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Abstract

The main result is that every torsion-free locally nilpotent group that is isomorphic to each of its non-
nilpotent subgroups is nilpotent, that is, a torsion-free locally nilpotent group G that is not nilpotent has
a non-nilpotent subgroup H that is not isomorphic to G.
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1. Introduction

One of the main results of [8], namely Theorem 1.1, is that a torsion-free soluble
group G that is isomorphic to each of its non-nilpotent subgroups is itself nilpotent if
it is not finitely generated. On the other hand, if G is finitely generated soluble and
isomorphic to each of it non-nilpotent subgroups then either every proper subgroup of
G is nilpotent and hence, by [3, Lemma 3.2], G is finite or else nilpotent, or G satisfies
the hypotheses of [7, Theorem 1]. Now if in addition G is torsion-free then we deduce
from this latter result that G is isomorphic to each of its non-abelian subgroups, and
now we may apply [6, Theorem 2]: again assuming that G is not nilpotent we have
that G satisfies condition (vi) of that theorem, but the torsion-freeness of G yields a
contradiction. The above argument establishes the following.
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THEOREM 1. Let Gbea soluble group that is isomorphic to each of its non-nilpotent
subgroups. If G is torsion-free then G is nilpotent.

The main result of the present work provides a generalization of [8, Theorem 1.1]
in a different direction. We shall prove that the hypothesis of solubility is not in fact
required—note that we cannot simultaneously remove the hypotheses of solubility
and non-finite generation, as there exist (finitely generated) simple torsion-free groups
with all proper subgroups cyclic (see [4]). Of course, a group that is isomorphic to
each of its non-nilpotent subgroups is either finitely generated or locally nilpotent.

THEOREM 2. Let G be a locally nilpotent group that is isomorphic to each of its
non-nilpotent subgroups. If G is torsion-free then G is nilpotent.

Several of the results in [5] are concerned with torsion-free locally nilpotent groups
G, and indicate that restrictions on the non-nilpotent subgroups of G often imply
nilpotency. Theorem 2 above is seen to be a result of this kind.

During the course of our discussion we shall frequently be applying some properties
of isolators in (torsion-free) locally nilpotent groups. Firstly we recall the definition.
If G is a locally nilpotent group and H is a subgroup of G then the isolator of H in
G, denoted IG(H), is the set [g e G : g" ^H for some positive integer «}. This
is a subgroup of G, and the main properties that we shall require are as follows [1,
Section 4]. Assume that G is torsion-free, let H be a subgroup of G, and let y,-(G)
(respectively, Z((G)) denote the /th term of the lower (respectively, upper) central
series of the group G. If IG(H) = G, then CG(H) = Z(G) and, for each positive
integer i, /G(Z,(tf)) = Z^G) and /G(y,(#)) = /G(K,(G)). If H is nilpotent of class
c, then so is IG(H). If K is a normal subgroup of H, then IG(K) is normal in IG(H).

2. Preliminary results

In this section we present a few results that are required for the proof of Theorem 2.
The first of these will in turn require a couple of lemmas.

PROPOSITION 1. Let G be a torsion-free locally nilpotent group that is isomorphic
to each of its non-nilpotent subgroups, and suppose that G is not nilpotent. Then

(i) G2 is a proper subgroup of G;
(ii) G is a Fitting group; and
(iii) the hypercentre of G is its centre.

LEMMA 1. Let G be a countable torsion-free nilpotent group and suppose that for
every subgroup H of G with IG(H) = G we have G isomorphic to H. Then G is
abelian.
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PROOF. Suppose the result false and let G be a counter-example of minimal
nilpotency class c, say. Then G = G/ZC_2(G) has class exactly 2 and, since
ZC_2(G) = ZC_2(H) for all H satisfying ZC_2(G) < H and IC{H) = G, we de-
duce that G is also a counter-example and hence that c = 2.

Let A = IG(G') and let K/A be a free abelian subgroup of G/A such that G/AT is
periodic. Then K ~ G and / G ( ^ ' ) = /C(G') = A. It follows that /A:(AT') = A and
hence that G/A ~ AT/A, that is, G/A is free abelian. Thus G/ G' splits over A/ G' and
we have G/ G' = H / G' x A / G' for some free abelian subgroup H/G'. In particular
we have G = HA and hence G' = / / ' (since A is central). Since H/G' is free abelian
and IG(H) = G, we deduce that H/H' is free abelian, as therefore is G/G'. Write
G/G' = {xi G') x {x2G') x • • • for some (possibly finite) set {JCI, * 2 , . . . } .

