ON THE DARBOUX PROBLEM OF NEUTRAL TYPE

Dariusz Bugajewski and Mirosława Zima

The aim of this paper is to prove uniqueness theorems for the Darboux problem of neutral type in the space L^{∞} and L^{1}.

1. Introduction

Let $I=[0, a], a>0$. Denote by $L^{\infty}\left(I^{2}\right)$ the space of Lebesgue measurable and essentially bounded functions $z: I^{2} \rightarrow \mathbb{R}$, with the norm

$$
\|z\|_{\infty}=\operatorname{ess} \sup _{I^{2}}|z(x, y)|
$$

Furthermore, let $L^{1}\left(I^{2}\right)$ denote the space of Lebesgue measurable functions $z: I^{2} \rightarrow \mathbb{R}$ such that $\int_{I^{2}}|z(x, y)| d x d y<+\infty$, with the norm

$$
\|z\|_{1}=\int_{I^{2}}|z(x, y)| d x d y
$$

In this paper we consider the following Darboux problem of neutral type

$$
\begin{align*}
z_{x y} & =f\left(x, y, z(h(x, y)), z_{x y}(H(x, y))\right), \quad(x, y) \in I^{2} \\
z(x, 0) & =0, \quad x \in I \tag{1}\\
z(0, y) & =0, \quad y \in I
\end{align*}
$$

In Section 2 we show that under suitable assumptions on the functions f, h and H, the problem (1) has a unique solution in the space $L^{\infty}\left(I^{2}\right)$. To prove this we apply the fixed point theorem from the paper [7]. In Section 3 we apply the classical Banach contraction principle to obtain an analogous result for the problem (1) in the space $L^{1}\left(I^{2}\right)$. Similar problems (with or without translation of arguments) have been considered for example, in the papers [2, 3, 9] and in the monograph [1].

In what follows we shall need two propositions from the papers $[7]$ and $[8]$.
Received 3rd January, 1996
The authors wish to express their thanks to Dr. A. Soltysial for his suggestions.

Let $(X,\|\cdot\|, \prec, m)$ be a Banach space with a binary relation \prec and a mapping $m: X \rightarrow X$. Suppose that:
(i) the relation \prec is transitive,
(ii) the norm $\|\cdot\|$ is monotonic, that is, if $\theta \prec w \prec v$, then $\|w\| \leqslant\|v\|$,
(iii) $\theta \prec m(w)$ and $\|m(w)\|=\|w\|$ for all $w \in X$.

Proposition 1. [7] In the Banach space considered above, let the operators $\mathcal{A}: X \rightarrow X, A: X \rightarrow X$ be given with the following properties:
(iv) A is a linear bounded operator with spectral radius $r(A)$ less than 1 ,
(v) if $\theta \prec w \prec v$, then $A w \prec A v$,
(vi) $m(\mathcal{A} w-\mathcal{A} v) \prec A m(w-v)$ for all $w, v \in X$.

Then the equation $\mathcal{A} x=x$ has a unique solution in X.
Assume further that:
(vii) the relation \prec is reflexive,
(viii) if $w \prec v$, then $w+u \prec v+u$ for $w, v, u \in X$.

Proposition 2. [8] Let ($X,\|\cdot\|, \prec)$ denote a Banach space with a binary relation \prec satisfying conditions (i), (ii), (vii) and (viii). In this space, let the linear and bounded operators $A: X \rightarrow X, B: X \rightarrow X$ be given. Assume that the following conditions are satisfied:
(ix) if $\theta \prec w$, then $\theta \prec A w$ and $\theta \prec B w$,
(x) there exists an element $w_{0} \in X, \theta \prec w_{0}$ such that $r(A+B)=$

$$
\lim _{\substack{n \rightarrow \infty \\ k=0,1, \ldots}}\left\|(A+B)^{n} w_{0}\right\|^{1 / n} \text { and } B A^{j} B^{k} w_{0} \prec A^{j} B^{k+1} w_{0} \text { for } j=1,2, \ldots,
$$

Then the inequality

$$
r(A+B) \leqslant r(A)+r(B)
$$

holds.

