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THE SOLUTION VIA MONOTONICITY METHODS OF SOME
NONSCALAR REACTION-DIFFUSION PROBLEMS

by MANUEL DELGADO

(Received 24th May 1994)

We present some applications of monotonicity methods to the solution of certain nonscalar reaction-diffusion
problems. In particular we prove existence under appropriate conditions and we introduce a convergent
algorithm.

1991 Mathematics subject classification: 35J55, 47H07, 47N60, 92D25.

1. Introduction

During the past few years nonlinear systems of reaction-diffusion equations have been
intensively studied, motivated by recent developments in ecology, biology, biochemistry,
etc. In many cases, these systems are of the form

= al{x,t)U-b1(x,t)U2-cl(x,t)UV
V,-d2AV=a2(x,t)V-b2(x,t)V2-c2(x,t)UV

Here, the unknowns U and V are functions of x and t. These equations are supposed to
be satisfied in a cylinder xeCl, 0< t<+oo , where ficR" is an open bounded and
regular domain. Of course, the equations are supplemented by appropriate boundary
conditions. The functions a,, fc, and c, (i=l,2) are smooth and nonnegative and the
diffusion constants d{ (i= 1,2) are positive.

The previous system is rather representative, not only because it can be used to model
various situations (as will be shown at once), but also because it deals with quadratic
approximations of the second members of more general systems.

One of the main questions that can be considered in connection with these systems
concerns the existence and multiplicity of stationary solutions (this is meaningful only if
the previous coefficients do not depend on t, in particular if they are constant). In most
cases, the interest is centred on positive solutions, the only physically meaningful
solutions: densities of populations, concentrations, ...

For instance, systems of the kind
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-d2AV=a2V-b2V
2-c2UV ( ' '

model the situation in which two competing species, whose population densitities are U
and V, coexist in Q. The diffusion coefficients d, and d2, are related to the diffusion of
the species in Q (here, diffusion means motion from high to low population density
regions), a, and a2 are the corresponding growth rates and bx and b2 account for the
self-regulation of each species (they cannot grow up indefinitely). Finally, the signs of
the coefficients of UV in the equations determine the kind of interaction between the
species. The negative sign in both equations indicate that these are competing species.
This model is referred to in the literature as the Volterra-Lotka model with diffusion
[3, 6].

Other types of interaction between the species are very similar. Again, the differences
are indicated by the sign of the last terms in the equations. For example, the sign will be
negative in the first equation and positive in the second one in the case of a prey-
predator model.

Other related (but different) models can also be mentioned. Thus, [4] (following the
methods of [3]) deals with

= aiU-blU
2-Hl(U,V)

-d2AV=a2V-b2V
2-H2{U, V)

where H(U, V) is the Holling-Tanner term, given by

c-LJV
H(U V)= ' i=\ 2

Once again, this problem has to be completed with suitable boundary conditions. This
also models prey-predator competition with diffusion. The Holling-Tanner interaction
term is introduced because with the "usual" term -c,t/K, one has \\mv^xclUV= + oo
for any fixed V>0, i.e. predators are able to consume preys at an infinitely large rate.
With the use of H

hm
t^o, 1 + mU m

and this difficulty disappears.
In this paper, we will consider Dirichlet problems for reaction-diffusion systems of the

kind (1.1) with constant coefficients a,, bt and c,. Most papers dealing with these
problems are devoted to the existence and multiplicity of positive solutions in terms of
the various coefficients which appear in the model. As usual, these will be called
"coexistence states". It can be proved (see [10]) that nonnegative nontrivial solutions
are in fact strictly positive.
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Notice that, in (1.1), the coefficients ah bt and cf can be reduced to four parameters.
Indeed, the change of variables

leads to the new system

- d2 Av = a2v — b2fiv
2 — c2auv

Thus, if we choose

« = ^ , and p=*±,
c2 ct

we arrive at

' — Au = au — bu2 — uv

Contrarily, by choosing

— Av = cv — dv2 — uv

and /? = £ ,
b2

we obtain

(-Au = au-u2-buv
[ — Av = cv — v—duv

with a suitable change of notation for the coefficients. We find these simplifications in
some papers (for instance, see [5]; see also [6]).

Also, notice that a particular (important) family of solutions to (1.3) can be obtained
by solving the single equation

— Au = au — bu2

in Q and setting v = 0. These are the semitrivial solutions. A similar family of semitrivial
solutions arises assuming that u = 0. These solutions are known as "extinction states".

