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1. Introduction

Let (M,g,J) be an almost Hermitian manifold. More precisely, M is a 'if00

differentiable manifold of dimension 2n, J is an almost complex structure on M, i.e. it is
a tensor field of type (1,1) such that

J2(X)=-X,

for any XeX(M), (3E(M) is the Lie algebra of #00 vector fields on M), and g is a
Riemannian metric compatible with J, i.e.

g(JX,JY)=g(X,Y), X,YeX(M)-

(M,g,J) is a homogeneous almost Hermitian manifold if there exists a transitive and
effective Lie group G of almost complex isometries acting on M. In other words, there is
a <^co differentiable map

GxM^M, (a,p)^La{p), aeG, peM,

with the following properties

(i) Lab(p) = La • Lb(p), a,beG,peM,
(ii) La is an isometry of (M,g), for any aeG,
(iii) if La(p)=p for every peM, then a = e (e is the unit element of G),
(iv) for every p,qeM, there is an element aeG such that La(p) = q,
(v) for all aeG, La is an almost complex automorphism of (M, J), i.e.

((/,„)„ denotes the differential map of La).
In 1958, Ambrose and Singer gave the following characterization of Riemannian

homogeneous manifolds (i.e. Riemannian manifolds admitting an effective and transitive
Lie group of isometries).
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Theorem 1.1 [3]. A connected, simply connected, complete Riemannian manifold (M, g)
is homogeneous if and only if there is a tensor field T of type (1,2) on M such that

(i) Vg=O,
(ii) $R = 0,
(iii) VT=0,

where ^ = V— T, V is the Levi Civita connection of M and R is the curvature tensor ofV.

In 1978, Sekigawa found a corresponding theorem for homogeneous almost
Hermitian manifolds.

Theorem 1.2 [13]. A connected, simply connected, complete almost Hermitian manifold
(M,g,J) is homogeneous if and only if there is a tensor field T of type (1,2) on M which
satisfies conditions (i), (ii), (iii) of Theorem 1.1 and (iv) ^J = 0.

A tensor T verifying the conditions of the previous theorem will be called an almost
Hermitian homogeneous structure. The aim of this paper is to obtain a classification of
almost Hermitian homogeneous structures similar to the classification of Riemannian
homogeneous structures given in [16]. In the second section, we decompose the vector
space 3~{V) of tensors with the same symmetries of the almost Hermitian homogeneous
structures in eight subspaces, invariant under the action of the unitary group U(n).
Besides, we prove that the decomposition is irreducible by means of the quadratic
invariants (see Section 3). Since some subspaces of the decomposition are equivalent in
the sense of the representation theory, it follows that there is an infinite number of
invariant subspaces of &~(V). As a consequence there are several decompositions. The
choice among the different possibilities is motivated by geometrical considerations. For
example, from the decomposition of Section 2 we obtain a characterization of
homogeneous Kahler manifolds. A second decomposition (see Section 4) is given in
order to obtain a connection with the decomposition of &~(V) under the action of the
orthogonal group O(2n) (see [16]). As a consequence, we obtain a classification of
naturally reductive homogeneous almost Hermitian manifolds in eight classes (see
Section 5). In the last section, some geometrical results and examples are given.

2. A decomposition of ST( V) into invariant subspaces

Let V be a real vector space of dimension 2n endowed with a complex structure J
and a Hermitian inner product <,), that is

J2 = -I,

for any X, Y e V and / the identity isomorphism of V.
In this section, we study the vector space of the tensors which satisfy the symmetries

of the almost Hermitian homogeneous structures defined in Theorem 1.2, i.e.
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where TXYZ = (JXY,Z)>, for any X, Y,Ze V (V* is the dual vector space of V). F(V) has
a canonical inner product, induced by V, defined in the following way

with T,Te&~(V) and (elt...,e2n) an arbitrary orthonormal basis of V. The standard
representation p of the unitary group U{n) on V gives rise to a representation p of U(ri)
on F{V) defined by

z = Tg-lXg-iYg-lz, X,Y,ZeV, geU(n),

It follows immediately that

<p(g)T,p(g)T> = <T,T\ for any T, Te<T(V),

or, in other words, the map T->p(g)T is an isometry of &~(V). Therefore, the orthogonal
complement of any invariant subspace of 3~(V) is still an invariant subspace and the
representation p is completely reducible. Let us first suppose that dim V=2n, with n>2.

