Cin Resistive Kink Instabilities Drive Simple Loop Flares?

M.Velli ${ }^{1}$, G Emaudi ${ }^{2}$, andA .W.Hood ${ }^{1}$
1 Deparment of Mathematics, The University Sl.Andrews, KY169SS, Fife, Scolland
2 Istituto di Astronomia, Universita' di Firenze, Italy

Summary.

A delailed analysis of the kink instability in finite lenglh (inertially line-tied), cylindrically symmetric coronal loops is presented. The correct line-tying boundary conditions within the framework of ideal and resistive magnetohydrodynamics are discussed, and the growthrates of unstable modes and corresponding cigenfunctions are calculated. Resistive kink modes are found to be unstible in configurations where the axial magnetic field undergoes an inversion, resistive effects being confined to a small region around the loop vertex.

1. Equilibrium and Linearized Equations.

We model coronal loops as axially symmerric, finite length, plasma columns, neglecting the toroidal curvature (which introduces stabilising effects that are second order in the inverse of the loop aspect ratio). Introducing cylindrical coordinates and unit vectors $\mathrm{e}_{r}, \mathrm{e}_{\theta}, \mathrm{e}_{2}$, the magnetic field may be written as

$$
\begin{equation*}
\mathbf{B}=B_{\theta}(r) \mathbf{e}_{\theta}+B_{z}(r) \mathbf{e}_{z}, \tag{1}
\end{equation*}
$$

and satisfies the static MHID equilibrium condition

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(p+\frac{B^{2}}{8 \pi}\right)=-\frac{B_{\theta}^{2}}{4 \pi r} . \tag{2}
\end{equation*}
$$

A fairly realistic family of equilibrium models is that proposed by Chiuderi et al. (1930), in which a forcefree system of currents is comtinuously matched to an external polential field. The radial structure of the current density j may be described by

$$
\begin{equation*}
\mathbf{j}=\alpha(r) \frac{c B}{4 \pi} \tag{3}
\end{equation*}
$$

where $\alpha(r)$ 'ses the form

$$
\alpha(r)= \begin{cases}\alpha_{0} & \text { if } r \leq r_{0} ; \tag{4}\\ \frac{\alpha_{0}}{2}\left(1+\cos \frac{\pi}{\delta}\left(r-r_{0}\right)\right) & \text { if } r_{0}<r \leq r_{0}+\delta ; \\ 0 & \text { if } r_{0}+\delta<r ;\end{cases}
$$

so that the transition from a foree-free to potential configuration is continuous, and no surface currents are present at the boundaries. The photosphere is located at $z=-L$ and $z=L$, a natural measure of the loop lengil being $l=2 \alpha_{0} L$. Two limiting example cases that we will discus: in detail are shown in figure 1 . The nomalized radius of the current channel is $\alpha_{0}\left(r_{0}+\delta\right)=a=5$; for ccaulibrium (a) $\alpha_{0} r_{0}=0.1, \alpha_{0} \delta=4.9$, for cquilibrium (b) $\alpha_{0} r_{0}=2.0, \alpha_{0} \delta=3.0$. In case (a), there is no inversion in the axial component of the magnetic field, which becomes a very small constant outside the current channcl. Linearizing about the static equilibrium, and introducing unit vectors $\mathbf{e}_{\|}=\mathbf{B} / B$ and $\mathbf{e}_{\perp}=\left(B_{z} \mathbf{e}_{\theta}-B_{8} \mathfrak{e}_{z}\right) / B$ and small perturbations of the form $\tilde{\xi}(\mathbf{r}, t)=$ $\bar{\xi}(\mathbf{r}) \operatorname{cxp}(\gamma t)$, the linearized MHD equations become, in terms of the components $\tilde{\xi}=\bar{\xi} \cdot \mathbf{c}_{r}, \bar{\xi}_{\perp}=\bar{\xi} \cdot \mathbf{c}_{\perp}, \bar{\xi} \bar{\xi}_{\|}=\bar{\xi} \cdot \mathbf{e}_{\|}$, $\bar{B}_{r}, \bar{B}_{0}, \bar{B}_{z}$,

