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Introduction. Many authors have made interesting and important 
contributions to the study of vector fields or infinitesimal transformations on 
compact orientable Riemannian manifolds and Hermitian manifolds without 
boundary. Recently, Hsiung (6, 7, 8) has extended some of these results to 
compact orientable Riemannian manifolds with boundary. The purpose of 
this paper is to continue Hsiung's work by studying vector fields and infinite­
simal transformations on almost-Hermitian manifolds with boundary. 

Section 1 contains fundamental notations and local operators and formulas 
for a Riemannian manifold. 

In §2 fundamental formulas for Lie derivatives are given, and the in­
finitesimal transformations and their generating vector fields are defined in 
terms of Lie derivatives. 

Section 3 is devoted, for compact orientable Riemannian manifolds with 
boundary, to a discussion of local boundary geodesic co-ordinates and the 
derivation of some integral formulas and theorems, which were obtained by 
Hsiung and will be needed in later sections of this paper. 

Section 4 contains necessary and sufficient boundary conditions for a Killing 
vector field on a compact orientable Riemannian manifold Mn with boundary 
Bn~l to be a geodesic vector field, and also a curvature condition of the manifold 
Mn for the non-existence on Mn of a geodesic vector field subject to the same 
boundary conditions. 

In §5 we define almost-Hermitian, almost-semi-Kahlerian and almost-
Kâhlerian structures with their relations. Then for almost-Hermitian structures 
we derive some formulas which will be useful in the next two sections. 

Section 6 is devoted to contra variant analytic vector fields on an almost-
Hermitian manifold Mn with boundary Bn~1

y together with their relations to 
Killing, projective Killing, and conformai Killing vector fields. First on the 
manifold Mn we obtain some integral formulas for projective and conformai 
Killing vector fields and necessary and sufficient boundary conditions for a 
vector field to be contravariant analytic. From the integral formulas, conditions 
are then derived for a projective, as well as conformai, Killing vector field on 
Mn to define an automorphism of the manifold Mn leaving the boundary B71"1 
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invariant, where by an automorphism we mean an infinitesimal motion pre­
serving the almost-Hermitian structure. 

Section 7 is concerned with covariant analytic vector fields on an almost-
Hermitian manifold with boundary, and contains necessary and sufficient 
conditions for a vector field on the manifold to be covariant analytic, obtained 
by calculations similar to those in §6. 

Finally, §8 is devoted to a study of vector fields on an almost-Kâhlerian 
manifold with boundary. In particular, an integral formula for a contra-
variant analytic vector field in terms of the canonical connection on the 
manifold is obtained. The main results of §§6, 7, 8 constitute an extension of 
some recent work of Yano (14) and Tachinaba (12) on almost-Hermitian and 
almost-Kâhlerian manifolds without boundary respectively. 

Throughout this paper, the dimensions of Mn and Bn~l are understood to be 
n (>2) and n — 1 respectively, all Riemannian manifolds are of class C3, and 
all differential forms and vector fields are of class C2. 

1. Notations and operators. Let Mn be a Riemannian manifold of 
dimension n, \\gij\\ with gtj = gH the matrix of the positive definite metric of 
the manifold Mn, and \\gij\\ the inverse matrix of | |g^| | . Throughout this paper 
all italic indices take the values 1, . . . , n unless stated otherwise. We shall 
follow the usual tensor convention that indices can be raised and lowered by 
using gij and gtj respectively; and that when an italic letter appears in any term 
as a subscript and superscript, it is understood that this letter is summed 
for all the values 1, . . . , n. We shall also use v* and vt to denote the contra-
variant and covariant components of a vector field v respectively. Moreover, 
if we multiply, for example, the components atj of a covariant tensor by the 
components bjk of a contravariant tensor, it will always be understood that j 
is to be summed. 

Let 9Î be the set {1, . . . , n\ of positive integers less than or equal to n, and 
I(p) denote an ordered subset {i\, . . . , iv\ of the set 9Î for p < n. If the 
elements ilt . . . , ip are in the natural order, that is, if i\ < . . . < ip, then the 
ordered set I(p) is denoted by Io(p). Furthermore, let I(p; s\j) be the ordered 
set I(p) with the 5th element is replaced by another element^ of 9Î, which 
may or may not belong to I(p). We shall use these notations for indices 
throughout this paper. When more than one set of indices is needed at one 
time, we may use other capital letters such as / , K> . . . in addition to / . 

From the metric tensor g with components gtj we have 

where bj^fy is zero when two or more fs or &'s are the same, and is + 1 or —1 
according as the fs and &'s differ from one another by an even or odd number 
of permutations. Thus the element of area of the manifold Mn at a point P 
with local co-ordinates x1, . . . , xn is 
(1.1) dAn = elm.M dx1 A . . . A dxn, 
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VECTOR FIELDS 215 

where d and the wedge A denote the exterior differentiation and multiplication 
respectively, and 

(1-2) «1...» = +Vgl...n,l...n. 

By using orthonormal local co-ordinates x1, . . . , xn and the relations 

(1-3) 6/(n) = àjln)ei.m.n, 

a A\ *I(p)J(n—p) «jl . . .n _ . i «J(.n—p) 

A) Oi...n 0 i(p)K(n-p) — V'°K(n-p), 

we can easily obtain 

a K\ » /,Kp)J(n-p) _ . i *J(n—p) 

•o; ei(P)K(n-p) e —p>oK(n-P). 
From equations (1.3), (1.4), (1.5) it follows that 
(1.6) ei. . .»*1-" = 1. 