In order to obtain the decomposition into invariant subspaces, we define the
endomorphism a of 3~{V) as follows

X,Y,ZeV.

Since

a2 = J and a(p(g)T) = p(g)(ocT),

a. admits the eigenvalues + 1 , - 1 and the eigenspaces

+ = {Ts3T(V)ITXYZ= TXJYJZ,X, Y,ZeV},

_ = {Ter(V)/TXYZ=-TXJYJZ,X,Y,ZeV},

are invariant and mutually orthogonal, because a is a symmetric operator with respect
to the inner product in 2T{Y).

Moreover

These subspaces are not irreducible under the action of U(n).
In the next theorem, a decomposition of &~(V)+ is given.

Theorem 2.1. In the case of dim V=2n, with n>2, we have
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where

- (X, JZ)*2{JY) + 2(JY, ZW2(JX), ip2 e V%

for any X, Y, Ze V. cl2 is defined by

c12(T)(X) = £ TeteiX, for any XeV,

and («i,..., e2n) an arbitrary orthonormal basis of V.
The subspaces J^lt Jf2, JV3, Jf4 are mutually orthogonal and invariant under the action

ofU(n)onST(V)+.
If dimV=2, then ^{V)+=^. 7/dimF=4, then

Proof. Let /? be the endomorphism of &~(V)+ given by

P( T)XYZ=l( Tzxr + TYZX + TJZXJY + TJYJZX), X,Y,ZeV.

Since P2 = I and ft commutes with the action of U(n), F(V)+ can be decomposed into
the direct sum of two mutually orthogonal and invariant subspaces

Using the trace, one can see that 0> and 2. further split in the following way

where je\(Jf%) is the orthogonal complement of ^ \ ( ^ 3 ) in
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By an explicit calculation we get the expressions of tf2
 a nd #A and we find

Gray and Hervella [9] decomposed the vector space

iT = Le(g)V*/<x(X,Y,Z)=-x(X,Z,Y)=-oi(X,JY,JZ), X,Y,Zev\,

into four irreducible and invariant (under the action of U(n)) subspaces. Because
= *r, the following theorem holds:

Theorem 2.2 [9]. / / dim V=2n, n > 2, we have: 9~( V) _ = 3VS © Jf6 © ̂ f7 © JT8,

for any X,Y,ZeV and ®Xrz denotes the cyclic sum with respect to X, Y, Z. The
subspaces Jf^ Jf?6, JiC-,, 3tifH are mutually orthogonal and invariant under the action of
U(n) on &~(V). Moreover, we have

XeV.

If dim V=2 then 3T{V) = {0}. If dim V=4 then

Theorem 23. Let dimK^6, then 9~(V) is the orthogonal direct sum of the invariant
subspaces 3^t, i= 1,..., 8 given by

- (X, JZy^iJY)- 2(JY, ZMAJX), ill, e V*},

= {TeST(V)/Txrz= -UTZXY + Trzx + TjZXJY + Tjrjzx), c12(T)=0},
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JT4 = {Te3T{V)/TXYZ = <X, Y>^2(Z)-<*, Z><

- (X, JZ)ilf2(JY) + 2{JY, Z^2{JX), *2 e V*},

Jr5 = { T 6.7 (V)/TXyZ =• — TYXZ = — TXJYJZ},

je6 = {Tey-(V)/®XYZTXYZ = 0, TXYZ = - TXJYJZ},

^ = {Ter(V)/TXYZ=-TXJYJZ=TJXJYZ,cl2(T)=0},

If dim V=2, then
If dim V=4, then

3. Irreducibility of the decomposition and dimensions of the subspaces

In order to prove that the decomposition given in Theorem 2.3 is irreducible under
the action of U(n), it is necessary to find a set of generators for the vector space of the
quadratic invariants of &~(V).

In fact the following theorem holds:

Theorem 3.1. A subspace of (X^ V*, invariant under the action of U(n), is irreducible if
and only if the vector space of its quadratic invariants has dimension one (see for example
[19]).

