluated part of the
list has been consumed, the evaluation of the expression could be reawakened to
evaluate some more.

2.2 Evaluation transformers

Not only do some functions require more evaluation of their argument than to
WHNF, but the amount of evaluation of an argument may depend on the amount

All example code fragments will be written in Miranda (Turner, 1985, 1986). Miranda is a trademark
of Research Software Ltd.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

334 G. L. Burn

Table 1. Evaluation transformers for append

E APPEND XE APPEND 2E

of evaluation required of the application. Consider for example the function append
denned by

append Ni l ys =ys
append (Cons x xs) ys = Cons x (append xs ys)

Normally only the first argument to append needs to be evaluated to WHNF,
because a result in WHNF is required. However, if one was to require that an
application of append was to deliver the structure of a list, such as in the application
l e n g t h (append e l e2) , then clearly it can only do this if the structure of both
of its arguments are created.

For each argument of a function therefore, we have to determine an evaluation
transformer. An evaluation transformer for an argument is a function which says
which evaluator may be used for evaluating the argument, given the evaluator for the
expression. For example, the evaluation transformers for append are given in Table
1. APPENDt is the evaluation transformer for the rth argument of append. If an
application of append is being evaluated with the evaluator %2, then the first
argument can be evaluated with the evaluator (APPEND ̂ £2) which, from Table 1,
is t,2. Similarly, the second argument can be evaluated with ^2. Further examples can
be found in Burn (1987, 1991).

2.3 The evaluation transformer model of reduction

Evaluation transformers say how much evaluation can be done to an argument
expression in a function application, given the amount of evaluation that can be done
to the application. In a sequential implementation, this information is used to
evaluate the argument to that extent before applying the function, saving the cost of
building a closure for the argument in the heap. We use this information in a parallel
implementation by creating a parallel process to evaluate the argument at the same
time as the function application.

3 The Spineless G-machine as a basis for parallel implementations

Until fairly recently, implementations of lazy functional languages have been
described using abstract machines (see Johnsson, 1983, 1987; Augustsson, 1987a;
Fairbairn and Wray, 1986, 1987, for example). Now people have begun explaining
implementations in terms of more conventional compiler technology, as can be seen

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 335

in Bloss et al. (1988), Peyton Jones and Salkild (1989), and Traub (1989). This shift
has taken place because of an increased understanding of how implementations
should work. Nevertheless, we have chosen to describe the use of evaluation
transformer information in terms of a parallel abstract machine. Not only does this
provide a suitable level of abstraction, but it makes the presentation more accessible
to those familiar with the more traditional abstract machine-based implementations.

Our development will be based on the Spineless G-machine (Burn et al., 1988). The
key observation that distinguishes this machine from its predecessor, the G-machine
of Augustsson and Johnsson (Augustsson, 1987a; Johnsson, 1983, 1987), is that
graph representing an expression can only become shared in the special circumstance
that the expression is named, for example by becoming bound to a formal parameter
to a function, or the variable in a l e t or l e t r e c . For a sequential machine, this has
the advantage that the updating of expressions can be associated with sharing, rather
than with each reduction step. The root node of any shared graph can be marked as
such, and only shared graphs need to be updated. When evaluating an expression, any
sharing of nodes on the spine of the graph being built at each reduction step is either
mediated through the root of the expression being reduced, because the original
expression was shared, or because the function being applied is of the form

f x l . . . xn = xi Dl. . . Dm

and the parameter x i is shared. In this case, the evaluation of the current expression
can be suspended until the expression bound to x i has been evaluated to WHNF and
has been updated with the result. Therefore the evaluation of a shared expression has
the following steps

load spine onto stack -> evaluate to WHNF ̂ -update

During the evaluation of an expression, the stack effectively caches the spine of the
expression currently being reduced; it need not be built in the heap, and there need
not be any updating of the root of the expression being reduced until a result in
WHNF has been obtained.

This observation about sharing is very important for a parallel machine. Whilst a
task is evaluating an expression, the machine must lock out any other task which tries
to evaluate or access the value of the expression. At the time we made the observation
about sharing in Burn et al. (1988), other parallel G-machine specifications were
based on the classical G-machine definition (Augustsson, 1987a; Johnsson, 1983,
1987). Because the classical G-machine made no use of sharing information, it
defaulted to assuming that every node on the spine of the expression currently being
reduced could be shared, and so built the spine of the result of each reduction step
in the heap, and updated the root of the redex at the end of each reduction step. For
a parallel machine, the logical consequence of this is that each node on the spine of
the expression being reduced has to be marked as ' being evaluated' at the beginning
of each reduction step, and unmarked at the end of each reduction step, a big overhead
(Peyton Jones 1987; Augustsson, 19876; Nocker and Plasmeyer, 1986; Raber et al.,
1987 a, b). However, using our observation about sharing, we note that the nodes on
the spine of an expression to be reduced only need to be marked when the evaluation

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

336 G. L. Burn

Vap g ^ • • • i

D l Dm

Fig. 1. The VAP node representing the application (g Dl. . . Dm).

of the expression begins,4 and unmarked when it has been updated with the WHNF
of the result, giving the more efficient sequence of operations (Burn, 19886)

mark -» load spine -»• evaluate to WHNF^- update -> unmark
expression onto stack expression

Other, more recent specifications have been based on the same observation
(Augustsson and Johnsson 1989; Peyton Jones and Salkild, 1989, for example).

Another advantage of taking the sharing information into account is that variable-
sized application nodes (VAP) can always be used for storing function applications in
the heap, because subparts of the VAP cannot be shared, rather than only using them
in the special case that a function is applied to exactly the right number of arguments,
as in Johnsson (1987, p. D-15). A VAP is a series of contiguous cells in memory which
stores a pointer to the code for the function being applied and pointers to the graphs
of its arguments. For example, the VAP to store the application (g Dl. . . Dm),
shown diagrammatically in Fig. 1, has m + 1 slots in it, with the first one pointing to
the code for g, and the (i +1) s t slot pointing to the root of the graph for Di. It
also has the tag VAP to indicate that it is a VAP node, and an implementation would
have some way of telling how big it is. Whilst the original presentation of the Spineless
G-machine was in terms of binary application nodes, this was only so that it could
be easily compared with the classical G-machine. In this paper it is more convenient
to use VAPs.

A compiler for the Spineless G-machine assumes that pointers to a complete set of
argument expressions are available on the top of the stack at the entry to the code for
a function. Function definitions are compiled using the ^"-compilation rule

x l . . . x n = g D l . . .Dm] = D l . . . Dm] [x l n - n , . . . , x n i - > l] n

where the ^-compilation rule is used to compile the right-hand sides of function
definitions. The third parameter to the ^-compilation rule records that the n
arguments to f are currently on the stack, and is incremented (decremented) as other
items are pushed onto (popped from) the stack. Along with the third parameter, the

If the expression is not shared, then it does not have to be marked. However, we will see that creating
a process to evaluate an unshared expression essentially turns it into a shared expression.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 337

second parameter maps the formal parameters of the function f to the offsets into the
stack where pointers to the graphs of the actual parameters can be found. The
following invariant is maintained by the compiler

If Z£ is some compilation rule, when beginning to compile the expression E
using SC: #m r n >

the index into the stack of the pointer to the actual parameter bound to the
formal parameter x is given by:

(n - (r x)) .

Note that this means that the stack is zero-indexed.
The code for the function f creates graphs for each of the expressions which are

arguments to g (recall that it is implementing lazy evaluation), squeezes out the
pointers to the arguments to f by moving the m arguments of g down n places, and
then jumps to the code for g if and only if there are enough arguments on the stack
for the code for g to be executed. This is expressed by the following compilation rule

Dl . . . DmJ r n = <̂ [[Din] r n; . . . ; "^[DlJ r (n + m —1);

SQUEEZE m n; PUSHFUN g; ENTER

The ^-rule compiles code to build the graph of an expression, and its details need not
concern us further.5 PUSHFUN g pushes a pointer to the code for g onto the stack,
and ENTER uses this to see if there are enough arguments on the stack in order to
enter the code for g. If there are, then it removes the pointer and jumps to the code
for g. Otherwise, it creates a new node containing the function application, and
returns to the caller. This second case is orthogonal to the main issues of this paper
and will be ignored in the subsequent development.

At this point it is worth noting that there are a number of possible optimizations
of the above code. For example, if we know that g takes at most m arguments, then
the code sequence PUSHFUN g; ENTER can be replaced by one which jumps directly
to the code for g. Again, this type of optimization is orthogonal to the work described
in this paper. Our claim is not that we are developing the most efficient
implementation, but using an abstract machine to show how evaluation transformer
information can be used in compiling code for parallel implementations.

In the classical G-machine, the ^-compilation scheme was added to compile
expressions which were known to need evaluating. For example, it can be used to
compile applications of + , because + needs to evaluate its arguments before they can
be added together

@{ + Dl D2J r n = <?[[DlJ r n ; ^[D2J r (n + 1) ; ADD; SQUEEZE 1 n;

RETURN

where the 8-rules generate code which evaluates an expression to WHNF and leaves
a pointer to its graph on the top of the stack, and the instruction ADD adds the two

6 For those who are interested in its definition, the <€ compilation rule for a simple combinator language
is given in Section A.5 of the Appendix.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

338 G. L. Burn

integers together pointed at by the two top stack elements, and replaces the two
pointers with a pointer to a node containing the result. As the result is in WHNF, the
RETURN instruction is used to return to the code which caused the evaluation of this
expression.

Either (or both) of Dl and D2 may themselves be arithmetic expressions, so we can
define

Dl D2] r n = <f[Dl] r n; <?p)2] r (n + 1) ; ADD.

If an argument to + is a general function application, then we have to define

S\g Dl . . .Dm] r n = #|[g Dl. ..Dm] r n; EVAL

where EVAL causes the evaluation of the expression pointed at by the top of stack to
WHNF.

