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Abstract

We show how to derive the uniqueness of graded or ordinary traces on some algebras of log-
polyhomogeneous pseudodifferential operators from the uniqueness of their restriction to classical
pseudodifferential ones.
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1. Introduction

We consider a closed connected Riemannian manifold M of finite dimension n and a
finite rank hermitian vector bundle E over M . A pseudodifferential operator (PDO)
acting on smooth sections of E is called classical (or polyhomogeneous) (see [13]) if,
locally, its symbol is classical, that is, it admits an asymptotic expansion in positively
homogeneous components.

A pseudodifferential operator L acting on smooth sections of E is called log-
polyhomogeneous if, locally, its symbol has the form

ak(x, ξ) logk
|ξ | + ak−1(x, ξ) logk−1

|ξ | + · · · + a0(x, ξ), (1.1)

where k ∈ N and a0, . . . , ak are classical symbols. We call the integer k the log-degree
of L . We denote by:
• L the algebra of log-polyhomogeneous PDOs acting on smooth sections of E ;
• C` the subalgebra of classical PDOs in L;
• Q an admissible classical PDO of positive order such that Log Q exists;
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• AC` a subalgebra of C` such that [AC`, Log Q] ⊂AC` (in general, we only know
that the commutator of a classical PDO and a logarithm is a classical PDO;
hence, we only have [AC`, Log Q] ⊂ C`);

• A the subalgebra of L generated by Log Q and AC`.
The assumption on AC` implies the following fundamental decomposition of A (see

Lemma 2.2).

A=
+∞⊕
k=0

AC` Logk Q. (1.2)

We assume that AC` does not consist only of smoothing operators. Otherwise, AC`
and A are algebras of smoothing operators. Guillemin [4] has shown that the L2 trace
is the unique trace on such algebras.

We say that a linear form τ on an algebra is a trace if, for any operators A and B
in the algebra, we have τ(AB)= τ(BA). That is, τ vanishes on commutators. On a
graded algebra B =

⊕
k≥0 Bk , a graded trace is a sequence (τk)k∈N of linear forms τk

on
⊕

0≤l≤k Bl which vanishes on
⊕

0≤l≤k−1 Bl and satisfies τk+m(AB)= τk+m(BA)
for A ∈

⊕
0≤l≤k Bl and B ∈

⊕
0≤l≤m Bl .

Under the assumption of the uniqueness of a trace τ0 on AC`, we show that there
exists a unique graded trace (τ0

k)k∈N on the whole algebra A which extends τ0 (see
Theorem 3.3). We also prove that, if there exists a trace on A extending τ0, then this
extension is unique (see Theorem 3.5).

Our first result applies to the Wodzicki–Guillemin residue (also called the
noncommutative residue) Res on the algebra C` provided that M is of dimension
n ≥ 2. It is well known that the Wodzicki–Guillemin residue Res is the unique trace

on C`. Setting Res0 = Res, the extension Res0
k

coincides, up to a multiplicative
factor, with the higher noncommutative residue Resk introduced by Lesch.

The kth residue of an operator L in L of log-degree k with local symbol

σ(L)= ak(x, ξ) logk
|ξ | + ak−1(x, ξ) logk−1

|ξ | + · · · + a0(x, ξ)

is defined by

Resk(L)= (k + 1)!
∫

M

∫
S∗M

tr((ak)−n(x, ξ)) dξ dx .

When L is seen as a graded algebra (the grading is given by log-degrees), Lesch
has shown in [8] that the sequence (Resk)k∈N is the unique graded trace. We recover
the same result by an alternative approach.

Our second result applies to the canonical trace on the algebra of odd-class log-
polyhomogeneous PDOs when the manifold M is odd dimensional. According to
Kontsevitch and Vishik [6, 7], a classical operator A of order m ∈ Z is of odd class
if, locally, the positively homogeneous components of its symbol {am− j | j ∈ Z} are
simply homogeneous, that is, they have the property that

am− j (x,−ξ)= (−1)m− j am− j (x, ξ). (1.3)
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The odd-class classical PDOs form an algebra. Following [10], we say that a
log-polyhomogeneous PDO L is of odd class if, locally, all the classical symbols
a0, . . . , ak arising as coefficients of powers of log |ξ | in its symbol (see (1.1)) have
the above property (1.3). In a similar manner to that for odd-class classical PDOs, one
can easily check that odd-class log-polyhomogeneous PDOs form an algebra.