The quadratic invariants of 2T(V) can be obtained, by restriction, from those of
(X)3 V*. We have:

Theorem 3.2. The vector space of the quadratic invariants of&~(V) is generated by

i.j.k = l

2n
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In

.„/,* =

In

2n

i.j.k=l

In

9\ / — Z-i
.•.;.*=1

In

'io(r)=. ^_i

In

'e,e

= 2^ Te.eiej

In

i , M = l

In

i.j.k=l

In

i.j.k=l

In

i\&D = 11̂ 12(̂ )11 = ZJ ^JefifijTje^iejt

where (C| , . . . , e2n) is an arbitrary orthonormal basis of V and Te&~(V).

Proof. From [12], we know that each quadratic invariant of (X)3 V* can be written as

2n

( Z=i rWjT.tj,h.JtMell,e,2,eti,eh,eh,eJJ,

where Te&~(V) and /t is a linear invariant of (§)6K*, i.e. / is a linear combination of
elements of the following type
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for Xj e V, i = 1,..., 6; a is a permutation of (1 , . . . , 6), a( = 0,1 and

A straightforward, but lengthy, computation gives the above result.

By checking directly that Theorem 3.1 is satisfied for any subspace Jf,, i= 1,...,8, one
has

Theorem 33. The decomposition of &~(V) given in Theorem 2.3 is irreducible under
the action of U(n).

The dimensions of the irreducible subspace are the following (see also [9]):

Theorem 3.4. / / dim V=In, n > 2, then

dim #! = dim #n = n(n + l)(n - 2),

dim Jf2 = dim 3tA = dim ̂ f8 = In,

dim Jiff5=\n(n-\)(n-2),

/ / dim V=2,4 we get the particular cases described in Theorem 2.3.

Proof. In the case of dim V=2n, n>2, the dimensions of Jf5, 3^C6, Jf7, Ĵ g can be
found in [9, remark on page 39]. Obviously, Jf2 and J^4 have dimension 2n. Hence it
follows that

dim ̂  0 ^ = dim ̂ "( K) - dim pf2 0 ^ 4 © ̂ "( V) _) = 2n{n2 - 2).

Writing down explicitly the conditions which must be satisfied by the components of a
tensor Ts3^u the dimension of JFV follows from a long, but elementary, calculation.

4. Another decomposition of ST{ V)

In this section we give a different decomposition of &~(V), with respect to the action
of U(n). This one will be strictly related to the decomposition found by Tricerri and
Vanhecke if &~{V) is acted on by the orthogonal group O(2n). In fact, according to

https://doi.org/10.1017/S0013091500006775 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006775


ALMOST HERMITIAN HOMOGENEOUS STRUCTURES 383

Theorem 3.1 of [16], we have that

where

with X, Y, Z e V and ®XYZ denotes the cyclic sum with respect to X, Y, Z. Moreover,
^(V), &~2(V), y3(V) are irreducible and invariant with respect to O(2n). They are
invariant under the action of U(n), too.

On the other hand, Gray and Hervella [9] gave a decomposition of the vector space
if under the action of U(n). Here, if denotes the vector space of the tensors with the
same symmetries as VF, where F is the Kahler form of an almost Hermitian manifold
and V is the Levi Civita connection of the Hermitian metric. More precisely, if

if={a e (X)3 V*/a(X, Y,Z)=- oc(X, Z,Y)=-x(X, JY, JZ)},

we have

where

nr2 = {a e if MX, Y,Z) + a(Z, X, Y) + a( Y, Z, X) = 0},

iT3 = {zeir/<x(X,Y,Z)-a(JX,JY,Z)=O,c12(oi)=O},

1T4 = {a e iT/oc(X, Y, Z) = <X, Y>r,(Z) - {X, Z>r,( Y)-(X,J Y\{JZ)

+ <X,JZ>r,(JY),rieV*},

for any X, Y,Ze V. The subspaces Wh i = l , . . . ,4, are irreducible and invariant under the
action of U(n).

Let (M,g,J) be a homogeneous almost Hermitian manifold. From condition (iv) of
Theorem 1.2, we deduce the following relation between the tensor T and VF

X,Y,ZeX(M).
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This suggests we consider the homomorphism

X,Y,ZeV.

Obviously, i]/ commutes with the action of the unitary group U(n). Let ^ih » = 1,2,3, be
the restriction of \j/ to the subspaces ^V),i= 1,2,3. We have

Theorem 4.1. The homomorphisms

are isomorphisms and they commute with the action of U(ri).