2. The Darboux problem in the space $L^{\infty}\left(I^{2}\right)$.

Let $w, v \in L^{\infty}\left(I^{2}\right)$. We shall say that $w \prec v$ if and only if $w(x, y) \leqslant v(x, y)$ almost everywhere on I^{2}. Moreover, let $m(w)(x, y)=|w(x, y)|$ for $(x, y) \in I^{2}$. It is clear that the conditions (i)-(iii) and (vii)-(viii) are satisfied in this case.

Assume that:
$1^{0} h: I^{2} \rightarrow I^{2}$ is a continuous function and $h(x, y) \leqslant(x, y)$ for every pair $(x, y) \in I^{2}$, where $h(x, y)=\left(h_{1}(x, y), h_{2}(x, y)\right)$ and $\left(x_{1}, y_{1}\right) \leqslant\left(x_{2}, y_{2}\right)$ means that $x_{1} \leqslant x_{2}$ and $y_{1} \leqslant y_{2}$;
$2^{0} u \subset \mathbb{R}^{2}$ is an open set such that $I^{2} \subset u$ and $H: u \rightarrow \mathbb{R}^{2}$ is a diffeomorphism "into" with the property $H\left(I^{2}\right) \subset I^{2}$, and $h(H(x, y)) \leqslant h(x, y)$ for $(x, y) \in I^{2}$;
$3^{0}(x, y, u, v) \rightarrow f(x, y, u, v)$ is a real function defined on the product $I^{2} \times \mathbb{R}^{2}$, Lebesgue measurable with respect to (x, y) for all $(u, v) \in \mathbb{R}^{2}$ and satisfying the Lipschitz condition

$$
\left|f\left(x, y, u_{1}, v_{1}\right)-f\left(x, y, u_{2}, v_{2}\right)\right| \leqslant L_{1}\left|u_{1}-u_{2}\right|+L_{2}\left|v_{1}-v_{2}\right|
$$

for $\left(x, y, u_{1}, v_{1}\right),\left(x, y, u_{2}, v_{2}\right) \in I^{2} \times \mathbb{R}^{2}$, where $L_{1}>0$ and $0<L_{2}<1$;
$4^{0}|f(x, y, 0,0)|$ is an essentially bounded function on I^{2}.
By a solution of the problem (1), defined on the set I^{2}, we understand a function $z: I^{2} \rightarrow \mathbb{R}$ such that $z(x, y)$ is an absolutely continuous (shortly: AC) function with respect to x and y, z_{x} is an AC-function with respect to y for almost all $x \in I, z_{y}$ is an AC-function with respect to x for almost all $y \in I$, $z_{x y}(x, y)=f\left(x, y, z(h(x, y)), z_{x y}(H(x, y))\right)$ almost everywhere on $I^{2}, z(x, 0)=0$ for $x \in I$ and $z(0, y)=0$ for $y \in I$.

Theorem 1. Under the assumptions $1^{0}-4^{0}$ the problem (1) has a unique solution defined on I^{2}.

Proof: It is easy to verify that the problem (1) is equivalent to the following functional-integral equation

$$
\begin{equation*}
w(x, y)=f\left(x, y, \int_{D(h(x, y))} w(t, s) d t d s, w(H(x, y))\right), \quad(x, y) \in I^{2} \tag{2}
\end{equation*}
$$

where $D(x, y)=\left\{(t, s) \in I^{2}: 0 \leqslant t \leqslant x, 0 \leqslant s \leqslant y\right\}$.
Indeed, let $z: I^{2} \rightarrow \mathbb{R}$ be a solution of the problem (1) and put $z_{x y}(x, y)=w(x, y)$, $(x, y) \in I^{2}$. By the definition of a solution of (1) we have