Another example of where we know that a particular expression needs to be
evaluated is in compiling the conditional

Dl D2 D3] r n = <?[Dl] r n; JTALSE LI; #p>2] r n;

LABEL LI; ^£D3] r n

where the expression Dl is evaluated, and then code for either D2 or D3 is executed,
depending on whether or not Dl evaluated to t r u e .

The key feature of the evaluation transformer model of reduction is that it allows
the evaluation of some argument expressions. If we were compiling code for a
sequential machine, the evaluation transformer information could be incorporated
into the code by adapting the definition of the S-compilation scheme (Burn, 1990,
1991). Instead, when we know an expression can be evaluated, we will build its graph,
and generate a parallel task to evaluate it.

4 The structure of a parallel G-Machine

The data structures necessary for, and their use in the support of the evaluation
transformer model of parallel graph reduction are developed and described in Bevan
et al. (1989). An attempt at a rational reconstruction of these was made in Burn
(1988 a). Unfortunately, some of the states of the nodes in the graph were coded up
in a rather complex manner, and state information was kept on nodes which did not
need it (integer nodes cannot have a task created to evaluate them, for example). In
keeping with our policy of using the abstract machine to explain our ideas, in the
following discussion we will untangle the state information by adding some extra
flags, and make the explanation simpler by only keeping state information on nodes
that need it.

We discuss the structure of a shared memory machine first, followed by that
necessary for a distributed memory architecture. In order to make the presentation
simpler, we discuss an abstract machine which only supports the data types boolean,
integer and list. Our description of the abstract machine will use fragments of
Miranda code; a full description of a parallel, distributed memory abstract machine

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 339

supporting the evaluation transformer model of reduction, which is very close to the
one we describe here, can be found in Lester and Burn (1989).

For those not familiar with Miranda

state = = (output, [processor], graph, task_pools,

environment)

is a type synonym definition, saying that an object has type s t a t e if it is a tuple of
five elements, which have the respective types ou tpu t , [p r o c e s s o r] , and so on,
each of which is, or contains type synonyms itself, and will be defined subsequently
in this paper. The special notation [p rocessor] says that the second element of the
tuple is a list of objects of type p rocessor . We also see declarations of the following
form

tagged_exp::= BOOL bool|INT num |

NIL|CONS ev label label |

VAP ev [label] |

SVAP ev t_c t_e p_l [label]

ev = = num

t_c = =bool

t_e = =bool
p_l = = [task_id]

This declares a new type, tagged_exp, which is like a mathematical sum-of-
products, and is often called an algebraic type. An object of this type has the form of
one of the alternatives which are separated by vertical bars. For example, two objects
of this type are (BOOL True) and (INT 5), where BOOL and INT are usually called
tags, and tell us which part of the sum the data object comes from, and the arguments
have the appropriate types (True is of type bool and 5 of type num). Further details
of the Miranda language can be found in Turner (1985, 1986) and the book by Bird
and Wadler (1988) uses a language pretty close to Miranda in its examples.

4.1 A shared memory architecture

A shared memory architecture is one where the memory storing the graph and the
task pools is shared by all of the processors. Its state is represented by the type
s t a t e , and consists of output generated so far, a list of processor states, the graph,
the task pools, and an environment

state = = (output, [processor], graph, task_pools,

environment)

The output of the machine contains the results of a program, and the environment
provides a mapping between function names and their code; neither will concern us
further in this paper. Note that the graph and task pools are part of the global state
of the machine, and so are shared by all the processors. We now specify each of the
other components in more detail.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

340 G. L. Burn

4.1.1 Processors

A processor executes one task at a time. When it has either finished a task, or can
proceed no further with its current task, then it obtains a new task from the task pool.
The state of a processor is therefore just the state of the process it is currently
executing , ,

& p rocessor = =process_s t a t e

p r o c e s s _ s t a t e = = (thread, s tack, dump)

thread = = [gcode]

s tack = = [l abe l]

dump = = [(thread, s t ack)]

l a b e l = = num
In the state of a process, the th read is the list of instructions (of type gcode) which
must be executed by the process, the stack represents the stack of pointers, and the
dump is used to record the state of the evaluation of an expression when a task
recursively evaluates some subexpression.6 A label can be thought of as being the
address of a piece of graph.

We do not give a complete list of all of the instructions that are used in the parallel
machine, but discuss some specific ones in the text of the paper.

4.1.2 The graph

The graph can be represented as a list of labelled, tagged expressions

graph = = [(l abe l , tagged_exp)]

A tagged expression is one of the following

tagged_exp: : = B00L bool|INT num |

NIL|C0NS ev l a b e l l a b e l |

VAP ev [l a b e l] |

SVAP ev t_c t_e p_l [l a b e l]

ev ==num

t_c = =bool

t_e = =bool

p_l = = [t a sk_ id]

The first two alternatives store booleans and integers respectively, and the next two
are for storing lists. A CONS node has an evaluator field (of type ev) to indicate how
much evaluation has been or is being done to the expression which has the node as
its root.7 The Spineless G-machine distinguishes between expression graphs which are

8 If a contiguous piece of store was being used for the stack of the process, then the dump would only
need to store the stack pointer, rather than the whole stack. In a similar way, it would only have to store
the current program counter rather than the list of instructions left for that process.

7 We shall see in Section 6.2.2 that an application of Cons being evaluated with !;2 or i,3 will return the
first CONS node, marked with the appropriate evaluator, and spawn processes to evaluate the
subexpressions that need to be evaluated by that evaluator.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 341

(possibly) shared, and those which are definitely not shared. Unshared expression
graphs do not have to be updated. Two different node types are therefore used for
storing VAPs: VAP and SVAP. VAPs are for storing expressions which do not need to
be updated. They have an evaluator, which says how much evaluation must be done
to the expression, and a list of labels, pointing to the function being applied and its
list of arguments. An SVAP is used to represent the graph of an expression which may
be shared (hence the S), and so must be updated when it has been evaluated to
WHNF. The interpretations of the extra fields of a particular SVAP

SVAP e t c te p i I s

are

• t c = t r ue if and only if a task has been created to evaluate the expression.
• t e = t r u e if and only if a task has started evaluating the expression.
• p i contains a list of identifiers of tasks waiting for the expression to be evaluated.

In a way, the flag t e and the pending list are like an implementation of a semaphore
(Dijkstra, 1965). Initially it effectively has the value 1. When a task wants to evaluate
the expression, then it does a P operation on the semaphore. Any further attempt to
do a P operation on the node whilst it is being evaluated results in the task attempting
it to be queued on the semaphore (that is, on the pending list). The number of V
operations that need to be done when the evaluation of an expression has been
completed depends on the execution profile of the program.

In a parallel graph reduction machine, the graph is the communications medium
between processes.8 This means that if a task is created to evaluate an expression, then
the expression must be updated with the WHNF of the expression at the completion
of the task, so that other tasks requiring the value of the expression can obtain the
value. A VAP is used when there is only one pointer to the expression, and so the
expression does not need to be updated. However, if a task is created to evaluate a
VAP, the VAP must be changed to a SVAP, with all its attendant status information,
to force the task which evaluates the expression to update the graph, so that the
creator of the node can access its reduced value. Another way of saying this is that
creating a task to evaluate an expression causes it to be shared.

4.1.3 Task pools

task_pools= = (active, blocked)
active ==task_pool
blocked ==task_pool

There are two task pools: when processes are created or they have become unblocked,
they are put in the active task pool; a process becomes blocked if it needs the value
of an expression being evaluated by some other task, whereupon it is put in the
blocked task pool. These task pools are represented by a list oftask_pool_entrys
paired with their task_ids. The vap_node contains the label of the node which is

8 Note that a node in the graph is usually more persistent than a process.

13 FPR 1

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

342 G. L. Burn

to be evaluated by the task. When a task is created, the pending_count is set to
zero. It is incremented if the task tries to evaluate an expression which some other task
has started to evaluate. When a task has no more work it can do until it receives these
values, it is put in the blocked task pool. The task is put back in the a c t i v e task
pool when its pending_count reaches zero again. The update_node is the label
of the node that has to be updated with the WHNF value of the expression. The
p r o c e s s _ s t a t e is the state of the process at the point where it was last suspended.

task_pool ==[(task_id, task_pool_entry)]

task_pool_entry = = (vap_node, pending_count, update_node,

process_state)

vap_node = = label

task_id = = label

label ==num

pending_count = = num

update_node = = label

4.2 A distributed memory architecture

The key feature which distinguishes a distributed memory architecture from a shared
memory one is that there is no global memory; the memory is distributed across the
machine, with each processor having its own local store. To avoid bottlenecks in the
machine, this means that the graph must be distributed over the local memories of the
machine, but there must still be a global address space, and each processor must have
its own local task pool. As we defined the state of a shared memory architecture, we
now do this for a distributed memory architecture.

The state of the machine can be represented by the type

state = = (output, [processor], [message], network)

where the graph and task pools have been removed from the global state of the
machine. Instead we have a list of messages, and a representation of the
communication network of the machine; the former represents the dynamic state of
the network, the messages in transit, and the latter its static state, namely its topology
and timing information. Again, the structure of the output will not concern us
further, nor will we need to make any further comments concerning the
communications network.

4.2.1 Processors

Conceptually, we may consider each processor to consist of a processor identifier, the
instruction stream of the currently active task (thread), the local task pools, the
local graph and the enrivonment

processor = = (processor_id, thread, task_pools, graph,

environment)

processor_id==num

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 343

In our distributed memory architecture, we distinguish between tasks which have
started executing and those which have not; only tasks which have not begun
executing are allowed to be migrated to other processors, to save the overhead of
sending any state information with the migrated process. Therefore the distributed
memory architecture has three task pools

task_pools = = (active, blocked, migratable)

active = = task_pool

blocked = = task_pool

migratable = = task_pool

The first (ac t ive) contains those tasks that are executable and have been started or
imported,9 the second (blocked) contains tasks that have been suspended, and the
third (migratable) contains tasks that may be exported, that is, those that are
executable, but have not been started or imported.