On the manifold Mn let ̂  be a differential form of degree p given by 

(1.7) flfc) = vIo(p)dxT^\ 

where we have placed 

(1.8) dx1^ = à ! , 1 A . . . A dx**. 

Then we have 

(1.9) dv(p) = ( - l ) p X) V ip+Iy /0(P) - ]T V<.i;/0(p;ïUp+1) 

where V denotes the covariant derivation with respect to the afhne connection 
of the Riemannian metric giJt whose components in the local co-ordinates 
x1, . . . , xn are given by 

(1.10) i y* = hg»(dghJ/dx* + dghk/dx> - dgjk/dxh). 

Moreover, the dual and codifferential operators * and 8 are defined by 

(1.11) w o = elMjQ(n_p) WJOCP) dxJ^n~*\ 

(1.12) ôvip) = ( - l ) * ^ 1 * * ^ , 

which imply immediately 

(1.13) ôvip) = -pg" V ^ , 7 O ( P _ D dx1^-^. 

In particular, for a vector field v on the manifold Mn we obtain, from 
equations (1.9), (1.13), 

(1.14) (dv)ij = ViVj — VjVu 

(1.15) Ôv = -V iV* , 

(1.16) (dfo)< = - V , V,v>, 

(1.17) (Mn)* = V'V,», - V'V,i>„ 

dx / O ( P + 1 ) 
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where Vy = gjkVk. Use of equations (1.16), (1.17), and the Ricci identity for 
the contra variant components v\ 

(1.18) [VtoVAv^v'R'm, 

thus gives 

(1.19) (Aw) * = - V>V,v, + RtJv', 

where [V*, Vj = V̂  V; — V̂  V*, and A, Rljkh Rtj are respectively the Laplace-
Beltrami operator, the Riemann curvature tensor, and the Ricci tensor defined 
by 

(1.20) A = dô + ôd, 

(i.2i) R*ikl = dT/k/dxl - d iy , /d** + i y * i y , - i y , i y t , 

(1.22) RtJ = R*iJk. 

By contraction with respect to i and &, from equation (1.18) we have 

(1.23) [V„ VjY = RijvW. 

Multiplication of equation (1.18) by gih gives the Ricci identity for the co-
variant components vu 

(1.24) [V*, Vj]vi = -vlR
l
ijk, 

which can also be written as 

(1.25) -V*ViVj+ Vk(VivJ+ Vjvt) - VjVkvt = -vlR
l
iJk. 

Multiplying equation (1.25) by gikgjh and using equation (1.19), we thus 
obtain 

(1.26) (Qv)h - (Av)h = V,(VV> + W ) - VhVtv\ 

where 

(1.27) (Qu)h = 2Rt
hv\ 

Let UKP) and VKP) be two tensor fields of the same order p on a compact 
orientable manifold Mn. Then the local and global scalar products (u,v) and 
(u, v) of the two tensor fields u and v are defined by 

(1.28) (u,v) = ~uHp)vHph 

pi 
(1.29) (u, v) = jMn (u, v) dAn. 

From equations (1.28), (1.29) it follows that (u, u) is non-negative, and that 
(u, u) = 0 implies that u = 0 on the whole manifold Mn. 

2. Lie derivatives and infinitesimal transformations. Let v be a 
non-zero vector field on a Riemannian manifold Mn, and let iv and Lv denote, 
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respectively, the interior product and the Lie derivative with respect to the 
vector field v. Then for a covariant tensor a of order r, the interior product 
iv a is a tensor of order r — 1 defined by 

(2.1) (iv a)7(r_D = vs ajHr-i), 

and according to H. Cartan (2) we have 

(2.2) Lv = ivd + div, 

from which it follows that 

(2.3) Lvd = dLv = div d. 

For later developments we shall use the following known formulas for Lie 
derivatives in terms of local co-ordinates x1, . . . , xn of the manifold Mn (for 
these formulas see, for instance, 9, 13): 

(2.4) L, ul\ = vsVs u
ij

k - usj
k Vs v* - uis

k Vs v
j + uij

s Vk vs, 

(2.5) L,(V,«',*) - Vl(Lvu
i
jk) = (L, r , ' , ) t tV 

— \LV Tisj)ut
sjc — \LV Vis

k)U
ljS1 

(2.6) Lvgtj = VtVj + Vjvu 

(2.7) L, i y* = VkVjv
i + Ri

jklv\ 

where uij
k and ul

jk are tensor fields of class at least C1 on the manifold ikP, the 
contra variant and covariant orders of each being the numbers of superscripts 
and subscripts respectively. By applying equation (2.5) to gtj we can easily 
obtain 

(2.8) L, IV* = $gtl[Vj(Lvglk) + Vk(Lvgjl) - Vl(Lvgjk)]. 

The infinitesimal transformation on the manifold Mn generated by a non­
zero vector field v is called an infinitesimal motion (or isometry), affine 
collineation, projective motion, or conformai motion, and the corresponding 
v a Killing, an affine Killing, a projective Killing, or a conformai Killing 
vector field according as 

(2.9) Lvgij = 0 , 

(2.10) Lv i y* = 0, 

(2.H) L . i y * = />,«** + £**/. 

or 

(2.12) Lvgij = 2<j>gijJ 

where 

(2.13) pi = dp/dx* = Vip 
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is a gradient vector field on the manifold Mn, and 0 is a scalar. An infinitesimal 
conformai motion defined by equation (2.12) is called a homothetic motion 
if 0 is constant. 

From equations (2.6), (2.9) it follows that v is a Killing vector field if 

(2.14) VtVj+ VjVi = 0, 

which with equation (1.15) implies 

(2.15) ôv = 0. 

