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SIDON SETS 

BY 

H. L. ABBOTT 

ABSTRACT. Denote by g(n) the largest integer m such that every set 
of integers of size n contains a subset of size m whose pairwise sums are 
distinct. It is shown that g(n) > en1'2 for any constant c < 2/25 and all 
sufficiently large n. 

A set S of integers is called a Sidon set if its pairwise sums are distinct; that is, if it 
contains no solutions of the equation a+b = c+d other than the trivial solutions given 
by {a, b} = {c, d}. S. Sidon [9], [10] was led to consider such sets in connection 
with certain questions in analysis. We remark that in the literature Sidon sequences 
are sometimes called #2-sequences and that the phrase Sidon set is used in the more 
recent literature on harmonic analysis with a different meaning. See, for example, 
[12]. We shall be concerned here only with number-theoretic questions. 

Denote by f(n) the size of a largest Sidon subset of {1, 2 , . . . , « } . It follows from 
results of Bose [2], Bose and Chowla [3], Chowla [4], Erdôs and Turân [5], and Singer 
[11] that 

f(n) = nll2{\ + o(l)), as n —• 00. 

A comprehensive survey of these papers may be found in Chapter II of the book of 
Halberstam and Roth [6]. [6] also gives an account of the main results concerning 
infinite Sidon sets. See the paper of Ajtai, Komlôs and Szemerédi [1] for an important 
development in this regard. 

If A is a finite set of integers we denote by ||A|| the size of a largest Sidon subset 
of A, and we write ||{^}f|| instead of ||{«i, a^ . . . ,an}\\- Let g be defined by 

g{n) — min{||A|| : A is a set of integers of size n}. 

g(n) is thus the largest integer m such that every set of integers of size n con
tains a Sidon subset of size m. It is clear that g(n) ^ f(ri). Erdôs asked whether 
linv-KxXg (n)/f(n)) = 1. This question has not been answered. For a long time 
the best lower bound for g(n) was that of Mian and Chowla [8] who showed that 
g(n) > en1/3 for some positive constant c. Komlôs, Sulyok and Szemerédi [7] made 
striking progress toward answering Erdôs' question by showing that there exists a 
constant c > 0 such that 

(1) g(n) > en1'1 
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for all sufficiently large n. In fact, they prove a general theorem of which (1) is a special 
case. It follows from their theorem that (1) holds for any c < 2~15 = 0.0000305 
The object of this paper is to prove the following result: 

THEOREM (1) holds for any c ^ 2/25 = 0.08. 

Some of the improvement is obtained by refining the method used in [7] and part 
of it by exploiting the connection between Sidon sets and a result of Singer [11]. See 
the remarks at the end of the paper. 

We first record four facts that we shall need later. Facts 1, 2 and 4 are given in [7] 
in some form. Fact 3 is easy to prove. Let a\, a2l...,an be distinct integers. 

FACT 1. If there is a positive integer q and distinct integers n , r2,..., rn such that 
at = htq + n, \n\ < q/4, then ||{af.}f|| ^ {r,-}7||. 

FACT 2. Suppose there exists an odd positive integer q such that at = hiq+ri, \rt\ < 
q/4. Let t be a positive integer and let bt = thtq + n. Then ||{tf,-}ï|| ^ ||{*i}ïll-

FACT 3. Let p be a prime, p = l(mod 4). Then there exists an integer À and a 
subset A of {01, a2, . - -^/ i} of size [n/2] such that for at eA wehave#/+A = htp+ri, 
where \rt\ <p/4. 

FACT 4. Let p ^ n be a prime that does not divide any of the differences at —a-}, i ^ 
j . Then there exists an integer t, I ^ t ^ p — l, and a subset A of {ai, «2, . . . ,#«} of 
size [n/2] — 2 such that for each ai G A we have tat — hip + rt where |r,| < p/4 and 
the r 's are distinct. 

LEMMA A. Let 0 < a\ < a2 < • • • < an, an > (4n)4". Then there exists an integer 
q <an and distinct integers n , r2,..., rn such that at — h;q + r/, |r,| < «7/4. 

Lemma A is a special case of Lemma 1' of [7]. We observe that by Fact 1 and 
repeated application of Lemma A, an arbitrary set {ai, «2, ••• ,an} of n positive 
integers may be replaced by a set {b\, b2,...,bn}, 0 < b\ < b2 < • • • < bn ^ (4rt)4", 
that satisfies ||{tf/}ï|| = ||{^/}ïl| In what follows all o-estimates refer to n —-> 00. 

LEMMA B. Let 0 < a\ < a2 < • - < an fSt (4rt)4\ There exist integers 0 < b\ < 
b2 < • • • < bm such that 

bm < 4Vlog n, m = ^(1 +o(l)) and | |{^K|| ^ | |{^}7||. 

PROOF. For primes p satisfying 4n < p < 4"A22log n let ^(p) denote the number of 
pairs (/, 7), 1 ^ / <j ^ n, such that p | (a} — ai) and define T by 

r = 5>(P). 