Among the techniques that can be used to analyze the existence of coexistence states,
let us mention the following:

(a) Comparison techniques. Sufficient conditions for the existence of co-existence states
which involve sub-supersolutions are derived, for example, in [6]. Also, when a = c in
(1.3) necessary and sufficient conditions are given.

(b) Decoupling techniques. In [3, 9] the system is reduced to a single equation;
essentially this is made by fixing one of the functions, say u, solving the second equation
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(this gives v(u)) and, then, replacing v by v(u) for v in the first equation. Then, global
bifurcation results (mainly due to P. H. Rabinowitz) can be applied.

(c) Topological techniques. By this we mean index theory [7], topological degree
theory [10], etc. . . .

From the viewpoint of numerical computations, the monotonicity methods associated
with the sub-supersolutions techniques have the advantage that they lead to iterative
algorithms. Consequently, they are appropriate for computing numerical
approximations.

In this paper we first prove that, under certain assumptions (concerning only the
coefficients and the size of fi), the well known necessary conditions for the existence of
coexistence states (see [6]) are also sufficient conditions. Second, we see that our
arguments lead to an iterative algorithm which can be used for the computation of the
coexistence states. Also monotonicity provides some error estimates.

Regarding one of the coefficients as a parameter, the bifurcation phenomenon arises
in a natural way. This happens because there exist semitrivial solutions of the system
once the parameter attains a first critical value and coexistence states at a second one.
In a forthcoming paper we will study the finite-dimensional approximation of the
branches of nonsingular solutions which emanate from bifurcation points.

2. The main result: the existence of coexistence states

We consider the general problem

— Au = au-bu2 — uv . _, , , ..
A A i i n f i ' ( 2 1 )

— Av = cv — dv—uv

We assume the following is satisfied:

and

Here kx is the first eigenvalue of — A in fi (it is well known that these inequalities are
necessary for existence; see [6]). Notice that these necessary conditions restrict the size
of the domain, because if it is sufficiently small then it can be possible that
Aj <min(a,c). We want to give sufficient conditions about the size of fi to secure the
existence of positive solutions which can be determined by means of a monotone
algorithm. We could state them in terms of bounds for kx but is more intuitive giving
conditions on fi.

For each fixed v e C°(f2), consider the nonlinear scalar problem

f u = au in fi, ,. ».
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It is well known (see [3]) that this possesses exactly one positive solution if a>Xl(v) and
that only the trivial solution u = 0 is a nonnegative solution if a^X^v). Here, we denote
by A,(y) the first eigenvalue of the scalar Dirichlet problem

f Au in Q,

As in [9] let us introduce the mapping B: C°(O.) -* C°(Ci), by setting

[0 if a g
, >> -c it ^ for each v,

u(v) if a>X(v)

with u(v) being the unique solution mentioned before. B is continuous and reverses the
order, i.e.

It is then clear that solving (2.1) is equivalent to solving the following non-linear
problem:

- Av + B(v)v + dv2 = cv infi,

Now a unique positive solution exists if c>Aj(B(u)). On the contrary, if c^A1(B(u)), then
the trivial solution v = 0 is the unique nonnegative solution. Hence we introduce the
operator T:C0(fi)->C0(n), with

f
1 , ... . . f \-Aw + B(v)w = cv — dv2 in w ,
L the positive solution of < , * otherwise.

From this definition and the fact that a>Xlt it is readily seen that a fixed point of T is
a positive function and provides a solution of (2.1). It follows from standard results (see
e-g- [1]) t n a t T is a compact continuous operator from C°(Ci) into itself.

The main result in this paper is the following:

Theorem 1. Consider the reaction-diffusion system

— Au = au — bu2 — uv . _,
A A 2 i n Q '

— Av = cv — dv —uv

Assume the following are satisfied:
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(HI) a> At + —-, with ky being the first eigenvalue of —A in Q,
id

(H2) a^c(\-

(H3) Q is in a slab of width S, with

cd2 ^16 .

Then, there exists at least one coexistence state for this problem. Furthermore, the
iterates

converge monotonically to a fixed point of T.

