
JFP 25, e8, 31 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000143

1

Generating constrained random data
with uniform distribution

KOEN CLAESSEN, JONAS DUREGÅRD and MICHA�L H. PA�LKA

Department of Computer Science and Engineering, Chalmers University of Technology,

Gothenburg, Sweden

(e-mail: koen@chalmers.se, jonas.duregard@chalmers.se, michal.palka@chalmers.se)

Abstract

We present a technique for automatically deriving test data generators from a given executable

predicate representing the set of values we are interested in generating. The distribution of

these generators is uniform over values of a given size. To make the generation efficient, we

rely on laziness of the predicate, allowing us to prune the space of values quickly. In contrast,

implementing test data generators by hand is labour intensive and error prone. Moreover,

handwritten generators often have an unpredictable distribution of values, risking that some

values are arbitrarily underrepresented. We also present a variation of the technique that has

better performance, but where the distribution is skewed in a limited, albeit predictable way.

Experimental evaluation of the techniques shows that the automatically derived generators

are much easier to define than handwritten ones, and their performance, while lower, is

adequate for some realistic applications.

1 Introduction

Random property-based testing has proven to be an effective method for finding

bugs in programs (Claessen & Hughes 2000; Arts et al. 2006). Two ingredients are

required for property-based testing: a test data generator and a property (sometimes

called a test oracle). For each test, the test data generator generates input to the

program under test, and the property checks whether or not the observed behaviour

is acceptable. This paper focuses on the test data generators.

The popular random testing tool QuickCheck (Claessen & Hughes 2000) provides

a library for defining random generators for data types. Typically, a generator is a

recursive function that at every recursion level chooses a random constructor of the

relevant data type. Relative frequencies for the constructors can be specified by the

programmer to control the distribution. An extra resource argument that shrinks at

each recursive call is used to control the size of the generated test data and ensure

termination.

The above method for test generation works well for generating structured data.

But it becomes much harder when the data must satisfy an extra condition. A

motivating example is the random generation of programs as test data for testing

compilers. In order to successfully test different phases of a compiler, programs not

only need to be grammatically correct, they may also need to satisfy other properties

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

2 K. Claessen et al.

Fig. 1. Data type and type checker for simply typed lambda calculus. The Type in the Ap

nodes represents the type of the argument term.

such as all variables are bound, all expressions are well typed, certain combinations

of constructs do not occur in the programs, or a combination of such properties.

In previous work by some of the authors, it was shown to be possible but very

tedious to manually construct a generator that (a) could generate random well-typed

programs in the polymorphic lambda calculus, and at the same time (b) maintain

a reasonable distribution such that no programs were arbitrarily excluded from

generation (Pa�lka et al. 2011; Pa�lka 2012).

The problem is that generators mix concerns that we would like to separate: (1)

what is the structure of the test data, (2) which properties should it obey, and (3)

what distribution do we want.

In this paper, we investigate solutions to the following problem: Given a definition

of the structure of test data (a data type definition), and given one or more

executable predicates (functions computing a boolean value) on the data type, can

we automatically generate test data that satisfy all the predicates and at the same

time has a predictable, useful distribution?

To be more concrete, let us take a look at Figure 1. Here, a data type for typed

lambda expressions is defined, together with a function that given an environment,

an expression, and a type, checks whether or not the expression has the stated type

in the environment. From this input alone, we would automatically generate random

well-typed expressions with a good distribution.

What does a ‘good’ distribution mean? First, we need to have a way to restrict

the size of the generated test data. In any application, we are only ever going to

generate a finite number of values, so we need a decision on what test data sizes

to use. An easy and common way to control test data size is to control the depth

of a term. This is for example done in SmallCheck (Runciman et al. 2008). The

problem with using depth is that the number of terms grows extremely fast as the

depth increases (doubly exponential even for simple binary trees). Moreover, useful

distributions for sets of trees of depth d are hard to find, because there are many

more complete trees of depth d than there are sparse trees. This may lead to an

overrepresentation of almost full trees in randomly generated values.

Another possibility is to work with the set of values of a given size n, where size is

understood as the number of data constructors in the term. Previous work by one of

the authors on Functional Enumeration of Algebraic Types (FEAT) (Dureg̊ard et al.

2012) has shown that it is possible to efficiently index in, and compute cardinalities

of, sets of terms of a given size n. This is the choice we make in this paper.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 3

The simplest useful and predictable distribution that does not arbitrarily exclude

values from a set is the uniform distribution, which is why we chose to focus on

uniform distributions in this paper. We acknowledge the need for other distributions

than uniform in certain applications. However, we think that a uniform distribution

is at least a useful building block in the process of crafting test data generators.

We anticipate methods for controlling the distribution of our generators in multiple

ways, but that remains future work.

Our first main contribution in this paper is an algorithm that, given a data type

definition, a predicate, and a test data size, generates random values satisfying the

predicate, with a perfectly uniform distribution. It works by first computing the

cardinality of the set of all values of the given size, and then randomly picking

indices in this set, computing the values that correspond to those indices, until we

find a value for which the predicate is true. The key feature of the algorithm is that

every time a value x is found for which the predicate is false, it is removed from

the set of values, together with all other values that would have led to the predicate

returning false with the same execution path as x . We also outline a proof that this

sampling procedure is uniform.

Unfortunately, perfect uniformity turns out to be too inefficient in many practical

cases. We have also developed a backtracking-based generator that is more efficient,

but has no guarantees on the distribution. Our second main contribution is a hybrid

generator that combines the uniform algorithm and the backtracking algorithm, and

is ‘almost uniform’ in a precise and predictable way.

This paper extends and improves a paper presented at FLOPS 2014 (Claessen

et al. 2014). The technical content is essentially unchanged, but we made several

presentation and restructuring modifications. In this version, we expand the de-

scription of the algorithm (Section 3), provide a detailed example of its operation

(Section 3.2), demonstrate that the distribution of the generated values is uniform

(Section 4), and discuss an alternative algorithm better suited for non-deterministic

predicates (Section 5.4).

2 Generating values of algebraic data types

In this section, we explain how to generate random values of an algebraic data type

(ADT) uniformly. Our approach is based on a representation of sets of values that

allows efficient indexing, inspired by FEAT (Dureg̊ard et al. 2012), which is used to

map random indices to random values. In the next section, we modify this procedure

to efficiently search for values that satisfy a predicate.

ADTs are constructed using units (atomic values), disjoint unions of data types,

products of data types, and may refer to their own definitions recursively. For

instance, consider these definitions of Haskell data types for natural numbers and

lists of natural numbers:

data Nat = Zr | Sc Nat

data ListNat = Nil | Cons Nat ListNat

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

4 K. Claessen et al.

In general, ADTs may contain an infinite number of values, which is the case for

both data types above. Our approach for generating random values of an ADT

uniformly is to generate values of a specific size, understood as the number of

constructors used in a value. For example, all of Cons (Sc (Sc Zr)) (Cons Zr Nil),

Cons (Sc Zr) (Cons (Sc Zr) Nil) and Cons Zr (Cons Zr (Cons Zr Nil)) are values of

size 7. As there is only a finite number of values of each size, we can create a sampling

procedure that generates a uniformly random value of ListNat of a given size.

2.1 Indexing

Our method for generating random values of an ADT is based on an indexing

function, which maps integers to corresponding data type values of a given size (a

procedure also known as unranking (Knuth 2006)).

indexS,k : {0 . . . |Sk| − 1} → Sk

Here, S is the data type, and Sk is the set of k-sized values of S . The intuitive idea

behind efficient indexing is to quickly calculate cardinalities of subsets of the indexed

set. For example, when S = T ⊕ U is a sum type, then indexing is performed as

follows:

indexT⊕U,k(i) =

{
indexT ,k(i) if i < |Tk|
indexU,k(i− |Tk|) otherwise

When S = T ⊗ U is a product type, we need to consider all ways size k can be

divided between the components of the product. The cardinality of the product can

be computed as follows:

|(T ⊗U)k| =
∑

k1+k2=k

|Tk1
||Uk2
|

When indexing (T ⊗U)k using index i, we first select the division of size k1 + k2 = k,

such that:

0 � i′ < |Tk1
||Uk2
| where i′ = i−

∑
l1<k1

l1+l2=k

|Tl1 ||Ul2 |

Then, elements of Tk1
and Uk2

are selected using the remaining part of the index i′.

indexT⊗U,k(i) = (indexT ,k(i
′ div |Uk2

|), indexU,k(i
′ mod |Uk2

|))

In the rest of this section, we outline how to implement indexing in Haskell.

