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Abstract. For p ≥ 2 we introduce the notion of an almost p-structure on vector-
bundles which generalizes the notion of an almost-complex structure and investigate
the existence of almost p-structures on spheres and complex projective spaces.
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0. Introduction. In this note we generalize the notion of an almost-complex
structure on a real vector-bundle; i.e. a fibrewise linear map J on a vector-bundle ξ

such that J2 = −1. For p ≥ 2 we consider a fibrewise linear map J on ξ such that
Jp = (−1)p−1. For p = 2 this gives an almost-complex structure, but for p > 2 this does
not suffice. Let ap = R [x]/(xp − (−1)p−1). This turns the fibre ξx into an ap-module.
Since ap is not a field it does not automatically follow that ξx = ak

p for some k ∈ �+.
We insert one more condition which guarantees this. We call such maps J almost
p-structures. We then study the structure of ap as an algebra and prove that

ap =
{

� ⊕ � ⊕ · · · ⊕ � ( p
2 − factors �) if p is even

� ⊕ � ⊕ · · · ⊕ � ( p−1
2 − factors �) if p is odd.

It follows from this that a vector-bundle of dimension n admits an almost p-structure
iff n = kp for some k ∈ �+ and splits into a direct-sum of p

2 complex vector-bundles
of dimension k if p is even and into a direct-sum of a real vector-bundle and ( p − 1

2 )-
complex vector bundles of dimension k if p is odd. Using this criterion we solve
completely the existence problem of almost p-structures on spheres and complex
projective spaces. The only non-trivial almost p-structures on spheres (i.e. on non-
parallelisable ones) is an almost 3-structure on S15 in addition to the almost-complex
structures on S2 and S6. The only almost p-structures that exist on complex projective
spaces is an almost 3-structure on P3(�) in addition to the almost-complex structures
that exist on all complex projective spaces. For this we rely heavily on [1].

1. Almost p-structures. For p ≥ 2 let J be a fibrewise linear map on a vector-
bundle ξ over a topological space X such that Jp = (−1)p−1.

DEFINITION 1.1. Let ap = R [x]/(xp − (−1)p−1). Then ap = {1, x, . . . , xp−1/xp =
(−1)p−1}. The fibre ξx is an ap-module, the module structure is given by xiv = Ji(v),
v ∈ ξx(0 ≤ i ≤ p − 1).

DEFINITION 1.2. For v ∈ ξx define E(v) to be the subspace generated by v, J(v), . . . ,
Jp−1(v).

https://doi.org/10.1017/S0017089502001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502001106


154 I. DIBAG

DEFINITION 1.3. We call v ∈ ξx a cyclic vector iff dim E(v) = p, i.e. iff v,

J(v), . . . , Jp−1(v) are linearly-independent. For v ∈ ξx a cyclic-vector, E(v) = ap. For
p = 2 every non-zero vector is a cyclic vector.

DEFINITION 1.4. A fibrewise linear map J on a vector-bundle ξ is called an almost
p-structure on ξ iff

(i) Jp = (−1)p−1 and (ii) For every J-invariant proper subspace U of ξx there exists
a cyclic vector v �∈ U .

We deduce from (ii) that there exist cyclic vectors v1, . . . , vk such that ξx = E(v1) ⊕
E(v2) ⊕ · · · ⊕ E(vk) n = kp i.e. n ≡ 0 (mod p) and ξx = ak

p. For p = 2 condition (ii) is
vacuous and condition (i) suffices to define an almost 2-(i.e. almost-complex) structure.

2. Algebraic structure of a p. For p even let θk = (2k − 1)
p π and xk = 2

p (1 +∑ p
2 −1
m=1 cos(mθk)(xm − xp−m))(1 ≤ k ≤ p

2 ). Then x2
k = xk, xkx� = 0 (k �= �) and

∑p/2
k=1 xk =

1. Thus ap = ⊕p/2
k=1 Ik where Ik is the ideal generated by xk. The homomorphism R [x] →

Ik has kernel (x − eiθk )(x − e−iθk ) = x2 − 2x cos θk + 1 and this gives an isomorphism of
algebras � = R [x]/(x2 − 2x cos θk + 1)

=→ Ik. Thus ap = � ⊕ � ⊕ · · · ⊕ �( p
2 -factors).

For p odd let ψk = 2kπ
p (0 ≤ k ≤ 1

2 (p − 1)). x0 = 1
p (1 + x + · · · + xp−1)xk = 2

p (1 +∑ 1
2 (p−1)
m=1 cos(mψk)(xm + xp−m)(1 ≤ k ≤ 1

2 (p − 1)). Then x2
k = xk, xkx� = 0(k �= �) and∑ 1

2 (p−1)
k=0 xk = 1. Thus ap = ⊕

1
2 (p−1)
k=0 Ik where Ik is the ideal generated by xk. The

homomorphism R [x] → Ik has kernel (i) (1 − x) for k = 0 and (ii) (x − eiψk )(x −
e−iψk ) = x2 − 2x cos ψk + 1(1 ≤ k ≤ 1

2 (p − 1)). We obtain algebra isomorphisms (i)

R = R [x]/(1 − x)
=→I0 and (ii) � = R [x]/(x2 − 2x cos ψk + 1)

=→ Ik(1 ≤ k ≤ 1
2 (p − 1)).