From equations (2.7), (2.11) for any projective Killing vector field v we have 

(2.16) Lv i y * = V* V,i>* + Rtjuv1 = Pjh* + />**/• 

Contraction with respect to i and j in equation (2.16) and use of the identity 
R'at = 0 give 

(2.17) p' = ^Tl* >**"*' 

By means of equations (1.16), (1.19), (1.27), (2.17), and the equation obtained 
by multiplying equation (2.16) by gjk we thus have 

(2.18) Av - —^—rddv = Qv. v n + 1 

Similarly, for a conformai Killing vector field v, from equations (2.7), (2.15), 
(2.8) we have 

(2.19) VtVj+ Vjvt = 2<t>gij, 

(2.20) -ôv = »0, 

(2.21) L, i y* = V ^ V ^ ' + i ? ^ , » 1 

= ïjôt* + 0 * 5 / - 0 ^ , 

where we have placed 

(2.22) 0, = V,0 = 60/ax^, 0* = g<>0,. 

Multiplication of equation (2.21) by gjk and substitution of equation (2.20) in 
the resulting equation yield immediately 

M> (2.23) Av + [1 - -Jdôv = Qv. 

3. Local boundary geodesic co-ordinates and integral formulas. 
Throughout this paper, by an (n — 1)-dimensional boundary Bn~l of a compact 
n-dimensional submanifold Mn of an w-dimensional manifold 3Rn (n > 2) we 
mean either an empty or a non-empty subdomain on the submanifold Mn 

satisfying the following condition: At every point P of the boundary B7^1 there 
is a full neighbourhood U(P) of the point P on the manifold 9JT and admissible 
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local co-ordinates x1, . . . , xn such that U(P) H Mn appears in the space of the 
x's as a hemisphere 

(3.1) E M 2 < e 2 , x*<0, 

the base x1 = 0 of the hemisphere corresponding to the boundary Bn~l. For 
non-empty boundary Bn~l we shall choose the local co-ordinates x1, . . . , xn to 
be boundary geodesic co-ordinates so that at each point P of the boundary 
the x^curve is a geodesic of the manifold Mn, with x1 as its arc length measured 
from the boundary Bn~1

1 and is orthogonal to the x*-curves, i = 2, . . . , n. 
Thus on the boundary Bn~l we can easily obtain (cf. 3, p. 57) 

(3.2) gll = g11 = 1, gli = gu = 0 ( i = 2 »). 

Moreover, by equation (3.1) the unit tangent vector N of the x^curve at 
every point P of the boundary Bn~l is the unit outer normal vector of the 
boundary Bn~1 in the sense that x1 is increasing along the xx-curve in the direc­
tion of the vector N. 

By using local boundary geodesic co-ordinates, from equations (1.10), (3.2), 
it is easily seen that on the boundary Bn~l 

(3.3) IYx = 0, TA = 0, IV, = 0, 2 I V , = gikdgjk/dx\ 

(3.4) btJ = (V, V, xh)ghJc N
k + glr Nr Th\ V, xhVj x* 

= T+j = —^dgij/dx1 (i,j = 2, . . . , »), 

where btj are the coefficients of the second fundamental form on the boundary 
Bn~l relative to the outer normal vector N on the manifold Mn, and V denotes 
the covariant derivation with respect to the metric tensor gtj (i,j = 2, . . . , n) 
of the boundary Bn~l (cf. 3, p. 147). Equations (3.3), (3.4) imply immediately 
that 

(3.5) i / = g*hi = - T x V 

The boundary Bn~l is said to be convex or concave on the manifold Mn according 
as the matrix | |6^| | for i, j = 2, . . . , n is negative or positive definite. If 
btj = 0 for i, j = 2, . . . , nf then all the geodesies of the boundary Bn~l are 
geodesies of the manifold Mn, and the boundary Bn~x is said to be totally 
geodesic on the manifold. Moreover, in terms of local boundary geodesic 
co-ordinates the tangential and normal components of a vector v are respec­
tively vu i 5̂  1> and vi. 

Now consider a compact orientable Riemannian manifold Mn with boundary 
Bn~l, and let u be a vector field of class C2 on Mn. Then on the manifold Mn 

we can construct the differential form 

(3.6) a> = *uidxi. 

By means of equations (1.11), (1.3) we can easily obtain 

(3.7) o> = b\Jl
n
{n„1)el...nii

idxJ«{n-1\ 
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which becomes, on the boundary Bn~l in terms of local boundary geodesic 
co-ordinates, 

(3.8) co = U\ dAn-iy 

where 
(3.9) dAn_i = eu.Mdx2 A . . . A dxn 

is the element of area of the boundary Bn~l. Use of equations (3.7), (1.1) 
gives immediately 

(3.10) dœ = d)j^1) elm..n Vk u
j dxk A dxjQ{n~l) 

= VjUjdAn. 

By applying Stokes' theorem we thus obtain the integral formula 

(3.11) JMn Vj uj dAn = jBn-i ui dAn„i. 

For a vector field z iona compact orientable Riemannian manifold Mn with 
boundary Bn~l, replacement of the vector field uj in equation (3.11) by the 
vectors vlVjvu vlViVj, vjVtv\ and use of equations (1.19), (1.27), (1.28), 
(1.29), (1.15) yield the integral formulas, respectively, 

(3.12) (%Qv - Av, v) + 2(Vis V») = /*»- ! vlVi vt dAn^, 

(3.13) 2(TVv, Vv) + jMnvjViVJv
idAn = ^ - 1 » % » ! ^ . ! , 

(3.14) (fa, ôv) + jMn vjVj V, v* dAn = JBn-i V\ Vi vl dAn-i, 

where for a covariant tensor utj 

(3.15) (Tu)ij = Uji. 