$$
\begin{equation*}
4 \pi \rho \gamma^{2} \bar{\xi}=\frac{\partial}{\partial r}\left(4 \pi \frac{\partial p}{\partial r} \bar{\xi}+4 \pi \gamma_{s} \mu \nabla \cdot \bar{\xi}-B_{0} \tilde{B}_{\theta}-B_{z} \bar{B}_{z}\right)+\mathbf{B} \cdot \nabla \bar{B}_{r}-\frac{2 B_{0} \bar{B}_{0}}{r}, \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& 4 \pi \rho \gamma^{2} \tilde{\xi}_{\|}=\mathbf{e}_{\|} \nabla\left(4 \pi \frac{\partial p}{\partial r} \tilde{\xi}+4 \pi \gamma_{s} \mu \nabla \cdot \tilde{\xi}\right)+\left(\mathbf{e}_{\|} \cdot \frac{\partial \mathrm{B}}{\partial r}+\frac{B_{\theta}^{2}}{r B}\right) \tilde{B}_{\tau}, \tag{7}\\
& \dot{B}_{r}=\beta \nabla \tilde{\xi}+\frac{\eta c^{2}}{4 \pi \gamma}\left(\nabla^{2} \tilde{B}_{r}-\frac{2}{r^{2}} \frac{\partial \bar{B}_{\partial}}{\partial \theta}-\frac{\tilde{B}_{i}}{r^{2}}\right), \tag{8}\\
& \bar{B}_{\theta}=\frac{\partial\left(B \tilde{\xi}_{1}\right)}{\partial z}-\frac{\partial\left(B_{0} \dot{\xi}\right)}{\partial r}+\frac{\eta C^{2}}{4 \pi \gamma}\left(\nabla^{2} \bar{B}_{\theta}+\frac{2}{r^{2}} \frac{\partial}{\partial \theta} \bar{B}_{r}-\frac{\bar{B}_{\theta}}{r^{2}}\right), \tag{9}\\
& \tilde{B}_{4}=-\frac{\partial\left(B \tilde{\xi}_{L}\right)}{\partial \theta}-\frac{1}{r} \frac{\partial}{\partial r}\left(B_{z} r \tilde{\xi}\right)+\frac{\eta c^{2}}{4 \pi \gamma} \nabla^{2} \tilde{B}_{z},
\end{align*}
$$

where γ_{s} is the tation of the specitic heats. In the following, only incompressible modes will be considered. In thes casc 4 थr $\gamma, 7 \nabla \bar{\xi}=\bar{\zeta}$ is decermined by the additional condition $\nabla \cdot \tilde{\xi}=0$.
2. Boundary Conditions.

In pevious work on the line-tying eflect, to sets of boundary conditions have most commonly been used the Ilow- llangigh troundary conditions

$$
\begin{gather*}
\tilde{\xi}(L)=\bar{\xi}(-L)=0, \\
\bar{\xi}^{(L)}=\tilde{\xi}_{\perp}(-L)=0, \\
\tilde{\xi}_{\|}(L)=\bar{\xi}_{\| \mid}(-L), \frac{\partial \bar{\xi}_{z}}{\partial z}(L)=\frac{\partial \tilde{\xi}_{z}}{\partial z}(-L), \tag{11}
\end{gather*}
$$

which are compatible will considering incompressible perlurbations, and the rigid wall bouadary conditions, according to which the parallel componem of the perturbed displacement must vanish as well. Allhough the How through boundary conditions have been the subject of some criticism (Low, 1985, Cargill et al., 1986), because they require a strong correlation of what should be arbitrary perturbations across the large distances separting the pairs of foopoints, they give the same results for stability in the case of foree-free fields, and result ia a noriceable mathematical simplification, so we will use them in the following.

The atove boundary conditions are strictly valid only within the framework of ideal MHD, arising from the comdition that the jump of the perturbed electric field across the boupdary must vanish (which in gencral, gives tise to a surface currem flowing along the boundary). When resistivity is taken into accoum, the jump in the pentubed magnetic field muse vanish as well. However the ideal boundary conditions may still be applied if the distance the surface cumem diffuses over the time-scale of the instability is much smaller than the loop length scale, a comdition which is always satistied provided the resistive instability grows faster than ordinary diffusion. Hence, we may use (11) for studying both the ideal and resistive situations.

3. Eigenvalue Equations

To ohain an eigenvalue equation from (5)-(10), we expand $\tilde{\xi}_{,} \tilde{\xi}_{\perp}$ and $\tilde{\xi}_{\| \|}$in a general Fourier series:

$$
\begin{align*}
& \bar{\xi}=\operatorname{Re} \sum_{n=\infty}^{\infty} \sum_{m=-\infty}^{\infty} \xi_{n m}(r) \exp [i(m \theta+n \pi(z / L+1))], \tag{12}\\
& \left.\bar{\xi}_{-}=\operatorname{Re} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \zeta_{m n}(r) \operatorname{expli}(m \theta+n \pi(z / L+1))+i \pi / 2\right] \tag{13}\\
& \bar{\xi}_{\|}=\operatorname{Re} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \eta_{i, i \alpha}(r) \exp [i(m \theta+n \pi(z / L+1)+i \pi / 2] \tag{14}
\end{align*}
$$

where n, mare integers. Boundary conditions (11) imply that the Fourier coefficiens have to satisly the constraints

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \xi_{r a n}(r)=0, \quad \sum_{n=-\infty}^{\infty} \zeta_{\operatorname{man}}(r)=0 \tag{1.5}
\end{equation*}
$$

for all m. Since the boundary constraints (15) are 0 -invariant, and therefore do not cause coupling of the harmonics in the angular coordinate, we may restrict consideration to the $m=1$ kink mode. We then multiply the equations of motion by the phase factor expl-i(0+nm(z/l+1)] and integrate in θ and z. Alhough the displacement is a periodic function in the axial direction, the line-tying boundary conditions exclude peridicity of its derivatives, so that on integration by parts unknown surface terms arise through which (15) may be applied (details may be found in Velli, Einaudi and Hood, 1988). An infinite set of coupled differential equations in the components ξ_{n} (along the radial directon) is obtancd, which when truncated to N hamonics takes the form (for simplicity we write the ideal MHD equations only, the resistive equations maty be found in the above paper; a prime denotes differentiation with respect to r):

