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SINGULARITIES OF PROJECTIVE EMBEDDING (POINTS
OF ORDER n ON AN ELLIPTIC CURVE)

AKIKUNI KATO

In the Pliicker formula for a curve embedded in a higher dimensional
projective space, one encounters the notion of stationary point (cf, [B], [W]).
W.F. Pohl gave new view point about it in terms of vector bundles and he
defined “‘the singularities of embedding” (cf. [P]). At first, we shall give dual
formulation of Pohl’s one by means of the sheaf of principal parts of order
n P%, and next we shall prove the following: If an elliptic curve is embed-
ded in (n — 1)-dimensional projective space P,_, as a curve of degree =,
singularities of projective embedding of order #» — 1 are exactly the points of
order n with suitable choice of a neutral element on the curve which is an
abelian variety of dimension one. The proof is given by making use of the
relation between 77 and Schwarzenberger’s secant bundle which we shall
also give.

I wish to thank Professor H. Morikawa who introduced me to this problem
and also to thank Professor H. Yamada who made helpful suggestions.

§1. Singularities of embedding.

Let f:X—> A™ be an embedding (i.e. a closed immersion) of an affine
S-scheme X into m-dimensional affine space A™ over S = Spec (4). We shall
define singularities of a closed immersion f. Let &% 7% be the sheaf of
principal parts of order n over X, A™ respectively. If A™ = Spec (R), where
R =A[T, - -+, Txl, T: being indeterminates, then 7% is the associated sheaf
of R-module P; = R®, R/I**!, where I being the kernel of multiplication
R R—>R. Let U, 1<i=<m) be indeterminates and X be an ideal of
R[U,, -+ + -, Unl generated by U; 1<i=<m). Then R-module P} is isomorphic
to R[U,, « - -, U,)JK**' (cf. EGA IV (16.4.10)). Since PL = R[U,, .- -, U,]/K?
RAT,®- - -® RdT,, where dT; being the class of U; mod K?, the correspon-
dence dT;— U; mod K»*' defines a homomorphism of (left) R-modules P}
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— P} and this defines a homomorphism of sheaves:
0yt P> Py

On the other hand, S-morphism f : X— A™ induces a canonical homo-
morphism of 7x-Algebra P*(f) : f¥(F}) - Fk.

Derinrrion (1.1). For a closed immersion f: X—> 4™, a point  of X
is called an n-regular point or a regular point of order n of f, if the homomor-
phism of left 7x-Modules P"(f)f*(w.) : fX(FL - F% is surjective at z,
and if not surjective at z, it is called an n-singular point (or a singular point
of order n) of f.

Now suppose that projective embedding f : X— P™ be given. Then there
is a canonical surjective homomorphism of ¢7x-Modules ¢ : Z7*' — 7% (1). Let
s 7x — P} be the structure homomorphism of left ¢7x-Algebra #%. This
s defines a homomorphism s"*!: ¢! - (P = PrQRr. e = Fh
().

DermnTION (1.2). For a closed immersion f: X— P™, a point « of X is
called an #n-regular point of f, if the homomorphism of left Zx-Modules E™(f)
= FPp)o s T > PYUT X)) is surjective at z, and otherwise, it is
called an n-singular point of f. We denote by 9#°% the sheaf of image of
homomorphism E™(f).

Let & (0= i< m) be the global sections which are images of canonical
basis of free x-Module ©~%7*! by ¢. Their images d"¢, (0<<i=<m) in
FHUe7x(1) generate (left) 7x-Module %#7%. For a case n =1, it is easy to
check that 977} = P L7x(1)). Namely, every point is 1-regular point of f.

ProposiTioN (1.3). If f: X— P™ is a closed immersion and P™ is obtained by
patching affine spaces A; (0= j << m) together, then for a point x<X such that f(x)
€A;, f s n-regular (or n-singular) at x if and only if f|fN4;) is n-regular (or

n-singular) at x.

Proof. Since, Z3»(1))|A4; = F%, the homomorphism o, defines homo-
morphisms FUTp(W)A; = P (T4, 0= <m. From these we get
homomorphism (1)) — F3(7»(1)) (which maps d'¢; into d*¢;) and the

diagram
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<)
FU)

is commutative. Since E'(f) is surjective, we get the proposition.

Proposition (1.4).  The set of n-singular points of a closed immersion f is a
closed subset of X.