The proof of this result will be given in the next section. Notice that the sufficient (not
necessary) conditions

a>A1 + - c>Xi + -
d b

for the existence of coexistence states are known (see [6]); (HI) is a weaker condition
than the first one. (HI) and (H2), that together imply that both coefficients a and c are
greater than ku give the conditions about the coefficients and the size of the domain.
Also, notice that, in (2.4), the task is reduced (at most) to the solution of two scalar
problems similar to (2.2) and (2.3).

In order to prove Theorem 1, the following result, which is due to H. Amann (see [2,
Corollary 6.2]), will be useful:

Theorem 2. Let E be an ordered Banach space and let [y,y] be an nonempty order
interval in E. Suppose that f'\_y,y]-*E is an increasing compact mapping such that
y^f(y) and f(y)^y. Then f has a minimal fixed point x and a maximal fixed point x.
Moreover, x = l\mk^oof

k(y), x = limt^„/*(>>) and {/*(}>)} (resp. {fk{y)}) is an increasing
(resp. decreasing) sequence.

We argue as follows:
(a) First, we prove there exists D^eC'ffi) such that v^T(vJ.

(b) Then, we will find a nonempty interval [v+,v*~\ in the ordered Banach space
C0(Q) where T is increasing.

(c) Finally, we will check that T(v*)^v*.
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3. The proof of the main result

We first search for a function v^ such that T(vJ^.v^. We will need the following

lemma, whose proof is given in an Appendix:

Lemma 3.1. The boundary value problem for the logistic equation with positive
coefficients

— Az = pz — qz2 in Q,

possesses at least one solution if the following conditions are satisfied:

(1) p>kx, with Aj being the first eigenvalue of —A in Q,

(2) pZqk.

Furthermore, there exists a solution 9pqk with

k ^ . (3.1)

We look for a function v^ of the form v^ = cc6pq0 for some positive a. According to the
notation introduced in Lemma 3.1, 0pq0 is a solution of a boundary value problem for a
logistic equation whose coefficients p and q are chosen appropriately. For w+ = T{adpq0),
one will have:

O-dcc292
pqO in fi,

This problem possesses a constant supersolution w. On the other hand, a.8pq0 itself is a
subsolution provided the following holds:

- *A9pq0 + B(a6pqO)<x9pqO - ca.9pqO + da292
pqO g 0

~ a0p,ol> - q0pq0 + B(a9pq0) - c + da0MO] g 0,

i.e. provided p, q and a are chosen such that

p-c+(doL-q)9pq0 + B(a9pq0)^0 in fi. (3.2)

Hence, if (3.2) is satisfied, then vif = a.9pq0 has the desired property. Notice that, setting
), (3.2) reads

O infi . (3.3)
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By definition, u^ = B(aQpq0) is the maximal solution to the nonlinear problem

OUt = aUt in Q,

' '

and is positive if a^X^v).
Furthermore, if Af >0 and /c>0 are such that

( 3 4 a )

then the function u = MOpqk is a supersolution of (3.4), i.e.

u ^ u infi. (3.5)

As a consequence, to show that v+ is a subsolution of (3.1a), it suffices to find positive
constants p, q, a, k and M satisfying (3.4a) and

d«)8 ( 3 4 b )

In other words, all we have to do is to prove that there exist positive constants p, q, a.
and k such that 6pqQ and dpqk exist and

SUp ^ P + ̂ M g ^ o <; i n f c

To this end, we will first choose p such that

This is possible in view of Hypotheses (HI) and (H2). It is true if

a<c[ 1 —

if

= c[ 1 -

then
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p(a-p) _ p
bc-p(b+l) (b+l)

and (3.7) is also permitted.
Then, we choose q > 0 and k> 0 such that

bc-p{b+\)
(3.8)

From Lemma 3.1, it is clear that the functions 9pq0 and 6pqk exist. Finally, we choose a
such that

(3.9)

This leads to the desired inequalities

b6pqk bk b

Remark 1. Interchanging the role of the equations, a similar analysis shows that
(HI), (H2) can be replaced by

3 A <- ad fi l

li and c£—— = a[l- —

Now we will try to find an interval [u+,u*] such that T([vm,v*~}) ^ [ u ^ . u * ] where T is
increasing. Assume Ui^u 2 and set T(y1) = w1 and T(i;2) = W2. Then,

— Aw1 + B(vl)wl =cvl—dv2
l

— Aw2 + B(v2)w2 = ci>2 — dv\

Subtracting, one easily obtains:

=c(vi-v2)-d(v\-v\).