Let A\ — {[xi,x2]}, It = IG'(Ai). There is a positive integer n3 such that
[(xux2), (*"3)] n /, < Ai, and hence A ^ J C , , ^ ) , <x"3)] = Ai x A2 for some
(finitely generated) subgroup A2. Let /2 = Ia(A\ X A2) and choose n4 > 0 with

A 3 for some subgroup A 3. Continue in this manner and set X = (xl,x2,x^,x^4,...).

Clearly, G'IG(X) = G;and so IG(X) = G, since G is nilpotent. By the choice of the
«i, X' is free abelian, as therefore is G' (since X is isomorphic to G).

Now let Y = X'XP for some fixed prime p, and note that X is isomorphic to
Y since /x(^) = X, so that in particular Y/Y' is torsion-free. Let a, b € X; then
[a, b]"2 = [a",bP]e Y', and so [a, b]-£ Y' and we deduce that X' = Y'. But Y is
generated by elements [up, up] , where M, u e X (again using that fact that G is nil-2),
and since [up, vp] — [u, v]p2 we see that Y < (X')p2, which is a proper subgroup of
X' since X' is free abelian. This contradiction completes the proof of Lemma 1. •

COROLLARY 1. Let G be a group that satisfies the hypotheses of Proposition 1.

Then G/ G' is periodic.

PROOF. Suppose the result false and let / = 7G(G'); then G/I is torsion-free and
nontrivial, and clearly G is countable. By [8, Theorem 1.1], G is not soluble and so
/ is non-nilpotent and hence isomorphic to G. Now let J = IG(I')', then J = / / ( / ' )
and so I /J is isomorphic to G/I. Furthermore, G/J is torsion-free and non-abelian,
and J is insoluble. Choose x,y € G such that [x,y] £ J and let K = J{x,y).

Then K/J is torsion-free nilpotent but not abelian, and it follows that G itself has
a torsion-free nilpotent image of class exactly two, so that if N = IG(Y3(G)) then
G/N has class exactly two. Let H be an arbitrary subgroup of G that contains N
and satisfies IG(H) = G.\i6 is an isomorphism from G to H then, since IH(Y3(H))

is also TV, we have that NO = N and hence that G/N is isomorphic to H/N. But
now G/N is a group that satisfies the hypotheses of Lemma 1, and we obtain the
contradiction that G/N is abelian. D
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The next result states a little more than is necessary for the proof of Proposition 1
but will be required in its more general form later.

LEMMA 2. Let G be a locally nilpotent group, N a normal torsion-free subgroup
of G, and suppose that N/M is periodic for every nontrivial G-invariant subgroup
MofN. Then N is central in G (and hence of rank one).

PROOF. First we show that N is abelian. Assuming this to be false, choose non-
commuting elements a,b of N and set c = [a, b]. Then IN((c)G) = N and so there
is a finitely generated subgroup F of G with a,b e F and am, b" e (c)F for some
positive integers m and n. Write U = (a, b)F, V = (c)F; then U is generated by
conjugates of a and b in F and so the isolator of V in U is U and hence U/ V is
periodic. Since V < [ / 'we therefore have U/ U' periodic and hence U periodic,
since it is nilpotent. But N is torsion-free and so we obtain the contradiction that U
is trivial, and it follows that N is abelian.

Assume now that N is not contained in Z(G) and choose g € G that does not
centralize N. Let a this time be some element of N with [a, g] nontrivial, and set
b = [a, g]. Since N/(b)G is periodic we have am e (b)F for some finitely generated
subgroup F of G and positive integer m. Let £/ = (am, g, F), a finitely generated and
hence nilpotent subgroup of G, and let A = {am)H, which is abelian and normal in H.
Since N is abelian and {g)-invariant, we see that bm = [a, g]m = [am, g] e [A, H].
So, for every h € H, (bm)h is contained in [A, H], and thus (bm)F < [A, H], which
in turn gives a1"2 e {bm)F < [A, H] and hence (a1"2)" < [A, H]. It follows that
A/[A, H] is periodic and hence that A/[A,,H] is periodic for each positive integer
i. But H is nilpotent and we deduce that A is periodic and hence trivial, giving the
contradiction that b = 1. This concludes the proof of the lemma. •