$$
\begin{aligned}
\int_{D(h(x, y))} w(t, s) d t d s & =\int_{0}^{h_{1}(x, y)} \int_{0}^{h_{2}(x, y)} z_{\xi \eta}(\xi, \eta) d \xi d \eta \\
& =\int_{0}^{h_{2}(x, y)}\left[\int_{0}^{h_{1}(x, y)} \frac{\partial}{\partial \xi}\left(\frac{\partial}{\partial \eta} z(\xi, \eta)\right) d \xi\right] d \eta \\
& =\int_{0}^{h_{2}(x, y)}\left[\frac{\partial}{\partial \eta} z\left(h_{1}(x, y), \eta\right)-\frac{\partial}{\partial \eta} z(0, \eta)\right] d \eta \\
& =\int_{0}^{h_{2}(x, y)} \frac{\partial}{\partial \eta} z\left(h_{1}(x, y), \eta\right) d \eta
\end{aligned}
$$

$$
\begin{aligned}
& =z\left(h_{1}(x, y), h_{2}(x, y)\right)-z\left(h_{1}(x, y), 0\right) \\
& =z\left(h_{1}(x, y), h_{2}(x, y)\right)=z(h(x, y)) .
\end{aligned}
$$

This means that $w: I^{2} \rightarrow \mathbb{R}$ is a solution of the equation (2). On the other hand, let $w: I^{2} \rightarrow \mathbb{R}$ be a solution of (2) in the space $L^{\infty}\left(I^{2}\right)$. Put $z(x, y)=\int_{0}^{x} \int_{0}^{y} w(\xi, \eta) d \xi d \eta$. By the Tolstov theorem [6], we have

$$
z_{x y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} \int_{0}^{x} \int_{0}^{y} w(\xi, \eta) d \xi d \eta=w(x, y) \quad \text { for almost all } \quad(x, y) \in I^{2}
$$

Thus $z_{x y}(H(x, y))=w(H(x, y))$ for almost all $(x, y) \in I^{2}$ and in consequence $z: I^{2} \rightarrow$ \mathbb{R} is a solution of (1).

Consider the following operator:

$$
F(w)(x, y)=f\left(x, y, \int_{D(h(x, y))} w(t, s) d t d s, w(H(x, y))\right)
$$

where $w \in L^{\infty}\left(I^{2}\right),(x, y) \in I^{2}$.
Since the function $(x, y) \rightarrow \int_{D(h(x, y))} w(t, s) d t d s$ is continuous on I^{2} and the function $(x, y) \rightarrow w(H(x, y))$ is Lebesgue integrable on I^{2}, the function $(x, y) \rightarrow$ $f\left(x, y, \int_{D(h(x, y))} w(t, s) d t d s, w(H(x, y))\right)$ is Lebesgue measurable on I^{2}. Moreover, in view of 3^{0} we have

$$
\begin{aligned}
|F(w)(x, y)| & \leqslant\left. L_{1}\right|_{D(h(x, y))} w(t, s) d t d s\left|+L_{2}\right| w(H(x, y))|+|f(x, y, 0,0)| \\
& \leqslant L_{1} a^{2}\|w\|_{\infty}+L_{2}\|w\|_{\infty}+|f(x, y, 0,0)|
\end{aligned}
$$

for $w \in L^{\infty}\left(I^{2}\right)$ and $(x, y) \in I^{2}$. Hence, by the above inequality and $4^{0}, F\left(L^{\infty}\left(I^{2}\right)\right) \subset$ $L^{\infty}\left(I^{2}\right)$. Again in view of 3^{0}, for $w, v \in L^{\infty}\left(I^{2}\right),(x, y) \in I^{2}$ we get

$$
\begin{aligned}
& |F(w)(x, y)-F(v)(x, y)| \\
& \quad=\mid f\left(x, y, \int_{D(h(x, y))} w(t, s) d t d s, w(H(x, y))\right) \\
& -f\left(x, y, \int_{D(h(x, y))} v(t, s) d t d s, v(H(x, y))\right) \mid \\
& \quad \leqslant L_{1} \int_{D(h(x, y))}|w(t, s)-v(t, s)| d t d s+L_{2}|w(H(x, y))-v(H(x, y))|
\end{aligned}
$$