When M is odd dimensional, the canonical trace TR of [6] is well defined on the
algebra of odd-class classical PDOs. Recently, Maniccia et al. [9] proved that TR
is the unique trace on this algebra. The canonical trace was first extended by Lesch
[8] to log-polyhomogeneous PDOs of noninteger orders (this means that the orders of
a0, . . . , ak are not integers). It has further been extended by Paycha and Scott [10]
to odd-class log-polyhomogeneous PDOs when M is odd dimensional. We refer the
reader to Section 4 for more details. To the best of our knowledge, our proof of the
uniqueness of TR on odd-class log-polyhomogeneous PDOs is new.

2. Preliminaries

Following [6, 12, 13], we begin by briefly reviewing the definitions of complex
powers and then those of logarithms of an operator of positive order.

Let Q be an invertible classical PDO of positive order q . We say that Q is
admissible if there exists a closed angle of vertex zero which does not intersect the
spectrum of the leading symbol of Q. If Q is admissible, then there is a half-line

Lθ = {z ∈ C | arg z = θ}

which does not meet the spectrum of Q. We call such a half-line a spectral cut.
Now let Q be an admissible PDO with spectral cut Lθ . Then complex powers Qs

θ

are well defined for all s ∈ C and the logarithm LogθQ is obtained as the derivative at
zero LogθQ = Ds Qs

θ |s=0. The complex power Qs
θ is still an invertible classical PDO

of order qs, whereas LogθQ is no longer classical. Locally, its symbol reads

q log |ξ |id+ σ0(x, ξ),

where σ0 is a classical symbol of order zero. Thus, LogθQ is a PDO of positive order
ε for all ε > 0. Since the choice of a spectral cut will not be important when taking an
admissible operator, we will omit the mention of θ .

From now on, let Q be an admissible operator and let AC` be an algebra of classical
PDOs which are not reduced to smoothing operators and such that [AC`, Log Q] lies
in AC`. Let A be the algebra generated by Log Q and AC`.

The following are some elementary, yet fundamental, results that we shall require
in the sequel.

LEMMA 2.1. If A is in AC` and if k ≥ 1, then [A, Logk Q] is in A and is of log-degree
k − 1.

PROOF. The fact that [A, Log Q] is classical is stated in [3]. For the sake of
completeness, here are the detailed calculations that prove this fact. We recall the
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composition law of symbols corresponding to the composition of PDOs (see [13]):

σ ? σ ′(x, ξ)=
∑
α∈Nn

(−i)|α|

α!
∂αξ σ(x, ξ)∂

α
x σ
′(x, ξ).

Locally, let σ be a symbol of A and let

q log |ξ |id+ σ0(x, ξ)

be a symbol of Log Q (as above, q denotes the order of Q). Then a symbol of A Log Q
is

σ(A Log Q)(x, ξ)=
∑
α∈Nn

(−i)|α|

α!
∂αξ σ(x, ξ)∂

α
x (q log |ξ |id+ σ0(x, ξ)),

σ (A Log Q)(x, ξ)= (σ ? σ0)(x, ξ)+ q log |ξ |σ(x, ξ)

and a symbol of Log Q A is

σ(Log Q A)(x, ξ) =
∑
α∈Nn

(−i)|α|

α!
∂αξ (q log |ξ |id+ σ0(x, ξ))∂

α
x σ(x, ξ),

σ (Log Q A)(x, ξ) = (σ0 ? σ)(x, ξ)+ q log |ξ |σ(x, ξ)

+ q
∑

α∈Nn\{0}

(−i)|α|

α!
∂αξ log |ξ |∂αx σ(x, ξ).