PROOF OF PROPOSITION 1. (i) Let g be a nontrivial element of G. Certainly [g] n
(g2) = 0, and so we may apply [2, Lemma 2] to obtain a subgroup H of G such that
(g2) < H, g £ H and IC(H) = G. Since H is not nilpotent we have G isomorphic
to (//, g). Let K be a subgroup of (H, g) that is maximal with respect to containing
H but not g; clearly K is a maximal subgroup of index 2 in (H, g), and (i) follows.

(ii) Let K denote the Fitting subgroup of G and suppose that K ^ G. Since K is of
course a Fitting group it is not isomorphic to G and is therefore nilpotent. It follows
that K is the unique maximal normal nilpotent subgroup of G, and since the isolator
of K is also nilpotent we have G/K torsion-free and non-trivial. By [8, Theorem 1.1]
G is not soluble, and we may apply Lemma 3 to obtain a nontrivial normal subgroup
MlK of G/K with G/M not periodic. Replacing M by its isolator (if necessary)
we may assume that G/M is torsion-free. Let x € G\M and consider the subgroup
H = M(x); we see that H is isomorphic to G and that H/M is infinite cyclic, and
Corollary 1 gives a contradiction. Thus (ii) is established.
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(iii) If the hypercentre of G is not Z(G) then we may choose an element x of
Z2(G)\Z(G) and consider the map G -*• Z(G) given by g -> [g,x] for all g e G.
This is a homomorphism with nontrivial torsion-free abelian image, and Corollary 1
gives us another contradiction. •

Our next requirement is as follows.

PROPOSITION 2. Let G be a torsion-free locally nilpotent group that is isomorphic
to each of its non-nilpotent subgroups and let H be a non-nilpotent subgroup of G.
Then IG(H) = G.

PROOF. Assuming the result false, there exists a non-nilpotent subgroup H of G
and a nontrivial element g of G with H D (g) = 1; clearly we may assume that
G = (//, g). Let N = (g)G, which is nilpotent by Proposition 1 (ii), and note that
G = HN. Let L be an //-invariant subgroup of A' maximal with respect to containing
N n H and intersecting (g) trivially. Also, let / be maximal such that Z, = Zj(N)
is contained in L, so that Z> < L but Z,+1 <£ L. There is a positive integer n such
that g" € LZi+l; if gk e HL for some k > 0 then gk e H L fl N = L(H n N) = L,
and we have a contradiction. Thus (g) D HL = 1. Since g" e LZi+l we have
[L, {g")] < [L, LZi+l] < LZt = L. Thus L < (L, g") and L < J = (H, L, gn)\
however, (gn) (1 HL = 1. We shall prove that HL is normal in 7 - it will follow
that J = (HL) x (g") and 7 is isomorphic to G, contradicting the fact that G/G' is
periodic (Corollary 1).

We know from the definition of L that every //-invariant subgroup M of {g")HL
that properly contains L also contains a non-zero power of g. Thus (g")HL/M
is periodic for all such M. Certainly, therefore, every /-invariant subgroup M of
(g")HL that properly contains L has this property. Since (g) n L is trivial, (g")HL/L
is not periodic, so its torsion subgroup is trivial (else we may choose M/L to be
its torsion subgroup in the above). Now {g")HL = (g")JL, which is normal in J.
So the normal torsion-free subgroup (g")JL/L of J/L has the property described in
Lemma 3, and it follows that (g")JL/L is central in J/L and hence, in particular, that
HL is normalized by (gn) and therefore normal in J. As we have seen, this establishes
the result. •

We know from Proposition 1 that a group G that satisfies the hypotheses of our
theorem is a Fitting group. The next result shows that if G is not nilpotent then it is
not generated by normal nilpotent subgroups of bounded class (the requirement that
G have trivial centre being a minor restriction, as we shall see).