Subtraction of equation (3.14) from equation (3.13) and substitution of equa­
tions (1.23), (1.27) give immediately 

(3.16) (iQv, v) + 2(TW, Vv) - (fa, dv) = / f l . - i (v*Vt vx - vl Vt v
1) dAn^. 

By subtracting equation (3.16) from equation (3.12) we obtain, in consequence 
of equation (1.14), 

(3.17) - (Av, v) + (dv, dv) + (ôv, ôv) 

= fBn-i [fl*(Vi Vt - V, Vi) + Vi Vt V*] dAn-i. 

Similarly, addition of equations (3.12), (3.16) and use of equation (2.6) yield 

(3.18) (Qu - Av, v) + (L, g, Lv g) - (fa, fa) 

= jsn-i [vl(Vi vt + Vt vi) - vi Vi vl] dAn-i. 

The integral formulas (3.11), . . . , (3.14), (3.16), (3.17), (3.18) were first 
obtained by Hsiung (6, 8). 

From equations (2.14), (2.15), (2.16) it follows immediately that a Killing 
vector field v on any Riemannian manifold satisfies 

(3.19) Av - Qv = 0. 
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For the converse, suppose that on a compact orientable Riemannian manifold 
Mn with boundary Bn~l a vector field v has zero tangential component on the 
boundary Bn~l and satisfies equations (2.15), (3.19). If Vi v\ = 0 on the boun­
dary Bn~l in local boundary geodesic co-ordinates, then by using equations 
(2.15), (3.19), from equation (3.18) it follows that the vector field v satisfies 
equation (2.9), and therefore is a Killing vector field on the manifold Mn. 
Hence we obtain. 

THEOREM 3. IT. On a compact orientable Riemannian manifold Mn with 
boundary Bn~l, a necessary and sufficient condition for a vector field v with zero 
tangential component on the boundary Bn~l to be a Killing vector field is that it 
satisfy equations (2.15), (3.19) on the manifold Mn and 

(3.20) Vi vi = 0 on Bn~l 

in local boundary geodesic co-ordinates. 

Similarly, from equation (3.18) we have 

THEOREM 3. IN. On a compact orientable Riemannian manifold Mn with 
boundary B71*1, a necessary and sufficient condition for a vector field v with zero 
normal component on the boundary Bn~l to be a Killing vector field is that it 
satisfy equations (2.15), (3.19) on the manifold Mn and 

(3.21) X) »'(Vi vt + V, vi) = 0 on Bn~x 

in local boundary geodesic co-ordinates. 

It should be noted that the letters T and N in Theorems 3.IT and 3.IN are 
used to denote similar theorems on vector fields with zero tangential and 
normal components on the boundary Bn~l of the manifold Mn respectively; for 
convenience we shall use this notation throughout this paper. 

4. Geodesic vector fields. It is well known that on a Riemannian manifold 
a necessary and sufficient condition that an infinitesimal transformation 
generated by a vector field v transform a geodesic into a geodesic and preserve 
the affine arc length 5 is that 

(4.1) ( V ^ + i ^ g f = 0. 

Accordingly, for a unit vector u at any point P of the manifold Mn, the vector 
U defined by 

(4.2) IP = (V,- V, vh + R\jk vkWuj 

is called the geodesic deviation vector of the vector u with respect to the 
vector field v. For n mutually orthogonal unit vectors U\a (a = 1, . . . , n) a t 
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the point P of the manifold Mn, we can then form the mean of the geodesic 
deviation vectors U\a of u\a with respect to v: 

-j n Ï n 

(4-3) I Z tf?. = Z £ (V; V*v" + ^«*)«i. «f«. 

By using the relation 

(4.4) g " = S «la «fa, 
a=l 

(cf. 3, p. 98), equation (4.3) becomes 

(4.5) £ £ ^ . ^ ( V V y + i? , '» ' ) . 

Since the right side of equation (4.5) is independent of the choice of the n 
mutually orthogonal unit vectors u\aj we call the left side of equation (4.5) 
the mean geodesic deviation vector at the point P with respect to the vector 
field v. A vector field v, with respect to which the mean geodesic deviation vector 
vanishes, is called a geodesic vector field. Thus a vector field v satisfying 
equation (3.19) is geodesic. 

The following theorem is an immediate consequence of equations (1.26), 
(2.14), (2.15). 

THEOREM 4.1. On any Riemannian manifold Mn every Killing vector field is 
geodesic. 

Substituting equation (3.19) in equation (3.17), for any geodesic vector 
field v we have 

(4.6) (Qv, v) = (dv, dv) + (ôv, ôv) 

—JBn-i (viV1vi — v*VjVi + vi ViV1) dAn-L 

If the boundary Bn~l is convex or totally geodesic, and on the boundary Bn~l 

the geodesic vector field v has zero tangential component and satisfies equation 
(3.20), then the integrand of the boundary integral in equation (4.6) is non-
positive. Since the integrands of the first two integrals on the right side of 
equation (4.6) are non-negative, we thus have 

(4.7) (Qv, v) > 0. 