The derivative ∂αξ log |ξ | is homogeneous of degree −|α|. Thus, a symbol of
[A, Log Q] = A Log Q − Log Q A is classical. By our assumption on AC`, we have
[A, Log Q] ∈ 0AC`.

The general result can be proved by induction on k, since we have

A Logk Q − Logk Q A = (A Logk−1 Q − Logk−1 Q A) Log Q

+ Logk−1 Q A Log Q − Logk Q A,

[A, Logk Q] = [A, Logk−1 Q] Log Q + Logk−1 Q[A, Log Q].

LEMMA 2.2. If A ∈A has log-degree k, then there exist classical PDOs
A0, A1, . . . , Ak in AC` such that

A = A0 + A1 Log Q + · · · + Ak Logk Q.

That is,

A=
+∞⊕
k=0

AC` Logk Q.

PROOF. By definition of A, A is a linear combination of terms of the form

C1 Logα1 QC2 Logα2 Q · · · Cm Logαm QCm+1,
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where the Ci are in AC` and the αi are nonnegative integers which sum up to k. We
notice that

Logαm QCm+1 = Cm+1 Logαm Q + [Logαm Q, Cm+1].

Hence, by induction on αm and Lemma 2.1, there exist classical PDOs Am+1,0,
Am+1,1, . . . , Am+1,αm−1 in AC` such that

Logαm QCm+1 = Cm+1 Logαm Q + Am+1,0

+ Am+1,1 Log Q + · · · + Am+1,αm−1 Logαm−1 Q. (2.1)

The result follows by induction on m. 2

PROPOSITION 2.3. Let

A = A0 + A1 Log Q + · · · + Ak Logk Q ∈A

be an operator of log-degree k. Then:

(1) the classical PDO Ak is unique up to a smoothing operator;
(2) if there exists a trace τ0 on AC` which vanishes on smoothing operators, then the

linear form τ0
k
: A 7→ τ0(Ak) defines a graded trace on A.

PROOF. For part (1), let us consider an alternative decomposition of A, namely

A = A′0 + A′1 Log Q + · · · + A′k Logk Q.

The two decompositions lead to two descriptions of the local symbol of A:

σ(A)= qkσ(Ak) logk
|ξ | + σ

and
σ(A)= qkσ(A′k) logk

|ξ | + σ ′,

where σ(Ak) and σ(A′k) are symbols of Ak and A′k , respectively, σ and σ ′ are log-
polyhomogeneous symbols of log-degree k − 1 and q is the order of Q. It follows that
the classical symbols σ(Ak) and σ(A′k) differ from smoothing symbols. This implies
that the difference Ak − A′k is a smoothing operator.

In part (2), if τ0 vanishes on smoothing operators, then, since Ak is unique modulo
a smoothing operator, the linear form τ0

k is well defined. Let A and B be two log-
polyhomogeneous PDOs written as

A = A0 + A1 Log Q + · · · + Ak Logk Q

and
B = B0 + B1 Log Q + · · · + Bm Logm Q.

We have
τ0

k+m(AB)= τ0
k+m(Ak Logk Q Bm Logm Q).
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Using (2.1), we permute Logk Q and Bm to obtain

τ0
k+m(AB)= τ0

k+m(Ak Bm Logk+m Q).

This implies that τ0
k+m(AB)= τ0(Ak Bm). A similar argument allows us to prove that

τ0
k+m(BA)= τ0(Bm Ak). The result follows. 2

3. Results and proofs

For k ≥ 0, we let Ak denote the vector space of operators in A of log-degree k.

LEMMA 3.1. If there exists a unique nontrivial trace τ0 on AC` and if A ∈Ak ,
then, for any operator P in AC` such that τ0(P)= 1, there exists a finite number
of operators Pi in AC`, Qi in Ak and a finite number of complex scalars αi such that

A =
M∑

i=1

[Pi , Qi ] + P(α0 + α1 Log Q + · · · + αk Logk Q). (3.1)

In particular, αk = τ0(Ak) when A is written as

A = A0 + A1 Log Q + · · · + Ak Logk Q.

