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Abstract. For p > 2 we introduce the notion of an almost p-structure on vector-
bundles which generalizes the notion of an almost-complex structure and investigate
the existence of almost p-structures on spheres and complex projective spaces.
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0. Introduction. In this note we generalize the notion of an almost-complex
structure on a real vector-bundle; i.e. a fibrewise linear map J on a vector-bundle &
such that J>=—1. For p > 2 we consider a fibrewise linear map J on & such that
J? =(—1)y~!. For p =2 this gives an almost-complex structure, but for p > 2 this does
not suffice. Let a, = R[x]/(x" — (—1)~Y). This turns the fibre &, into an ap,-module.
Since a, is not a field it does not automatically follow that &, = aﬁ for some k € Z*.
We insert one more condition which guarantees this. We call such maps J almost

p-structures. We then study the structure of a, as an algebra and prove that

CopCo---oC (5 —factorsC) ifpiseven

" rocs. . @C (3! — factors C) if p is odd.

It follows from this that a vector-bundle of dimension » admits an almost p-structure
iff n=~kp for some k € Z* and splits into a direct-sum of § complex vector-bundles
of dimension k if p is even and into a direct-sum of a real vector-bundle and (‘%1)—
complex vector bundles of dimension k if p is odd. Using this criterion we solve
completely the existence problem of almost p-structures on spheres and complex
projective spaces. The only non-trivial almost p-structures on spheres (i.e. on non-
parallelisable ones) is an almost 3-structure on S'° in addition to the almost-complex
structures on S? and S°®. The only almost p-structures that exist on complex projective
spaces is an almost 3-structure on P3(C) in addition to the almost-complex structures
that exist on all complex projective spaces. For this we rely heavily on [1].

1. Almost p-structures. For p > 2 let J be a fibrewise linear map on a vector-
bundle & over a topological space X such that J? = (—1)"~!.

DEFINITION 1.1. Let a,=R[x]/(x’ — (—=1)’""). Then a,={1,x,...,x""1/x" =
(—=1y~'}. The fibre &, is an a,-module, the module structure is given by x'v =J/(v),
ve&(0=<i<p-1.

DEeFINITION 1.2. For v € &, define E(v) to be the subspace generated by v, J(v), . ..,
JP(v).
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DEerFINITION 1.3. We call v € & a cyclic vector iff dim E(v)=p, ie. iff v,
J(v), ..., JP~(v) are linearly-independent. For v € &, a cyclic-vector, E(v) =a,. For
p =2 every non-zero vector is a cyclic vector.

DEFINITION 1.4. A fibrewise linear map J on a vector-bundle & is called an almost
p-structure on & iff

(i) J? = (—1)?~! and (ii) For every J-invariant proper subspace U of &, there exists
a cyclic vector v ¢ U.

We deduce from (ii) that there exist cyclic vectors vy, . .., v, such that &, = E(v;) ®
E(v)®- - @ E(v)n=kp ie n=0 (mod p) and &, =a;f. For p =2 condition (ii) is
vacuous and condition (i) suffices to define an almost 2-(i.e. almost-complex) structure.

2. Algebraic structure of a,. For p even let ka@n and xkzl%(l—i-

31;11 cos(mBy)(x™ — xP~™))(1 <k <%). Then xj = xi, xxx¢ =0 (k # ¢£) and Zi/zzl X =
1. Thusa, = @if | I where I, is the ideal generated by x;. The homomorphism R[x] —
Ii has kernel (x — e%)(x — e™%) = x? — 2xcos 6 + 1 and this gives an isomorphism of
algebras C = R[x]/(x* — 2xcos6 + 1) > It. Thus q,=CHC & --- @ C(5-factors).

For p odd let ¢k=”€7ﬂ(o <k<ip- 1)).x0=}7(1 +x+-~-+x1”1)xk=1%(l +
320D cosmi) (" + ") (1 < k < 1(p — 1)). Then x2 = x;. xpx = 0(k # ¢) and

m=1

,ipofl) xz=1. Thus a,= @ff&l) I, where I is the ideal generated by x;. The
homomorphism R[x] — I; has kernel (i) (1 —x) for k=0 and (ii) (x — eV*)(x —
e V) =x> — 2xcosyy + 1(1 <k < %(p — 1)). We obtain algebra isomorphisms (i)
R=RI[x]/(1 — )5 and (ii) C= R[x]/(x> — 2xcos Y + 1) > (1 <k < L(p— 1)).
Hence g, =R®Co--- @ (C(%(p — 1) factors C).