2.2 Representation of spaces

We define a Haskell-generalized algebraic data type Space to represent ADTs, and

allow efficient cardinality computations and indexing.

data Space a where

Empty :: Space a

Pure :: a → Space a

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 5

(:+:) :: Space a → Space a → Space a

(:∗ :) :: Space a → Space b → Space (a , b)

Pay :: Space a → Space a

(:$:) :: (a → b)→ Space a → Space b

Spaces can be built using four basic operations: Empty for empty space, Pure for

unit space, (:+:) for the (disjoint) union of two spaces and (: ∗ :) for a product.

Spaces also have an operator Pay which represents a unit cost imposed by using a

constructor. The last operation (:$:), applies a function to all values in the space.

It is possible to construct spaces with duplicate elements from these operations,

although it is rarely useful in practice (typically the operands of :+: are disjoint

and functions used in : $: are injective, particularly constructor functions). This

means that in general there is a multiset of values of any size and whenever we

speak of uniform sampling procedures it is understood to be uniform over the set

of occurrences of values, not over the set of values themselves. Simply put: repeated

values are overrepresented exactly as one might expect from a uniform sampler of

a multiset.

A convenient operator on spaces is the lifted application operator that takes a

space of functions and a space of parameters and produces the space of all results

from applying the functions to the parameters:

(<∗>) :: Space (a → b)→ Space a → Space b

s1 <∗> s2 = (λ(f , a)→ f a) :$: (s1 :∗ : s2)

With the operators defined above, the definition of spaces mirrors the definitions of

data types. For example, spaces for the Nat and ListNat data types can be defined

as follows:

spNat :: Space Nat

spNat = Pay (Pure Zr :+: (Sc :$: spNat))

spListNat :: Space ListNat

spListNat = Pay (Pure Nil :+: (Cons :$: spNat <∗> spListNat))

Unit constructors are represented with Pure, whereas compound constructors are

mapped on the spaces for the types they contain. In this example, Pay is applied

each time we introduce a constructor, which makes the size of values equal to

the number of constructors they contain. This is a common pattern, but the user

may choose to assign costs differently, which would change the sizes of individual

values and consequently the distribution of size-limited generators. The only rule

when assigning costs is that all recursion is guarded by at least one Pay operation,

otherwise the sets of values of a given size may be infinite, causing non-terminating

cardinality computations.

2.3 Uniform sampling by size

Uniform sampling on spaces can be reduced to two subproblems: Extracting the

finite set of values of a particular size, and uniform sampling from such sets.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

6 K. Claessen et al.

Assume we have a data type Set a for finite multisets, constructed by combining

the empty set ({}), singleton sets ({a}), (disjoint) union (�) and Cartesian product

(×). We can also apply a function f to all members set s with fmap f s , such that

fmap f a = fmap f (sized a k). From the definition of a finite set, its cardinality can

be defined as follows:

|{}| = 0

|{a}| = 1

a × b	=	a	∗	b
a � b	=	a	+	b
fmap f a	=	a		

Guided by this definition, we can define an indexing function on the type that maps

integers in the range (0, |a| − 1) to (occurrences of) values in the multiset:

indexSet {a} 0 = a

indexSet (a � b) i | i < |a| = indexSet a i

indexSet (a � b) i | i � |a| = indexSet b (i − |a|)
indexSet (a × b) i = (indexSet a (i ÷ |b|), indexSet b (i mod |b|))
indexSet (fmap f a) i = f (indexSet a i)

Since indexSet is bijective from a finite integer range into the values of the multiset,

the only remaining component for uniform sampling from sets is a function

for uniform sampling from ranges. For this purpose, suppose we have a monad

Random a with the only side-effect of generating random values, and the following

function:

uniformRange :: (Integer , Integer)→ Random Integer

Computing uniformRange (lo, hi) returns a uniformly random integer in the inclusive

interval (lo, hi). On top of this, we can build the following procedure for uniform

sampling from finite sets:

uniformSet :: Set a → Random a

uniformSet s | |s | == 0 = error "empty set"

| otherwise = do

i ← uniformRange (0, |s | − 1)

return (indexSet s i)

With these definitions at hand, all we have to do to uniformly sample values of size

k from a space is to define a function sized which extracts the finite set of values of

a given size.

sized :: Space a → Int → Set a

sized Empty k = {}
sized (Pure a) 0 = {a}
sized (Pure a) k = {}
sized (Pay a) 0 = {}
sized (Pay a) k = sized a (k − 1)

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 7

sized (a :+: b) k = sized a k � sized b k

sized (f :$: a) k = fmap f (sized a k)

We define sized Pure to be empty for all sizes except 0, since we want values of

an exact size. For Pay , we get the values of size k − 1 in the underlying space.

Union and function application translate directly to union and application on sets.

Selecting k -sized values of a product space requires dividing the size between the

components of the resulting pair. Thus, we can consider the set as a disjoint union

of the k + 1 different ways of dividing size between the components:

sized (a :∗ : b) k =
⊎

k1+k2=k

sized a k1 × sized b k2

Knowing how to sample finite sets, we can implement a sampling procedure on

spaces by composing the sized function with the uniformSet function.

uniformSized :: Space a → Int → Random a

uniformSized s k = uniformSet (sized s k)

Computing cardinalities (and indexing) requires arbitrarily large integers, which are

provided by Haskell’s Integer type. Calculating cardinalities can be computationally

expensive, and practical use requires memoising cardinalities of recursive data types,

which is implemented using an additional constructor of the Space a data type not

shown here.

3 Predicate-guided uniform sampling

Having solved the problem of generating members of ADTs, we now extend the

problem with a predicate that all generated values must satisfy.

A first approach for uniform generation is to use a simple form of rejection

sampling. To generate a value that satisfies p ::a → Bool of a desired size, we simply

generate values until we find one:

uniformFilter :: (a → Bool)→ Space a → Int → Random a

uniformFilter p s k = do

a ← uniformSized s k

if p a then return a

else uniformFilter p s k

The procedure returns values of a given size from the space that satisfy the predicate

with a uniform distribution over the occurrences of these values in the space, as

formally stated in Section 4.

This approach works well for cases where the proportion of values that satisfy

the predicate is large enough, but it is far too inefficient in many practical situations

(and if there are no values that satisfy the predicate it will never terminate).

In order to speed up random generation of values satisfying a given predicate, we

propose another sampling procedure that uses the lazy behaviour of the predicate to

know its result on sets of values, rather than individual values, similarly to Runciman

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

8 K. Claessen et al.

et al. (2008). For instance, consider a predicate ordered that tests if a list is sorted

by comparing each pair of consecutive elements, starting from the front.

ordered :: Ord a ⇒ [a]→ Bool

ordered [] = True

ordered [x] = True

ordered (x : y : xs) = x <= y && ordered (y : xs)

Applying the predicate to 1 : 2 : 1 : 3 : 5 : [] will yield False after the pair (2, 1) is

encountered, before the predicate inspects the later elements, thanks to the short-

circuiting && operator. This means that ordered is False for all lists starting with

1, 2, 1. Once we have computed a set of values for which the predicate is going to

return false, we remove all of these values from our original Space.

To detect this we exploit Haskell’s call-by-need semantics by applying the predicate

to a partially defined value. In this case, observing that our predicate returns False

when applied to a partially defined list 1 :2 :1 :⊥, implies that the undefined part (⊥)

can be replaced with any value without affecting the result. Thus, we could remove

all lists that start with 1, 2, 1 from the space. For many realistic predicates, this

removes a large number of values with each failed generation attempt, improving

the chances of finding a value satisfying the predicate next time.

We implement this using the function universal that determines if a given predicate

is universally true, universally false, or if it (potentially) depends on its argument.

The function universal returns Nothing if the predicate need to inspects its argument

to yield a result, and Just True if the predicate is universally true and Just False if

is universally false.

universal :: (a → Bool)→ Maybe Bool

For example, universal (λa → True) = Just True, universal (λa → False) =

Just False, universal (λx → x + 1 > x) = Nothing . Implementing universal involves

applying the predicate to ⊥ and catching the resulting exception if there is one.

Catching the exception is an impure operation in Haskell, so the function universal

is also impure (specifically, it breaks monotonicity).