Proof. It is clear that ^ t is an isomorphism between ^(V) and TT"4. If Te$~3(V),
then

<K T)xxr - H T)JXJXY=0, X, Y e V,

that is ^ ( 7 ) 6 - ^ © T r 3 © i r 4 (see [9]). Since dim5"3(F) = dimir10Tr3©ir4=(2311)
(see [9] and [16]), it is enough to show that i//3 is injective. But Ker\j/3 =
{Te^3(V)/TXrz = TXjYjZ} is trivial as can be seen by the following computation. Let
TeKeril/3, then from

TXYZ = ~ TYXZ = TXjyjz, X, Y,ZeV,

we obtain

TXj yz = Tjx rz> X,Y,ZeV.

Since T is a 3-form on V, we finally get

TrX YZ — TXJYZ = — Tx YJZ = — TJZXY = — TZJXY = TJxzr = — TJXYZ, X,Y,ZeV.

The last part of the theorem is obvious.

Theorem 4.2. The homomorphism

is surjective and commutes with the action of U(n).
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Proof. UTeF2(V),

i.e. ^(r)6Tr2©nr3©ir4 . By definition:

ZTXYZ=0, TXYZ = TXJYJZ,c12(T)=0, X,Y,ZeV}.

Let (eu...,en,en+l=Jel,...,e2n=Jen) be an orthonormal basis of V. The above
conditions imply that T e Ker \ji2 is completely determined by the relations

2n

It follows that

dim Ker ̂ 2 = " ( " ' 1 ) 2n - 2n = n(n -

From [16] and [9], we get

fn-l) and dim iT2 0 ^

hence the theorem holds.

From the last two theorems we have:

Theorem 43. Let dim F=In, n > 2, then

$-(V)=ri{V)® Ker ty2 © TT'2 © KT3 © HT4 © HT*

where

^2(1r;)=1r.> ,-=2,3,4, ^in)=irj, ;=i,3,4.

7/dimK=2, t/icn ^"(K) = ^"1(K). //dimK=4, t/ign

= ^i( K) © Ker \//2 © KT\

Moreover, all the subspaces are mutually orthogonal, irreducible and invariant under the
action of U(n).

Proof. We need only to prove the irreducibility of the decomposition. For this
purpose we apply Theorem 3.1.
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Remarks, (a) Using the above homomorphisms, one can see that, if dimK=2n,
n > 2, the dimensions of the subspaces are

dim ̂ i( V) = dim nr\=dim "W\ = In,

dim Ker î 2 = n(n - l)(n + 2)

dimiT'i;=|n(n-l)(n-2),

dim KT3 = dim 1T3 = n(« + l)(n - 2).

(b) The reason why there are several decompositions of the space 3~{V) under the
action of U(n) is due to the fact that there exist equivalent irreducible subspaces
(according to the representation theory).

More precisely, the subspaces &~i(V), W^ and ~W"A are isomorphic to each other and
nF'3 is isomorphic to "tV1^. It can be seen that these isomorphisms commute with the
induced representation of U(ri).

This implies that there is an infinite number of invariant subspaces of &~(V). The
choice among the different decompositions is due to the geometrical aspects of the
problem which is studied.

In the next theorem we give the explicit definitions of the eight invariant subspaces of
Theorem 4.3.

Theorem 4.4. / / dim V=2n, we have

xrzTXYZ=0, c12(T) = 0},

Txrz= -ttTjXJYZ+TjXYJZ+TXJYJZ)},

+ TJXYJZ + TXJYJZ

+ TYJZJX + TZJXJY, cl2(T)=0},

, veV*\,

i = {Te<T(V)/Txrz=-TYXZ=-TJXJYZ},
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Z, c1 2(T)=0},

where X,Y,ZeV, (5 x y z denotes the cyclic sum with respect to X,Y,Z and

c12(T){X) = j : TeteiX, c12(T)(X) = £ TetJetX, XeV,

(elt...,e2n) is an orthonormal basis of V.

Proof. The defining conditions for W'{, W'^, W^ can be easily obtained using the
isomorphism ij/3 (see Theorem 4.1). We need only to consider the subspace &~2{V).

First of all, let us define

It is clear that 3~WV) is an invariant subspace of &~2{V) and

Obviously, ^""(K)1 coincides with iT'A, and its explicit expression is a matter of
computation.

Next, we introduce the endomorphism £ of 3~WV) given by

(sT)xYZ=~dTXYZ— TJXJYZ — TJXYIZ~ TXJYJZ), X, Y,ZeV.