Proof. Since structure morphism X — S is of finite type, %, FPHTx(1))
are of finite type and cokernels of homomorphisms f*(&#})— %, 73" —
Fux(1)) are also of finite type and this implies their support, i.e., the set

of n-singular points of f is a closed subset of X.

ProrosiTioN (1.5). If f is n-regular at x, then f 1is k-regular at x for
1<k<mn.

Progf. 'This follows inductively from the following commutative diagrams:

PR PRl
e | o<l |
(@)

where vertical arrows are canonical surjective homomorphisms.

ProrosiTioN (1.6). Let f be an affine or projective embedding of X and g :
Y — X be a closed immersion. If f is n-regular at 9(y), y<Y, then go f is n-regular
at y.

Proof. Since homomorphis i*f*(.F}) — i*(.F%) is surjective at 2 and cano-
nical homomorphism *( %) is surjective, their combined homomorphism 7*f*
(F}) — P73 is surjective at y.

Prorosttion (1.7). If X is an affine scheme or a projective scheme, then for a
given integer, n >0, there is an affine or projective embedding respectively which is
everywhere n-regular.

Proof. By .proposition (1.6), we may assume that X =A™ or X=P".
From the canonical homomorphism &73*! — 75(1), we get a surjective homo-
morphism Z3* = (7F')®" — p(n) and this defines a closed immersion f :

P™ — PY¥ ((%o, @1, * ==, Tm)—> (Yo, Y1, * * *» Yn), Yo = Lo™, =+ +, Yy =20+ = &ylm,
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ce e, Yy =T G0+ i+ ¢ -+ + i, =n). We show that f is n-regular at every
point (xy, %5, * * +, »). We may assume that x,#0. If we restrict to an
affine open subset A¥ = (P¥),, of P?, it is enough to show that the closed im-
mersion A™ =AY (&, c e, En) > (e, ), W= e oy, A e iy
< n) is everywhere n-regular (and this proves the case X = A™). Put AY
= Spec (B), A™ = Spec (C), where B = A[Y,, + - +,Yy], C= A[X;, - + -, X,]. The
closed immersion A™ — A¥ corresponds to a surjective homomorphism ¢ : B
—-C Y;— Xj1. - < X, '»), Then P? can be identified to A[X, « - -, X, Uy,
<+, U,JJK*, and the C-module W™ which defines 977}, is generated by 1
and (X, + Uy're « « (X, + Up)m=Ur- + - U,"™ + (terms of lower degrees of U,,
««., U,), mod K**', This shows W" = PZ,

ProrosiTionN (1.8). For a closed immersion X G A™ or X G P™, of r-dimensional
variety X, if a positive integer n satisfies inequality m <r + (3*1) + + « - + (3**71),
then the closed immersion is everywhere n-singular.

Proof. If the closed immersion is #n-regular at xz€X, we may assume

that z is a simple point of X, because the set of n-singular points is closed.

. Then there is an affine neighborhood of U = Spec (B) of # such that Bis a
formally smooth A-algebra. Over U, there is an isomorphism

S 023 5 Er. (Frx)

(cf. [EGA] IV (16.10.1), (16.10. 2)).
Since 2} is a locally free of rank » over U, by the exact sequence on U:

0—> S, () > FPi—> Fi ' —>0,

we see that 7% is locally free of rank »+ (3*!)+ - -+ + (™) +1 on U.
Since 977} is generated by m + 1 sections on U, it can not be %% + 3, if
n satisfies the inequality.

§2. Stationary points.

Let X be an r-dimensional algebraic variety over an algebraically closed
field k. We assume that X is embedded in A™ or P™. Let x be a simple
point of X. If ¢, «.- ¢, are uniformizing parameters at x, then 7%, is
contained in the formal power series ring k[[¢;, - - -, ¢,]]. Since the property
that an embedding is #-regular at z is invariant under linear transformation
of ambient space A™ or P™, we may assume that (inhomogeneous) coordinate
2y, ¢+, %, of x and their power series z; = ¢,(f) (1 < i < m) are as follows:
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(2.1) o () = Hy, ;(8) + Hy ja(8) + « + +, (Lo <i < )

where H;;(¢) is a homogeneous polynomial of ¢, - --,¢, of degree k and
Hy, 41,5, Hiy 12,5, + + -, Hi1; are linearly independent over %, [, =0 [, =7 < [,
K v o <U; <0 <.

In particular, if X is a curve, (2.1) can be also written by the following
form (cf. [W]):

(2.2) pi(t) =t 4 0., I<i<m

where §; <8, < + » + < d,.