3. Almost p-structures on real vector-bundles. Let & be a real vector-bundle of
dimension n over a topological space x with an almost p-structure J. We know from
Section 1 that n =0 (mod p). Let n=kp. For x € X, the fibre £, is an a,-module.
Let x; € a, be the elements defined in Section 2 such that g, is the direct-sum of the
ideals generated by x;. Define &;(x) = {x; - v|v € &}. Then &, = ®;&;(x) and if we define
&= U, ey &i(x), € decomposes into & = @; &;. If p is even E; is a complex vector-bundle
of dimension k for1 <i < 15’ If p is odd Ej is a real vector-bundle and E; is a complex
vector-bundle of dimension k for 1 <i < (’%1). The argument is reversible. Suppose

piseven and & = 69{7 i 21 &; for complex vector-bundles &;. Let J; be the almost-complex
structure on &. Define x; - v=J;(v) for v € &. Then the i"-factor C in the direct-sum
decomposition of a, acts on &; and this defines an action of a, on £. An analogous
argument holds in the case p odd. This leads to

THEOREM 3.1. 4 vector-bundle & of dimension n over a topological space X admits
an almost p-structure iff n = 0 (mod p) i.e. n=kp and

() ifpisevent = @f i 21 & where &; is a complex vector-bundle of dimension k.

(i) if p is odd E =& D 69[%:(‘!;71)5,- where &y is a real vector-bundle and &; is a complex
vector bundle of dimension k. (1 <i < %(p —1)).
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4. Almost p structures on spheres. It is well known that the even spheres which
admit almost-complex structures are S> and S°. We search for almost p-structures on
spheres for p > 2. The only non-trivial almost p-structure that we can find is an almost 3-
structure on S'3. We rely heavily on [1] for machinery and details. Let L; = 2"(™*) be the
2-primary component of the Atiyah-Todd number i.e. v2(Mj) = sup; <, (7 + v2(r)).
We note that almost p-structures on S* exist for all p/k when S¥ is parallelisable i.e.
if k=1, 3,7 and call such almost p-structures trivial. We call an almost p-structure
non-trivial if the sphere in question is not parallelisable.

PROPOSITION 4.1. Let p and k be odd. The only non-trivial almost p-structure on SPF
is an almost 3-structure on S*.

Proof. By Theorem 3.1 (ii), SP* admits an almost p-structure iff the fibration
SO(pk)/ SO x Uk) -+ x U(K) )
1. SO(pk+1)/SO(k) x U(k) x - -- x U(k) SPE admits a

cross-section. Let’s fix one U(k). Since SO(k) and all the other U(k)’s can be imbedded
in this fixed U(k), by using the idea of proof of [2, Theorem 27.16] we deduce that

fibration 1 admits a cross- sectlon iff the fibration

SO(pk)/ U(k)
2. SO(pk + 1)/ U(k) ——— SP*; admits a cross-section. If @ is odd the

existence of a cross-section to fibration 2 implies the existence of a cross-section to
the Stiefel fibration
Vik (p-2k=SO(pk)/SO(2k)

3. Vikst1,p—2k+1 =SO(pk+1)/SO(2k) SPk e, a(p — 2)k-
frame on SP%. Since pk + 1 =2 (mod 4), SP* admits at most a 1-frame and thus
(p — 2)k=1o0rp=3,k=1.Since S* is parallelisable this is the only case when fibration
2 admits a cross-section when 2! is odd.

3
getl 2l 3,4, SP is parallelisable and fibration 2 admits a

<4 is even.

r ”k +1 - 4 and is even we deduce from [I, Proposition 4.3] and the
. . k +

discussion following 1t that fibration 2 admits a cross-section iff L%((p_z)k 4/ (”T).

We observe that L, > 4n for n > 4. To see this, note that Ls =2°% > 4.5 and for
k>6,L,>21 < 4.
For =2kl 4 Lo — (2L 5 g(e=2REly (i iy — Lk(3p — 8) +3)> 0

1.e. Lyt Yest > (”k+l) SO L2kt 2t J((”kH) and thus fibration 2 does not admit a cross-

section. For %ﬁ”“ < 4, we disregard the cases w =2, 4 since l’k; L is odd
in either case. Let @ 22)+1 =1,k=1,p=3,5%=5% is parallelisable. & 22)“ =3,
k(p —2)=35. Either k=1 and p=7 and SP*=5" is parallelisable or p=3, k=35,
@ =8 and L; =8/8 and we obtain an almost 3-structure on S'.