If AC` does not admit any nontrivial trace, then every A ∈Ak can be written in the
form

A =
M∑

i=1

[Pi , Qi ] (3.2)

with Pi in AC` and Qi in Ak .

PROOF. We proceed by induction on k.
Let k = 0. In this case, A belongs to AC`. Let us assume that there exists a unique

nontrivial trace τ0 on AC`. Let P ∈AC` be such that τ0(P)= 1.
Let D be the vector subspace of AC` generated by the commutators of AC` and

let D⊥ be the orthogonal of D in the algebraic dual space of AC`. By definition, D⊥
is the set of linear forms which vanish on D. Hence, a trace on AC` is an element
of the subspace T =D⊥ and the assumption of the uniqueness of τ0 implies that T
is generated by τ0. Now it is a general fact that any vector subspace F , of finite
or infinite dimension, of a vector space E satisfies (F⊥)⊥ = F . Here (F⊥)⊥ is the
vector subspace of E orthogonal to F⊥ for the pairing between E and its dual (see,
for example, [1, Section 7, no. 5, Theorem 7]). Hence, we have (D⊥)⊥ =D. That is,
T ⊥ =D. But, by definition of

T ⊥ = {A ∈AC` | τ0(A)= 0},

we have T ⊥ = Ker τ0. Hence, D = Ker τ0 is of codimension one. This leads to the
following decomposition of A:

A =
M∑

i=1

[Pi , Qi ] + τ0(A)P
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with Pi and Qi in AC` for all i . Otherwise, if τ0 = 0, we simply have that
A =

∑M
i=1[Pi , Qi ].

Suppose that property (3.1) holds for some k ≥ 0. Let A ∈Ak+1 and let the
elements A0, . . . , Ak+1 of AC` be such that

A = A0 + A1 Log Q + · · · + Ak+1 Logk+1 Q.

Since Ak+1 lies in AC`, the case for k = 0 gives us the decomposition

Ak+1 =

N∑
i=1

[Pk+1,i , Qk+1,i ] + τ0(Ak+1)P

with Pk+1,i and Qk+1,i in AC` for all i .
In any algebra, we have that

[X, Y ]Z = [X, Y Z ] + Y [Z , X ].

Thus,

Ak+1 Logk+1 Q =

( N∑
i=1

[Pk+1,i , Qk+1,i ] + τ0(Ak+1)P

)
Logk+1 Q

=

N∑
i=1

[Pk+1,i , Qk+1,i Logk+1 Q] +
N∑

i=1

Qk+1,i [Logk+1 Q, Pk+1,i ]

+ τ0(Ak+1)P Logk+1 Q.

Now [Pk+1,i , Qk+1,i Logk+1 Q] is a commutator with Pk+1,i in AC` and
Qk+1,i Logk+1 Q in Ak+1. By Lemma 2.1, Qk+1,i [Logk+1 Q, Pk+1,i ] is of log-degree
k so that we can apply the inductive hypothesis to

∑N
i=1 Qk+1,i [Logk+1 Q, Pk+1,i ].

We may also apply the inductive hypothesis to

A0 + A1 Log Q + · · · + Ak Logk Q.

Property (3.1) follows.
Suppose that property (3.2) holds and τ0 = 0.We may deduce from our calculations

that, if A is in Ak+1, then A is a sum of commutators of operators in AC` and Ak+1. 2

REMARK 3.2. Lemma 3.1 extends to several traces on AC`. If there exist m linearly
independent traces τ0, . . . , τm on AC`, then there exist m operators P̃0, . . . , P̃m in
AC` and scalars αl, j , 0≤ l ≤ k, 0≤ j ≤ m such that τ j (P̃i )= δi j and

A =
M∑

i=1

[Pi , Qi ] +

m∑
j=1

P̃j (α0, j + α1, j Log Q + · · · + αk, j Logk Q).