Thus

$$
\begin{equation*}
|F(w)(x, y)-F(v)(x, y)| \leqslant\left(A_{1}+A_{2}\right)(|w-v|)(x, y) \tag{3}
\end{equation*}
$$

where $A_{1}(u)(x, y)=L_{1} \underset{D(h(x, y))}{ } u(t, s) d t d s, A_{2}(u)(x, y)=L_{2} u(H(x, y)), u \in L^{\infty}\left(I^{2}\right)$.
We shall show now that the operators $A_{1}+A_{2}$ and F satisfy the assumptions of Proposition 1. Obviously, the operator $A_{1}+A_{2}$ is linear and $\left(A_{1}+A_{2}\right)\left(L^{\infty}\left(I^{2}\right)\right) \subset$ $L^{\infty}\left(I^{2}\right)$. Furthermore

$$
\begin{aligned}
\left\|\left(A_{1}+A_{2}\right) w\right\|_{\infty} & =\operatorname{ess} \sup _{I^{2}}\left|L_{1} \int_{D(h(x, y))} w(t, s) d t d s+L_{2} w(H(x, y))\right| \\
& \leqslant L_{1} \text { ess } \sup _{I^{2}} \int_{D(h(x, y))}|w(t, s)| d t d s+L_{2} \text { ess } \sup _{I^{2}}|w(H(x, y))| \\
& \leqslant L_{1} a^{2}\|w\|_{\infty}+L_{2}\|w\|_{\infty},
\end{aligned}
$$

which means that $A_{1}+A_{2}$ is a bounded operator. Moreover, $A_{1}+A_{2}$ is an increasing operator. Indeed, if $w, v \in L^{\infty}\left(I^{2}\right)$ and $\theta \prec w \prec v$, then for almost all $(x, y) \in I^{2}$ we have

$$
\begin{aligned}
\left(A_{1}+A_{2}\right)(w)(x, y) & =L_{1} \int_{D(h(x, y))} w(t, s) d t d s+L_{2} w(H(x, y)) \\
& \leqslant L_{1} \int_{D(h(x, y))} v(t, s) d t d s+L_{2} v(H(x, y))=\left(A_{1}+A_{2}\right)(v)(x, y) .
\end{aligned}
$$

Notice that in view of (3) the condition (vi) of Proposition 1 is satisfied. It remains to prove that $r\left(A_{1}+A_{2}\right)<1$. First we shall show that the operators A_{1}, A_{2} and $A_{1}+A_{2}$ satisfy the assumptions of Proposition 2. For $\theta \prec w$ we have $\theta \prec A_{1} w$ and $\theta \prec A_{2} w$. Let K denote a cone of nonnegative functions in $L^{\infty}\left(I^{2}\right)$, that is, $K=\left\{w \in L^{\infty}\left(I^{2}\right): w(x, y) \geqslant 0\right.$ almost everywhere on $\left.I^{2}\right\}$ and let $w_{0}(x, y)=1$ almost everywhere on I^{2}. It is easy to verify that the cone K is normal and $w_{0} \in \operatorname{int} K$. Hence $r\left(A_{1}+A_{2}\right)=\lim _{n \rightarrow \infty}\left\|\left(A_{1}+A_{2}\right) w_{0}\right\|_{\infty}^{1 / n}$ (for example, see [4, 5]). For $j=1,2, \ldots$, $k=0,1, \ldots$, we have

$$
\begin{aligned}
& A_{2} A_{1}^{j} A_{2}^{k}\left(w_{0}\right)(x, y) \\
& \quad=L_{1}^{j} L_{2}^{k+1} \int_{D(h(H(x, y))) D\left(h\left(x_{1}, y_{1}\right)\right)} \ldots \int_{D\left(h\left(x_{j-1}, y_{j-1}\right)\right)} 1 d x_{j} d y_{j} \ldots d x_{1} d y_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{1}^{j} A_{2}^{k+1}\left(w_{0}\right)(x, y) \\
& \quad=L_{1}^{j} L_{2}^{k+1} \int_{D(h(x, y)) D\left(h\left(x_{1}, y_{1}\right)\right)} \cdots \int_{D\left(h\left(x_{j-1}, y_{j-1}\right)\right)} 1 d x_{j} d y_{j} \ldots d x_{1} d y_{1}
\end{aligned}
$$