It is easy to check that

(i) £, commutes with the action of U(n),

(ii) Z2 = Z,
(iii) il/2:lm |-*ifr2 is an isomorphism,

(iv) 3-% = Ker £ © Im Z, and Ker £ = Ker i//2 © TT'3, Im £ = *r2.

By (iv) we have the explicit description of W2. Moreover the endomorphism % °f
given by

TYJZJX+ TZJXJY), X, Y,Ze V,

has the following properties

(i) x commutes with the action of U(ri),

(iii) Ker £, = Ker x © Im x and Ker x = Ker i//2, Im x=^3-

These complete the proof of the theorem.
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By explicit calculations, one gets

<KX)=~c12(T)(X),

XeV.

5. Geometric results

Let (M,g,J) be a homogeneous almost Hermitian manifold of dimension 2n. For
every peM, (TpM,gp,Jp) is a Hermitian vector space. Given an orthonormal basis
(eu...,en, Jeu...,Jen) of TPM, there is a standard representation of U(n) on TpM.
Hence it is possible to decompose the vector space 2T(TpM) as in section 2 or 4. Let Jf
denote a subspace of 3~{TPM) invariant with respect to the representation of U(n).

We say that M is of type JC if TpeJf, for all peM, where T is the corresponding
homogeneous almost Hermitian structure (see Theorem 1.2). Then we simply write:

We deduce now some geometrical consequences from the decomposition given in
Theorem 4.4. In [16], Tricerri and Vanhecke proved the following theorem.

Theorem 5.1. Let (M,g) be a connected, complete and simply connected Riemannian
manifold. Then (M,g) admits a nonvanishing homogeneous (Riemannian) structure Te9~x

if and only if (M, g) is isometric to the hyperbolic space.

Let H2" = {(/ , . . . ,y2")elR2 ' ' | />0} be the hyperbolic space of dimension In with the
metric

d s 2 = ( c / ) - 2 X (dy1)2, ceU, c>0.

The tensor T given by

Tx Y=g(X, Y) -g(t;, Y)X, X,Ye X(H2"),

where g denotes the Riemannian metric on H2n and C=c2y1(5/3j;1), is a (Riemannian)
homogeneous structure.

If J is an almost complex structure on H2n, let us put
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An easy computation shows that J satisfies the condition v7 = 0 (see Theorem 1.2) if
and only if the components Jj are constant on H2". Hence it is possible to find a
coordinate system, obtained from the previous one by a linear combination with
constant coefficients, such that J has the same expression as the standard complex
structure of C . So we have

Theorem 5.2. Let (M,g,J) be a connected, complete and simply connected almost
Hermitian manifold of dimension 2n>2. M admits a nonvanishing almost Hermitian
homogeneous structure of type 2TY if and only if there is a holomorphic isometry from
(M,g,J)onto(H2n,g,J).

Moreover M is globally conformal Kahler but not Kdhler.

About the last remark, we recall that M is a locally conformal Kahler manifold if
there exists a globally defined 1-form <a satisfying

dF=coAF and dco = 0,

where F is the Kahler, form of M; co is called the Lee form.
If (o is also exact, M is a globally conformal Kahler manifold and this happens, for

example, if M is simply connected.
If dimM>4, in [9] it is shown that M is a locally conformal Kahler manifold if and

onlyifVFeiT4.
Finally, we remark that the homogeneous structure T corresponds to the

representation of H2n as a solvable Lie group which is the semidirect product of the
multiplicative group IRQ ={xeR|x>0} and the additive group R2""1 with the product:
{x1,...,x2n)(yi,...,y2n) = {xlyi,x1y2 + x2,...,x1y2n + x2''). The complex structure J
considered above is left invariant but H2n is not a complex Lie group (see Theorem 2.3
of [2]).

Theorem 53. The connected, simply connected, almost Hermitian naturally reductive
homogeneous manifolds of dimension 2n ̂  6 are classified into eight classes, given by all the
invariant subspaces of the decomposition

Proof. This follows from the Theorem 4.1 and from the fact that a homogeneous
Riemannian manifold M belongs to the class &~3 if and only if it is naturally reductive
(see [16, Chapter 6]).

From Remark (b) of Theorem 4.3, in this case, there are no equivalent components
and we obtain a complete classification.