PROOF. In this case, the vector subspace D of AC` generated by commutators satisfies
D =

⋂m
i=1 Ker τi . Hence, D is of codimension m in AC`. The proof is similar to that

for Lemma 3.1. 2
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THEOREM 3.3. Suppose that there exists a unique nontrivial trace τ0 on AC`. If τ0
vanishes on smoothing operators, then the graded trace (τ0

k)k∈N on A extending τ0 is
unique up to a multiplicative factor (depending on k). In contrast, there is no nontrivial
trace on A.

PROOF. Let A ∈A be of log-degree k ≥ 1. By Lemma 2.2, A can be written as

A = A0 + A1 Log Q + · · · + Ak Logk Q

with the Ai in AC`. Let us assume that τ0 is nontrivial.
Applying Lemma 3.1, for any P in AC` such that τ0(P)= 1 we have

A =
M∑

i=1

[Pi , Qi ] + Lk (3.3)

with

Lk = P(α0 + α1 Log Q + · · · + αk−1 Logk−1 Q + τ0(Ak) Logk Q),

where the Pi are in AC`, the Qi are in Ak and the αi are complex numbers.
Suppose that τ0 vanishes on smoothing operators. We can choose P to be

nonsmoothing. Let (τk)k∈N be a graded trace on A. Then we have

τk(A)= τk(Lk)= τk(P Logk Q)τ0(Ak).

Since P is independent of A, τk(A) is equal to τ0(Ak) up to a multiplicative factor
which is independent of k. Using the notation of Proposition 2.3, we have τ0(Ak)=

τ0
k(A). The uniqueness of (τ0

k)k∈N follows.
Now suppose that there exists a trace τ extending τ0 to A. To conclude that τ is

trivial, we use an argument of Lesch (see [8]). For A ∈A of log-degree k, we have
τ0

k+1(A)= 0. By the uniqueness of (τ0
k)k∈N, A is a sum of commutators [Pi , Qi ]

with Pi in AC` and Qi in Ak+1. Hence, A is a sum of commutators and τ(A)= 0. 2

REMARK 3.4. If there exist m linearly independent traces τ0, . . . , τm on AC` which
all vanish on smoothing operators, then any graded trace on A is a linear combination
of the m extensions (τ0

k)k∈N, . . . , (τm
k)k∈N.

PROOF. The result is a straightforward application of Remark 3.2 to the proof of
Theorem 3.3. 2

THEOREM 3.5. Suppose that there exists a unique nontrivial trace τ0 on AC`. If τ0
does not vanish on smoothing operators and if there exists a trace τ extending τ0 to A,
then τ is unique.

PROOF. Suppose that τ0 is nontrivial, but does not vanish on smoothing operators.
We begin as in the proof of Theorem 3.3. In formula (3.3), we can choose P to be
smoothing and satisfying τ0(P)= 1. Since P is smoothing, Lk is also smoothing.
Now let Tr be the unique trace on smoothing operators. It follows that there exists
β in C∗, independent of A and such that τ(A)= τ(Lk)= β Tr(Lk). This implies the
uniqueness of the trace τ on A. 2
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REMARK 3.6. If τ0 = 0, then any graded trace or ordinary trace extending τ0 on A
vanishes. Notice also that, if τ0 does not vanish on smoothing operators, then any
graded trace on A extending τ0 vanishes on A \AC`.

PROOF. If τ0 = 0, then by Lemma 3.1 A is a sum of commutators of operators. The
first result follows.

Now let us assume that τ0 does not vanish on smoothing operators, and let (τk)k∈N
be a graded trace extending τ0. Following the proof of Theorem 3.5, τk should be
proportional to the trace of a smoothing operator for any k ≥ 0. Hence, τk = 0 for all
k ≥ 1. 2

4. Applications

We let Lodd denote the algebra of odd-class log-polyhomogeneous PDOs and let
C`odd denote the algebra of odd-class classical PDOs. The following proposition says
that both L and Lodd satisfy property (1.2) of the introduction. We begin with a lemma
about the odd-parity class of a logarithm, which can be found in [6] or [2].