We can make l a b e l entries globally unique by pairing them with the processor
identifier (of type processor_id) . The identifier of a processor is a number. There
are several places, on the pending list for example, where two global addresses are
kept, meaning that two copies of the processor identifier are kept. Clearly, it is more
space efficient, in a real implementation, to store one copy of the processor identifier
and the two local identifiers of the task and graph labels.

global_task_id = = (processor_id, task_id)

global_label = = (processor_id, label)

We add one more type of node that can be in the graph, the node tagged with
OUTIND, for output indirection. All pointers from one processor to another point to
a local output indirection node, which points to the node on the remote processor.
This makes explicit which pointers are local and which are global. All local pointers
therefore only need contain a local label, and do not need the extra processor_ id
field. Furthermore, all the instructions that depend on looking at the objects in the
graph do not have to have an explicit test on whether or not a pointer is local or
global; they know by looking at the tag of the graph object. The use of OUTINDs has
one further advantage, all local pointers to the global object can point to the same
output indirection node. When the remote expression has been evaluated, and copied
to the local processor, the value can overwrite the output indirection node so that all
pointers that referred to the OUTIND node now share the reduced copy; the value of
the expression only needs to be requested once. With this in mind, we have to extend
the tagged_exp data type declaration to be

tagged_exp : : = BOOL bool|INT num |

NIL|CONS ev l a b e l l a b e l |

VAP ev [l a b e l] |

SVAP ev t_c t_e p_l [l a b e l] |

OUTIND ev t_r l_p_l g l o b a l _ l a b e l
ev ==num

9 This condition prevents tasks being moved more than once.

13-2

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

344 G. L. Burn

t_c = = b o o l

t_e = = bool

t_r = = bool

p_l = = [(g l o b a l _ l a b e l , g loba l_ task_ id)]

l_p_l = = [t a sk_ id]

Note that, besides a pointer to the remote node, an OUTIND needs some status
information, which is used to cut down message traffic. Once a request has been made
to evaluate a remote node, no further request need be sent. We see later that not all
commands to evaluate the remote expression actually require its value to be returned
to the local processor, so the t_r field records whether or not its value has been
requested. Local tasks which need the value of the remote expression are queued on
the local pending list (l_p_l). The pending list of an SVAP node must now also
contain the labels of the OUTIND nodes which have to receive a copy of the value of
the expression when it has been reduced to WHNF.

5 Supporting the evaluation transformer model on a parallel machine

Taking a sequential abstract machine, such as the Spineless G-machine, and
extending it to support the evaluation transformer model of reduction on a parallel
machine consists of two orthogonal procedures

• making the abstract machine parallel; and
• supporting different evaluators.

To make the abstract machine parallel, a number of new instructions have to be
added to the machine, such as those which create tasks or select a new task to execute,
instructions which cause the evaluation of an expression need to be modified to deal
with the status information, and the data structures of the machine extended. We
discussed the data structures in the previous section, and will discuss particular key
instructions in this section. To support the evaluation transformer model of
reduction, we need to show how different evaluators can be implemented, and how
we can ensure that expressions are evaluated to the required extent.

5.7 Supporting parallelism
5.1.1 Creating tasks to evaluate expressions

Some base functions, such as + and case, require one or more of their arguments
to be evaluated to WHNF before an application of the function can be reduced
further. This is different to the information that we have about user-defined functions,
where an evaluation transformer may say that a particular argument can be
evaluated, because its value is going to be needed sometime in the future (possibly by
another task).

The I SPAWN instruction is used to create a task to evaluate an expression. Tasks
are only created for unevaluated expressions (SVAP and VAP nodes), and only one
task is created for an expression, all future I SPAWN instructions for that node are
ignored. When the node being ISPAWNed is an OUTIND, then a message is sent to the

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 345

remote node to cause its evaluation. The I in I SPAWN comes from the fact that the
instruction can be ignored without affecting the final answer from the program, but
ignoring it will change the execution behaviour of the program.

In the case of an application of a base function such as +, we may decide to spawn
a task for evaluating one of the argument expressions, and try to evaluate the other
expression with the current task, saving the overhead of task switching. Furthermore,
when the current task has finished evaluating its expression, it can check to see if the
evaluation of the other argument has been started yet. If not, then it could evaluate
that expression too.10 A problem arises for a distributed memory architecture when
one or more of the argument expressions are on a remote processor. In this case, we
have to arrange for the remote graph to be evaluated and its value returned to the
local processor (overwriting the OUTIND graph node). For a distributed memory
architecture, therefore, we need a special type of spawn instruction, which we have
called BSPAWN, the B reminding us that it is to create a task as the result of an
application of a base function, which requires its reduced value. If the node being
BSPAWNed is a local VAP or data object node, then the instruction behaves just as
ISPAWN does. It is only when an OUTIND is BSPAWNed that the action taken is
different. In this case, the instruction sets up a linkage between the remote task and
the local task and OUTIND node. The local task has its pending count incremented
to indicate that it has requested the value of a remote node, and part of the
mechanism of returning the value from the remote node is to decrement this pending
count. As well, the task requested field of the OUTIND node is set to t r ue to indicate
that its value has been requested. When the remote expression has been evaluated, it
must send the value back to overwrite the OUTIND node. After the first BSPAWN of
an OUTIND, all future requests are queued on the local pending list of the OUTIND
node, cutting down message traffic. Note that the current task is not suspended when
it executes a BSPAWN instruction, but only when it comes to the point in the code
where the value of the expression is needed (see the discussion of the EVAL
instruction). Ignoring a BSPAWN instruction will cause deadlock.

5.1.2 Evaluating an expression

The EVAL instruction evaluates the graph pointed to by the top of the stack. Its action
in a shared memory machine is defined in Fig. 2 by the function eval , which takes
one state of the machine and returns the state after the execution of the instruction
(where we assume that the processor executing the EVAL instruction is at the front of
the list of processors).11 We assume that a number of auxiliary functions have been
defined:

• isBOOL, isINT, isNIL, isCONS, isVAP and isSVAP return true if and only
if their argument respectively has tag BOOL, INT, CONS, VAP or SVAP;

10 This idea grew up during the time when we were holding regular meetings with Simon Peyton Jones and
his GRIP team. It has already been reported elsewhere, in Peyton Jones el al. (1989), Burn, 19886, for
example.

11 Miranda has lists as a built-in data type, with ':' as an infix Cons, so that Cons h t is written h: t,
and the empty list is [] rather than Nil . It also allows a shorthand notation for finite lists, so that the
list: Cons a (Cons b (Cons c N i l)) can be written: [a, b, c] .
14 FPR 1

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

346 G. L. Burn

e v a l (o , (c , l : s , d) : p s , g, t p)
= (o , (c , 1: s , d) : p s , g, t p) , i f isBOOL t e \ / i s l n t t e

\ / i sNIL t e \ / isCONS t e
= e v a l _ v a p t e (o , (c , 1: s , d) : p s , g, t p) , i f isVAP t e
= e v a l _ s v a p t e (o , (c , 1: s , d) : p s , g, t p) , i f isVAP t e

where
t e = l o o k u p _ g r a p h 1 g
e v a l _ v a p (VAP e I s) (o , (c , 1: s, d) : p s , g, t p)

= (o , ([LOAD], I s + + s, d) , g, t p)
e v a l _ s v a p (SVAP e t c t e p i I s) (o , (c , s , d) : p s , g, t p)

= (o , ([LOAD], I s , (UPDATE: c, s) : d) : p s , g', t p) , i f ~ t e & ~ t c
= (o , ([LOAD], I s , (UPDATE: c, s) : d) : p s , g', t p ') , i f ~ t e & t c
= (o , (BLOCK: c, s , d) : p s , g, t p) , i f t e

where
g' = s e t _ t e True 1 g
t p ' = r e m o v e _ t a s k 1 t p

Fig. 2. Definition of the EVAL instruction for a shared memory machine

• s e t _ t e b l g sets the task-executing flag of the node with label 1 in the graph g
to b ;

• remove_task 1 t p removes the task created for the node with label 1 from the
task pool t p ; and

• lookup_graph 1 g returns the tagged expression which has the label 1 in the
graph g.

We can now explain the action of EVAL in more detail:

• If the expression is already evaluated, that is, it is a boolean or an integer, or a list
node, then the instruction has no effect.

• If the expression is a VAP, then the current task must have the unique pointer to
it. This means that the expression does not have to be updated when it has been
evaluated, so all the pointers can just be loaded onto the stack (so the stack becomes
(I s + + s) , popping the pointer to the VAP node off the stack). The LOAD
instruction tests to see if the top of stack points to a function or another VAP node
of some description. In the former case it effectively does an ENTER, whilst in the
latter case it acts a bit like EVAL.

• If the expression is a SVAP, then there are three cases to consider:
° If no task is evaluating the expression already, and no task has been created to

evaluate it, then the current task may evaluate it, after setting the task executing
flag to True.

° If a task has been created to evaluate the expression, but no task has actually
started evaluating it, then the entry in the task pool for the expression can be
removed (to save scheduling a redundant task later on), and the current task can
evaluate the expression.

° If a task is already evaluating the expression, the current task must be suspended,
awaiting the value of the expression. It is put on the pending list of the task, and
its pending count is incremented by one. These actions are performed by the
BLOCK instruction.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 347

In a distributed memory machine, the corresponding actions have to be performed.
For the case where the expression to be evaluated is an OUTIND, the actions
performed are identical to those performed by the BSPAWN of an OUTIND, except that
current task must be suspended; an EVAL instruction says that the evaluation of the
current expression cannot proceed any further until the subexpression has been
evaluated.