If the equality holds in equation (4.7), from equation (4.6) it follows that on 
the manifold Mn 

(4.8) dv = 0 , ôv = 0, 

that is, v is a harmonic vector field on Mn. A combination of equation (3.19) 
with the second equation of (4.8) and an application of Theorem 3.IT show 
that v is also a Killing vector field. From equation (2.14) and the first equation 
of (4.8) we can thus conclude that VtVj = 0. 
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Similar arguments can be applied to the case where the geodesic vector 
field v has zero normal component on the boundary Bn~l. Hence we have 

THEOREM 4.2. On a compact orientable Riemannian manifold Mn with a convex 
or totally geodesic boundary Bn~l let v be a geodesic vector field, which on the 
boundary Bn~l has zero tangential component and satisfies equation (3.20) (or has 
zero normal component and satisfies equations (3.21) and V\vt = 0, i ?£ 1). 
Then we have 

(4.9) (Qv, v) > 0, 

where the equality implies that the geodesic vector field v is a parallel vector field, 
that is, v has zero covariant derivative over the whole manifold Mn. 

An examination of the integrand of (4.9) gives immediately 

COROLLARY 4.2.1. On a compact orientable Riemannian manifold Mn with a 
convex or totally geodesic boundary Bn~l, if the Ricci curvature Rtj vivj is negative 
definite everywhere, then there exists no non-zero geodesic vector field v satisfying 
the same boundary conditions on Bn~l as those in Theorem 4.2; if the Ricci curva­
ture is negative semi-definite, then such a geodesic vector field v is a parallel vector 
field. 

For the case of empty boundary Bn~l, Theorems 4.1, 4.2, and Corollary 4.2.1 
were obtained by Yano and Nagano (15). 

Now suppose that a Riemannian manifold is an Einstein manifold so that 

(4.10) RtJ = Rgij/n, 

which implies that 

(4.11) R = gijRij. 

From Theorem 4.2 we thus obtain 

COROLLARY 4.2.2. On a compact orientable Einstein manifold Mn with a 
convex or totally geodesic boundary Bn~l, if the scalar curvature R is negative 
definite everywhere, then there exists no non-zero geodesic vector field v satisfying 
the same boundary conditions on Bn~l as those in Theorem 4.2. 

5. Almost-Hermitian structures. On a Riemannian manifold Mn with 
the metric tensor gij, if there exists a mixed tensor field TV of the second 
order satisfying 

(5.1.) F^Ff = -«<*, 

then TV is said to define an almost-complex structure on the manifold Mn, and 
Mn is called an almost-complex manifold. If an almost-complex structure 
tensor TV further satisfies 

(5.2) gu Fk* Fh
j = gkh, 
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then Ft
j is said to define an almost-Hermitian structure on the manifold Mn, 

and Mn is called an almost-Hermitian manifold. From equations (5.1), (5.2) it 
follows that the tensor Ftj defined by 

(5.3) F^ = gJr F/ 

is skew-symmetric, since Ftj = ghk Fj1 Fr
k Ft

r = — Fjt. By using multiplication 
of determinants, from equation (5.1) we readily see that a necessary condition 
for the existence of an almost-complex structure on a Riemannian manifold 
Mn is that the dimension n of the manifold Mn should be even. It should also 
be remarked that an almost-complex manifold is always orientable, and the 
orientation depends only on the tensor Ft

j. 
On a Riemannian manifold Mn an almost-Hermitian structure Ft

j with 
vanishing Nijenhuis tensor Nhi

j defined by 

(5.4) Nht> = 7V(Vr FJ - V< TV) - F / ( V r /V* - V, FT*) 

is called a pseudo-Hermitian structure, and the manifold a pseudo-Hermitian 
manifold. An almost (pseudo)-Hermitian structure Ft

j defined on a manifold 
Mn is called an almost (pseudo)-Kàhlerian structure if the associated differen­
tial form 

(5.5) co = Fijdxi A dxj 

is closed, that is, 

(5.6) dœ = 0; 

and the manifold Mn is accordingly called an almost (pseudo)-Kàhlerian mani­
fold. From equations (5.5), (5.6) it is easily seen that an almost (pseudo)-
Kâhlerian structure F J satisfies 

(5.7) Fhij = V, Ftj + V, FJh + Vj Fhi = 0. 

The tensor Fhij is obviously skew-symmetric in all indices. 
An almost-Hermitian structure Ft

j (an almost-Hermitian manifold) with 
vanishing vector Ft defined by 

(5.8) Ft = -VjFS 

is called an almost-semi-Kahlerian structure (an almost-semi-Kahlerian 
manifold). In particular the structure Ft

j is Kâhlerian if V* Ff = 0. 
Multiplying equation (5.3) by Fki we obtain 

(5.9) FtjF
ki = -<5/. 

Making use of equation (5.8) and covariant differentiation of both sides of 
equation (5.9), from equation (5.7) it is easily seen that 

(5.10) FhiJ F» = 2Fh'Fi. 
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Thus an almost-semi-Kàhlerian structure satisfies 

(5.11) FhijF^=0. 

Multiplying equation (5.10) by Fk
n and using equation (5.9) we obtain 

(5.12) Fk = -iFhijF^Fk\ 

which shows that an almost-Kâhlerian structure (an almost-Kâhlerian mani­
fold) is also an almost-semi-Kâhlerian structure (an almost-semi-Kâhlerian 
manifold). 

The remainder of this section is devoted to the establishment of some 
formulas, which will be needed later, for an almost-Hermitian structure Ft

j. 
Covariant differentiation of equation (5.1) gives immediately 

(5.13) FJVnFf= -F«VhFti. 

From equation (5.8) it follows that 

(5.14) F> = gjkFk = V, F*. 

Since Fir is skew-symmetric and r / r is symmetric with respect to j and r, 
we have 

(5.15) FjrLv r / r = 0. 

By means of equations (5.14), (5.15), (2.7), (2.4), from equation (2.5) we can 
easily obtain 

(5.16) Ft
hLv Fl = FihvrVj Vr F

ji - F,*V, F'*rVr^' - FihFjrVj VTvl + Rft*. 