LEMMA 4.1. Let Q be an admissible operator. If Q is of odd class and even order,
then Log Q is of odd class.

PROOF. Let Q be of odd class and of even order q . We recall that Qs is a classical
PDO of order qs. We will denote by σq− j , for j ≥ 0, the homogeneous components of
a symbol of Q. For s ∈ C of negative real part and for a suitable contour 0 (see [12]),
the positively homogeneous components of Qs of degree qs − j are expressed by

σqs− j (x, ξ)=
i

2π

∫
0

λsb−q− j (x, ξ, λ) dλ

with b−q = (σq − λId)−1 and satisfying, for j ≥ 1,

b−q− j =−b−q

∑
k+l+|α|= j,l< j

i−|α|
1
α!
∂αξ σq−k∂

α
x b−q−l .

We have
b−q(x,−ξ, λ)= (σq(x,−ξ)− λ Id(x, ξ))−1.

Since Q is of odd class and q is even, we have b−q(x,−ξ, λ)= b−q(x, ξ, λ). By
induction on j , we deduce that

b−q− j (x,−ξ, λ)= (−1) j b−q− j (x, ξ, λ).

Thus, we have
σqs− j (x,−ξ)= (−1) jσqs− j (x, ξ).

For s = 0, we have A0
= Id which is odd and for Re(s) > 0 we use As A−s

= Id to
conclude that this equality still holds. Observing that

σqs− j (x, ξ)= |ξ |
qs− jσqs− j (x, ξ/|ξ |)

and differentiating at s = 0 gives us that Log Q is of odd class. 2
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PROPOSITION 4.2. Let Q be an admissible operator. Then:

(1) L=
⊕
+∞

k=0 C` Logk Q;
(2) if Q is an admissible operator of odd class and of even order, then Log Q is of

odd class and

Lodd =

+∞⊕
k=0

C`odd Logk Q.

PROOF. In part (1), the inclusion from right to left is straightforward. To show the
inclusion from left to right, we proceed by induction on k. The inclusion certainly
holds for k = 0. Suppose that it holds for some k ≥ 0. Let A ∈A be of log-degree
k + 1 with symbol a =

∑k+1
l=0 al logl

|ξ |. Using a partition of unity adapted to a finite
trivializing covering of M for E , we associate to ak+1 a classical operator

Ak+1 = Op(ak+1).

Then the operator

A −
1

qk+1 Ak+1(Logk+1 Q)

lies in A and is of log-degree k.
The result follows by our inductive hypothesis.
The proof of part (2) proceeds like that of part (1) with Ak+1 and Logk+1 Q of odd

class. 2

Now we recall the definition of the canonical trace on the algebra Lodd when M is
odd dimensional. For this definition, we follow [10] (see also [8]).

Let L be in Lodd of log-degree k with local symbol σ =
∑k

l=0 al logl
|ξ |. The

canonical trace of L is defined by

TR(L)=
∫

M
TRx (L) dx

via a well-defined global density on M

TRx (L) dx =

(
−

∫
T ∗x M

trx (σ (x, ξ)) dξ

)
dx .

Here the finite part integral−
∫

T ∗x M trx (σ (x, ξ)) dξ is the constant term in the asymptotic

expansion of
∫
|ξ |<R trx (σ (x, ξ)) dξ when R→+∞.

On smoothing operators, the canonical trace coincides with the L2 trace, whereas
the Wodzicki–Guillemin residue clearly vanishes.

APPLICATION 4.3. When the manifold is of dimension ≥2, we know from Wodzicki
(see [5, 14]) and Guillemin (see [4]) that Res is the unique trace on C` (see also [11] for
detailed analysis on this subject). When combined with Proposition 4.2, Theorem 3.3
gives the existence and the uniqueness of (Resk)k∈N on L.
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APPLICATION 4.4. When we combine Proposition 4.2 with the result of [9], the
uniqueness of TR on odd-class classical PDOs for odd-dimensional manifolds and
Theorem 3.5, we obtain a proof of the uniqueness of TR on Lodd in odd dimensions.
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