Hence, in view of 2^{0},

$$
A_{2} A_{1}^{j} A_{2}^{k} w_{0} \prec A_{1}^{j} A_{2}^{k+1} w_{0}
$$

for $j=1,2, \ldots, k=0,1, \ldots$ Therefore, by Proposition 2 , the inequality $r\left(A_{1}+A_{2}\right) \leqslant$ $r\left(A_{1}\right)+r\left(A_{2}\right)$ holds. Finally, an easy computation shows that $\left\|A_{1}^{n} w_{0}\right\|_{\infty} \leqslant$ $\left(L_{1}^{n} a^{2 n}\right) /(n!)^{2}$ while $\left\|A_{2}^{n} w_{0}\right\|_{\infty}=L_{2}^{n}$. Thus $r\left(A_{1}\right)=0$ and $r\left(A_{2}\right)=L_{2}$. Since $L_{2}<1$, this gives $r\left(A_{1}+A_{2}\right)<1$. It follows from Proposition 1 that the equation (2) has exactly one solution in $L^{\infty}\left(I^{2}\right)$. This completes the proof of Theorem 1.

3. The Darboux problem in the space $L^{1}\left(I^{2}\right)$

Assume now that
$5^{0} h: I^{2} \rightarrow I^{2}$ is a continuous function;
$6^{0} U, V \subset \mathbb{R}^{2}$ are any open sets such that $I^{2} \subset U, I^{2} \subset V$ and $H: U \rightarrow V$ is a diffeomorphism with the property $H\left(I^{2}\right)=I^{2}$;
$7^{0}(x, y, u, v) \rightarrow f(x, y, u, v)$ is a real function defined on the product $I^{2} \times \mathbb{R}^{2}$ which is Lebesgue measurable in (x, y) for every $(u, v) \in \mathbb{R}^{2}$ and satisfies the Lipschitz condition

$$
\left|f\left(x, y, u_{1}, v_{1}\right)-f\left(x, y, u_{2}, v_{2}\right)\right| \leqslant L_{1}\left|u_{1}-u_{2}\right|+L_{2}\left|v_{1}-v_{2}\right|
$$

for $\left(x, y, u_{1}, v_{1}\right),\left(x, y, u_{2}, v_{2}\right) \in I^{2} \times \mathbb{R}^{2}$, where $L_{1}, L_{2}>0, L_{1} a^{2}+L_{2} M<1, M=$ $\left(\min _{(x, y) \in I^{2}}\left|H^{\prime}(x, y)\right|\right)^{-1}$ and $\left|H^{\prime}(x, y)\right|$ denotes the absolute value of the Jacobian of the mapping \boldsymbol{H};
8^{0} there exists a function $m_{0}: I^{2} \rightarrow \mathbb{R}_{+}$which is integrable in the Lebesgue sense and such that

$$
|f(x, y, 0,0)| \leqslant m_{0}(x, y) \quad \text { for } \quad(x, y) \in I^{2}
$$

In the situation described above, we define a solution of (1) on I^{2} analogously as in the previous section.

Now we can prove the following

Theorem 2. Under the above assumptions the problem (1) has a unique solution defined on I^{2}.

Proof: The same arguments as in the proof of Theorem 1 show that (1) and (2) are equivalent. Define the operator

$$
F(w)(x, y)=f\left(x, y, \int_{D(h(x, y))} w(t, s) d t d s, w(H(x, y))\right)
$$

where $w \in L^{1}\left(I^{2}\right),(x, y) \in I^{2}$.
Since

$$
|F(w)(x, y)| \leqslant L_{1}\left|\int_{D(h(x, y))} w(t, s) d t d s\right|+L_{2}|w(H(x, y))|+|f(x, y, 0,0)|
$$