The function universal is used to implement a new sized function: sizedP , which

takes a predicate as a parameter along with a space and a size. Where sized resulted

in just a set of values (Set a), sampling a value from the result of sizedP will either

give a value that satisfies the predicate or an updated space that excludes a non-zero

number of values that falsify the predicate.

sizedP :: (a → Bool)→ Space a → Int → Set (Either a (Space a))

The intention of sizedP is best explained by implementing a sampling procedure

that uses it. The sampling procedure picks a random value from the resulting set,

if it is Left x , x satisfies the predicate and the procedure terminates, otherwise it

recursively searches the new smaller space for a satisfying value:

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 9

Fig. 2. Definition of a predicate-guided sized -function.

uniform :: (a → Bool)→ Space a → Int → Random a

uniform p s k = do

x ← uniformSet (sizedP p s k)

case x of Left a → return a

Right s ′ → uniform p s ′ k

A complete definition of sizedP can be found in Figure 2. The function is

implemented by recursion on its Space a argument, in a similar way to sized

from Section 2. One difference is that it also reconstructs the updated space for

the values for which the predicate fails. As the recursion proceeds, it composes the

predicate with constructor functions (from the :$: constructor). The cases for Pay ,

sum (:+:) and Empty follow the pattern set by the definition of sized . The case

for Pay decreases the size parameter for the recursive call, and applies Pay to all

residual spaces returned by it. The case for (:+:) returns a sum of sets returned by

the recursive calls, and similarly applies (:+: b) or (a :+:) to the residual spaces

contained in them. The Empty space is handled by the default case returning the

empty set {}.
For function applications (:$:), sizedP constructs a new predicate p ′ by composing

the input predicate with the applied function. If the new predicate is universally false

(universal p ′ returns Just False), then sizedP returns an empty space. This reflects

the fact that for a universally false predicate, there can be no values in the space that

satisfy it. If the predicate is universally true or unknown, sizedP is called recursively

on the underlying space with the updated predicate (this could be optimised to use

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

10 K. Claessen et al.

sized in the universally true case). The apply function applies the function f to either

the returned space or the returned value.

A key point of sizedP is that the cardinality of the resulting set does not depend

on the predicate. In fact, it is always the case that |sizedP p s k | = |sized s k |,
in other words the result of sizedP contains one element for every value of size k

regardless of how many of them that satisfy p. This allows efficient computations of

cardinalities through memoisation. To accommodate this in the definition of sizedP ,

we extend our multiset type with a new construct replicateSet ::Integer → a → Set a

that adds a given number of occurrences of a value to the multiset (similar to the

Haskell replicate function on lists). It is specified as follows:

indexSet (replicateSet n a) = a

|replicateSet n a| = n

The final case to discuss is the one for (: ∗ :), which is a little more involved, as

we need to decide which component of the pair to refine. The following section

describes how to make this choice based on the order of evaluation of the predicate.

3.1 Predicate-guided refinement order

When implementing sizedP for products, it is no longer possible to divide the size

between the components, as was done in the implementation of sized (see Section 2).

The reason is that it is not possible to split a predicate on pairs into two independent

predicates for the first and second components.

We solve this problem using the algebraic nature of our spaces to eliminate

products altogether. We can use the following algebraic laws to eliminate products:

a ⊗ (b ⊕ c) ≡ (a ⊗ b)⊕ (a ⊗ c) [distributivity]

a ⊗ (b ⊗ c) ≡ (a ⊗ b)⊗ c [associativity]

a ⊗ 1 ≡ a [identity]

a ⊗ 0 ≡ 0 [annihilation]

Expressing these rules on our Haskell data type is more complicated, because we

need to preserve the types of the result, i.e. we only have associativity of products

if we provide a function that transforms the left associative pair back to a right

associative one, etc. The equalities above can be used to define an operator (∗∗∗) on

spaces that pushes top level products inwards without loss of information:

a ∗∗∗ (b :+: c) = (a :∗ : b) :+: (a :∗ : c) [distributivity]
a ∗∗∗ (b :∗ : c) = (λ(∼(x , y), z)→ (x , (y , z))) :$: ((a :∗ : b) :∗ : c) [associativity]
a ∗∗∗ (Pure x) = (λy → (y , x)) :$: a [identity]
a ∗∗∗ Empty = Empty [annihilation]

Additionally, we need two cases for lifting Pay and function application.

a ∗∗∗ (Pay b) = Pay (a :∗ : b) [lift-pay]

a ∗∗∗ (f :$: b) = (λ(x , y)→ (x , f y)) :$: (a :∗ : b) [lift-fmap]

The first law states that paying for the component of a pair is the same as paying

for the pair, the second that applying a function f to one component of a pair is

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 11

the same as applying a modified (lifted) function on the pair. If recursion is always

guarded by a Pay , we know that the transformation will terminate after a bounded

number of steps.

Using these laws, we could define sizedP on products by applying the transfor-

mation, so sizedP p (a : ∗ : b) = sizedP p (a ∗∗∗ b). This is problematic, because

(∗∗∗) imposes a right-first order of evaluation, which means that for our generators

the first component of a pair is never generated before the right one is fully defined.

This is detrimental to performance, since the predicate may not require the right

operand to be defined at all. In the end, this would mean that when the predicate is

falsified sizedP would not remove as many values from the space as it potentially

could.

To change this, and guide the refinement order by the evaluation order of the

predicate, we need to ‘ask’ the predicate which component should be defined first.

We define a function similar to universal that takes a predicate on pairs:

inspectsFst :: ((a , b)→ Bool)→ Bool

The expression inspectsFst p is True iff p evaluates the first component of the pair

before the second. Just like universal , inspectsFst exposes some information of the

Haskell runtime, which cannot be observed directly.

Thus, to define the final, product (: ∗ :) case of sizedP in Figure 2 we combine

inspectsFst with another algebraic law: commutativity of products. If the predicate

‘pulls’ at the first component, the operands of the product are swapped before

applying the transformation for the recursive call.

The end result is an algorithm that gradually refines a value, by expanding only

the part of the space that the predicate needs in order to progress. With every

refinement, the space is narrowed down until the predicate is guaranteed to be false

for all values in the space, or until a single value satisfying the predicate is found.

3.2 Example

To further illustrate how our algorithm operates, we provide an example of using it

to find lambda terms of a given type and size. The example is similar to that in the

introduction but slightly simplified for ease of presentation. For the purpose of this

example, we define a simple data type representing lambda terms with De Bruin

indices.

data Term = Ap (Term ,Term) | Lam Term | Var Nat

We are not required to ‘uncurry’ the Ap constructor, but it helps the presentation

of the example. The space of all lambda terms is defined as follows:

spTerm , spAp, spLam , spVar :: Space Term

spTerm = Pay (spAp :+: spLam :+: spVar)

spAp = Ap :$: (spTerm :∗ : spTerm)

spLam = Lam :$: spTerm

spVar = Var :$: spNat

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

12 K. Claessen et al.

Furthermore, this example assumes we have a type checking function, which decides

whether a lambda term is well scoped and of a given type.

data Type = TInt | Type �→ Type

check :: Type → Term → Bool

For instance, check (TInt �→ TInt) (Lam (Var Z)) is True and check TInt (Lam

(Var Z)) is False. The type checker is lazy so for instance check TInt (Lam ⊥) is

False. We deliberately omit the implementation of the type checker, and treat it

as a black box: We can only observe its behaviour by executing it, and using the

functions universal and inspectsFst .

We will not directly step through the execution of the uniform function described

earlier in this section. Instead, we show the algorithm as a series of transformations

on spaces, which illustrate how indexing is performed.

The first step in every iteration of the algorithm is to transform the space we are

currently working with into this normal form:

Payn (f :$: (s1 :+: ... :+: sk))

Here, Payn represents n applications of the Pay constructor. The general idea is that

the partial value f ⊥ is the result of all the choices we have made up to this point,

and the sum is the next choice we would have to make in order to further define the

value. To determine if further choices are necessary to decide predicate p, we use the

universal function from Section 3. If universal (p ◦ f) is Nothing , the space must be

further refined before the predicate yields a result. This is done by choosing one of

the summands si of the sum, weighted by the cardinalities to guarantee uniformity.

If the result of universal is Just b, we know that the result of p is b for all values in

the space.

Any space can be transformed into this form provided that it contains at least one

sum. We call this transformation lifting choices. It involves applying the distributivity,

associativity, identity and annihilation laws of :∗ : mentioned earlier in this section,

along with the following laws:

f :$: Pay s ≡ Pay (f :$: s)

f :$: (g :$: s) ≡ (f ◦ g) :$: s

To demonstrate the execution of the algorithm, we consider generating well-typed

terms of type Int → Int of size 11, for which we will use the space spTerm and the

predicate p = typeCheck (Int �→ Int). The number of lambda terms of size 11 can

be computed from the definition of the space (see Section 2), and for our space it is

c = 465.

To generate a random well-typed term, our uniformSet function chooses a

candidate index between 0 and c − 1 uniformly at random – let us say that it chose

407. The first iteration of the algorithm starts with the space spTerm . Transforming

it to normal form only requires applying the identity function inside of the Pay

constructor.