5.7.5 The life cycle of a task

When a task is created to evaluate an expression, its initial code sequence is

EVAL; REMOVE; GETTASK

Recall that an expression which is being evaluated by a task is effectively shared
(between the task which is evaluating the expression and any other which may require
its value), and so the tag of the root node of its graph will initially be SVAP. The EVAL
instruction will cause the expression to be evaluated and updated with the evaluated
result, and all the tasks waiting for its value to be informed that it has been evaluated
(and sent the value on a distributed memory architecture if necessary). The REMOVE
instruction removes the current task from the task pool, and GETTASK obtains a new
task from the task pool, if there is one. On a distributed memory architecture the load
distribution strategy decides what to do when a processor has no task to execute,
whilst on a shared memory architecture the processor could busy wait until a task
becomes available, or do a local garbage collection.

5.2 Supporting evaluation transformers

The two key points about the evaluation transformer model of reduction are that

• we may know that an expression has to be evaluated; and
• the expression may need more evaluation than to WHNF.

We see in the next section that knowing that an expression needs to be evaluated
means that we can construct its graph and spawn a parallel process to evaluate it. In
this section we consider how to force expressions to be evaluated to more than
WHNF.

Because the amount of evaluation that is required of an argument expression
depends on that required of a function application, we generate a number of different
versions of the code for each function, one for each evaluator that can evaluate an
application of a function. Suppose that we are generating the code for the function
denned by

f x l . . . xn = g Dl. . . Dm

when an application of it is to be evaluated with the evaluator \. Firstly note that the
evaluator which is evaluating the application of f is the one which then has to
evaluate the application of g. This is indicated in the code by giving the ENTER
instruction an evaluator as an argument, which says which version of the code for g
to choose; ENTER E, says to choose the % version. Secondly, the evaluation
transformers for g say how much evaluation can be performed to each of the Di in

14-2

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

348 G. L. Burn

Table 2. Evaluation transformers for cons and t a i l

E CONS^E CONS2E TAILE

C C Co C

the application of g, so these can be used to create parallel tasks to evaluate some of
the Di, the ones which need evaluating, to the extent given by the evaluation
transformers.12

So far the evaluator information has only been used to say how much evaluation
can be done to an expression, and to pass it to the (tail-recursive) calls of other
functions. It is in the compilation of applications of the constructors of a data type
that we cause expressions to be evaluated to the extent given by the evaluators. We
can get a clue of how this can be done in general by considering the evaluation
transformers given for cons in Table 2. For example, if an application of cons is to
be evaluated with £8, then the evaluation transformers say that its first argument (its
head) can be evaluated to WHNF (with ^) , and its tail with £3. In implementing this
we have a choice. Either the current task~can~lo~ck~ourall~other tasks from accessing
the value of the expression until it has been completely evaluated to the required
extent, or it can create a CONS node, make it available for other processes, and
arrange for the required evaluation of the subexpressions to be done. The second
option is probably more sensible in a parallel implementation. The compilation of
cons is discussed further in Section 6.2.2.

When an expression graph is shared, it is possible that it will require further
evaluation than was known when it was created. For example, applications of the
function

f x ys = if x = 0 then sumlist ys else length ys

can only guarantee to need to evaluate their second argument with £2. However, if the
first argument in an application reduces to 0, then the second argument could be
evaluated with £3. We would therefore like to be allowed to change the evaluator field
at run-time. The UPDATEEV E, (for update evaluator with evaluator £) instruction
does just this. Since the only types of node which can have more evaluation than to
WHNF are CONS nodes and SVAPs and VAPs containing expressions of type list,
UPDATEEV instructions will only be generated for these nodes. The actions of this
instruction on a shared memory architecture are defined by the function update ev
in Fig. 3,13 where again we assume we are dealing with the processor at the front of
the list of processors. The function call

(u p d a t e _ e v l t r (max [e v l t r , e]) 1 g)
12 Note that tasks for evaluating the required arguments of f would have been created by the function

which called f.
In the definition of updateev, we give the evaluator number to the instruction UPDATEEV.13

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 349

u p d a t e e v e v l t r (o , (c , 1 : s , d) : p s , g , t p)
= u p d a t e e v _ v a p t e (o , (c , 1 : s , d) : p s , g , t p) , i f i s V A P t e
= u p d a t e e v _ s v a p t e (o , (c , 1 : s , d) : p s , g , t p) , i f i s S V A P t e
= u p d a t e e v _ c o n s t e (o , (c , 1 : s , d) : p s , g , t p) , i f i s C O N S t e
= (o , (c , 1 : s , d) : p s , g , t p) , o t h e r w i s e

w h e r e
u p d a t e e v _ v a p (VAP e I s) (o , (c , 1 : s , d) : p s , g , t p)

= (o , (c , 1 : s , d) : p s , g ' , t p)
u p d a t e e v _ s v a p (S V A P e t c t e p i I s) (o , (c , 1 : s , d) : p s , g , t p)

= (o , (c , 1 : s , d) : p s , g ' , t p)
updateev_cons (CONS e 11 12) (o, (c, 1: s, d):ps, g, tp)

= (o, (c, l:s, d):ps, g, tp), if evltr<=e
= (o, (c', 12: 1: s, d): ps, g, tp), if (evltr = 2) & (evltr>e)
= (o, (c", 11:12:1: s, d):ps, g, tp), if (evltr = 3) & (evltr>e)
where
g' =update_evltr (max [evltr, e]) 1 g
c' = UPDATEEV 2: I SPAWN: POP 1: o
c" = UPDATEEV 1: ISPAWN: POP 1: UPDATEEV 3: ISPAWN: POP 1: c

Fig. 3. Definition of the instruction UPDATEEV % for a shared memory architecture.

stores the maximum of the evaluators e v l t r and e on the node with label 1 in the
graph g. There are three cases for what the instruction does

• If the expression is a SVAP or VAP node, then it just records in the evaluator field
of the node the maximum of the evaluator which is an argument to the UPDATEEV
instruction and the evaluator currently in the evaluator field.

• If the expression is a CONS node, and the new amount of evaluation is less than or
equal to that already recorded, then the instruction has no effect. Otherwise, it
stores the new evaluator on the node, and causes the required evaluation of the two
subgraphs of the CONS node. Storing the evaluator on the CONS node in this way
means that future requests for at most that much evaluation do not have to do any
work.

• Otherwise it does nothing.

We note that it is possible for the evaluator to be changed on a SVAP (but not a VAP)
node whilst it is being evaluated, so part of the task ending procedure needs to make
sure that enough evaluation has been done to the reduced expression.

A complete specification of a distributed memory architecture that supports the
evaluation transformer model of reduction can be found in Lester and Burn (1989).

6 Compilation

In Section 3 we discussed three different compilation rules that are used in the
Spineless G-machine

• 01 used to compile the right-hand side of function definitions. The code produced
will leave a pointer on the top of the stack to an expression in WHNF;

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

350 G. L. Burn

• $ used to generate code that will evaluate an argument expression and leave a
pointer to its WHNF on the top of the stack; and

• ^ used to generate code which will build the graph of an expression.

In this section we introduce one further compilation rule

• SP which will construct the graph of an expression and spawn a parallel process to
evaluate it.

The evaluation transformer model also allows us to specify how much evaluation can
be done to an expression. This is most easily expressed by passing an evaluator as an
argument to each of the compilation rules, except <€ which is used when no
evaluation can be done to an expression.

The evaluation transformers motivated in Section 2 have been called context-free
evaluation transformers (Burn, 1987, 1991), because they tell us information about
how a function is guaranteed to use its arguments, no matter what the other arguments
are. For example, the context-free evaluation transformer for the first argument of the
function append, APPEND^ given in Table 1, tells us that whenever an application
of append is being evaluated with £3, then the first argument can be evaluated with
£3, no matter what expression the second argument is bound to.

Sometimes we can find out more information about an argument to a function in
a particular textual application context. Typically this happens with higher-order
functions, the function app ly for example

apply f x= f x

The context-free evaluation transformer for the second argument of apply says that
no evaluation can be done to the second argument, because apply may be applied
to a function which ignores its argument. However, in the application

apply (-I- e l) e2,

we know that e2 has to be evaluated; by taking into account the textual context of
the expression e2, we have been able to find out more information than is available
from the context-free evaluation transformer for apply.

Both sorts of evaluation transformer information are useful; the first because the
application context of an argument expression may mean that more evaluation can
be done to the argument than that allowed by the context-free evaluation
transformers, and the second to use some of the information that becomes available
at run-time. In the previous section we saw an example of how we may discover at
run-time that an expression needs more evaluation than was originally thought.
Context-free evaluation transformer information is useful for this because knowing
that more evaluation is required of a function application may mean that some more
evaluation is allowed of the argument expressions in the application when the
evaluation of the application begins. An extreme example of this is the function
denned by

f x l . . .xn = x i Di. . . Dm

where the function being applied is not known until run-time, and so no evaluation

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 351

will have been done on any of the Di. When the function becomes known, its context-
free evaluation transformer information can be used to force the evaluation of some
of the Di. These issues are discussed extensively in Burn (1991, Chapter 6).

We assume that the program to be compiled comes with both context-free and
context sensitive evaluation transformer information. As in Section 2, we will denote
the context-free evaluation transformer for the i th argument of a function by writing
the name of the function in upper-case letters, and subscripting it with /. Thus Ft is
the context-free evaluation transformer for the i th argument of the function f. The
context-sensitive evaluation transformer information is provided in the form of
annotations on every function application in the program, for example

g {ET1} DI. . .{ETm} Dm

where {ETi} is the evaluation transformer for Di, the i th argument expression.
We now discuss the compilation of user-defined functions and some of the base

functions.

6.1 Compiling user-defined function definitions

Suppose that we are compiling code for the inversion of a function. The code has two
entry points

• ENTRY Z, 1 which creates processes to evaluate the arguments to the function being
applied, given that the application has to be evaluated with %. It is used when the
evaluation of an expression begins, and the expression is an application of this
function,14 as more evaluation may have been requested of the application than
when it was first created. It is the entry point chosen by the LOAD instruction; and

• ENTRY E, 2 used when a tail call is made to the code for the function, and is
analogous to the code produced for the Spineless G-machine; it is the entry point
chosen by the ENTER E, instruction.