PROPOSITION 3. Let G be a torsion-free locally nilpotent group that is isomorphic
to each of its non-nilpotent subgroups, and suppose that the centre of G is trivial. Let
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c be an arbitrary positive integer and let Nc be the subgroup generated by all normal
subgroups ofG that are nilpotent of class at most c. Then Nc is nilpotent and, ifH is a
non-nilpotent subgroup ofG and<p is an isomorphism from G to H, then <p(Nc) < Nc.
Furthermore, if Sc denotes the isolator of Nc in G then G/Sc is torsion-free locally
nilpotent and isomorphic to each of its non-nilpotent subgroups.

The main step in the proof of this result is provided by the following.

LEMMA 3. The result of Proposition 3 holds in the case c = 1.

PROOF. Let G be as given in the statement of the proposition and write N = Nu

S = I (N), where all isolators here are isolators in G. Suppose we have shown that N
is nilpotent, so that S is also nilpotent (and certainly G/S is torsion-free). Let H and
cp be as stated and let A be a normal abelian subgroup of G. Then (p(A) is a normal
abelian subgroup of H and I(<p(A)) is abelian and normal in / ( / / ) , which equals G
by Proposition 2. It follows that /(<p(A)) < N and hence <p(A) < N, and since A
was arbitrary we have (p(N) < N. Next, if H/S is a non-nilpotent subgroup of G/S
then there is an isomorphism 9 from G to H, and by the above 9(N) is contained in
N. Also, if A is a normal abelian subgroup-of G then A is normal in H and hence
contained in 6(N); it follows that 9(N) = N, and it is easy to see that 9(S) = S.
Thus 9 induces an isomorphism from G/S to H/S, and we are done.

It remains to show that N is nilpotent, and we assume for a contradiction that this
is not the case, so that N is isomorphic to G and hence N equals G. Now G/ G'
is periodic, by Corollary 1, and as in the proof of Proposition 1 (iii) it follows that,
for every torsion-free image K of G, the centre of K is its hypercentre. We write
G = (A, : A, is abelian, normal and isolated in G), where i runs through some index
set J. Choose a nontrivial element x of G.

We proceed to construct a sequence B{, B2, •.. of subgroups from among the A,
such that, for each positive integer n, the following properties hold.

(i) x i Z(G//(Bi • • • Bn)) (that is, x is not central modulo I(BX • • • Bn)).
(ii) the nilpotency class cn of B, • •• Bn exceeds that of Bx • • • Bn_x (interpreted as

0 in the case n = 1).

Suppose first that x e Z(G//(A,)) for all i e Jandletg e G. Thtn[x,g] € /(A,)
and hence [JC, g] centralizes A, for all i, so that [x, g] € Z{G) =• 1 and x € Z(G),
a contradiction. Thus we may choose B\, so that (i) and (ii) hold. Now assume
that, for some n, we have found subgroups Bu ... , Bn among the A, so that (i)
and (ii) hold, and write Gx = (Aj : x e ZiG/l^Bx • • • BnAj))), G2 = (A; : x i
Z(G//(B, • • • BnAj))). Then Gx and G2 are both normal in G, and G = d G 2 , so
at least one of G\ and G2 is non-nilpotent and hence G = /(GO or G = /(G2), by
Proposition 2. Write L = I (Bt • • • Bn) and let g e G. Then [x, g] centralizes Gx mod
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L and so, if G = / (GO, we see that [x, g] e Z(G/L), which gives x e Z2{G/L)
(that is, [JC, G, G] < L) and hence x e Z(G/L), contradicting (i). Hence G = 1(G2).
With the obvious notation, write G2 = (Aj : j e J*). If Bx • • • BnAj has nilpotency
class cn (see (ii) above) for all j e J* then we choose a nontrivial element y of
Ycn(,B\ ••• &n) a r |d n o t e t n a t y centralizes each such Aj and hence centralizes G2, and
we obtain the contradiction y € Z(G). Thus there exists j e J* such that the class
cn+i of Si • • • BnAj is greater than cn, and we set Bn+X = Aj. The existence of our
(infinite) sequence BUB2,... is thus established by induction.