$$
\begin{align*}
& \left(\left(\frac{f_{n}^{2}+4 \pi \rho \gamma^{2}}{F_{n}^{2} r}\right)\left(r \xi_{n}\right)^{\prime}\right)^{\prime}-\left(f_{n}^{2}+4 \pi \rho \gamma^{2}\right) \xi_{n}-\left(\frac{B_{\theta}^{2}}{r^{2}}+\frac{2 B_{\theta}}{r} \frac{g_{n} k_{n}}{P_{n}^{2}}\right)^{\prime} r \xi_{n}+ \\
& +\frac{4 B_{\theta}^{2} l_{n}^{2}}{r^{2} F_{n}^{2}\left(1+\frac{4 \pi \rho \gamma^{2}}{f_{n}^{2}}\right)} \xi_{n}+B_{z}^{2} \lambda_{r}-\left(\frac{B g_{n}}{F_{n}^{2}} \lambda_{\perp}\right)^{\prime} \quad \frac{2 B B_{0} k_{n}}{r \frac{r_{n}^{\prime 2}}{n}\left(1+\frac{4 \pi r^{2}}{f_{n}^{2}}\right)} \lambda_{\perp}=0 \tag{16}
\end{align*}
$$

for each n,

$$
\begin{equation*}
\lambda_{\perp}=-\frac{\sum_{n}^{N}\left(\frac{q_{n}}{B r r_{n}^{2}}\left(r \xi_{n}\right)^{\prime}+\frac{2 B_{3} k_{n}}{B r r_{n}^{2}\left(1+\frac{1 \eta_{2}^{2}}{l_{n}^{2}}\right)} \xi_{n}\right)}{\sum_{n}^{N} \frac{1}{F_{n}^{2}\left(1+\frac{1+n_{n}^{2} n^{2}}{l_{n}^{2}}\right)}} \tag{17}
\end{equation*}
$$

f_{n}, g_{n} are defined from the usual cylindrical pinch analysis $\left(k_{n}=n \pi / L\right)$ as

$$
\begin{equation*}
f_{n}=\frac{m}{r} B_{\theta}+k_{n} B_{2}, \quad g_{n}=\frac{m}{r} B_{z}-k_{n} B_{\theta} . \tag{18}
\end{equation*}
$$

and $P_{n}^{2}=\frac{m^{2}}{r^{2}}+k_{n}^{2}$ is the square of the total wave-vector. To solve, we climinate $\xi_{N}=-\sum_{n}^{N} \xi_{n}$ and λ_{r} by subtracting the $\mathrm{N}^{\text {th }}$ equation from the remaining $\mathrm{N}-1$. We then select a central wavenumber k_{0}, corresponding to the fastest growing mode in the infinite pinch, and add sidebands until the solution has suffieiently converged. In practice, 5 modes are sufficient (convergence with increasing N is guaranteed by the properties of the kink mode in the infinite pinch,ie., that wavenumbers not in a range $0<|k|<k_{c}$ are stable).

4. Results and Conclusion

In Figure 2 we show the growth rate of ideal kink modes as a function of inverse loop Iengh for equilibria (a) and (b) described above. The growth rates (which are normalized to the lypical Alfven time $\tau_{u}=4 \pi \rho /\left(\alpha_{0}^{2} B_{0}^{2}\right)$), depends very sensitively on the length of the loop, and once the critical lengthis exceeded grows rapidly to $\gamma \tau_{a} \simeq 10^{-2}$. In Figure $3((a)$ and $(\mathrm{b}))$ the corresponditit radial components of the marginal eigenfunctions are plotted as a function of r and 2 . Alhough the coupled eguations are no longer singular, we find that in case (b), the perturbed magnetic field vanishes along a ring of vonstant radius r_{c} at the loop vertex ($\%=0$). In this region resistive effects are important, and we lind that, ai marginal stability, a resistive kink mode with a scaling $\gamma \tau_{a} \sim\left(\tau_{a} / \tau_{r}\right)^{\alpha}$ where $\alpha \simeq 1 / 3$ is exciled. Equilibria of type (b) are also unstable to $m=0$) learing modes, and do not appear to be a realistic model for quasi-static coronal loops. However our results indicate that the interaction of loops could play an important role in the initation of flares, by providing a region where the field component comnecting to the photosphere undergoes an inversion. Results from a more detailed analysis will be presented elsevihere.

References

Cargill,P. J. , Hood,A. W. and Migliuolo,S. : 1986, Astrophys. J. 309, 402.

Chandor,C. , Eimandi,G. , MA,S.S. and Van lloven,G. : 1980, J. Pasma Phys: 2.4,
I.ow, I3. C. : 1985, Solar Phys. 100, 309.

Velli,M., Limandi, (i. and IIoorl,A. W. : 1988, Astrophys. J. , , submitted

1 Huare 3. Radaid profiles of the pertarbed displutsHutat tor various bitlurs uf 2 . (1) $x=(1.0$

