dicular from P to the line

$$
\begin{aligned}
2 \triangle & =A B \cdot P N \\
& = \pm \frac{c}{a b} \sqrt{a^{2}+b^{2}} \cdot P N .
\end{aligned}
$$

Equating these two expressions for 2Δ we have at once

$$
P N= \pm \frac{a x_{1}+b y_{1}+c}{\sqrt{\left(a^{2}+b^{2}\right)}} .
$$

(ii) The special case in which the straight line passes through the origin (when A and B coincide with O, and $\Delta=0$) may obviously be regarded as the limiting case of (i) for $c \rightarrow 0$.

Or, if it is desired to avoid the limit-conception, we have only to note that the perpendicular from P to $a x+b y=0$ is equal to the perpendicular form O to the parallel through P, namely

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)=0,
$$

and that, by (i), the length of that perpendicular is

$$
\pm \frac{a\left(0-x_{1}\right)+b\left(0-y_{1}\right)}{\sqrt{ }\left(a^{2}+b^{2}\right)}= \pm \frac{a x_{1}+b y_{1}}{\sqrt{ }\left(a^{3}+b^{2}\right)} .
$$

(iii) The reader may be interested to refer to a method of finding the length of the perpendicular by projections, given by Prof. R. J. T. Bell in Mathematical Notes, No. 18 (May 1915), pp. 206-207.

J. M•WHAN.

Formulae for the Construction of Right-Angled Triangles.

Use the formulae

$$
\begin{array}{ll}
& {[a(a+2 b)]^{2}+\left[2 b(a+b)^{2}\right]^{2}} \\
\text { or } & {\left[2 b(a+b)+a^{2}\right]^{2}} \tag{ii}\\
\text { or } & {[2 a(a+b)]^{2}+[b(2 a+b)]^{2}=\left[b(2 a+b)+2 a^{2}\right]^{2} .}
\end{array}
$$

In these a and b need not be integers, and may be positive or negative.

The formulae develop into two systems of sets of triangles.

For the first system the triangles are

$$
\begin{align*}
& {[\overline{2 N-1} \cdot(2 n-\overline{2 N-1})],[2 n(n-\overline{2 N-1})],} \\
& {\left[2 n(n-\overline{2 N-1})+(2 N-1)^{2}\right],} \tag{iii}
\end{align*}
$$

where N is the ordinal number of the set of triangles in question, and n is any number, not necessarily an integer and not necessarily positive.

For formula (i), $a=2 N-1$, an odd integer; $b=n-(2 N-1)$.
For formula (ii), $a=(2 N-1) / \sqrt{2,} b=\sqrt{2}(n-\overline{2 N-1})$.
For the second system the triangles are

$$
\begin{align*}
{[2 N(2 n-\overline{N-1})], } & {[4 n(n-\overline{N-1})-\overline{2 N-1}] } \\
& {[4 n(n-\overline{N-1})+2 N(N-1)+1] . } \tag{iv}
\end{align*}
$$

For formula (i), $a=\sqrt{2} N, b=\{2(n-N)+1\} / \sqrt{2}$.
For formula (ii), $a=N$, an integer ; $b=2(n-N)+1$.
Alpred Danirll.

Note on Isogonal Conjugates.

If T, U are any pair of isogonal conjugates with respect to a triangle $A B C$ (circumcentre O, orthocentre H), then

$$
O U=(T H / T \Phi) . \text { (circumradius) } ;
$$

where Φ is the fourth point of intersection of the circumcircle with the rectangular hyperbola $A B C H T$ (whose centre Ω is the middle point of $H \Phi$).

It has been established by the method of isogonal transforma tion that if T is any point on a fixed rectangular hyperbola $A B C H \Phi$, then the point U (the isogonal conjugate of T) always lies on a fixed circumdiameter EOF.

Now $A T, A U$ are equally inclined to the bisector of the angle A; hence the cross ratio of the pencil formed by joining A to any four positions of T is equal to the cross ratio of the four corresponding positions of U on $E O F$.