Similarly, by putting 

(5.17) F J = gjkFrsk 

and using equations (5.7), (2.4) we find that 

(5.18) -hFrs
hLv FTS = - (Vr F.^v'Vt Frs - | ( V * F „ y V, Frs 

+ ( V r F , * ) ^ ^ » ' - (VëFr
h)FriViv' + (VhFrs)F

riViv
s. 

Suppose that 

(5.19) S" =ehvFr\ 

from which it follows that 

(5.20) Sa = gihLvFj\ 

A simple calculation with use of equations (5.19), (5.20), (2.4), (5.1), (5.13) 
suffices to demonstrate that 

(5.21) hSijStj = ±(vrVr F ' V V , Fjt - 2(Fjs V S ^V Vr F>* 
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By putting 

(5.22) ajk(v) = FrkLvFf, 

applying the ordinary product rule for differentiation to Vj(ajk vk), and making 
use of equations (2.4), (5.1), (5.16), (5.18), (5.21) we can finally arrive at 

(5.23) -Vj(aJk vk) = (V*V, vn + RW - Ft
hLv Fl 

6. Contravariant analytic vector fields. On an almost-Hermitian 
manifold Mn a vector field v is called a contravariant almost-analytic vector, 
or simply a contravariant analytic vector, if it satisfies 

(6.1) Lv TV = 0. 

By applying the ordinary product rule for differentiation to Vj(Fr
h Lv F/), 

making use of equations (2.4), (5.13), (5.16), (5.18), and noticing that 

gjriyhFrs)Lv Fjs = VFr^Vi Frs - 2FriViVs), 

we can easily see that condition (6.1) implies 

(6.2) V'Vr v* + Rr
j vr - F J Lv Fl - %FJ Lv F's = 0. 

On a pseudo-Kàhlerian manifold a contravariant almost-analytic vector is a 
contravariant pseudo-analytic vector (cf. 11). 

Using equation (5.22) to replace uT in the integral formula (3.11) by a\vk 

we thus obtain 

THEOREM 6.1. For a vector field v on a compact almost-Hermitian manifold Mn 

with boundary Bn~l, the following integral formula is valid: 

(6.3) (StJ, Stj) + JMn (V'Vr v> + RM - Ft>L, F* - ±FJ LvF's)vj dAn 

= -jBn-i [v'iVrF^Fj, - F1
i(yiv

i)Fjk - V1vk]vkdAn_1. 

Now let us consider a compact almost-Hermitian manifold Mn with boundary 
Bn~l and use local boundary geodesic co-ordinates. The boundary Bn~l is called a 
semi-pseudo boundary if on Bn~l the normal component of the structure tensor 
Fij is covariant constant, that is, if 

(6.4) V, TV = 0 (jfe = 2, . . . , n; i = 1, . . . , n) on Bn~\ 

Since Fij is skew-symmetric in i and j , we have Fn = 0, which implies that 
TV = 0 on Bn~l. On the other hand, from equation (5.1) it follows that 
(Vh Fij)Fjk is skew-symmetric in i and k. Thus we have 

(6.5) (VftTV)^i = 0 on.»*-1. 

If Bn~l is concave or totally geodesic and on Bn~l a vector field v has zero tan­
gential component and satisfies equation (3.20), then the integrand of the 
boundary integral in equation (6.3) is non-negative in consequence of equation 
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(6.5). By using equations (6.1), (6.2) and noticing from equation (5.19) that 
Sij = 0 for all i, j implies that Lv F J = 0, we therefore obtain 

THEOREM 6.2T. On a compact almost-Hermitian manifold Mn with a concave 
or totally geodesic boundary Bn~l let v be a vector field which on the boundary Bn~l 

has zero tangential component and satisfies condition (3.20). Then a necessary and 
sufficient condition that the vector field be contravariant analytic is that it satisfy 

(6.6) V'Vr v> + Rfy1 - FJL, Fl - ^FJLV Frs = 0. 

Now on a compact almost-Hermitian manifold Mn with boundary Bn~l let 
v be a vector field having zero normal component, instead of zero tangential 
component, on Bn~l. It is easily seen that if the boundary Bn~l is semi-pseudo 
and the vector field v satisfies different boundary conditions on Bn~l, by using 
the same arguments as those in the proof of Theorem 6.2T we can obtain 

THEOREM 6.2N. On a compact almost-Hermitian manifold Mn with a semi-
pseudo boundary Bn~l let v be a vector field which on the boundary Bn~1 has zero 
normal component and satisfies 

, . Vtvj = 0 (i = 2, . . . , n;j = 1, . . . ,n), 
VD*'; V1vk = 0 (* = 2 , . . . , » ) . 

Then a necessary and sufficient condition that the vector field v be contravariant 
analytic is that it satisfy equation (6.6). 

From equations (3.19), (6.6) and Theorems 6.2T, 6.2N follows immediately 

THEOREM 6.3. On an almost-Hermitian manifold Mn let v be a vector field 
satisfying 

(6.8) FJ Lv Fl + %FJ Lv Frs = 0. 

If the vector field v is contravariant analytic, then it is geodesic. Conversely, on an 
almost-Hermitian manifold Mn with boundary Bn~l a geodesic vector field v 
satisfying the condition (6.8) is contravariant analytic, if (i) the boundary Bn~l 

is concave or totally geodesic, and on Bn~l the vector field v has zero tangential 
component and satisfies equation (3.20), or if (ii) the boundary Bn~l is semi-
pseudo, and on Bn~l the vector field v has zero normal component and satisfies the 
conditions (6.7). 