Pay (id :$: (spAp :+: spLam :+: spVar))

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 13

Next we use universal to check if the type checker p cares at all about which value

we use. In this case, universal (p ◦ id) is Nothing , so we need to define at least some

part of the term to know if the predicate holds or not.

The space needs to be refined by committing to one of the three summands in

spAp :+: spLam :+: spVar . The refined spaces corresponding to the choices are as

follows:

Pay (id :$: spAp)

Pay (id :$: spLam)

Pay (id :$: spVar)

The choice is made based on the candidate index selected earlier, and the cardinalities

of the refined spaces we may choose. For size 11, the cardinalities are 257, 207 and

1 respectively. Since 257 � 407 � 257 + 207, we choose the second space, and obtain

a residual index of 407− 257 = 150. Expanding the definition of spLam , lifting the

choice it contains, and eliminating a composition with id we get:

Pay2 (Lam :$: (spAp :+: spLam :+: spVar))

Next, universal (p ◦Lam) evaluates to Nothing , indicating that the space needs to be

further refined. The refinement is selected by the same procedure as in the previous

iteration, now using the residual index from the last choice (150) instead of a random

index. Lambda is chosen again yielding Pay2 (Lam :$: spLam) as our refined space,

in normal form it is

Pay3 (Lam ◦ Lam :$: (spAp :+: spLam :+: spVar))

At this point, we test universal (p ◦ Lam ◦ Lam), and get Just False, which means

that there are no lambda terms of type Int → Int with two head lambdas.

Now our only option is to discard the current space (the space of terms with two

head lambdas), choose a new random index, and restart. To reconstruct the space

of remaining terms, we reiterate through the choices we have made to get to this

point, and build a space from the sum of all the options we did not choose (see the

definition of the :+: case in Figure 2). In this case, we made two choices, and each

had two alternative options. Thus the space we construct is this:

Pay (spAp :+: spVar) :+: Pay2 (Lam :$: (spAp :+: spVar))

Analysing the space we see that it excludes only the values that start with two

lambdas, because we have four choices that represent starting with Ap or Var or

starting with Lam followed by Ap or Var .

The cardinality of this new space is 371, which means that the next candidate

index must be in range from 0 to 370. Let us say that this time we choose an index,

which leads to Pay spAp being selected as the refined space. Expanding the definition

of spAp leads to Pay (Ap : $: (spTerm : ∗ : spTerm)), which cannot be trivially

transformed into a normal form. A choice needs to be lifted up from one of the

operands of the product. This is done by applying either left or right distributivity

depending on which component of the pair is requested by the predicate. To

determine which component is required, we evaluate inspectsFst (p ◦ Ap). In our

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

14 K. Claessen et al.

example, inspectsFst returned True, so we know that the predicate decided to

evaluate the parameter of the function application first. This means that we get

our new space from the ∗∗∗ transformation defined earlier (which expands its right

operand) and get the following sum:

Pay (Ap :$: (spTerm ∗∗∗ spTerm)) ≡
Pay2 (Ap :$: ((spTerm :∗ : spAp)

:+: (spTerm :∗ : spLam)

:+: (spTerm :∗ : spVar)))

At this point, further iterations with our particular index will lead to a space with no

further choices, whose normal form is a function application on a unit. Since there

is only one value in the space in this special case we can simply construct it and type

check it. One possible value is Ap (Lam (Var Z)) (Ap (Lam (Var Z)) (Lam (Var Z))),

or (λx → x) ((λx → x) (λx → x)) in a more readable syntax. As the predicate p

answers True for it, it is a term of the type we were looking for.

4 Uniformity of the generators

It is easy to prove that uniformSet s is uniform over the occurrences in s , by

proving that indexSet s is bijective and that uniformRange (lo, hi) is uniform over

the inclusive interval (lo, hi). Many of the subsequent proofs in this section rely

on the Set type being an accurate representation of multisets, so properties like

commutativity and distributivity of union on Set follow from the corresponding

theorems for multisets. These properties should be straightforward to prove by

providing bijections between the indexes of indexSet .

From these preliminaries, we can prove that the rejection sampler uniformFilterp s k

(described in Section 3) provides uniform sampling of values of size k from the space

s , constrained by the predicate p.

Theorem 1

Consider space s , a non-negative size k , and a predicate p. Let the multiset a =

sized s k and b = {x | x ∈ a , p x }. If b is non-empty, then uniformFilter p s k is

uniform over b.

Proof

Let n = |a|, m = |b| and x be an occurrence in b. We will calculate the probability

of x = uniformFilter p s k . In every iteration of uniformFilter , a uniformly random

value y is drawn from a . The probability that y /∈ b (causing the procedure to retry)

is (n − m) / n , whereas the probability that y = x is 1 / n . Thus, the probability of

x being drawn during the i th iteration is equal to (1/n)((n − m)/n)i−1. Finally, the

probability of x being drawn after any number of retries becomes the limit of the

geometric series (1/n)
∑∞

i=0((n − m)/n)i = 1/m . �

Proving uniformity of the predicate-guided uniform function is more difficult, as the

mapping from indexes to values depends on the evaluation order of the predicate.

Particularly, the space is transformed differently depending on which component

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 15

of a pair is inspected first. The two possible resulting spaces will contain the same

values but in different internal ordering. However, if we assume that the evaluation

order of the predicate is deterministic, this also determines a fixed order of elements

in the space, which defines an injective mapping.

First, we need a lemma that the (∗∗∗) operator preserves equality of spaces if we

disregard the order of elements returned by indexing of multisets.

Lemma 1

Let a :: Space a and b :: Space b be two spaces, and k :: Int a non-negative integer.

Then, the following equivalence holds between multisets:

sized (a :∗ : b) k = sized (a ∗∗∗ b) k

Proof sketch

A straightforward proof by structural induction on b is possible. Each of the cases

can be proven using the corresponding laws for multisets and Pay . �

The next lemma contains most of the complexity of the proof. It shows that values

of the form Left x in the multiset returned by sizedP p s k contains exactly the

subset of values returned by sized s k that satisfy p.

Lemma 2

Let s :: Space a be a space, p :: a → Bool a boolean predicate, and k :: Int a

non-negative integer. Then, the following equivalence holds between multisets:

{x | Left x ∈ sizedP p s k } = {x | x ∈ sized s k , p x }

Proof sketch

The proof is carried out by induction and case analysis of sizedP . The most

interesting part of the proof are cases for a :∗ : b and f : $: a . We first show the

sketch for a :∗ : b, which requires proving the following equation.

{x | Left x ∈ sizedP p (a :∗ : b) k } = {x | x ∈ sized (a :∗ : b) k , p x }

Out of the two subcases, we will only show the more complex case when inspectsFst p,

using equational reasoning. Note that we only consider the recursive case of

the second sizedP invocation here. It can be shown that the other case, when

universal p ′ = Just False, results in both sides of the equation being equal to {}.

{x | Left x ∈ sizedP p (a :∗ : b) k }
{-Definition of sizedP -}
{x | Left x ∈ sizedP p (swap :$: (b ∗∗∗ a)) k }
{-Definition of sizedP (recursive case) -}
{x | Left x ∈ {apply swap y | y ∈ sizedP (p ◦ swap) (b ∗∗∗ a) k }}
{-Simplification -}
{swap x | Left x ∈ sizedP (p ◦ swap) (b ∗∗∗ a) k }
{-Induction hypothesis -}
{swap x | x ∈ sized (b ∗∗∗ a) k , (p ◦ swap) x }
{-From Lemma 1 -}

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

16 K. Claessen et al.

{swap x | x ∈ sized (b :∗ : a) k , (p ◦ swap) x }
{-Commutativity of space products -}
{x | x ∈ sized (a :∗ : b) k , p x }

Notably, to be well founded this inductive step requires an external convergence

measure where b ∗∗∗a is smaller than a :∗ : b, which is a little intricate to construct.

Without going into extreme detail, we present an outline of such a measure. The

measure consists of three components (k, r, q), ordered lexicographically from left

to right. The component k is the size parameter of sizedP . The measure r keeps

track of how many steps the algorithm might need to take before the next Pay

constructor is consumed, and corresponds, more less, to the longest path without a

Pay constructor. The measure q keeps track of the number of times that ∗∗∗ needs

to be applied to remove the : ∗ : from the top level of the space. The measure q

depends on the predicate p, and for a space that is a tree of nested products, q is

the position (in a breadth first order) of the leaf that is requested by the evaluation

of the predicate, as indicated by repeated application of inspectsFst .

With this definition, it can be proven that for a given invocation of sizedP with

measure m = (k, r, q), the measure for a recursive call performed by it is strictly

smaller than m. For the :∗ : case above, the measure k for the recursive call is the

same as for the original call, but either r or q is always decreased.