$F\left(L^{1}\left(I^{2}\right)\right) \subset L^{1}\left(I^{2}\right)$.
Further, we have

$$
\begin{aligned}
& |F(w)(x, y)-F(v)(x, y)| \leqslant L_{1} \int_{D(h(x, y))}|w(t, s)-v(t, s)| d t d s \\
& \quad+L_{2}|w(H(x, y))-v(H(x, y))|, \quad w, v \in L^{1}\left(I^{2}\right), \quad(x, y) \in I^{2} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \|F(w)-F(v)\|_{1} \\
& \leqslant L_{1} \int_{I^{2}}\left(\int_{D(h(x, y))}|w(t, s)-v(t, s)| d t d s\right) d x d y+L_{2} \int_{I^{2}}|w(H(x, y))-v(H(x, y))| d x d y \\
& \leqslant L_{1} a^{2}\|w-v\|_{1}+L_{2} \int_{I^{2}}|w(H(x, y))-v(H(x, y))|\left|H^{\prime}(x, y)\right| \frac{1}{\left|H^{\prime}(x, y)\right|} d x d y \\
& \leqslant\left(L_{1} a^{2}+L_{2} M\right)\|w-v\|_{1} .
\end{aligned}
$$

In view of Banach contraction principle the mapping F has a unique fixed point. Hence the proof of Theorem 2 is completed.

4. Remarks

It is clear that in the of proof Theorem 2 one can apply Proposition 1 (under additional assumption on the functions h and H). Consider the following linear operator

$$
A(w)(x, y)=L_{1} \int_{D(h(x, y))} w(t, s) d t d s+L_{2} w(H(x, y))
$$

$w \in L^{1}\left(I^{2}\right),(x, y) \in I^{2}$.
One can easy verify that if h and H satisfy 1^{0} and 2^{0} in addition then $\|A\|_{1} \leqslant$ $L_{1} a^{2}+L_{2} M,\left\|A^{2}\right\|_{1} \leqslant L_{1} a^{4} / 4+L_{1} L_{2} a^{2}(M+1)+L_{2}^{2} M$.

Further, it is well known that in an arbitrary Banach space

$$
r(A) \leqslant \sqrt[n]{\left\|A^{n}\right\|} \quad \text { for every } \quad n \in \mathbb{N} .
$$

Hence, if for example, $M \geqslant 1$ then

$$
L_{1} a^{2}+L_{2} M \geqslant \sqrt{L_{1}^{2} \frac{a^{4}}{4}+L_{1} L_{2} a^{2}(M+1)+L_{2}^{2} M^{2}}
$$

and the assumption $r(A)<1$ is better than $L_{1} a^{2}+L_{2} M<1$. But we can not find an estimate of the spectral radius of the operator A in terms of some constants and, therefore, we choose the Banach theorem to prove Theorem 2.

References

[1] D.D. Bainov and D.P. Mishev, Oscillation theory for neutral differential equations with delay (Adam Hilger, Bristol, Philadelphia and New York, 1991).
[2] K. Deimling, 'Das Picard-Problem für $u_{x y}=f\left(x, y, u, u_{x}, u_{y}\right)$ unter CarathéodoryVoraussetzungen', Math. Z. 114 (1970), 303-312.
[3] K. Deimling, 'Das Goursat-Problem für $u_{x y}=f(x, y, u)$ ', Aequationnes Math. 6 (1971), 206-214.
[4] K.-H. Förster and B. Nagy, 'On the local spectral radius of a nonnegative element with respect to an irreducible operator', Acta Sci. Math. 55 (1991), 155-166.
[5] M.A. Krasnoselski, G.M. Vaimikko, P.P. Zabrieko, Ya.B. Rutitski and V.Ya Stetsenko, Approximate solutions of operator equations (Wolters-Noordhoff, Groningen, 1972).
[6] G.P. Tolstov, 'On the second mixed derivative', (in Russian), Mat. Sb. 24 (1949), 27-51.
[7] M. Zima, 'A certain fixed point theorem and its applications to integral-functional equations', Bull. Austral. Math. Soc. 46 (1992), 179-186.
[8] M. Zima, 'A theorem on the spectral radius of the sum of two operators and its application', Bull. Austral. Math. Soc. 48 (1993), 427-434.
[9] M. Zima, 'On an integral equation with deviated arguments,', Demonstratio Math. 28 (1995), 967-973.

Faculty of Mathematics and Computer Science Adam Michiewicz University Poznań
Poland
e-mail: ddbb@math.amu.edu.pl

Department of Mathematics
Pedagogical University of Rzeszów
Rzeszów
Poland