For
cross-section. Fo

LEMMA 4.2. Let p/q. Then the existence of an almost g-structure on a vector-bundle
implies the existence of an almost p-structure.

COROLLARY 4.3. The only almost p-structures on spheres for p even are the almost-
complex structures on S* and S°.

Proof. By Lemma 4.2 if a sphere admits an almost p-structure for p even then
it admits an almost-complex structure and hence the sphere in question is S° or
S®. Apart from the almost-complex structures on these spheres, S® may admit an
almost 6-structure. It follows from the proof of Proposition 4.1 it is equivalent to the
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. . Vea=SO®)/ UML) )
cross-sectioning of the fibration V7 5 =S0O(7)/ U(1) ——  S°; i.e. the existence
of a 4-frame on S® which is impossible.
LEMMA 4.4. An almost p-structure does not exist on SP* for p odd and k even.

Proof. The existence of an almost p-structure implies the existence of a frame on
the even dimensional sphere SPX which is impossible.

We gather Proposition 4.1. Corollary 4.3 and Lemma 4.4. in a single Theorem.

THEOREM 4.5. The only non-trivial almost p-structures that exist on spheres are the
almost 2-(i.e. almost-complex) structures on S* and S® and the almost 3-structure on S'3.

5. Almost p-structures on complex projective spaces.

PROPOSITION 5.1. For p > 2 the only almost p-structure on complex projective spaces
is an almost 3-structure on P3(C).

Proof. Suppose P,_1(C) admits an almost p-structure for p > 2. Then 2(n — 1) =
kp. Let = : "1 — P,_(C) be the projection. Since T(S** ") =" (T(P,—1(C))) @ 1
the fibration
S0@2n)) U(k) x - -+ x U(k) — 82!

p/2

or the fibration

502n)/SOk) x U(k) x --- x U(k) - §~!

()

admits a cross-section depending on whether p is even or odd. By the proof of [2,
Theorem 27.16], in either case the fibration SO(2n)/ U(k) — S*'~! admits a cross-
section and L,_/n by [1, Proposition 4.3] and discussion following it. As in the proof
of Proposition 4.1, L,y >4(n—k)>n for n > k+4 and n > 4. Hence L,_;{n for
n= %lq) +1>k+4ie for 1. (%p — 1)k > 3. This is always satisfied for p > 8. For
p=S, (%p — D)k > 3 unless k=1 in whichcase n=5,n — k=4 and Ls15.

For p=7, 1 is satisfied unless k=1. kp =7 is a contradiction since kp is even.
For p=6, 1 is satisfied unless £ =1 in which case n =4. The existence of an almost 6-
structure on P3(C) means that (7(P3(C)) is the direct-sum of three U(1)-bundles ;. (i =
1,2, 3). T(P3(C))® 1 =4n3 where n3 is the complex Hopf bundle over P3(C). Taking
Pontryagin classes, p(P3(C)) = (1 + y*)* where y € H*(P3; Z) is the generator. Suppose
& has Pontryagin class 1 +m?y?, m; € Z. Equating (1 + y*)* = ]_[?:1(1 + m?y?). Hence
m% + m% + m% =4 which has solution m; =2 and nm, =m3 =0. i.e. & and &; are trivial.
This implies the existence of a frame on P3(C) which is impossible.

For p =5 again we consider k =1 (otherwise 1 is satisfied). We disregard this case
since kp should be even.

Forp=4and k=1,2. Let k=2, n=5, Ly =845. Let k=1,n=3 L, =2¢13. For
p=3sincepkisevenk=2,4.Letk=4,n="7,L3{7k=2,n=4.Lett : P3(C)— P1(Q)
be the projection onto the one dimensional quaternionic projective space. Let J be the
quaternionic structure on C* which anti-commutes with the complex structure. The
assignment x - J(x)(x € S7) defines a unit vector-field on 7'(T(P3(C))) and passes
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to the quotient and generates a line sub-bundle & of 7'(P3(C)) whose orthogonal
complement is 7'(T(P;(Q))). Hence t'(7(P;(Q))) admits an almost-complex structure
and T(P3(C)) = & @ t'(T(P1(Q))) an almost 3-structure. O
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