One complication in the proof is that fact that a ∗∗∗ b might add an extra : $:

constructor to the result space, which is immediately removed by the next invocation

of sizedP . The convergence measure needs to account for this fact.

Furthermore, the convergence measure requires the evaluation of the predicate to

be deterministic, as otherwise the repeated application of the ∗∗∗ operator might

lead to an infinite loop. Specifically, inspectsFst is required to interact in a standard

way with functions like swap, for example satisfying the law inspectsFst p ⇒
not (inspectsFst (p ◦ swap)).

The next case of sizedP that we will consider is the f :$: a case, which requires

proving the following equation:

{x | Left x ∈ sizedP p (f :$: a) k } = {x | x ∈ sized (f :$: a) k , p x }

The subcase when universal (p ◦ f) = Just False yields both sides of the equation to

be equal to { }. The recursive subcase can be proven using equational reasoning.

{x | Left x ∈ sizedP p (f :$: a) k }
{-Definition of sizedP -}
{x | Left x ∈ {apply f y | y ∈ sizedP (p ◦ f) a k }}
{-Simplification -}
{f x | Left x ∈ sizedP (p ◦ f) a k }
{-Induction hypothesis -}
{f x | x ∈ sized a k , (p ◦ f) x }
{-Simplification -}
{x | x ∈ {f y | y ∈ sized a k }, p x }
{-Definition of sized -}
{x | x ∈ sized (f :$: a) k , p x }

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 17

The recursive call in this case has the same measure k as the original call, but

measure r is reduced by one.

The remaining cases can be proved in a similar way. �

If indexing in the result of sizedP hits an element that does not satisfy the predicate,

the result is Right s , where s is the residual space, which is used by uniform to

continue sampling. We show that the spaces returned by sizedP retain all elements

from the original space that satisfy the predicate, and are strictly smaller than the

original space.

Lemma 3

Let s be a space, p a boolean predicate, k a non-negative integer, and Right s ′ ∈
sizedP p s k . Then the following equation between multisets holds.

{x | x ∈ sized s k , p x } = {x | x ∈ sized s ′ k , p x }

Furthermore, sized s ′ k is a proper subset of sized s k .

The proof of the above lemma is by induction and case analysis on sizedP , similarly

to the proof of Lemma 2.

The final theorem shows the uniformity of the distribution of elements returned

by uniform .

Theorem 2

Consider space s , a non-negative size k , and a predicate p. Let the multiset a =

sized s k and b = {x | x ∈ a , p x }. If b is non-empty, then uniform p s k is uniform

over b.

Proof

Let n = |a|, m = |b| and x be an occurrence in b. We will show that the probability of

x = uniform p s k is equal 1/m, by performing induction on n . When uniform p s k

executes, first sizedP p s k is used to construct a multiset of indexing results, then

one element of this set is selected uniformly at random using uniformSet . For the

base case of the induction, we take that n = m . Then, by Lemma 2, all occurrences

from the multiset are of the form Left y , and exactly 1 of them is the occurrence of

Left x . Thus, the probability of generating x is 1/m.

For the induction step, assume that n>m . From Lemma 2, Left x is an occurrence

in sizedP p s k corresponding to x . Moreover, n − m elements are of the form

Right s ′, since |sizedP p s k | = |sized s k |. Thus, the probability of generating

x directly is 1/n, whereas the probability of retrying is (n − m)/n. The uniform

procedure will retry with a modified space s ′. From Lemma 3, sized s ′ k contains

the same elements that satisfy p as sized s k , but fewer elements that do not satisfy

p. We can now invoke the induction hypothesis, which gives that the probability of

generating x by uniform p s ′ k is 1/m. Thus, the overall probability of generating x

is 1/n + ((n− m)/n)(1/m) = 1/m �

4.1 Non-deterministic predicates

The proof above assumes that the evaluation order of the predicate is deterministic.

There are two reasons for this. Firstly, there is a risk of non-termination when the

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

18 K. Claessen et al.

order of evaluation of the predicate is not consistent between different invocations of

inspectsFst . This problem can be addressed by introducing a generalised inspectsFst

that returns the index in a nesting of pairs that a predicate inspects, and a generalised

associativity transformation.

Even so, there is a more subtle problem with non-deterministic evaluation order

– it may cause biased distribution of the generated data. For example, consider a

space containing the four total values of type (Bool ,Bool), and a predicate with

non-deterministic evaluation order defined on this type.

spaceBool :: Space Bool

spaceBool = Pay (Pure False :+: Pure True)

spacePairB :: Space (Bool ,Bool)

spacePairB = Pay ((,) :$: spaceBool :∗ : spaceBool)

oracle :: IO Bool

nonDetB :: (Bool ,Bool)→ Bool

nonDetB (a , b) = unsafePerformIO $ do

x ← oracle

if x then a ‘pseq ‘ b ‘pseq ‘ True

else b ‘pseq ‘ a ‘pseq ‘ True

The predicate has access to non-deterministic oracle returning a boolean value. If

the oracle returns True, the predicate evaluates the first component of the pair using

pseq , then the second one before returning True. Otherwise, it evaluates the pair’s

components in the opposite order.

Depending on the value returned by oracle, indexing values of size 3 in spacePairB

with the predicate nonDetB yields values in one of two orders.

oracle result Index: 0 1 2 3

True (False,False) (False,True) (True,False) (True,True)

False (False,False) (True,False) (False,True) (True,True)

Now suppose that oracle contains a race condition, which is triggered by events

in the part of the program that selects the randomly chosen index, and results in

the following: if the index is 1 then oracle returns False, otherwise it returns True.

Then, indexing using nonDetB will yield (True,False) for indices 1 and 2, whereas

(False,True) will never be returned, leading to a biased distribution.

Although it is hard to implement oracle so it exhibits this behaviour making this

particular example largely hypothetical, it highlights the risks of allowing evaluation

order to influence semantics. In Section 5.4, we discuss an alternative algorithm with

deterministic indexing. For our main algorithm, this example demonstrates the need

for assuming deterministic evaluation order, or possibly a weakened assumption

that the evaluation order is independent from the choice of index.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 19

5 Efficient implementation and alternative algorithms

The previous sections give a high-level description of our algorithm. Implementing it

required making a number of engineering choices, some of which had a considerable

effect on the performance of the generator.

This section describes some of these choices that we found most important for

performance, and also experiments with alternative versions of the core algorithm

aimed at improving performance.

5.1 Relaxed uniformity constraint

When our uniform generator encounters a subspace for which the predicate is

false, the algorithm must retry with a new random index in the reconstructed set.

The new index must be chosen independently from the old in order to achieve

uniform distribution. We have implemented two alternative algorithms that violate

this restriction, compromising uniformity, in favour of better performance.

The first one is to backtrack and try the alternative in the most recent choice. Such

generators are no longer uniform, but potentially more efficient. Even though the

algorithm start searching at a uniformly chosen index, since an arbitrary number of

backtracking steps is allowed the distribution of generated values may be arbitrarily

skewed. In particular, values satisfying the predicate that are ‘surrounded’ by many

values for which it does not hold may be much more likely to be generated than

other values.

The second algorithm also performs backtracking, but imposes a bound b for how

many values the backtracking search is allowed to skip over. When the bound b is

reached, a new random index is generated and the search is restarted. The result

is an algorithm which has an ‘almost uniform’ distribution in a precise way: the

probabilities of generating any two values differ at most by a factor b + 1. So, if we

pick b = 1000, generating the most likely value is at most 1001 times more likely

than the least likely value.

The bounded backtracking search strategy generalises both the uniform search

(when the bound b is 0) and the unlimited backtracking search (when the bound b

is infinite).

We expected the backtracking strategy to be more efficient in terms of time and

space usage than the uniform search, and the bounded backtracking strategy to be

somewhere in between, with higher bounds leading to results closer to unlimited

backtracking. Our intention for developing these alternative algorithms was that

trading the uniformity of the distribution for higher performance may lead to a

higher rate of finding bugs. Section 6 contains experimental verification of these

hypotheses.

5.2 Parallel conjunction

It is possible to improve the generation performance by introducing the parallel

conjunction operator (Runciman et al. 2008), which makes pruning the search space

more efficient. Suppose we have a predicate p x = q x && r x . Given that &&

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

20 K. Claessen et al.

is left biased, if universal r is Just False and universal q is Nothing , then the result

of universal p will be Nothing , even though we expect that refining q will make the

conjunction return False regardless of what q x returns.