The code for the function defined by

f x i . . . xn = E

therefore has the following form

ENTRY % 1; PUSH (n-1); UPDATEEV (Fnt,); ISPAWN; POP 1;...;
PUSH 0; UPDATEEV (F^); ISPAWN; POP 1; ENTRY t, 2;

[xli-yn, . . . , xnnyl] n

where PUSH n pushes a copy of the pointer at stack index n onto the stack and
POP n pops n items from the stack. The code between the two entry points is called
the prelude, and spawns off tasks for any argument expressions which are allowed by
the context-free evaluation transformers for f. After that it falls through to the code

14 It is also used in evaluating an application of a function of the form

f x l . . . xn = x i DI. . . Dm.
When the function bound to x i becomes known, and if the expression is being evaluated with £,, entry
point ENTRY E, 1 is used for the now known function, so that some of the Di can be evaluated.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

352 G. L. Burn

which is obtained by compiling the body of the function. Note that for any j such
that {Fj E) = E,N0, the sequence of four instructions

P U S H (j - l) ; UPDATEEV (F}£,); I SPAWN; POP 1;

are omitted, as it is not safe to do any evaluation of the argument expression.
We now turn our attention to defining

^^[E] [xli-vn, . . . , xm->l] n

where E is an application of a user-defined function. The code for the Spineless G-
machine for the function defined by

f x l . . . xn = g Dl. . . Dm

was given to be

Dl...Dm] r n = #[Dm] r n; . . . ; #[D1] r (n + m- 1) ;
SQUEEZE m n; PUSHFUN g; ENTER

in Section 3. In compiling the % version of the definition

f x l . . . xn = g Dl {ETI}. . . {ETm} Dm

we want to spawn a process to evaluate Di if the evaluation transformer ETi allows
it. To aid in defining the compilation rules, we define the following function

otherwise

The function si tests to see if its argument is the evaluator ^N0 or not. If it is, then it
says that an expression has to be compiled with e€, which will build the graph of the
expression, otherwise it can be compiled with 0> £, which will construct the graph of
the expression and spawn a parallel process to evaluate it with %. Now we can define

ML,\g {ETI} Dl. . .{ETm} Dm] r n
= jtf(ETm S)[DmI r n; . . . ; si (ETI £) [Dl] r (n + m - 1) ;

SQUEEZE m n; PUSHPUN g; ENTER £,

In the case of the function application

x i {ETI} Dl. . .{ETm} Dm

the rule is similar: the ENTER t, instruction is replaced by a LOAD instruction, which
forces the evaluation of the expression bound to x i , and then continues with the
evaluation of the application. Note that all of the {ETi} in this case will say that no
evaluation is allowed of any of the argument expressions, and so the compilation rule
could be simplified to

{ETi} Dl. . .{ETm} Dm] r n

^[Dm] r n;...;#|[Dl] r (n + m- 1) ;

SQUEEZE m n; PUSH (m-(r x)); LOAD

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 353

The code produced by the ^"-rule for a general function application is

Dl. . .{ETm} Dm] r n

)[Dm] r n;...;^/(ETl £)p)l] r (n + m-1);
SQUEEZE m n; PUSHFUN g; STORE (m + 1) £; ISPAWN

where the STORE (m + 1) £, instruction creates a new SVAP node in the heap,
containing the top (m + 1) pointers from the stack, with its evaluator field set to £,,
its task created and task evaluating fields set to false, and the pending list set to
empty.15 Similar code is produced when g is replaced by x i .

Note that the & compilation rule propagates the evaluation information inwards,
just as we saw the <f-rule did in Section 3.

6.2 Compiling applications of some base functions

An important feature of the G-machine is that it tries to evaluate the strict arguments
to base functions in-line. When a task reduces an expression to an application of a
base function, the application cannot be performed until the strict arguments of the
function have been evaluated. Rather than building the graph for all of the
arguments, I SPAWNing them, and then suspending the task, we generate code which
will try and evaluate one of the strict argument expressions in-line, which will in
general remove some of the overhead of graph building and task switching. For the
conditional, the first argument is evaluated in-line and either the second or the third
argument, depending on the condition, will continue to be evaluated by the current
task.

6.2.1 Arithmetic and boolean base functions

We saw in Section 3 that the code produced for the Spineless G-machine for an
application of + was

&\+ Dl D2] r n = ^ IDl] r n; <ffD2] r (n + 1) ; ADD;
SQUEEZE 1 n; RETURN

In Section 5 we saw that on a parallel machine the code for + may spawn a task to
evaluate one of the arguments and try to make the task evaluating the application of
+ evaluate the other. Moreover, if the evaluation of the spawned argument has not
begun by the time the other argument has been evaluated, that expression too should
be evaluated by the same task. For a shared memory machine, this is expressed by the
compilation rule

+ Dl D2J r n = ^ 1 [D l] r n; <?SiP>2] r (n + 1) ; PUSH 1;
EVAL; ADD; SQUEEZE 1 (n + 1) ; RETURN

where the <f-rule is used to compile the expression which is to be evaluated by the
15 Note that this assumes that all expressions may be shared. If some sharing analysis was available, then

there could be two different store instructions, creating a SVAP or a VAP depending on whether or not
the expression was shared. The STORE instruction is also used by the # compilation scheme for building
graphs of expressions.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

354 G. L. Burn

process evaluating the application of +. In this rule we have arbitrarily decided to
spawn a parallel process for the first argument expression. A good heuristic for
choosing which argument expression to spawn is that if one of the Di is a formal
parameter, and the other an application of a function, then the expression bound to
the parameter should be spawned and the application evaluated by the process
evaluating the expression (+ Dl D2). This is because some evaluation is guaranteed
to be possible of the application, but the expression bound to the parameter may
already be being evaluated by another process. A more complex strategy may allow
for the run-time testing of expressions in the heap to see if the expression bound to
a parameter is being evaluated or not, and make the decision of which expression to
evaluate at run-time. In a distributed memory machine the I SPAWN instruction
generated by the ^-scheme should be replaced by a BSPAWN in case Dl is a formal
parameter bound to an expression on a remote processor. Whilst this is not necessary
for the correctness of the implementation, as the EVAL would cause the evaluation of
the remote expression and the return of its value, using the BSPAWN instruction may
allow the remote value to be returned sooner, and perhaps even before the EVAL
instruction is executed, so the process will not be descheduled.

If one of the argument expressions to -I- is a simple arithmetic expression, then it
is probably more efficient for the task evaluating the application to evaluate both
argument expressions.

Similar compilation rules can be defined for all of the other binary arithmetic and
boolean functions.

6.2.2 Cons

The compilation rules for an application of Cons are

Dl D2] r n = #[D2] r n; # p l] r (n + 1) ;
CONS 1; SQUEEZE 1 n; RETURN

Dl D2] r n = ^ 2 [D 2] r n; ^[Dl] r (n + 1) ;
CONS 2; SQUEEZE 1 n; RETURN

ICons Dl D2J r n = ^ 3 [D2J r n; ^ [Dl] r (n
CONS 3; SQUEEZE 1 n; RETURN

The argument to the CONS instruction is used to set the evaluator field of the CONS
node, and tells how much evaluation has been requested of its subgraphs (its head and
tail).

6.2.3 The conditional

For the conditional i f E l E 2 E 3

it is pointless creating a parallel task to evaluate El because no more work can be
done by the task evaluating the application of i f until El has been evaluated.
Therefore, the compilation rule for if is

Dl D2 D3] r n = ^ ^ [E l] r n; JPALSE LI;
r n; LABEL LI; ^ [E 3 J r n

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 355

Note that the expression E l is evaluated with L,x, that is, to WHNF, and that the
evaluator which evaluates whichever of E2 and E3 is chosen is the same as that which
is evaluating the application of i f.

A similar sort of thing is done when c a s e is used to compile pattern matching; the
discriminating expression is first evaluated as far as it needs to be, and then the
evaluator evaluating the application is the one which evaluates the chosen expression.

How should the compilation rule

^ [i f Dl D2 D3] r n

be defined ? Clearly it is a waste of time and memory to build both D2 and D3 because
only one will be needed. Instead, if y l to yk are the free variables in (i f Dl D2 D3),
then we can define a new function h

h y l . . . y k = i f Dl D2 D3,

replace the expression (i f Dl D2 D3) with the application (h y l . . . y k) , and
compile it using ^"^. This will then have the desired behaviour.

6.2.4 Tail

The function t a i l returns its argument list minus its first element. It could be defined
by16

t a i l (Cons El E2)=E2

tail Nil = error ''Tried to take tail of an empty list''

The compilation of the function t a i l shows two further points when generating
code for the evaluation transformer model. Applications of t a i l are compiled using
the following compilation rule in the Spineless G-machine

^ I t a i l E] r n = <̂ [EI r n; TAIL; EVAL; SQUEEZE 1 n; RETURN.

It generates code which first evaluates the expression E. If the pointer on the top of
the stack points to a CONS node, then the TAIL instruction then replaces it with a
pointer to the tail of the list, otherwise an error stop occurs. Finally, the EVAL
instruction evaluates the tail to WHNF.

Consider the evaluation transformers for the function t a i l given in Table 2, and
suppose we are compiling an application of t a i l which is to be evaluated with ^3.
Using the Spineless G-machine code as a basis, we could generate the following code
for a parallel G-machine

^ 3 [t a i l E] r n = <?£2 p] r n; TAIL; EVAL.