In the case of dim M = 4, we get &~3 = iT'l = ̂  \"W^. Gray and Hervella [9] proved
that if dimM=4, -#̂ 4 is the class of Hermitian manifold (i.e. the Nijenhuis tensor of M
vanishes). So, it follows that:
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Corollary 5.4. A four dimensional almost Hermitian, naturally reductive, homogeneous
manifold is a Hermitian manifold.

From the classification of the almost Hermitian manifolds, [9], we get:

Theorem S3. Let M be a connected, simply connected almost Hermitian homogeneous
manifold of dimension 2n^6. Then

(a) M e •W'y if and only if M is a naturally reductive nearly Kahler manifold.

(b) M e 1^4 if and only if M is a naturally reductive locally conformal Kahler manifold.
(c) M e W^ © nF4 if and only if M is a naturally reductive Hermitian manifold.

Proof. By definition, M is a nearly Kahler manifold if VX(F)(X, Y) = 0, X, YeX(M),
and F is the Kahler form on M. In [9] it is shown that M is a nearly Kahler manifold if
and only if V F G I ^ , . (b) and (c) follow from the observations concerning Theorem 5.2
and Corollary 5.4.

Theorem 5.6. The almost Hermitian homogeneous structures of type &~2
 are classified

into sixteen classes, given by all the invariant subspaces of the decomposition

Proof. It follows directly from Theorem 4.2.

For the almost Kahler manifold it is possible to deduce a nice property.

Theorem 5.7. An almost Kahler, naturally reductive, homogeneous manifold is locally
Hermitian symmetric.

Proof. M is an almost Kahler manifold if its Kahler form is closed. Gray and
Hervella [9] proved that every almost Kahler manifold belongs to the class Hr

2- From
the previous theorems it follows that an almost Hermitian homogeneous structure
Te^"3 on an almost Kahler homogeneous manifold vanishes. Then the manifold is
locally Hermitian symmetric (see [10] and [16]).

Remark. Theorem 5.7 provides a generalization and a direct verification of a result
of Deloff [6] concerning Kahler manifolds.

Theorem 5.8. A homogeneous almost Hermitian manifold is Kdhlerian if and only if it
belongs to the subspace 2T+ defined in Theorem 2.1.

Proof. The covariant derivative of the Kahler form of a Kahler manifold vanishes.
Then, from condition (iv) of Theorem 1.2 one gets

TXJYZ + TXYJZ=0, X, Y, Z e X(M),

where T is an almost Hermitian homogeneous structure. But this is precisely the
definition of ^"+.
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Remarks, (a) Let M be a connected homogeneous almost Hermitian manifold of
dimension 2n^6. Then MeJf?s if and only if M is a naturally reductive nearly Kahler
manifold. This follows from Theorem 5.5(a) and from the definition of Jt?5 and "W\.

(b) If dimK=2, then ^{V) = ̂  (see Theorem 2.3) and Tedf* can be written as
follows

,i;>JY, X,YeV,

where £ e V is defined by <C, *> = i//2(X), X<=V.
By means of the identity

| | | | , XeV,

it is easy to show that

}, X,YeV.

Hence, the class Jtf4 coincides with ST^V) and we may deduce the consequences of
Theorem 5.2.

6. Examples

(a) Let (M,g) be a 3-symmetric Riemannian space, i.e. for each peM there exists an
isometry 6P of M such that

(i) p is an isolated fixed point of 6P,

(n) (0p)* = f. where / denotes the identity isomorphism of TpM.
It is well known that a 3-symmetric space can be endowed with an almost complex
structure J which is compatible with metric g [8]. Hence, for every peM, 0p becomes a
holomorphic isometry with respect to J. In particular, (M,g,J) satisfies the conditions

(VXJ)( Y) + (VJXJ)(J Y) = 0, X,Ye 3E(M),

that is: M belongs to the class •W^nr% of the classification of almost Hermitian
manifolds [9]; further, the tensor field T given by

TxY=y(VxJ)(Y), X,YeX(M),

is an almost Hermitian homogeneous structure on M. Tricerri and Vanhecke [16]
proved also that T e ^ f f i ^ . and Te&~3 if and only if {M,g,J) is a nearly Kahler
3-symmetric space. Moreover, Te&~2 if aQd only if (M,g,J) is an almost Kahler
3-symmetric manifold. The same results are easily deduced from Theorems 4.1 and 4.2.
In fact, nearly Kahler manifolds and almost Kahler manifolds belong, respectively, to the
classes •Wy and tiT2, as has been observed.