We can define a new operator &&& for parallel conjunction with different

behaviour when the first operand is undefined: ⊥ &&& False = False. This may

make the sizedP function terminate earlier when the second operand of a conjunction

is false, without needing to perform refinements needed by the first operand at all.

Similarly, we define parallel disjunction that is True when either operand is True.

Note that the parallel conjunction and disjunction still have the same evaluation

order as their normal counterparts, that is when both operands are undefined, the

left one is evaluated first.

5.3 Sharing in the representation of spaces

The implementation of the algorithm described in Sections 2 and 3 starts with a

compact representation of the whole search space, where recursive references to the

space are shared. The representation is subsequently expanded, and subspaces are

created from it as a result of refinement.

We found it important to ensure that as much sharing as possible is achieved

between the representations of subspaces in order to save memory, and share the

results of the cardinality computations. The measures used to increase sharing

included folding subspaces that have no choices left in them into single units, and

rebalancing the tree representation of spaces.

Increasing sharing turned memory-bound computations into CPU-bound ones,

while improving run time performance at the same time. As a result, most bench-

marks that we ran, including the ones presented in Section 6 were limited by the

run time rather than the available memory.

5.4 Deterministic indexing

As demonstrated in Section 4, allowing evaluation order to influence indexing is

potentially problematic if the evaluation order is non-deterministic, for instance in

parallel computations.

To address this problem, we propose to make the mapping of indices to values

in the space independent of the predicate, restricting non-determinism to affect only

which falsifying values are removed in an iteration of the top-level algorithm. This

requires significant modifications of the algorithm, which involve replacing sizedP

with three distinct steps:

1. A deterministic indexing procedure produces a tree structure containing all

indexing choices (left or right operands of a union) required to produce a

random total value, without considering the predicate at all.

2. A non-deterministic procedure prunes this tree, keeping only the choices

required to build a partial value for which the given predicate terminates.

3. A subtraction procedure removes all values resulting from the pruned tree

from the space.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 21

The tree structure that containing indexing choices can be defined by this data type:

data Select = This | Fst Select | Snd Select | Pair Select Select

The Fst and Snd constructors mark the selection of the first or the second

component of a union respectively. The Pair constructor combines choices made in

the components of a product space. With this data type, the three steps above would

correspond to functions of these types:

sizedDet :: Space a → Int → Set Select

pruneChoices :: (a → Bool)→ Space a → Select → Select

subtractChoices :: Space a → Select → Space a

In addition, a fourth function is needed that returns the value identified by the

choices.

selectedValue :: Space a → Select → a

Here, we discuss implementation of these functions, which is not included in the

paper. Function sizedDet is a simple adaptation of sized (Section 2.3). Function

pruneChoices uses inspectsFst , universal and ∗∗∗ similarly to how they are used in

sizedP (Figure 2) in order to prune the tree of choices. Function subtractChoices

performs algebraic transformations to remove the subspace specified by the choice

tree from the original space. Function selectedValue is implemented using structural

recursion on both arguments.

Preliminary experimentation with this approach showed that implementing

subtractChoices efficiently is key for efficiency. Several implementations of it were

tried but none were as fast as the original algorithm. Further experimentation with

this approach remains a topic of future work.

5.5 In-place refinement

The algorithm described in Section 3 is implemented by applying the predicate to

partial values and by throwing and catching exceptions, determine which part of

the value needs to be further defined (this is the inner workings of inspectsFst and

universal). This process might be computationally expensive as it requires repeated

evaluation of the predicate.

As an alternative mechanism for observing the evaluation order of predicates, we

experimented with a variant of the algorithm that uses Haskell’s lazy evaluation

with fully defined values. In this algorithm, the indexing function directly builds a

random fully defined value, and attaches a Haskell IO-action to each subcomponent

of it. When the predicate is applied to the value, the IO-actions will fire only for the

parts that needs to be inspected to determine the outcome. Whenever the indexing

function is required to make a choice, the corresponding IO-action records the

option it took. After the predicate has terminated, the pruned choice tree can be

constructed from the recorded trace.

This approach has the advantage of deterministic indexing, and reduces the

maximal number of times the predicate is executed for each iteration of the algorithm

from n to 1 (where n is the number of choices made, usually proportional to the

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

22 K. Claessen et al.

size of the value). In particular, the exact value returned by the indexing function

will not depend on the evaluation order of the predicate.

The algorithm based on in-place refinement can be summarised as follows:

1. Sample the space for a lazily defined value uniformly at random. Inspecting

any constructor of the sampled value makes a record in the trace.

2. Execute the predicate on the value.

3. If the result of the predicate is True, return the generated value, otherwise

continue.

4. Determine which parts of the value were inspected by examining the trace.

This information determines which choices had to be made by the indexing

function, and which are redundant.

5. Subtract the space of all values from the previous point from the current space,

and restart the algorithm.

Despite the clear advantage of not having to re-evaluate the predicate on many

partial values for each falsifying total value, the generator based on this technique

turned out to be slower than our original implementation for the predicates and

spaces we used. On the other hand, this generator used less memory in most cases

compared the original one.

In addition to the performance problems, defining parallel conjunction for this

type of refinement is difficult because inspecting the result of a predicate irreversibly

makes the choices required to compute the result. For these reasons, our implemen-

tations of in-place refinement remains a separate branch of development and a topic

of future work.

6 Experimental evaluation

We evaluated our approach in four benchmarks. Three of them involved measuring

the time and memory needed to generate 2000 random values of a given size

satisfying a predicate. The fourth benchmark compared a derived simply typed

lambda term generator against a handwritten one in triggering strictness bugs in

the GHC compiler. Some benchmarks were also run with a naive generator that

generates random values from a space, as in Section 2, and filters out those that do

not satisfy a predicate.

6.1 Trees

Our first example is binary search trees with Peano-encoded natural numbers as

their elements, defined as follows:

data Tree a = L

| N a (Tree a) (Tree a)

isBST :: Ord a ⇒ Tree a → Bool

data Nat = Z | Suc Nat

instance Ord Nat where

< Z = False

Z < Suc = True

Suc x < Suc y = x < y

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 23

Fig. 3. Run times in (left) and memory consumption (right) of derived generators generating

2000 binary search trees depending on the size of generated values.

The isBST predicate decides if the tree is a binary search tree, and uses a supplied

lazy comparison function for type Nat for increased laziness.

isBST :: Ord a ⇒ Tree a → Bool

isBST t = aux Nothing Nothing t where

Nothing � y = True

Just x � y = x � y

x � Nothing = True

x � Just y = x � y

aux L = True

aux lb ub (N x t1 t2) = lb � x && x � ub

&& aux lb (Just x) t1 && aux (Just x) ub t2

The predicate’s auxiliary function accepts two optional bounds and a subtree and

decides whether the subtree is a binary search tree with all elements within the

bounds.

The benchmark involved measuring the time and space needed to generate 2000

trees for each size from a range of sizes, allowing at most 300 s of CPU time and

4 GiB of memory to be used. Derived generators based on three different search

strategies (see Section 5.1) were used: one performing uniform sampling (uniform),

one bounded backtracking allowed to skip at most 10 k values (backtracking 10 k),

and one performing unbounded backtracking (backtracking). A naive generate-and-

filter generator was also used for comparison.

Both backtracking 10 k and backtracking generators produce non-uniform distri-

butions of values. The skew of the backtracking 10 k generator is limited, as the least

likely values are generated at most 10 k times less likely than the most common

ones, as mentioned in Section 5.1.

Figure 3 shows the time and memory consumed the runs with resource limits

marked by dotted lines in the plots. Run times for all derived generators rise sharply

with the increased size of generated values and seem to approach exponential

growth for larger sizes. The backtracking generator performs best of all, and has

a slower exponential growth rate for large sizes than the other derived generators.

The backtracking 10 k generator achieved similar performance as the uniform one

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

24 K. Claessen et al.

when generating values that are about 11 size units larger. The generate-and-filter

generator was not able to complete any of the runs in time, and is omitted from the

graphs.

6.2 Simply typed lambda terms

Generating random simply typed lambda terms was our motivating application.

Simply typed lambda terms can be turned into well-typed Haskell programs and used

for testing compilers. Developing a handwritten recursive generator for them requires

the use of backtracking, because of the inability of predicting whether a given local

choice can lead to a successful generation, and because typing constraints from two

distant parts of a term can cause conflict. Achieving satisfactory distribution and

performance requires careful tuning, and it is difficult to assess if any important

values are severely underrepresented (Pa�lka 2012).