We have used the ^-scheme to compile the application of E because there is no point
in starting a parallel process to evaluate the argument expression, as the process
evaluating the application of t a i l cannot do any more work until the E has been
16 In Miranda, the function e r ro r causes an error stop in the execution of a program, printing the string

which is its argument.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

356 G. L. Burn

evaluated to WHNF. As we have noted before in the compilation of applications of
Cons, compiling E with the evaluator £2 means that the CONS node will be made
available as soon as possible, and a parallel process will have been created to evaluate
the tail (with £,2). This is as good as we can do by just using the straight evaluation
transformer information. However, we know that when the tail of the list has been
obtained, seeing as the result of the application t a i l E is to be evaluated with t,3,
then the tail of the list should be allowed to be evaluated with £3. Therefore we can
generate the following code, which causes more evaluation of the argument to t a i l

[t a i l E] r n = ^^ 2 [E]r n; TAIL; UPDATEEV £3; EVAL.

At this stage we can make an important observation

In most works on making implementations more efficient, information like evaluation trans-
formers is used to evaluate expressions as much as possible, as early as possible. If we were
compiling code for a sequential implementation, the above sequence of code would evaluate the
whole of the structure of the list E, creating graphs for each of the elements of the list, before
the rest of the code was executed (see Burn, 1991, Section 6.4.1). Later, the UPDATEEV
instruction would crawl over the structure, evaluating each of the elements of the list. However,
this probably does not save much time and space; the principal difference between £s and ^3

for a sequential machine is that the latter saves the cost of having to build graphs for the
elements in a list. Therefore, there seems to be a principle of judiciously delaying the evaluation
of an expression until we know the maximum amount of evaluation that is required of it.

In the case of an application of t a i l , we could generate code which only evaluated
its argument to WHNF, took the tail, and only then caused the evaluation of the
result with £3

E] r n = ^ [EJ r n; TAIL; UPDATEEV £3; EVAL.

The usefulness of this can only be established by experiment.

6.2.5 Let and letrec

Many functional languages allow the use l e t and l e t r e c (or where and
whererec) to allow the programmer to define local subfunctions. A typical syntax
might be

l e t x = e l in e2

l e t r e c d in e

where the first one (non-recursively) binds the expression e l to all the free
occurrences of x in e2, and in the second d is a number of recursively defined
expressions, which are bound to names that can be used in the expression e. The value
of the first expression is the value of e2, and e is the value of the second. In compiling
these expressions, the evaluator which is used to evaluate e2 or e is the evaluator
which is evaluating the whole expression. If the evaluation transformer information
in e2 or e indicated that either e l or some of the expressions bound in d. could be
evaluated with a particular evaluator, then they could be compiled with either of the
<?- or ^"-schemes with that evaluator passed as an argument.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 357

6.3 Peephole optimizations

There are many optimizations that can be made to the code produced by the
compilation rules in this section. For example, there is no point in spawning a process
to evaluate an integer node whose address has just been pushed onto the stack. These
are fairly easy to implement as a peephole optimization phase in the compiler.

6.4 When livelock becomes deadlock

The usual slogan for using program analysis techniques to change the evaluation
order of lazy functional programs is: 'If it is going to fail to produce any output, then
it does not matter how it fails'. There is a curious thing that can happen when we use
this in a simple way in a parallel implementation: programs which would have
proceeded forever, not producing any output, may deadlock instead. Consider the
two definitions

a = b + l

b = a + l

Normally, any attempt to evaluate either a or b will result in a non-terminating
computation, producing no output. Suppose that in a parallel machine we have the
scenario that two processes begin to execute at the same time, one to evaluate a, and
the other to evaluate b. Deadlock would then occur, for neither can be evaluated until
the other has been evaluated. It is unclear whether this is a problem or not.

6.5 A complete compiler for a simple combinator language

A complete compiler for a simple combinator language can be found in the Appendix.

7 Making a real implementation

To emphasize that we have used an abstract machine in order to explain our ideas,
in this section we point out a couple of issues that must be tackled in order to build
a real implementation.

7.1 Stacks in the state of a process

Both the shared and distributed memory architectures described in Section 4 include
the stack being used to evaluate an expression as part of the state of a process. A real
implementation needs to make process switching fast, and so an efficient way of
switching stack frames needs to be devised. Independently, Lester (19896) and
Augustsson and Johnsson (1989) proposed that the VAP node that is created for an
expression should be used as the stack frame to evaluate the expression. When a
subexpression needs to be evaluated, a link is established between it and the
expression currently being evaluated, and the VAP for the subexpression becomes the
new centre of computation. After the evaluation of the subexpression, a return is

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

358 G. L. Burn

made to the parent expression via the link. This mechanism allows the saving of the
state of the stack of a process to be very fast, just recording the pointer to the VAP
node currently being evaluated.

7.2 Memory allocation and garbage collection

In a distributed memory architecture, a memory allocation and garbage collection
strategy needs to be designed so that each processor can act fairly independently of
the others for most of the time. Bevan (1987) and Watson and Watson (1987)
independently designed an elegant reference counting algorithm for distributed
memory architectures. The problem with a reference counting algorithm for local
references is that it is more expensive than one dividing the heap into two semi-spaces
and copying live data from one to another when the current semi-space becomes full
(Hartel, 1988). Lester designed an algorithm which uses reference counting for
interprocessor pointers, and the semi-space allocation/copying collector for local
references (Lester, 1989 a). Externally referenced nodes in the local heap cannot be
moved by the garbage collector, because the pointers held on other processes (in
OUTIND nodes) would thereby be invalidated. One way of ensuring this is to add one
extra type of node into a distributed memory architecture, an input indirection, and
have all external references point to an input-indirection. An input indirection then
points to the current position of the graph node in the heap. During garbage
collection, input indirections are not moved, but their contents need to be changed in
order to point to the new location of the graph node.

8 Relationship with other work

A number of early papers about parallel G-machines were published, for example,
Augustsson (19876), Nocker and Plasmeyer (1986), Raber et al. (1987a, b). As we
have already observed in Section 3, these papers did not use the observations about
sharing of expressions which were the basis for designing the Spineless G-machine, so
they had heavy overheads in terms of locking and unlocking graph nodes during
reduction steps. Most later papers, such as Peyton Jones and Salkind (1989) and
Augustsson and Johnsson (1989) do not suffer from this problem.

Most papers describe their implementation in terms of serial combinators (Hudak
and Goldberg, 1985). Serial combinators are generated from lambda-lifted programs
by lifting out the concurrent substructure. For example, if the function g is strict in
its first and third arguments, then the function definition

f x l . . . xn = g Dl. . . Dm

could be transformed to

f x l . . . xn= spawn v l = D l and v2 = D3
in
g v l D2 v3 D4. . . Dm

where the spawn construct is compiled in a similar manner to a l e t except that,

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 359

when the expressions bound to the v i are constructed, they are ISPAWNed. The
method can be applied to recursively lift out any concurrent substructure from Dl
and D3.

We have shown that it is not necessary to use the program transformation to serial
combinators before generating parallel code, as the top-level spawns are caused by the
^-scheme using the ^-scheme, and the concurrent substructure is spawned using the
0> scheme. This has a number of advantages. Firstly, we do not need complex rules
about where the spawn construct can appear in the right-hand side of a function
definition. Secondly, in the evaluation transformer model, the amount of evaluation
of a subexpression depends on the amount of evaluation of the whole expression. This
is also sometimes the difference between whether or not a parallel task is created at
all. Serial combinators have to be modified to have some sort of conditional spawn
(see Loogen et al., 1989, for example). Most importantly, serial combinators blur the
distinction between context-free and context-sensitive evaluation transformers.
Implicit in the definition of serial combinators is the use of context-free information
when building the body of a function. Hankin et al. (1986, 1988) were the first to
introduce the idea of having a prelude for a function for the context-free information
and using the context-sensitive information when building the body of the function.
Unfortunately, the (SKI-combinator) code produced in that paper spawned needed
arguments twice, once when the body of the application was being built, and again
in the prelude. In this paper we have used pairs of entry points for a function so that
argument are not spawned twice for each function application. In Section 6.1 we
showed the appropriate entry point to use. We note that Loogen et al. (1989) also
have the concept of a number of entry points.

Raber et al. (19876) introduce two new node types in the graph, STRICT m and
SPAWN m. A STRICT m node indicates that there are m vertebrae on the spine above
the node which can be evaluated in-line. In a similar manner, the SPAWN node says
that there are m expressions which can be ISPAWNed. They are generated when there
are some strict or I SPAWN subcomponents of an expression which is being
constructed but not evaluated or ISPAWNed immediately (i.e., they are subexpressions
of an expression being compiled using ^) . We note firstly that the effect of the SPAWN
node is captured by the prelude of I SPAWNS in the code we generate in this paper
(Section 6.1), and so the special node is not necessary. Secondly, there is no advantage
in putting in a STRICT node. In-line evaluation of an expression only saves time
because the expression can be compiled using the ^-scheme, and hence less graph is
built in its evaluation. Once the graph has been built, as is the case here, there is no
point in evaluating the expressions in-line, and hence no need for the STRICT node.
We can, however, achieve the desired effect by doing a source to source translation
on the text of the program, as is discussed in Burn et al. (1988). The second paper by
Raber et al. (19876) seems to include these ideas.

The work of Loogen et al. (1989) is closest to ours, being a distributed memory
architecture which supports the evaluation transformer model of reduction. It has
been simulated in Occam, whereas we first specified an implementation using a
functional language (Lester and Burn 1989), and then used this as a basis for a
transputer machine code implementation (Kingdon et al. 1991).

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

360 G. L. Burn

9 Conclusion

We have shown how to compile code for shared and distributed memory architectures
in order to support the evaluation transformer model of reduction. Adding one extra
node type to those present in a shared memory machine, to store pointers to non-local
objects, enables us to distinguish very cleanly between the two types of machine.
Although originally introduced by Lester (1989 a) when designing a garbage collection
algorithm, it has enabled us to design a compiler which works for both shared and
distributed memory architectures. Furthermore, these output indirection nodes have
a number of other benefits. For example, they provide somewhere for a copy of the
reduced value of the non-local object to be stored, and mean that only one copy of
the remote value needs to be fetched, no matter how many objects on the local
processor point to it.