From the first part of Theorem 6.3 follows immediately 

COROLLARY 6.3.1. Theorem 4.2 and Corollaries 4.2.1, 4.2.2 are also true for a 
contravariant analytic vector field v satisfying equation (6.8) on an almost-
Hermitian manifold Mn with a convex or totally geodesic boundary Bn~l. 

By means of equations (5.12), (5.14) it is readily seen that every vector 
field v on an almost-Kâhlerian manifold Mn satisfies equation (6.8). Thus from 
the first part of Theorem 6.3 we also have 
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COROLLARY 6.3.2. Theorem 4.2 and Corollaries 4.2.1, 4.2.2 are also true for a 
contravariant analytic vector field v on an almost-Kahlerian manifold Mn with a 
convex or totally geodesic boundary Bn~l. 

For the case of empty boundary Bn~l, Corollaries 6.3.1, 6.3.2 were obtained 
by Tachibana (12). 

An application of Theorems 3.IT, 3.IN gives the following two theorems. 

THEOREM 6.4T. On a compact almost-Hermitian manifold Mn with boundary 
Bn~l let v be a contravariant analytic vector field which satisfies equation (6.8) on 
the manifold Mn and which on the boundary Bn~l has zero tangential component 
and satisfies equation (3.20). Then a necessary and sufficient condition that v be a 
Killing vector field is that it satisfy equation (2.15) on Mn. 

THEOREM 6.4N. On a compact almost-Hermitian manifold Mn with boundary 
Bn~l let v be a contravariant analytic vector field which satisfies equation (6.8) on 
the manifold Mn and which on the boundary Bn~l has zero normal component and 
satisfies equations (6.7). Then a necessary and sufficient condition that v be a 
Killing vector field is that v satisfy equations (2.15) and (3.21) on Mn and B7^1 

respectively. 

Theorems 6.2T, 6.2N, 6.4T, 6.4N were obtained by Tachibana (12) for 
almost-Kâhlerian manifolds with empty boundary. 

From equations (6.3), (2.18) we obtain 

THEOREM 6.5. For any projective Killing vector field v satisfying equation (6.8) 
on a compact almost-Hermitian manifold Mn with boundary Bn~l, the following 
integral formula is valid: 

(6.9) (Stj, Stj) - ~ - (v, dbv) 

= -fBn-i [v'tfrF^Fj* - Fx\ViVj)Fjk - Viw*]w*di4n_i. 

If on a compact almost-Hermitian manifold Mn with boundary Bn~l a vector 
field v generates an infinitesimal transformation Tv leaving the boundary Bn~x 

invariant, then from the definition of an infinitesimal transformation, the 
vector field v must have zero normal component on Bn~l. The infinitesimal 
transformation Tv is called an automorphism of the manifold Mn if v is an 
infinitesimal motion and preserves the almost-Hermitian structure Ft

j
f that is, 

L, Ft = 0. 
Now let v be a projective Killing vector field satisfying equation (6.8) on a 

compact almost-Hermitian manifold Mn with boundary Bn~l. Substituting 

(6.10) (v, dbv) = (Ôv, 5v) + Vj(vj Ôv) 

in the integral formula (6.9) and applying equation (3.11) to the integral 
JMn ^j(vjViV1) dAn, we obtain 

https://doi.org/10.4153/CJM-1965-021-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-021-2


VECTOR FIELDS 229 

(6.11) (St„ Stj) - -~-x (to, to) = - JB {[v'&t Fx
û)Fjk 

- FS&iV^F» - V!VkV - -j-jVxtoïdA^L 
n + 1 ; 

Making use of equations (6.11), (6.1), (6.2), (6.5), (5.19) and Theorems 
6.4T, 6.4N we thus arrive at the following two theorems. 

THEOREM 6.6T On a compact almost-Hermitian manifold Mn with a totally 
geodesic boundary Bn~l let v be a projective Killing vector field which satisfies 
equation (6.8) on the manifold Mn and which on the boundary B71"1 has zero 
tangential component and satisfies equation (3.20). Then the following integral 
formula holds: 

(6.12) (SiS, S^) = - ^ (to, to). 

In particular, if the vector field v is further contravariant analytic, then it is a 
Killing vector field. 

THEOREM 6.6N. On a compact almost-Hermitian manifold Mn with a semi-
pseudo boundary Bn~l let v be a projective Killing vector field which satisfies 
equation (6.8) on the manifold Mn and which on the boundary Bn~l has zero normal 
component and satisfies equations (6.7). Then the integral formula (6.12) is still 
valid. In particular, if the vector field v is further contravariant analytic, then it 
defines an automorphism of the manifold Mn leaving the boundary Bn~l invariant. 

For the case of almost-Kahlerian manifolds with empty boundary, Theorems 
6.6T, 6.6N are due to Tachibana (12); in this case a vector field v always 
satisfies equation (6.8). 

Now let z;bea conformai Killing vector field which satisfies equation (6.8). 
Substituting equations (6.8), (2.23) in the integral formula (6.3), noticing that 

(6.13) -vj V'V, vl = (to, to) + Vj(vj ôv), 

and applying equation (3.11) to the integral jMn Vj(vj'Vt vl) dAn, we can 
obtain 

THEOREM 6.7. For any conformai Killing vector field v satisfying equation (6.8) 
on a compact almost-Hermitian manifold Mn with boundary Bn~l, the following 
integral formula is valid: 

(6.14) (Stj, StJ) + ^—^ (to, to) = - f {[vr(Vr Fx
j)Fjk 

- /V(V« vj)Fjk - V! vk]vk + *—- v1 dvj dA^. 