Let s*, d”, be structure homomorphism of left or right 7 ,-algebra 7%
respectively. Put d =d"— s*. Then d satisfies following equality:

d(f-9) = fdg+gdf + (df)dg), f, 9€T% 2.

By the above equality, it is easily verified following lemma:

Lemma 2.3). If o(¢) = N5 H(ty, » + +, t,), where H(t) is a homogeneous
polynomial of ti, - - -, t, of degree v, then do(t) = 337 Fyty, »«+, t,5dty, +« -,
dt,), where Fy(t; dt) is a homogeneous polynomial of dt,, - - -,dt, of degree | with
coefficients in Tx,. such that coefficients of F, are formal power series of order k— I
Jor 1 <k and F,(0, + - -,0;dty, -+ -, dt,) = H(dt,, » - +,dt,) for k<1< n.

THEOREM (2.4). A point x of X, whose coordinates satisfies (2.1), is an n-
regular point of embedding if and only iof 1; — I,y = (J277Y), for all j, 1 < j< m.

Proof. A basis of free (left) &7, ,-module %, is given by (dt,)- - -
dt,)r 0<i;+ -+ +i,<n). Clearly, it holds that I;— [, , < ({*;"}) =
number of monomials of degree j of r-variables = number of (d¢,)- - - (dt,)",
(iv+ ++++i,=j. We denote by oy =1, @, * * -, wy the above basis with
lexicographically order. Put dx; =de,(t) = X1%.,fi;(t)w;. Then, z is an n-
regular point &< %, is generated by 1, dx,, - -+ +, d2, <> rank (f;;) = N.

By lemma (2.3), matrix (f;;) is following form:

A
A *

(fo) = # A, | where A; is a matrix with /; — /,_, rows, ({:77)

columns and components at § are elements of the maximal ideal m of x,,,
Hence, if rank (f;;) = N, it must be I; — I;_, = ({*77'). Conversely, if
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1; — 1, = ({1771), then det A; is invertible, since A; mod m is a coefficient
A,
matrix of Hy, 41,5, * © *, Hy,,;, This implies that det ( : A, * ) is invertible

in ﬂX.x-

Remark (2.5). A point z of a curve X, whose coordinates satisfies (2.2),
is called a stationary point of rank #, if 6, — d,-, >1 (cf. [W] p. 45).

§3. Secant bundle.

Let us consider a commutative diagram of S-prescheme,

X
f /p

(P) W—XXY (p, ¢ being projections)
PR

which we denote simply by P= (W, X, Y, f, g) (Schwarzenberger called it a
product scheme, if f is a covering map [S]). For a quasi-coherent #-Module
&, there is an 7y-Module 31,( %) defined by the relation

2p (F) = [x0¥(F ).

By abuse of language, we shall call this /7x-Module 31, (&) secant sheaf which
defines a secant bundle in particular case (cf. [S]).

Let X™ be the n-th infinitesimal neighbourhood of X for the diagonal
morphism (cf. [EGA] IV) (16.1.2)). If we consider a diagram

X

p(ln) /pl

(I.) X™—> X xsX, where h, is canonical morphism and p,, p,, pro-

Q y2
pg” X

jections, then for a quasi-coherent 7x-Module, &, we obtain a secant sheaf
.(F). In this case 3;,( ) is nothing else than (PP)(pP)H F ) =

FUF). Another diagram with which we shall concern is that of cartesian
product. Let X, be an n-fold cartesian product of S-prescheme X. Identity
morphim 1y, : X, — X, and projection to ¢-th factor X, — X define a closed
immersion %, : X, —> X, Xs X. Let W, be the union of subschemes #,X,) of
X, Xs X and ¢ inclusion W, - X, xs X. Then these give a diagram
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X
L [
N q
g X

and secant sheaf >, (%), if quasi-coherent ¢7y-Module # is given. We denote
3. (F) by 317" (). In this section we shall prove the following: If 4 is
a diagonal morphism 4 : X— X,, there is a canonical isomorphism g%*(31+
(F) = FUF ).

For two diagrams of S-preschemes P= (W, X,Y, f, 9), P = (W', X', Y’,
f’, 9'), triple of morphisms of S-preschemes, 7y : W > W, ry : X' > X, ry : Y’
—Y is defined to be a morphism of P’ = (W',. X", Y’, f/, ¢') into P= (W, X,
Y, f,9),if fory =rxof and gory =ryog’. For such a morphism 7 = (ry,
rx, ry) and a quasi-coherent #»-Module &, there is a canonical homomor-
phism p : g¥(F) = (rw)elrw)*¢*(F) = (rw)xg*ry*(7) and this induces a
homomorphism fx(p) : 236 (F ) = (7x)x 2p/ (15(.5 ). The adjoint homomor-
phism of fi(p) is denoted by B(), B(#) : 75(Xp (F)) = Xp/(r3(F)).