Our discussion of different evaluators has been in terms of lists, and only three
particular evaluators for that type. The essential feature of the evaluation transformer
model of reduction is that of needing to evaluate an expression to a specified extent.
Different data types will have different evaluators, and there may be other sensible
evaluators for the list type, but the concepts introduced in this paper can easily be
adapted to different evaluators; in Section 5.2 we saw how the evaluation transformers
for the constructors of a-type told us-how the various-evaluators could be
implemented.

In this paper we have used the evaluation transformer information to try to do as
much evaluation as possible. This has meant that we keep an evaluator on graph
nodes representing function applications, and we choose the version of the code to use
at run-time, because at run-time we may find that an expression needs more
evaluation than could be determined at compile-time. Code could instead be
produced which chose the version at compile-time. The problem with this is that any
expression compiled with the ^-scheme would only ever get evaluated to WHNF, as
we could not guarantee at compile-time that it needs more evaluation if it was ever
evaluated. A discussion of compile-time and run-time choice of version can be found
in Burn (1990, 1991). We note in passing that projection analysis gives us more
information in this respect than abstract interpretation, as sometimes it will say that
it is not known if an expression will be evaluated, but if it ever is, then it needs a
certain amount of evaluation (Wadler and Hughes, 1987; Burn, 1990). Nevertheless,
it is only by using some run-time information that we are able to take into account
that an expression needs more evaluation than we are able to determine at compile-
time.

10 Acknowledgements

Most of this work was completed whilst working at the GEC Hirst Research Centre
in Wembley, Middlesex, UK. Its development owes a lot to the many valuable
discussions I was able to have with David Lester and John Robson, my colleagues at
GEC, during that period. We were also fortunate in being able to take part in the
invigorating GRIP technical meetings, led by Simon Peyton Jones. Inevitably, some
of the ideas developed in this paper bear resemblance to some of the issues discussed

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 361

in his papers, for they were being developed at the same time and discussed in the
same forum. It was also helpful to discuss our ideas with our colleagues in ESPRIT
Project 415, and interesting to see how our work interacted with the development of
implementations of the other language styles.

This research was partially funded by ESPRIT Project 415: 'Parallel Architectures
and Languages for A I P - A VLSI-Directed Approach'.

References

Augustsson, L. 1987a. Compiling Lazy Functional Languages, Part II. PhD thesis, Chalmers
Tekniska Hogskola, Goteborg, Sweden.
Augustsson, L. 19876. A parallel G-machine. Technical Report PMG53, Department of
Computer Science, Chalmers University of Technology, Goteborg, Sweden.
Augustsson, L. and Johnsson, T. 1989. The (v, G>-machine: an abstract machine for parallel
graph reduction. In D. B. MacQueen (editor), Proceedings of the Functional Programming
Languages and Computer Architecture Conference, pp. 202-213. ACM.
Bevan, D. I. 1987. Distributed garbage collection using reference counting. In J. W. de Bakker,
A. J. Nijman and P. C. Treleaven (editors), PARLE {Parallel Architectures and Languages
Europe), volume 2, pp. 176-187. In volume 259 of Lecture Notes in Computer Science, Springer-
Verlag.
Bevan, D. I., Burn, G. L., Karia, R. J. and Robson, J. D. 1989. Design principles of a
distributed memory architecture for parallel graph reduction. The Computer Journal, 32(5):
461^169 (Oct.).
Bird, R. J. and Wadler, P. L. 1988. An Introduction to Functional Programming, Prentice-Hall.
Bloss, A., Hudak, P. and Young, J. 1988. Code optimisations for lazy evaluation, Lisp and
Symbolic Computation: An International Journal, 1(2): 147-164.
Burn, G. L. 1987. Abstract Interpretation and the Parallel Evaluation of Functional Languages.
PhD thesis, Imperial College, University of London (March).
Burn, G. L. 1988a. Developing a distributed memory architecture for parallel graph reduction.
In Proc. CONPAR 88, Manchester, UK (12-16 September).
Burn, G. L. 19886. A shared memory parallel G-machine based on the evaluation transformer
model of computation. In Proc. Workshop on the Implementation of Lazy Functional
Languages, pp. 301-330, Goteborg, Sweden (5-8 September).
Burn, G. L. 1990. Using projection analysis in compiling lazy functional programs. In Proc.
1990 ACM Conference on Lisp and Functional Programming, pp. 227-241, Nice, France
(27-29 June).
Burn, G. L. 1991. Lazy Functional Languages: Abstract Interpretation and Compilation,
Research Monographs in Parallel and Distributed Computing, Pitman (to appear).
Burn, G. L., Peyton Jones, S. L. and Robson, J. D. 1988. The spineless G-machine. In Proc.
1988 ACM Symposium on Lisp and Functional Programming, pp. 244-258, Snowbird, Utah
(July).
Dijkstra, E. W. 1965. Cooperating sequential processes. Technical report, Technological
University, Eindhoven, The Netherlands. (Reprinted in F. Genuys (ed.), Programming
Languages, pp. 43-112, Academic press, New York, 1968.)
Eager, D. L., Lazowska, E. D. and Zahorjan, J. 1986. Adaptive load sharing in homogeneous
distributed systems. IEEE Trans. Software Engineering, 12(5): 662-675 (May).
Fairbairn, J. and Wray, S. C. 1986. Code generation techniques for functional languages. In
Proc. ACM Conference on Lisp and Functional Programming, pp. 94-104, Cambridge, MA.
Fairbairn, J. and Wray, S. C. 1987. TIM: A simple, lazy abstract machine to execute super-
combinators. In G. Kahn (editor), Proc. Functional Programming Languages and Computer

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

362 G. L. Burn

Architecture Conference, pp. 34-45. In volume 274 of Lecture Notes in Computer Science,
Springer-Verlag.
Hankin, C. L., Burn, G. L. and Peyton Jones, S. L. 1986. A safe approach to parallel
combinator reduction (extended abstract). In Proc. ESOP 86 (European Symposium on
Programming), pp. 99-110, Saabrucken, FRG (March).
Hankin, C. L., Burn, G. L. and Peyton Jones, S. L. 1988. A safe approach to parallel
combinator reduction. Theoretical Computer Science, 56: 17-36.
Hartel, P. H. 1988. Performance Analysis of Storage Management in Combinator Graph
Reduction. PhD thesis, Computing Science Department, University of Amsterdam.
Hudak, P. and Goldberg, B. 1985. Serial combinators: 'optimal' grains of parallelism. In
J.-P. Jouannaud (editor), Proc. Functional Programming Languages and Computer Architecture
Conference, pp. 382-399. Springer-Verlag.
Hunt, S. 1989. Frontiers and open sets in abstract interpretation. In Proc. Conference on
Functional Programming Languages and Computer Architecture, Imperial College, London
(11-13 September).
Johnsson, T. 1983. The G-machine. An abstract machine for graph reduction. In Declarative
Programming Workshop, pp. 1-20. University College London (April).
Johnsson, T. 1987. Compiling Lazy Functional Languages. PhD thesis, Chalmers Tekniska
Hogskola, Goteborg, Sweden.
Kingdon, J., Lester, D. R. and Burn, G. L. 1991. A transputer-based HDG-machine. The
Computer Journal (special issue on Parallelism). To appear.
Lester, D. R. 1989 a. An efficient distributed garbage collection algorithm. In E. Odijk, M.
Rem and J.-C. Syre (editors), PARLE (Parallel Architectures and Languages Europe), volume 1,
pp. 207-223 (12-16 June). In volume 258 ofLe~cture~Nbtes ifTComputer Science, Springer-
Verlag.
Lester, D. R. 1989 ft. Stacklessness: compiling recursion for a distributed architecture. In Conf.
Functional Programming Languages and Computer Architecture, pp. 116-128, London, UK
(11-13 September).
Lester, D. R. and Burn, G. L. 1990. An executable specification of the HDG-Machine. In
Workshop on Massive Parallelism: Hardware, Programming and Applications, Amalfi, Italy
(9-15 October).
Loogen, R., Kuchen, H., Indermark, K. and Damm, W. 1989. Distributed implementation of
programmed graph reduction. In E. Odijk, M. Rem and J.-C. Syre (editors), Proc. PARLE89,
volume 1, pp. 136-157. Eindhoven, The Netherlands (12-16 June). In volume 258 of Lecture
Notes in Computer Science, Springer-Verlag.
Nocker, E. and Plasmeyer, R. 1986. Combinator reduction on a parallel G-machine. Technical
report, Dept. of Computer Science, University of Nijmegen, The Netherlands.
Partridge, A. 1991. Dynamic Aspects of Distributed Graph Reduction. PhD thesis, Department
of Electrical Engineering and Computer Science, University of Tasmania (in preparation).
Peyton Jones, S. L. 1987. The Implementation of Functional Programming Languages. Prentice-
Hall.
Peyton Jones, S. L., Clack, C. and Salkild, J. 1989. High-performance parallel graph reduction.
In E. Odijk, M. Rem and J.-C. Syre (editors), Proc PARLE 89, volume 1, pp. 193-206.
Eindhoven, The Netherlands (12-16 June). In volume 258 of Lecture Notes in Computer
Science, Springer-Verlag.
Peyton Jones, S. L. and Salkild, J. 1989. The Spineless Tagless G-Machine. In D. B. MacQueen
(editor), Proc. Functional Programming Languages and Computer Architecture Conference, pp.
184-201. ACM (11-13 September).
Raber, M., Remmel, T., Hoffman, E., Maurer, D., Muller, F., Oberhauser, H.-G. and
Wilhelm, R. 1987 a. Compiled graph reduction on a processor network. Technical report,
Universitat des Saarlandes, Saarbrucken, FRG.
Raber, M., Remmel, T., Maurer, D., Muller, F., Oberhauser, H.-G. and Wilhelm, R. 19876.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 363