Hence ap = � ⊕ � ⊕ · · · ⊕ � ( 1
2 (p − 1) factors �).

3. Almost p-structures on real vector-bundles. Let ξ be a real vector-bundle of
dimension n over a topological space x with an almost p-structure J. We know from
Section 1 that n ≡ 0 (mod p). Let n = kp. For x ∈ X , the fibre ξx is an ap-module.
Let xi ∈ ap be the elements defined in Section 2 such that ap is the direct-sum of the
ideals generated by xi. Define ξi(x) = {xi · v|v ∈ ξx}. Then ξx = ⊕iξi(x) and if we define
ξi =

⋃
x∈X ξi(x), ξ decomposes into ξ = ⊕i ξi. If p is even Ei is a complex vector-bundle

of dimension k for 1 ≤ i ≤ p
2 . If p is odd E0 is a real vector-bundle and Ei is a complex

vector-bundle of dimension k for 1 ≤ i ≤ ( p − 1
2 ). The argument is reversible. Suppose

p is even and ξ = ⊕p/2
i=1 ξi for complex vector-bundles ξi. Let Ji be the almost-complex

structure on ξi. Define xi · v = Ji(v) for v ∈ ξi. Then the ith-factor � in the direct-sum
decomposition of ap acts on ξi and this defines an action of ap on ξ . An analogous
argument holds in the case p odd. This leads to

THEOREM 3.1. A vector-bundle ξ of dimension n over a topological space X admits
an almost p-structure iff n ≡ 0 (mod p) i.e. n = kp and

(i) if p is even ξ = ⊕p/2
i=1 ξi where ξi is a complex vector-bundle of dimension k.

(ii) if p is odd ξ = ξ0 ⊕ ⊕
1
2 (p−1)
i=1 ξi where ξ0 is a real vector-bundle and ξi is a complex

vector bundle of dimension k. (1 ≤ i ≤ 1
2 (p − 1)).
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4. Almost p structures on spheres. It is well known that the even spheres which
admit almost-complex structures are S2 and S6. We search for almost p-structures on
spheres for p > 2. The only non-trivial almost p-structure that we can find is an almost 3-
structure on S15. We rely heavily on [1] for machinery and details. Let Lk = 2v2(Mk) be the
2-primary component of the Atiyah–Todd number i.e. v2(Mk) = sup1≤r≤k−1(r + v2(r)).
We note that almost p-structures on Sk exist for all p/k when Sk is parallelisable i.e.
if k = 1, 3, 7 and call such almost p-structures trivial. We call an almost p-structure
non-trivial if the sphere in question is not parallelisable.

PROPOSITION 4.1. Let p and k be odd. The only non-trivial almost p-structure on Spk

is an almost 3-structure on S15.

Proof. By Theorem 3.1 (ii), Spk admits an almost p-structure iff the fibration

1. SO(pk + 1)/SO(k) × U(k) × · · · × U(k)
SO(pk)/SO(k)×U(k)×···×U(k)−−−−−−−−−−−−−−−−−→ Spk admits a

cross-section. Let’s fix one U(k). Since SO(k) and all the other U(k)’s can be imbedded
in this fixed U(k), by using the idea of proof of [2, Theorem 27.16] we deduce that
fibration 1 admits a cross-section iff the fibration

2. SO(pk + 1)/U(k)
SO(pk)/U(k)−−−−−−→ Spk; admits a cross-section. If pk + 1

2 is odd the
existence of a cross-section to fibration 2 implies the existence of a cross-section to
the Stiefel fibration

3. Vpk+1,(p−2)k+1 = SO(pk+1)/SO(2k)
Vpk,(p−2)k=SO(pk)/SO(2k)
−−−−−−−−−−−−−−→ Spk i.e. a(p − 2)k-

frame on Spk. Since pk + 1 ≡ 2 (mod 4), Spk admits at most a 1-frame and thus
(p − 2)k = 1 or p = 3, k = 1. Since S3 is parallelisable this is the only case when fibration
2 admits a cross-section when pk + 1

2 is odd.
For pk + 1

2 ≤ 4 is even. pk + 1
2 = 2, 4, Spk is parallelisable and fibration 2 admits a

cross-section. For pk + 1
2 > 4 and is even we deduce from [1, Proposition 4.3] and the

discussion following it that fibration 2 admits a cross-section iff L 1
2 ((p−2)k+1)/( pk + 1

2 ).

We observe that Ln > 4n for n > 4. To see this, note that L5 = 26 > 4.5 and for
k ≥ 6, Lk ≥ 2k−1 > 4k.