Now let B = (B,•. : i = 1, 2 , . . . ) . By (ii) above B is not nilpotent and so / (B) = G,
which implies that xk e Bx • • • Bn for some positive integers k and n, and hence that
JC 6 / (B[ • • • Bn), a contradiction that completes the proof of the lemma. •

PROOF OF PROPOSITION 3. We show that Nc is nilpotent for each c e N; the re-
mainder of the statement of the proposition follows just as for the case where c = 1
(in the proof of Lemma 4). Assuming the result false, let c be least such that Nc is
not nilpotent, so c > 1 by Lemma 4 and /Vc_i is nilpotent, and G/5c_i is torsion-free
and isomorphic to each of its non-nilpotent subgroups. Let M/5C_| be the centre of
G/Sc_i. Then G/M is also torsion-free and isomorphic to each of its non-nilpotent
subgroups, since for every non-nilpotent subgroup H/M of G/M we have / (H) = G
(by Proposition 2), and hence A//5c_i = Z(H/Sc^i), so that M is invariant under any
isomorphism from G to H (since 5C_] is thus invariant). If K is an arbitrary normal
nilpotent subgroup of G of class at most^c then K' < Nc_i < M, and it follows that Nc

is generated modulo M by normal abelian subgroups of G. Applying Lemma 4 (and
part (iii) of Proposition 1) to the group G/M we deduce that NCM/M is nilpotent.
But M is soluble and therefore so is Afo and [8, Theorem 1.1] gives the contradiction
that Nc is nilpotent. Thus Proposition 3 is proved. •

3. Proof of Theorem 2

Suppose that G is a torsion-free locally nilpotent group isomorphic to each of
its non-nilpotent subgroups and, for a contradiction, that G is not nilpotent. Let
Z = Z(G) and note that if H/Z is a non-nilpotent subgroup of G/Z, then 1G(H) = G
by Proposition 2 and so Z = Z(H). It follows that G/Z satisfies the hypotheses of
the theorem and so, by Proposition 1 (iii), we may factor by Z and hence assume that
G has trivial centre. For each positive integer k, let Nk = (A : A < G and A is nilpotent
of class at most k). If Nk < G2 for all k then, since G is a Fitting group (Proposition 1
(ii)), G = G2, contradicting Proposition 1 (i). Thus there exists an integer m such
that Nm ^ G2. Write Sm = IG(Nm); then, by Proposition 3, Sm is nilpotent and G/Sm

is torsion-free and isomorphic to each of its non-nilpotent subgroups. By Corollary 1
we may write G/G2 = G2Sm/G2 x B/G2, where B/G2 is nontrivial.
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We construct, inductively, a sequence [bu b2, •..} of elements of B such that, for
each positive integer n, [b\,... ,bn] ^ 1 and bu ... ,bn are linearly independent
mod G2. Choose a nontrivial element bx of B. Suppose that [bu ... ,bn] ^ 1,
where bu ... , bn are linearly independent mod G2, and let D = (bu . . . , bn)

G. By
Proposition 1 (ii) D is nilpotent and therefore contained in Nc for some integer c.
Assuming as we may that c >m, and writing / = IC(NC), we note from Proposition 3
that G/I is torsion-free non-nilpotent and isomorphic to each of its non-nilpotent
subgroups. By Corollary 1 we have G2/ < G and hence G2(B D /) < B (else
B < G2I and G = G2/, a contradiction). Thus B/G2 = G2(B n I)/G2 x C/G2 for
some C not contained in G2. If C is nilpotent then so is its isolator G, a contradiction,
and it follows that C is isomorphic to G. Now if [blt... ,bn,c] = 1 for all c e C\G2

then, [bu ... , bn] € Z(G) = 1, since C is generated by all such c and IG(C) = G.
By this contradiction there exists bn+l e C\G2 with [b{,... ,bn+l] ^ 1, and since
b\,... , bn+\ are linearly independent mod G2 the claim is established.

Now write H = {bn : n e M); then H is non-nilpotent and so there is an isomor-
phism <p from G to H. By Proposition 3, <p(Nm) < Nm and hence <p(Nm) < Sm(~)B <
G2, so <p(Nm) < G2DH. For each a 6 <p(Nm) we have aH2 = b°'• • • ba

n'H
2 for

some n, where each a, = 0 or 1, and since <p(Nm) < G2 it follows that aH2 c G2

and hence that each a, = 0, so that a € H2^nd <p(Nm) < H2. Thus Nm < G2, a
contradiction that completes the proof of the theorem. •
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