A concept for a parallel G-machine. Report SFB 124-C1, Universitate des Saarlandes,
Saarbrucken, FRG.
Traub, K. R. 1989. Sequential Implementation of Lenient Programming Languages. PhD thesis,
Laboratory of Computer Science, MIT (September).
Turner, D. A. 1985. Miranda: a non-strict functional language with polymorphic types. In
J.-P. Jouannaud (editor), Proc. Functional Programming Languages and Computer Architecture
Conference, pp. 1-16. Springer-Verlag. In volume 201 of Lecture Notes in Computer Science,
Springer-Verlag.
Turner, D. A. 1986. An overview of Miranda. SIGPLAN Notices (December).
Valiant, L. G. 1988. General purpose parallel architectures. In J. van Leeuwen (editor),
Handbook of Theoretical Computer Science. North Holland.
Wadler, P. and Hughes, R. J. M. 1987. Projections for strictness analysis. In G. Kahn (editor),
Proc. Functional Programming Languages and Computer Architecture Conference, pp. 385-407.
In volume 274 of Lecture Notes in Computer Science, Springer-Verlag.
Watson, P. and Watson, I. 1987. An efficient garbage collection scheme for parallel computer
architectures. In J. W. de Bakker, A. J. Nijman and P. C. Treleaven (editors), PARLE Parallel
Architectures and Languages Europe, volume 2., pp. 432—443. Eindhoven, The Netherlands
(June). In volume 259 of Lecture Notes in Computer Science, Springer-Verlag.

Appendix: compilation rules

In this appendix we give the complete compilation rules for a simple combinator
language supporting the types boolean, integer and list. As we saw in Section 6.2.1,
the only real difference between the code for a shared memory machine and that for
a distributed memory one is in the code generated for applications of strict base
functions (such as +) with at least two arguments. For these functions, where an
argument is ISPAWNed in a shared memory architecture, it must be BSPAWNed in a
distributed memory machine. Therefore we omit the compilation rules for such
functions from this appendix, referring the reader to Section 6.2.1 instead. This has
the advantage that all of the following compilation rules can be used for both types
of architecture.

The abstract compiler which generates parallel G-code is divided into four
compilation schemes. When using each particular scheme, the source program
fragment should be matched with each rule of the scheme in turn. The type of an
object appearing in the compilation rules can always be deduced from the letter
representing it, as shown in Fig. Al .

As in Section 6.1, we define srf by

J<
otherwise.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

364 G, L. Bum

A.I Scheme ^(Function definition)

This generates code for an entire function definition

J^If x l . . . xm = D] =

r is an ' environment' indicating where variables reside on the stack
n is the current stack depth x is a variable
b is a boolean constant m is >0
i is an integer constant f is a function
1 is a new and unique label D is an arbitrary expression

Fig. Al. The meanings of variables used in the compiler.

At the point of entry for a function, it is guaranteed that its first argument is pointed
to by the top of stack, the second argument by the next-to-top element, and so on, so
that the mth argument is m — 1 elements from the top of the stack.

A.2 Scheme & (Return value)

01 \ [D] r n generates code to evaluate D with h,, push it onto the stack, and return
from a function. The code will make the value of the expression available once the
WHNF of it has been evaluated, even if further evaluation of it is taking place.

0ft,\L\ r n =PUSHINT i ; SQUEEZE 1 n; RETURN
r n =PUSHBOOL b; SQUEEZE 1 n; RETURN

l] r n = PUSHNIL; SQUEEZE 1 n; RETURN
Dl D2] r n = ^ ^ I C o n s Dl D2] r n; SQUEEZE 1 n; RETURN
D] r n = <^ Ihead D] r n; SQUEEZE 1 n; RETURN
DJ r n = <?£[t a i l D] r n; SQUEEZE 1 n; RETURN

Dl D2 D3] r n = ^ ^ I D l] r n; JFALSE 1;
^ [D 2] r n; LABEL 1; ^^[D3] r n

{ET1} Dl...{ETm} Dm] r n = j / (ETm i,) [Dm] r n; . . . ;
j / (E T l £)[D1] r (n + m - 1) ;
SQUEEZE m n; PUSHFUN f;
ENTER \

{ET1} D l . . . ; {ETm} Dm] r n = ^[Dm] r n ; . . . ^ [D l] r (n + m - 1) ;

PUSH ((n + m) - (r x)) ;
SQUEEZE (m + 1) n; LOAD

x = e l i n e2] r n = ^ I e l] r n; 0t%\eZ\ r [x ^ (n + l)] (n + l)

A3 Scheme 0> (Parallel task)

& Z, [D] r n generates code to construct the graph of D, leaving a pointer to it onto the
stack, and spawning a parallel task to have it evaluated with \.

Note that in the rules for head and t a i l , there is no point in creating a parallel

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

Implementing the evaluation transformer model of reduction 365

process for the argument expression. Therefore, the graph of the whole application
is created. The code for head and t a i l will then force the evaluation of their
argument.

r n =PUSHINT i
r n =PUSHBOOL b

[Nil] r n = PUSHNIL
i[Cons III D2] r n = ^[D2] r n; #[D1] r (n + 1) ; CONS 1

Dl D2] r n = ̂ S 2 P 2 J r n ; # p l] r (n + 1) ; CONS 2
Dl D2] r n = 0>S3P2] r n; ^>SiPl] r (n + 1) ; CONS 3

i [head D] r n = #[DJ r n; PUSHFUN head; STORE 2 Si5 ISPAWN
D] r n = ̂ [D] r n; PUSHFUN t a i l ; STORE 2 Si ISPAWN

Dl D2 D3] r n - (see Section 6.2.3)
{ET1} Dl.. .{ETm} Dm] r n = ^/(ETm S) P m I r n ; • • • 5

j ^ (E T l S) I D 1 I r (n + m - 1) ;
PUSHFUN f; STORE (m + 1) \;
ISPAWN

{ET1} Dl . . . ; Dm] r n = ^[Dm] r n; . . . #[D1] r (n + m - 1) ;
PUSH ((n + m) - (r x)) ;
STORE (m + 1) S; ISPAWN

x = e l i n e2] r n = ^ [e l] r n; ^ U e 2] r[x>-*(n + l)] (n + 1)
SQUEEZE 1 1

A.4 Scheme & (Evaluate)

$ S PI r n generates code which evaluates D with evaluator S> and leaves a pointer
to this value on top of the stack. The code will make the value of the expression
available once the WHNF of it has been evaluated, even if further evaluation of it is
taking place.

The $ -scheme is used when it is known that an expression needs to be evaluated,
but it is not worth creating a parallel process to evaluate it, for one of two reasons

• the expression is an argument to a strict base function of one argument, head for
example, or the argument of a base function that must be evaluated before any
further evaluation of an application of the function can be made, i f for example;
or

• some complexity analysis has been done and it has been determined that the work
required to evaluate the expression does not warrant creating a parallel task for it.

In the first case, although a parallel task is not created to evaluate the whole
expression, saving the cost of suspending the current process, it may be worthwhile
spawning subtasks to evaluate some of its subexpressions. Therefore, the ^-scheme
spawns parallel subtasks where sensible. In the second case, we assume that there has
been some pass of the compiler which also marks all the subexpressions of the
expression being compiled with the S-scheme, so that no parallel tasks will be created.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

366 G. L. Burn

The following compilation rules do not take evaluation complexity into account, but
it should be clear how this could be done.

r n =PUSHINT i
r n =PUSHBOOL b

l] r n = PUSHNIL
r n =PUSH (n - (r x)) ; EVAL

Dl D2] r n = ^ [C o n s Dl D2] r n
D] r n = <f^[D] r n; HEAD; EVAL
D] r n = <?^[D] r n; TAIL; EVAL
D] r n = <f^2[D] r n ; TAIL; EVAL

£ t,3 [t a i l D] r n = <^2[D] r n; TAIL; UPDATEEV £3; EVAL
i Dl D2 D3] r n = ^ ^ [D l] r n; JTALSE 1 1 ; <?£[D2] r n;

JMP 1 2 ; LABEL 1 1 ; <?^[D3I r n; LABEL 12
{ETm) E l . . . {ET1} Dm] r n = j * (ETm £) [Dm] r n; . . . ;

J ^ (E T 1 £)[D1] r (n + m - 1) ;

PUSHFUN f; CALL (m + 1)
{ETm} D1. . .{ET1} Dm] r n = ^[Dm] r n ; . . . # [D l] r (n + m - 1) ;

PUSH ((n + m) - (r x)) ; CALL (m + 1)
x = e l i n e2] r n = ^ I e l] r n; «?£[e2] r [x ^ (n + l)] (n + 1) ;

SQUEEZE 1 T

A.5 Scheme %> (construct graph)

r n generates code which constructs the graph of D, and leaves a pointer to this
graph on the stack.

When a graph is created in the heap, then we mark it set its evaluator field to be
^j , as it will require evaluation at least to WHNF if it is ever evaluated17

<©Ii] r
< [̂b] r
^[Nil]
#[f] r
#[x] r
^[Cons
#[1)1. .

n
n

r n
n

n

Dl

= PUSHINT
=PUSHBOOL

i=PUSHNIL
= PUSHPUN
= PUSH (n -
D2] r n = ^

| r n = #[Din

i
b

f

- (r
'[D2

] r

x))
] r n ; <€

n; . . . #[1
[Dl] r (n + 1) ;
D1J r (n + m - 1)

CONS 1

; STORE m

G. L. Burn, Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen's Gate, London SW7 2BZ, UK.
17 This is different to the convention made in Burn (19886) and Lester and Burn (1989), where the

evaluator field is always set to ̂ v o , and only changed when a task has been created to evaluate the
expression.

https://doi.org/10.1017/S0956796800000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000137