For a diagram P=(W, X,7Y, f, 9) and a morphism 7y : X — X, it is
obtained new diagram P’ = (W', X', Y, f’, gery) in which W’ is the fibered
product X’ x y W and f’, ry are projections. Then » = (ry, #x, Iy) is a mor-
phism of P’ into P. Let & be a quasi-coherent %-Module. If fis an affine
morphism, there is an isomorphism (EGA II (1.5.2)),

o (&) 3 firy(&),

in particular if & = g*( &), where & is a quasi-coherent ~Module, this
isomorphism is

(3.1) B(r) 1 k(X (F7) 3 2p/(F).

The diagonal 4 : X — X,., factors through X—]> W,M—J; Xo+1, where 7 is a
closed immersion such that j(X) is diagonal of X,.; xsX. The composite
morphism 7 : X®™ - W ., of morphisms p{* : X™ — X and j : X— W,., is also
a closed immersion, hence it is an affine morphism. Two morphisms p{ :
X™ — X and 7 : X— W, induce a morphism ¢ : X®™ - X X x,,,W s

ProposiTioN (3.2). ¢ is an tsomophism, ¢ 1 X 3 X X g0 Wanere

Proof. Since r is affine. ¢ is also affine, and we can assume that X, S
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are affine schemes such that X = Spec(B), S = Spec(4). Then X™ = Spec
(P3,4), where P3,, = BQ,uB/I3);. Put T"*(B)= BR4BQ -+ Q4B (n+1
times), then X,., = Spec (T**Y(B)), X, X5 X = Spec (T**(B)® 4B). Let J be
the ideal of W,s in T**(B)®, B such that W,s, = Spec (T**' (B) ®4 B/]).
The diagonal morphism 4 : X— X,,, determines a homomorphism of rings
T»*(B) — B which makes B a T**!(B)-module. Tensoring an exact sequence
of T»*(B)-modules

0—>J—->T*YB)®,4B—>T*'B)®4B/] =0

with B, we get an exact sequence

¢
*) B® rym]—> B Q ris(T*(B) @4 B) > C—0

where C = B®i (T**(B) ®4B/J) and Spec(C) = X X x,.;Wni. On the
other hand, we have another exact sequence

(**) 0—->I3i>B®isB— Php—0

Since there is a canonical isomorphism between middle terms of exact sequ-
ences (*) and (**), in order to prove P;,,~=C, it reduces to show that the
image of ¢ is canonically isomorphic to I3}i. Let J; be an ideal of T"*(B)
®4B ggnerated by elements ¢;(@) ®1— ¢;(1) ®a, ac B, where ¢,a) =1Q1®
“e ®fz® ««+®1. Then J; is a kernel of multiplication T"*!(B) Q4B —
T**(B) of last component with i-th component, and it holds that /= J,n /N
<o+ NJoe and ¢(J,) = I, hence it suffices to prove that J = [+ Joe ¢ Jnss.
Let 31a”®ay’- - - ®a), Q@b be an arbitrary element of J = ;NN -+« N Jpi1.

i
Then, Na¥® -+ - QLR - » - ®a2,63°0» = 0, for every i, repeatedly, we have
14
i1 i
TR RI® 1R RS, ®a - a0 =0,
14

Since T (p.la?) ® 1~ ¢4(1) @d?)
S @RI RI—1® - 1D
(M@ RERI-1® - ©1 8,
SRR RENDL 1R D -+ - Dah DaP + - -

we see that 11a” ®a R+« + ®afl; ® b»
14
n+1

=LI®: - QIR I (pa?) ®1 - ¢i(l) ®a)
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is an element of J;+Jy+ « « Jas1. Since it is clear that J,-Jo+ + « JaniCJ, J =

]=]1']2' * ']n+1~

TueoreMm 3.3). If 4:X— X, =X X + -+ X X is a diagonal morphism and
SWH( F) is a secant sheaf on X.., associated with a quasi-coherent 7x-Module
then there is a canonical isomorphism, 4*(3*( 7)) = P U F ).

Proof. By roposition (3.2), isomorphism (3.1) gives the isomorphism in
question.