But we know that B(u1)^B(t)2); consequently,
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inQ,

Since ^(uJ^O, the weak maximum principle, leads to the fact that

w, ^ w2 in Q,

provided

c-d{vx + v2)^Q in Q. (3.10)

Notice that (3.10) is satisfied if, for example,

wtg— inQ for /c = l,2. (3.11)
2d

Accordingly, let us set c* = —- and consider the corresponding interval
la

^ j (3.12)

in the ordered Banach space C°(fi). Notice that, whenever a satisfies (3.9), the interval in
(3.12) is nonempty. Indeed, from (3.9) we see that

On the other hand, it is clear that T is increasing in [y#,u*].
In order to end the proof of Theorem 1, let us check that under hypothesis (H1)-(H3),

one has

,2d)~2d

Let us set

we will find a regular function w such that
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Q
and wg—. In that case, from the maximum principle we will have

la

whence the desired inequality

w*<Lv*

will hold. Suppose that Q lies in a slab of width <5, say 0<x t <<5. Let us check that

Sd\2 Xl) 32d

is a suitable choice; indeed,

/ c\ c2

— Aw + Bl —- w ^ — Aw=—- in Q.
\2dJ Ad

On the other hand,

For the monotonicity of the eigenvalues, if v is the fixed point of T,

and so, B(v) is positive. Accordingly, Theorem 1 is proven.

Notice that, for suitable domains Q and suitable coefficients, (HI), (H2) and (H3) are
simultaneously satisfied. Indeed, in a slab of width 6, the first eigenvalue Xl is given by

, n2

If Q is an open set in such a slab, then the corresponding first eigenvalue A, satisfies

, ^n2 16
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Consequently, for appropriate positive values of the coefficients a, b, c and d one has

and c2S2 <16.

Remark 2. A sufficient condition for (HI) is

Appendix I: proof of Lemma 3.1

We use the sub-supersolution techniques, choosing as a subsolution the function
z^ = e(f>1, with (f>i being an eigenfunction associated to A, and e>0 small enough. On the

other hand, the role of a supersolution is played by the constant function z* = - .

Of course, z^k on <5O. Also,

— Az^-pz^ + qz2
t = eXl(t)l— pe(l>l + qE2(p] = E(f>iD^—p + q e ^ i ] ^ 0 in fi

if e is sufficiently small (this happens because p>A,). For the function z*, it is clear that

and z*^.k on dfl Finally, observe that £ can be chosen in such a way that z^z*.
Thus, we deduce that a solution 6pqk exists and satisfies

^ - inJ2.

Finally, remark that ps — qs2^0 for O^s^p/q; hence, — A0OTk^O in n and, from the
weak maximum principle, we also have

Bpqk7zk i n n .

Appendix II

In our problem, the coefficients are extremely regular. We can say, however,
something about the regularity of the boundary of bounded domain ficR" that we
consider.
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It is classical the validity of the results stated above if dQ is C2 (see, for example [8]).
But we can prove the existence and unicity of solutions of the problem

- A u = /

and the compacity of the operator defined in (4.2) if dQ is C l y .
Indeed, following [13], we denote

if \y\£d}

and for beU, fceN, 0 < a < 1 such that k + <x + b^0 we define

Ci*ia = {u:n-»R, V5>0,ueCk''(Qi) and |«|i*ia< +00}

where

<S>0

Note that Ci;*-a) = C*-a.
The above definitions are applicable if Q is a bounded open set in U" with dQeC1.

One can prove (see [13, Lemma 2.1]) that, putting a = k + <x and a' = k' + tx',

Lemma. IfO^a'^a, a' + b^O and b is not an integer ^0 , then

for some constant C that may depend on Q, a, a'and b.

This implicates the continuity of the imbedding

In particular, we can choose a = 2 + a with 0 < a < l , a'=l+y with 0 < y < l and
b= — a'= — 1 — y. Results the continuity of the imbedding

On the other hand, in the same paper there is proven a result of existence and
uniqueness of solutions for the problem

- A u = /
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when dQeC1-y. It is justified (see [13], Theorem 6.1).

Theorem. Let £2 be an open bounded whose boundary is C l y . The above problem of
Dirichlet has a unique solution ue&f+l for every feC(o_~b\ being 0 < a < l and

Taking b=l+y results that ueClf+a~
y)c> CUy. And finally, the compact imbedding

0Ur\Ci)c+ C\ft) holds for Q bounded [12].
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