On the other hand, obtaining a generator that is based on our framework requires

only the definitions from Figure 1, and a space definition. Defining the space of

closed expressions spaceClosedExprs also requires auxiliary definitions of spaces

containing open expressions.

spaceExprs :: [Space Expr]

spaceExprs = go 0 where

go k = let go k 1 = go (k + 1)

go k = Pay $ (Ap :$: go k :∗ : go k :∗ : spaceType)

:+: (Vr :$: fin k ,Lm :$: head go k 1)

in go k : go k 1

spaceClosedExprs = head spaceExprs

To ensure sharing, we define the top-level list spaceClosedExprs of spaces of

expressions with 0, 1, 2, and so on free variables. The definition of the nth space

refers to the n + 1-th space, as the Lm constructor requires its body to be an

expression with one more free variable.

The code for the type checker is standard and uses a type stored in each application

node (tx in Ap f x tx) to denote the type of the argument term for simplicity.

To evaluate the generators, we generated 2000 terms with a simple initial

environment of six constants. The derived generator with three search strategies

and one based on generate-and-filter were used. Figure 4 shows the results. The

uniform search strategy is capable of generating terms of size up to 23. For larger

sizes, the generator exceeded the resource limits (300 s and 4 GiB, marked with

dotted lines). The generator that used limited backtracking allowed generating

terms up to size 28, using 9 times less CPU time and over 11 times less memory than

the uniform one at size 23. Unlimited backtracking improved memory consumption

dramatically, up to 30-fold, compared to limited backtracking. The run time is

improved only slightly with unlimited backtracking. Finally, the generator based on

generate-and-filter exceeded the run times for all sizes, and is not included in the

plots.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 25

Fig. 4. Run times (left) and memory consumption (right) of derived generators generating

2000 simply typed lambda terms depending on the size of generated terms.

6.3 Testing GHC

Discovering strictness bugs in the GHC optimising Haskell compiler was our prime

reason for generating random simply typed lambda terms. To evaluate our approach,

we compared its bug-finding power to a handwritten generator that had been

developed before (Pa�lka 2012) using the same test property that had been used

there.

Random simply typed lambda terms were used for testing GHC by first generating

type-correct Haskell modules containing the terms, and then using them as test data.

In this case, we generated modules containing expressions of type [Int]→ [Int] and

compiled them with two different optimisation levels. Then, we tested their observable

behaviour and compared them against each other, looking for discrepancies.

We implemented the generator using a similar data type as in Figure 1 extended

with polymorphic constants and type constructors. For efficiency reasons, we avoided

having types in term application constructors, and used a type checker based on type

inference, which is more complex but still easily implementable. It allows generators

to scale up to larger effective term sizes because not having types in the term

representation increases the density of well-typed terms.

A backtracking generator based on this data type was capable of generating

terms containing 30 term constructors, and was able to trigger GHC failures. Other

derived generators were not able to find counterexamples. Table 1 shows the results

of testing GHC both with the handwritten simply typed lambda term generator and

our derived generator. The handwritten generator used for comparison generated

terms of sizes from 0 to about 90, with most terms falling in the range of 20–50. It

needed the least total CPU time to find a counterexample, and the lowest number

of generated terms. The derived generator needs almost seven times more CPU time

per failure than the handwritten one.

The above results show that a generator derived from a predicate can be used

to effectively find bugs in GHC. The derived generator is less effective than a

handwritten one, but is significantly easier to develop. Developing an efficient type-

checking predicate required for the derived generator took a few days, whereas the

development and tuning of the hand-written generator took an order of months.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

26 K. Claessen et al.

Table 1. Performance of the reference handwritten term generator compared to a derived

generator using backtracking with size 30. We compare the average number of terms that have to

be generated before a counterexample (ctr ex.) is found, and how much CPU time the generation

and testing consumes per found counterexample

Generator Handwritten Derived (size 30)

Terms per ctr ex. (k) 18.6 52.5

Gen. CPU time per ctr ex. (min) 1.7 14.0

Test CPU time per ctr ex. (min) 1.8 10.4

Tot. CPU time per ctr ex. (min) 3.5 24.4

Table 2. Maximum practical sizes of values generated by derived program generators that use

unlimited backtracking and backtracking with cut-off of 10 k

Predicates Backtracking Backtracking c/o

1, 2, 3, 4, 5 13 15

1, 3, 4, 5 13 30

1, 3, 5 31 30

6.4 Programs

The Program benchmark is meant to simulate testing of a simple compiler by

generating random programs, represented by the following data type.

type Name = String

data Program = New Name Program

| Name := Expr

| Skip

| Program � Program

| If Expr Program Program

| While Expr Program

data Expr = Var Name

| Add Expr Expr

The programs contain some common imperative constructs and declarations of new

variables using New , which creates a new scope.

A compiler may perform a number of compilation passes, which would typically

transform the program into some kind of normal form that may be required by

the following pass. Our goal is to generate test data that satisfy the precondition

in order to test the code of each pass separately. We considered five predicates on

the program data type that model simple conditions that may be required by some

compilation phases: (1) boundProgram saying that the program is well scoped, (2)

usedProgram saying that all bound variables are used, (3) noLocalDecls requiring all

variables to be bound on the top level, (4) noSkips forbidding the redundant use of

� and Skip, and (5) noNestedIfs forbidding nested if expressions.

Table 2 shows maximum value sizes that can be practically reached by the derived

generators for the program data type with different combinations of predicates. All

runs were generating 2000 random programs with resource limits (300 s and 4 GiB).

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 27

When all predicates were used, the generators performed poorly being able to reach

at most size 15. When the usedProgram predicate was omitted, the generator that

uses limited backtracking improved considerably, whereas the one using unlimited

backtracking remained at size 13. Removing the noSkips predicate turns the tables

on the two generators improving the performance of the unlimited backtracking

generator dramatically.

A generator based on generate-and-filter was also benchmarked, but did not

terminate within the time limit for the sizes we tried.

6.5 Summary

All derived generators performed much better than ones based on generate-

and-filter in three out of four benchmarks. In the GHC benchmark, using a

generator based on generate-and-filter was comparable to using our uniform or near-

uniform derived generators, and slower than a derived generator using backtracking.

The backtracking generator was the only automatic generator that found any

counterexamples, although less efficiently than a handwritten generator. However,

as creating the derived generators was much quicker, we consider them an appealing

alternative to handwritten generators.

The time and space overhead of the derived generators appeared to rise exponen-

tially, or almost exponentially with the size of generated values in most cases we

looked at, similarly to what can be seen in Figures 3 and 4.

In most cases, the backtracking generator provided the best performance, which

means that sometimes we may have to sacrifice our goal of having a predictable

distribution. However, we found the backtracking generator to be very sensitive

to the choice of the predicate. For example, some combinations of predicates in

Section 6.4 destroyed its performance, while having less influence on the uniform

and near-uniform generators. We hypothesise that this behaviour may be caused by

regions of search space where the predicates evaluate values to a large extent before

returning False. The backtracking search remain in such regions for a long time, in

contrast to the other search that gives up and restarts after a number of values have

been skipped.

Overall, the performance of the derived generators is practical for some appli-

cations, but reaching higher sizes of generated data might be needed for effective

bug finding. In particular, being able to generate larger terms may improve the

bug-finding performance when testing for GHC strictness bugs.

7 Related work

There is a substantial amount of research on generating combinatorial structures

both in pure mathematics and in computer science. These structures sometimes

include trees or even (recursive) ADTs. Although this work does not deal with data

constrained by arbitrary predicates, some of it could potentially be adapted to it in

a similar way as we do in this paper.

An efficient algorithm to index into a size-based enumeration of binary trees can be

derived from a bijection to strings of nested parenthesis (Knuth 2006). Boltzmann

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

28 K. Claessen et al.

samplers can be used to generate objects from a wide range of combinatorial

structures, with uniform distribution over values of an approximate or exact size

(Flajolet et al. 1994, 2007). Yorgey has explored the relation between a class of

combinatorial objects called species and ADTs (Yorgey 2010, 2014). This work can

potentially be used for uniform random generation of algebraic types as well as

some more complex structures involving symmetries.

7.1 FEAT

Our representation of spaces and efficient indexing is based on FEAT (Dureg̊ard

et al. 2012). The practicalities of computing cardinalities and the deterministic

indexing functions are described there. The inability to deal with complex data type

invariants is the major concern for FEAT, which is addressed by this paper.

7.2 Lazy SmallCheck and Korat

Lazy SmallCheck (Runciman et al. 2008) uses laziness of predicates to get faster

progress in an exhaustive depth-limited search. Our goal was to reach larger,

potentially more useful values than Lazy SmallCheck by improving on it in two

directions: using size instead of depth and allowing random search in sets that are

too large to search exhaustively. Korat is a framework for testing Java programs

(Boyapati et al. 2002). It uses similar techniques to exhaustively generate size-

bounded values that satisfy the precondition of a method, and then automatically

check the result of the method for those values against a postcondition.