Then 

(4")r< I I (aj-aiXWfM 
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from which it follows that 

T< 

Thus, for some prime q satisfying 4n < q < 4nn2\og n, we must have 

(\+o(l)\4nn2 

V>(<7)< 7r(4nn2\og n) - 7r(4n) 

where ir(x) denotes the number of primes not exceeding x. It follows from the prime 
number theorem and some routine calculations that 

^ ) < ( * | i + 0 ( 1 ) ) » < » 
V 2 / log n log n 

Thus there exists a subset A of {«i, #2, • • •, #n} of size v > n(\ — 1/log n) such that 
q does not divide the difference of any two members of A. By Fact 4, there exists an 
integer t,l ^ t è q — 1, and a subset A* of A of size m = [i//2] — 2 such that for 
each ai €A* we have tat = fyq + rj where |r,-| < #/4 and the r 's are distinct. Choose 
as b\, Z?2,..., ̂ w the integers obtained by translating the r 's by [q/4] + 1. Then 

0 < bx < b2 < • • • < bm < q < 4Vlog n, 

m=~ (1+0(1)) 

and 
||{fl<}îll = | |{«a /}ï| |è | |{iB |-:a i-eA*}| | 

è | | { r , : a , e A * } | | , by Fact 1 

= IKM7II-

LEMMA C. Let {b\, b2,...,bm} be the set whose existence was shown in Lemma 
B. Let S > (log 2)/4. Then there exist integers 0 < C\ < c2 < • • • < c/ such that 

c,<èn\ / = 2 ( i _ ^ L 2 + o ( 1 ) ) andlKfojni ^ | |{c,K| | . 

PROOF. For primes /? satisfying n2 /log n <p < 26n2 let i/>(p) denote the number of 
pairs (i, 7), I ^ i <j ^ m such that /? | (fy — ft,-), and define T by 

r = £>(/>). 

Then 

( i ^ ) < II (*y-W<(4Vlog»)(0 
V 6 y l£i<j£m 
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from which it follows that 

r < ( ^ W "3 
V 8 J log n 

Thus, for some prime q satisfying ft2/log n <q < 2Sn2 we must have 

log 2 
+ 

V>(*)< 

\ n3 

0(D): 
J log M 

7T(26n2) ~ 7T (-^— ) 

\\ognJ 

It follows from the prime number theorem and some straightforward calculations that 

^ ) < (¥ + 0 ( 1 ) ) n = (^ + 0 ( 1 ) ) w -
Thus there exists a subset B of {b\, b2, •..,&m} of size v = (1 — log 2/4£ + 6>(l))m 
such that q does not divide the difference of any two members of B. By Fact 4, there 
exists an integer t1 1 ^ r ^ q — 1, and a subset #* of 5 of size / = [i//2] — 2 such 
that for each b[ G B* we have r&; = hiq + ri where |r,-| < <?/4 and the r 's are distinct. 
Let ci, C2,..., c/ be the numbers obtained by translating the r 's by [q/4] + 1. Then 

0 < cx < c2 < • • • < ci < | < 6n2 

byFacll. ||{MTII * IIM'11- D 

LEMMA D. Lef {ci, Q , . . . ,c/} £e f/ie .sef constructed in Lemma C. Let f3 be a 
positive number satisfying (32 > 6/2. Let 

7 = (256(362 - 64/35 log 2 - 1652 + S6 log 2 - (log 2)2)/4096/3<52. 

77ien f/iere ex/̂ f integers 0 < d\ < d2 < • • - < ds satisfying 

ds<^,s = (7 + o(l))« and IKc,-}', || ^ | |{4K||. 

PROOF. Let q be the least prime exceeding (3n and let p be the largest prime not 
exceeding 2q satisfying p = l(mod 4). Observe that pq = 2/32n2(l +o(l)). By Fact 3, 
there exists an integer À and a subset C of {ci, C2,..., c/} of size t = [1/2] such that 
for a G C we have Q + A = hip+ri where |r,| < /?/4. There is no loss in assuming (by 
relabelling, if neccessary) that C = {c*i, C2,..., Q } . For 1 ^ M ^ # — 1 and 1 ^ / ^ f 
let e(w, /) = MA/P + r/. By Fact 2, for each w, 

||{*(«, i)}',ll*l|{c,-}ii|. 
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For 1 ^ j < i ^ t and 1 ^ u ^ q - 1 let 

{0 otherwise. 

Suppose that for some pairs (w, v) and (/, 7), 1 ^u<v^q— I, 1 ^ 7 < / ^ t, we 
have 

V>«0\ 7) = V>v('\ 7) = 1-

Then (7 | pQn — /iy)(v — u) and this implies that q\h[ — h}. Now /*; = h} implies that 
q \ rt — rj. Since 0 ^ |r,- — r7| < /?/2 < # we must then have r, = ry and thus c,- = 9, 
a contradiction. Thus A/ ̂  hj. If follows that |/z, — hj\ ^ q so that we get 

\d - cj\ = \(ct + A) - (cj + A)| = \(ht - hj)p + fo - ry)| ^ 2/?V(l + 0(1)). 