(b) The following example shows that the inclusion between Jfj ® Jf3 ® Jf4 and
^ 2 ©-^3 QJP* ©-^6 is strict. Let us consider the 4-dimensional Lie group G given by
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,x,y,z,teU

Endowed with the left invariant metric

ds2 = dx2 + dy2+(dz -xdy)2+dt2,

G becomes a Riemannian homogeneous manifold, diffeomorphic to R3 x S1. In fact G
can be considered as the direct product of the Heisenberg group and the circle. An
orthonormal basis of the Lie algebra g of G is given by

d
dx

8 d
dy dz

d
dz

From the Cartan structural equations, we deduce the connection 1-forms for the Levi
Civita connection of g

Hence the nonzero components of the Riemannian curvature tensor are:

Let us define an almost complex structure J on G as follows:

(G, g, J) is an almost Kahler homogeneous manifold because the Kahler form of G

F = dt A dx+dy A (dz — xdy)

is closed; but (G, g, J) is not a Kahler manifold (for detailed computations, see [1]). By
solving explicitly the Ambrose-Singer-Sekigawa equations, one can find that on G there
is only one almost Hermitian homogeneous structure T given by:

r e / , = - K Tue2=$eu Teiej=0 otherwise.

By a direct calculation, it is possible to find the class which T belongs to:
T e J P j © - ^ ® ^ © ^ F r ° m Theorem 5.8, we have: T$3^2®3Hf3®^. If we
consider the second decomposition, we find that: Teif'2.
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In [1] the compact manifold M = GfT is studied, where G is the above Lie group and
T is the discrete subgroup of G generated by the matrices of G whose entries are
integers. M is the Thurston example [14] of a compact symplectic manifold admitting
no Kahler structure. On the other hand, according to Theorem 4.10 of [20], if M = G/K
is a symplectic homogeneous manifold and G is a nilpotent Lie group, G must be
abelian. Then the manifold M = GfT and its generalizations ([4 and 5]) are not almost
Kahler homogeneous manifolds because they are not symplectic homogeneous
manifolds. However, they are examples of locally homogeneous almost Kahler manifolds
which are not homogeneous, [15].

(c) We describe now a family of examples of homogeneous almost Hermitian
manifolds of class !T2 (see [11] for the computations). Let us consider the Lie group

0 0 i '
0 efit 0 v •

J I, x,y,z,teU, a,Bj=O, a, /?e R, constant
0 e~

ix+fi)' 0 z

*0 0 0 1/
with the metrics:

ds2 = e ~ 2ttt dx2 + e ~ 2pt dy2 + e2("+"" dz2+(dt-u el"+"* dz)2

An orthonormal frame field on G is given by

••4 «-'l -*h ««"*'"s+4
In general, if G is a Lie group with a left invariant metric g, the tensor T is given by

2g(TxY,Z) =*([*, Y],Z)-g&XZ],X) +g(lZ,X\ Y), X,Y,Zeq,

where g denotes the Lie algebra of G.

Let V the Levi Civita connection on G, the metric connection ^ = V — T satisfies:
¥xY=0, for all X, YeQ. Hence, the curvature tensor S of 9 vanishes and T is an
homogeneous structure on G, [16].

In our case, T is given by

Te3e3=-pei, Te4eA=(* + P)ei, 7 ^ = 0 otherwise.

Let J be any left invariant almost complex structure on G, compatible with ds2. It is
clear that, by the definition of V, the fourth condition of Theorem 1.2 is always satisfied.
It follows that (G,ds2,J) is an almost Hermitian homogeneous manifold. It can be
checked that G belongs to the class "̂2- In feet, it is the unique irreducible four
dimensional manifold of type ^"2 which is not a 3-symmetric space [11].

https://doi.org/10.1017/S0013091500006775 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006775


394 E. ABBENA AND S. GARBIERO

Computing the trace cl2(T)(X)=Y,t=i Te,je,x> XeQ, one realizes that c12(T)=0 if and
only if <x + P=O.

Hence, if a+/?=0, G belongs to Ker \//2 © TT"'2 © if'3 but G does not belong to

If a+ 0=^0, G does not belong to Keri//2uTT'2U*r3
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