For (p − 2)k + 1
2 > 4, L (p−2)k+1

2
− ( pk + 1

2 ) > 4( (p − 2)k + 1
2 ) − ( pk + 1

2 ) = 1
2 (k(3p − 8) + 3)> 0

i.e. L (p−2)k+1
2

> ( pk + 1
2 ) so L (p−2)k+1

2
� ( pk + 1

2 ) and thus fibration 2 does not admit a cross-

section. For (p − 2)k + 1
2 ≤ 4, we disregard the cases (p − 2)k + 1

2 = 2, 4 since pk + 1
2 is odd

in either case. Let k(p−2)+1
2 = 1, k = 1, p = 3, Spk = S3 is parallelisable. k(p−2)+1

2 = 3,
k(p − 2) = 5. Either k = 1 and p = 7 and Spk = S7 is parallelisable or p = 3, k = 5,
pk + 1

2 = 8 and L3 = 8/8 and we obtain an almost 3-structure on S15.

LEMMA 4.2. Let p/q. Then the existence of an almost q-structure on a vector-bundle
implies the existence of an almost p-structure.

COROLLARY 4.3. The only almost p-structures on spheres for p even are the almost-
complex structures on S2 and S6.

Proof. By Lemma 4.2 if a sphere admits an almost p-structure for p even then
it admits an almost-complex structure and hence the sphere in question is S2 or
S6. Apart from the almost-complex structures on these spheres, S6 may admit an
almost 6-structure. It follows from the proof of Proposition 4.1 it is equivalent to the
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cross-sectioning of the fibration V7,5 = SO(7)/U(1)
V6,4=SO(6)/U(1))−−−−−−−−−→ S6; i.e. the existence

of a 4-frame on S6 which is impossible.

LEMMA 4.4. An almost p-structure does not exist on Spk for p odd and k even.

Proof. The existence of an almost p-structure implies the existence of a frame on
the even dimensional sphere Spk which is impossible.

We gather Proposition 4.1. Corollary 4.3 and Lemma 4.4. in a single Theorem.

THEOREM 4.5. The only non-trivial almost p-structures that exist on spheres are the
almost 2-(i.e. almost-complex) structures on S2 and S6 and the almost 3-structure on S15.

5. Almost p-structures on complex projective spaces.

PROPOSITION 5.1. For p > 2 the only almost p-structure on complex projective spaces
is an almost 3-structure on P3(�).

Proof. Suppose Pn−1(�) admits an almost p-structure for p > 2. Then 2(n − 1) =
kp. Let π : S2n−1 → Pn−1(�) be the projection. Since T(S2n−1) = π !(T(Pn−1(�))) ⊕ 1
the fibration

SO(2n)/ U(k) × · · · × U(k)︸ ︷︷ ︸
p/2

→ S2n−1

or the fibration

SO(2n)/SO(k) × U(k) × · · · × U(k)︸ ︷︷ ︸
( p−1

2 )

→ S2n−1

admits a cross-section depending on whether p is even or odd. By the proof of [2,
Theorem 27.16], in either case the fibration SO(2n)/U(k) → S2n−1 admits a cross-
section and Ln−k/n by [1, Proposition 4.3] and discussion following it. As in the proof
of Proposition 4.1, Ln−k > 4(n − k) > n for n > k + 4 and n > 4. Hence Ln−k � n for
n = 1

2 kp + 1 > k + 4 i.e. for 1. ( 1
2 p − 1)k > 3. This is always satisfied for p > 8. For

p = 8, ( 1
2 p − 1)k > 3 unless k = 1 in which case n = 5, n − k = 4 and L4 � 5.

For p = 7, 1 is satisfied unless k = 1. kp = 7 is a contradiction since kp is even.
For p = 6, 1 is satisfied unless k = 1 in which case n = 4. The existence of an almost 6-
structure on P3(�) means that (T(P3(�)) is the direct-sum of three U(1)-bundles ξi. (i =
1, 2, 3). T(P3(�)) ⊕ 1 = 4η3 where η3 is the complex Hopf bundle over P3(�). Taking
Pontryagin classes, p(P3(�)) = (1 + y2)4 where y ∈ H2(P3; �) is the generator. Suppose
ξi has Pontryagin class 1 + m2

i y2, mi ∈ �. Equating (1 + y2)4 = ∏3
i=1(1 + m2

i y2). Hence
m2

1 + m2
2 + m2

3 = 4 which has solution m1 = 2 and m2 = m3 = 0. i.e. ξ2 and ξ3 are trivial.
This implies the existence of a frame on P3(�) which is impossible.

For p = 5 again we consider k = 1 (otherwise 1 is satisfied). We disregard this case
since kp should be even.

For p = 4 and k = 1, 2. Let k = 2, n = 5, L3 = 8 � 5. Let k = 1, n = 3 L2 = 2 � 3. For
p = 3 since pk is even k = 2, 4. Let k = 4, n = 7, L3 � 7 k = 2, n = 4. Let τ : P3(�) → P1(Q)
be the projection onto the one dimensional quaternionic projective space. Let J be the
quaternionic structure on �4 which anti-commutes with the complex structure. The
assignment x 	→ J(x)(x ∈ S7) defines a unit vector-field on π !(T(P3(�))) and passes
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to the quotient and generates a line sub-bundle ξ of T(P3(�)) whose orthogonal
complement is τ !(T(P1(�))). Hence τ !(T(P1(�))) admits an almost-complex structure
and T(P3(�)) = ξ ⊕ τ !(T(P1(�))) an almost 3-structure. �
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