SmallCheck has been applied to the problem of generating programs to test

compilers (Reich et al. 2012). The work focuses on limiting the search space to include

interesting programs without containing too many variants of similar programs.

Notably some of these limitations, such as limiting function arity, arise from the use

of depth bound as opposed to size bound.

7.3 Lazy instantiation

A framework for generating values satisfying a computable predicate has been

proposed based on explicit term representation of computable predicates (Lindblad

2008). It uses logic variables to represent unrefined parts of the input data, and

performs backtracking search with their successive refinement. The framework

performs reductions of the predicate program explicitly, and shares its intermediate

results for similar arguments, which may be beneficial for computationally expensive

predicates. The framework can be adapted to perform random search, but only

limited experiments have been performed on it.

7.4 EasyCheck: test data for free

EasyCheck is a library for generating random test data written in the Curry

functional logic programming language (Christiansen & Fischer 2008). Its generators

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 29

define search spaces, which are enumerated using diagonalisation and randomising

local choices. In this way, values of larger sizes have a chance of appearing early

in the enumeration, which is not the case when breadth-first search is used. The

Curry language supports narrowing, which can be used by EasyCheck to generate

values that satisfy a given predicate. The examples that are given in the paper

suggest that, nonetheless, micromanagement of the search space is needed to get a

reasonable distribution. The authors point out that their enumeration technique has

the problem of many very similar values being enumerated in the same run.

7.5 Metaheuristic search

In the GödelTest (Feldt & Poulding 2013) system, so-called metaheuristic search is

used to find test cases that exhibit certain properties referred to as bias objectives.

The objectives are expressed as fitness metrics for the search such as the mean height

and width of trees, and requirements on several such metrics can be combined for

a single search. It may be possible to write a GödelTest generator by hand for

well-typed lambda terms and then use bias objectives to tweak the distribution of

values in a desired direction, which could then be compared to our work.

7.6 Lazy non-determinism

There is some recent work on embedding non-determinism in functional languages

(Fischer et al. 2011). As a motivating example, an isSorted predicate is used to derive

a sorting function, a process which is quite similar to generating sorted lists from

a predicate. The framework is very general and could potentially be used both for

implementing SmallCheck style enumeration and for random generation.

7.7 Generating lambda terms

There are several other attempts at enumerating or generating well-typed lambda

terms. Generic programming has been used to exhaustively enumerate lambda terms

by size (Yakushev & Jeuring 2009). The description focuses mainly on the generic

programming aspect, and the actual enumeration appears to be mainly proof of

concept with very little discussion of the performance of the algorithm. There

has been some work on counting lambda terms and generating them uniformly

(Grygiel & Lescanne 2013). This includes generating well-typed terms by a simple

generate-and-filter approach.

8 Conclusion

The performance of our generators depends on the strictness and evaluation order

of the used predicate. The generator that performs unlimited backtracking was

especially sensitive to the choice of predicate, as shown in Section 6.4. Similar

effects have been observed in Korat (Boyapati et al. 2002), which also performs

backtracking.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

30 K. Claessen et al.

We found that for most predicates unbounded backtracking is the fastest. But

unexpectedly, for some predicates imposing a bound on backtracking improves

the run time of the generator. This also makes the distribution more predictable,

at the cost of increased memory consumption. We found tweaking the degree of

backtracking to be a useful tool for improving the performance of the generators,

and possibly trading it for distribution guarantees.

Our method aims at preserving the simplicity of generate-and-filter type genera-

tors, but supporting more realistic predicates that accept only a small fraction of all

values. This approach works well, provided the predicates are lazy enough.

Our approach reduces the risk of having incorrect generators, as coming up with

a correct predicate is usually much easier than writing a correct dedicated generator.

Creating a predicate which leads to an efficient derived generator on the other

hand, is more difficult, and often requires careful reasoning about its strictness and

evaluation order.

Even though performance remains an issue when generating large test cases,

experimental results show that our approach is a viable option for generating test

data in many realistic cases.

Acknowledgments

This research has been supported by the Resource-Aware Functional Programming

grant awarded by the Swedish Foundation for Strategic Research. We would like

to thank David Christiansen for his valuable feedback, and anonymous referees for

their detailed and helpful reviews.

References

Arts, T., Hughes, J., Johansson, J. & Wiger, Ulf. (2006) Testing telecoms software with Quviq

QuickCheck. In Proceedings of the Workshop on Erlang (Erlang 2006). New York, NY,

USA: ACM, pp. 2–10.

Boyapati, C., Khurshid, S. & Marinov, D. (2002) Korat: Automated testing based on Java

predicates. In Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA 2002). New York, NY, USA: ACM, pp. 123–133.

Christiansen, J. & Fischer, S. (2008) EasyCheck: Test data for free. In Proceedings of the

International Conference on Functional and Logic Programming (FLOPS 2008). LNCS,

vol. 4989. Berlin, Heidelberg: Springer, pp. 22–336.

Claessen, K., Dureg̊ard, J. & Pa�lka, M H. (2014) Generating constrained random data with

uniform distribution. In Proceedings of the International Conference on Functional and

Logic Programming (FLOPS 2014), Codish, M. & Sumii, E. (eds), LNCS, vol. 8475, Springer

International Publishing, pp. 18–34.

Claessen, K. & Hughes, J. (2000) QuickCheck: A lightweight tool for random testing of Haskell

programs. In Proceedings of the International Conference on Functional Programming

(ICFP 2000). New York, NY, USA: ACM, pp. 268–279.

Dureg̊ard, J., Jansson, P. & Wang, M. (2012) Feat: Functional enumeration of algebraic types.

In Proceedings of the Haskell Symposium (Haskell 2012). ACM, pp. 61–72.

Feldt, R. & Poulding, S. (2013) Finding test data with specific properties via metaheuristic

search. In Proceedings of the International Symposium on Software Reliability Engineering

(ISSRE 2013). IEEE, pp. 350–359.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

Generating constrained random 31

Fischer, S., Kiselyov, O. & Shan, C.-C. (2011) Purely functional lazy nondeterministic

programming. J. Funct. Program. 21(4–5), 413–465.

Flajolet, P., Éric F. & Pivoteau, C. (2007) Boltzmann sampling of unlabelled structures. In

Proceedings of the Workshop on Analytic Algorithmic and Combinatorics. SIAM Press,

pp. 201–211.

Flajolet, P., Zimmermann, P. & Cutsem, B. V. (1994) A calculus for the random generation

of labelled combinatorial structures. Theor. Comput. Sci. 132(1–2), 1–35.

Grygiel, K. & Lescanne, P. (2013) Counting and generating lambda terms. J. Funct. Program.

23(9), 594–628.

Knuth, D. E. (2006) The Art of Computer Programming, volume 4, fascicle 4: Generating

All Trees–History of Combinatorial Generation (Art of Computer Programming). Addison-

Wesley Professional.

Lindblad, F. (2008) Property directed generation of first-order test data. In Trends in

Functional Programming (TFP 2007). Intellect, pp. 105–123.

Pa�lka, M. H. (2012) Testing an Optimising Compiler by Generating Random Lambda Terms.

Licentiate thesis, Chalmers University of Technology, Gothenburg, Sweden.

Pa�lka, M. H., Claessen, K., Russo, A. & Hughes, J. (2011) Testing an optimising compiler

by generating random lambda terms. Proceedings of the International Workshop on

Automation of Software Test (AST 2011). ACM, pp. 91–97.

Reich, J. S, Naylor, M. & Runciman, C. (2012) Lazy generation of canonical test programs.

In Implementation and Application of Functional Languages (IFL 2012). LNCS, vol. 7257,

Springer, pp. 69–84.

Runciman, C., Naylor, M. & Lindblad, F. (2008) Smallcheck and Lazy Smallcheck: Automatic

exhaustive testing for small values. In Proceedings of the Haskell Symposium (Haskell

2008). New York, NY, USA: ACM, pp. 37–48.

Yakushev, A. R. & Jeuring, J. (2009) Enumerating well-typed terms generically. In Proceedings

of International Workshop of Approaches and Applications of Inductive Programming

(AAIP 2009). LNCS, vol. 5812. Springer, pp. 93–116.

Yorgey, B. A. (2010) Species and functors and types, oh my! In Proceedings of the Haskell

Symposium (Haskell 2010). New York, NY, USA: ACM, pp. 147–158.

Yorgey, B. A. (2014) Combinatorial Species and Labelled Structures. Ph.D. thesis, University

of Pennsylvania.

https://doi.org/10.1017/S0956796815000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000143