Remark. We can also consider a diagram for »n-fold symmetric product
X of X and a secant sheaf 31 ( &) on X cf. [S], p. 375). Then there is
a canonical morphism 7y : X, > X and 753" (7)) = 23" ), hence we
have also a canonical isomorphism 4*((3+0( 7))~ PUF ).

§4. Points of order n on elliptic curve.

Suppose that an elliptic curve X is embedded in (# — 1)-dimensional pro-
jective space P! over an algebraically closed field k, as a curve of degree n
and not contained in a proper linear subspace of P*~!. Then by Riemann-

Roch theorem, H'(X, ¢7x(1)) =0. Consider an exact sequence:

4.1) 0> JW)—> Txuxx ~ ixCw.— 0,

where J(W) is an Ideal of #7x,.x corresponding the subscheme W,. Tensor
by ¢*(¢7x(1)) and apply p*. The result is a cohomology exact sequence which
begins

(4.2) 0= px(J(W) ® g*(Zx(1) = pxg*(Tx (1)) 5
Pxlix(Tw.) ® ¥ (Tx (1) = R'px(g* (T (1) ® J(W)) — 0

Its last term is zero (apply principle of exchange (cf. [M] p. 785) and H'(X,
7x(1)) =0). Apply 31" to a canonical surjective homomorhpism 7% — 7x(1)
and combine canonical homomorphism 73, — 3" (Zx)" = 2" (%), then re-
sulting homomorphism is & : &%, — 31" (7x(1)) by our assumption. Thus by
theorem (3.3), 4*(a) is the homomorphism E*\(f) : &% - P% HTx(1)) in de-
finition (1.2). By Nakayama’s lemma, projective embedding X— P*! is
(n — 1)-singular at z if and only if « is not surjective at (z, @, « -+, )X,
ie. if and only if (x, z, « -+, x) € Supp R'p+(g*(7x(1) ® J(W)). Now we
calculate® Supp R'p«(¢g*(Zx(1)) ® J(W)). For a given geometric point & =

*  This calculation is suggested by H. Yamada.
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i . .
Spec (k) = Xn, i(§) = y, consider a diagram

X X, %, X

l’z’pl

where s is a morphism % —> (y, x),7, structure morphism, and p, projection.
Apply principle of exchange:

Rip«(g*(7x(1)) @ J(W)) @ k(y) = R'r(s*(g*(x (1) @ J(W))
= H'(X, s¥g*(7x(1)) & J(W)).

Hence, R'p«(g*(x(1)) ® J(W)) = 0 if and only if H'(X, s¥(g*(7x(1)) ® J(W)) = 0.
From the exact sequence (4.1), we get following diagram:

s¥q*(7x(1)) @ JW)) —> s*q*(7x (1)) — s*(ixw ® ¢*(Tx (1)) —> 0

e |\ II
)

0—> (=) ® 7x(1) —> Tx1) —> Txns™ ' @ Tx(1) — 0

where [y] is the corresponding divisor on X to point yeX,. A surjective
homomorphism ¢ induces a surjective homomorphism HY(X, s*(g*(7x(1)) ®
JW) — HY(X, &7x(—[y) ® 7x(1)), since dim X =1, but it is also injective,
since dimension of supports of kernel of ¢ is zero. By duality, H'(X, &x(—
[¥1® &% (1)) # 0 if and only if HY(X, 7 ([y]) ® Zx(—1)) # 0, i.e. [y1is contained
in the linear system of hyperplanesections.

TuEOREM (4.3). If an elliptic curve X is embedded in (n — 1)-dimensional pro-
Jective space P™' over an algebraically clased field k as a curve of degree n (n > 3)
and not contained in a proper subspace, then the points of order n of abelian variety X
with suitable choice of a neutral element are exactly the (n — 1)-singularities of the
embedding.

Proof. There exists a point on X at which the projective embedding is
(n — 1)-singular, for otherwise, E»71(f) :&’;—Fﬁx“(ﬁx(l)) is a surjective
homomorphism of locally free sheaves of same rank, since X is a curve, it must
be an isomorphism, but this cannot be happen, since the following sequence
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is exact:
0 Q% Q Tx(1) > PHTx1) > FEHTx(1) >0

fork=1,--.,n—1. We choose 0 as a neutral element. A point z of X is
(n — 1)-singular if and only if the divisors [(z, + - -, 2)], [(0, - + -,0)] are linearly
equivalent, but this is equivalent to nxz = 0 by Abel’s theorem.
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