However, Q and Cj lie in [1, <Sw2] so that |Q — cy| < en2. Since 2/?2 > 5 this yields 
a contradiction. Thus for each pair (/, 7), 1 ^ 7 < / ^ t, there is at most one 
w, 1 ^ « ^ # — 1, such that i/;w(/, 7) = 1. Thus 

Ê E *-<«'. <&= E E ^ / ^ Q 

— ('V 

< 7 - l 9 - 1 

E ^,7)= E E 
It follows that for some w, 1 ^ u^ q — 1, 

E ^ ^ ( D 
Let 

1 

Then there is a subset S of {1, 2 , . . . , t} of size 1/ = f — z such that for (/, 7) G 
5, / > 7, # does not divide e(w, /) — e(w, 7). There is no loss in assuming that 
S = {1, 2 , . . . , 1/}. By Fact 4, for some w, 1 ^ w ^ <y — 1, there is a subset E of 
{e(w, 1), e(w, 2 ) , . . . , e(w, z/)} of size s = [v/2\ — 2 such that for e(u, i) G E we have 
we(w, /) = /*'# + r/ where the integers r[ satisfy \r[\ < q/4 and are distinct. Again, 
there is no loss of generality in supposing that E = {e(u, l),e(«, 2), . ..,£(w, s)}. 
Let 0 < d\ < di < - • • < ds be the numbers obtained by translating r(, r^,.. . , rf

s 

by [g/4] + 1. Then ds < q/2 < f3n/2. Some straightforward calculations show that 
s = (7 + 0(1))/!. Furthermore, by Fact 1, I K Q } ^ ^ ||{d/}î||. 

We need a further lemma; namely, the following result of Singer [11]. See also [6], 
Chapter II. 

LEMMA E. Let p be a prime. Then there exist p + 1 Sidon sets, each of size p + 1, 
whose union is {1, 2 , . . . ,/?2 +p + 1}. 
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The proof of the Theorem may now be completed as follows. Let S = {d\,d2,...,ds} 
be the set constructed in Lemma D. Let p be the least prime such that p2 +p + 1 > ds. 
By Lemma E, there are p + 1 Sidon sets whose union is {1, 2 , . . . ,/?2 +p + 1}. One 
of these sets must contain at least s/(p + 1) members of S. Thus 

* ( » ) £ - i - £ | 7 ( ^ ) 1 / 2 +0(1)1 n1'2 

\fn. 

p + 1 

y/l f 256ffi2 - (64 log 2)ffi - 16<S2 + (8 log 2)fi - (log 2)2 

4096 \ /?3/2^2 + 

The only restrictions on (3 and S are 5 > log 2/4 and 2/32 > 8. It is legitimate to 
choose 13 = 0.6834 and 5 = 0.9340. We then get g(n) > 0.0805y/h. This completes 
the proof of the Theorem. • 

Readers familiar with [7] will have noticed that the arguments used in proving 
Lemmas #, C and D are based very heavily on the ideas and the techniques developed 
in that paper. Note, however, that it requires three applications of Lemma 2 of [7] 
to reduce an arbitrary set of size n in [1, (4n)4"] to a set (of size («/64)(1 + o{\))) 
in [1, 4«2(log n)2]. Lemma 3 of [7] effects a reduction to [1, n3/2] and Lemma 4 a 
reduction to [1, en], c a constant. Roughly, we have replaced these five reductions 
by three. Lemmas B and C effect a reduction from [1, (4n)4"] to [1, en2] and thus 
accomplish a little more than the three applications of Lemma 2 of [7]. Lemma D 
takes one from [l,8n2] to [1, (3n/2\. 

We conclude with some remarks about the more general question considered in 
[7]. 

Let a\, ai, • •., #L be integers whose sum is zero. Suppose that not all of the at are 
zero and let A\ = {/ : at > 0} and Ai = {/ : at < 0}. We call a solution JCI , *2, . . . , XL 
of aiJti + <?2*2 + • • • + #/*£ = 0 trivial if {JC,- : / GA,-}D {*/ : / G A2} 7̂  </>. Consider the 
following system of equations with integer coefficients: 

L 

(p) ^atjXi = 0, 7 = 1,2,. . . , /?. 

Suppose that Yli=\ atj = 0forj= 1, 2, . . . , /? . We call a solution JCI, JC2,... ,JCL of (p) 
trivial if it is a trivial solution of at least one of the equations of the system. Let/p(AI) 
denote the size of a largest subset of {1, 2 , . . . , n} containing only trivial solutions of 
(p) and let gp(n) denote the largest integer m such that every set of integers of size n 
contains a subset of size m containing only trivial solutions of (p). Let 

L 

a = max >^ \au\. 
i=l 

In [7] it is proved that 

gp{n) - srffp(n)' 
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Note that in the case where (p) is x\ + X2 — X3 — X4 = 0 we have a = 4 and thus (1). 
We can prove analogues of Lemmas B, C and D. From these and Lemma 6 of [7] it 
may be deduced that 

In the case of Sidon sets, this is weaker than the bound given by the Theorem and thus 
illustrates the effect of Singer's Theorem, which is not available in the general case. 
The question, raised in [7], as to whether there is an absolute constant c (independent 
of (p)) such that gp(n) > cfp(n) remains open. 
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