By means of equations (6.14), (5.19), (6.1), (6.2), (6.5) and Theorems 6.4T, 
6.4N, we are led to the following two theorems. 
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THEOREM 6.8T. On a compact almost-Hermitian manifold Mn with a concave 
or totally geodesic boundary Bn~l let v be a conformai Killing vector field which 
satisfies equation (6.8) on the manifold Mn and which on the boundary Bn~l has 
zero tangential component and satisfies equation (3.20). Then v is a contravariant 
analytic vector field for n = 2, and is a Killing vector field for n > 2. 

THEOREM 6.8N. On a compact almost-Hermitian manifold Mn with a semi-
pseudo boundary Bn~l let v be a conformai Killing vector field which satisfies 
equation (6.8) on the manifold Mn and which on the boundary Bn~l has zero 
normal component and satisfies equations (6.7). Then the vector field v is contra-
variant analytic for n = 2, and defines an automorphism of the manifold Mn 

leaving the boundary Bn~l invariant for n > 2. 

Applying Lie differentiation to equation (5.11) we have 

(6.15) Fhij Lv F" + F^L, Fhij = 0, 

from which it follows immediately that on an almost-semi-Kahlerian manifold 
Mn if a vector field v satisfies 

(6.16) Fhij Lv Fij = 0, or FiSLv Fhij = 0, 

it also satisfies equation (6.8). On the other hand, a vector field v on an almost-
Kâhlerian manifold always satisfies (6.16). Thus the following two corollaries 
are an immediate consequence of Theorems 6.8T, 6.8N. 

COROLLARY 6.8.1. Theorems 6.8T, 6.8N are still true if the almost-Hermitian 
manifold Mn is replaced by an almost-semi-Kdhlerian manifold Mn, and the 
condition (6.8) by (6.16). 

COROLLARY 6.8.2. Theorems 6.8T, 6.8N are still true for a conformai Killing 
vector field v on an almost-Kdhlerian manifold Mn with equation (6.8) auto­
matically satisfied. 

For the case of empty boundary Bn~l, Theorems 6.8T, 6.8N and Corollary 
6.8.1 were obtained by Yano (14), and Corollary 6.8.2 by Lichnerowicz (10) 
and Goldberg (4) for a Kâhlerian manifold Mn and by Goldberg (5) for an 
almost-Kâhlerian manifold Mn. 

7. Covariant analytic vector fields. On an almost-Hermitian manifold 
Mn a vector u is called a covariant almost-analytic vector, or simply a covariant 
analytic vector, if 

(7.1) V , ( F / ur) = ur V, Ft
r + Ff

r Vr uj. 

In particular, for an almost-Kâhlerian manifold, condition (7.1) becomes, in 
consequence of equations (5.7) and Ftj = —FjU 

(7.2) uT Vr Ftj = -Fir Vr Uj + F/ V, uT. 

On a pseudo-Kâhlerian manifold a covariant almost-analytic vector is a co-
variant pseudo-analytic vector (cf. 11). 
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LEMMA 7.1. On an almost-semi-Kàhlerian manifold Mn with boundary Bn~l 

let X, n be two scalar functions satisfying 

(7.3) V,X = / W , / * . 

If the normal derivative of one of the two functions X, \x on the boundary Bn~l 

vanishes, that is, if either ViX = OorVi/x = 0 on Bn~l in terms of local boundary 
geodesic co-ordinates, then the two functions X, JJL are constant over the whole manifold 
Mn. 

Proof. Multiplying equation (7.3) by F/ and using equation (5.1), we obtain 
^•( —M) = ^ / V< X. So without loss of generality we may assume that Vi X = 0 
on the boundary Bn~l. From the definition of an almost-semi-Kàhlerian 
manifold and equation (7.3) it follows that 

V*V,X = Fir(Vt V rM), 

the right side of which is zero, since V* Vr JJL and FiT are, respectively, symmetric 
and skew-symmetric with respect to i and r. Thus we have 

V*V*(X2) = 2VZ'X ViX. 

Integrating the above equation over the manifold Mn and applying the integral 
formula (3.11) to the left side of the equation, we obtain 

2(V, X, V, X) = jBn-i Vi(X2) dAn^ = 0, 

which implies that X is constant over the whole manifold Mn, and therefore y 
is also, because of equations (7.3), (5.1). Hence the lemma is proved. 

For an almost-Kâhlerian manifold Mn with empty boundary B11"1, Lemma 
7.1 was obtained by Tachibana (12) and is a generalization of Liouville's 
theorem in the theory of functions of a complex variable. 

On an almost-semi-Kâhlerian manifold Mn let u be a covariant analytic 
vector, v a contravariant analytic vector, and X, ju two scalar functions defined 
by 

(7.4) X = Fr
s us vr, 

(7.5) \x = urv
r. 

Since v is contravariant analytic, by definition we have 

(7.6) Lv Fij = vr Vr F J - F/ Vr v
j + Fr

j V« vr = 0. 

From equations (7.1), (7.4), (7.5), (7.6) it is easily seen that the two functions 
X, /x satisfy equation (7.3). By Lemma 7.1 we thus obtain 

THEOREM 7.1. On a compact almost-semi-Kàhlerian manifold Mn with boundary 
Bn~l let v be a contravariant analytic vector and u a covariant analytic vector. If 
the normal derivative of the inner product n of u and v vanishes on the boundary 
Bn~l, then the inner product \x is constant over the whole manifold Mn. 
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Now consider a vector field u on an almost-Hermitian manifold Mn, and 
define the vector field u by 

(7.7) ut = Ft1 uu 

from which it follows that 

(7.8) vt = FJvt = -uu 

where 

(7.9) vt = ut. 

If u is covariant analytic, then by equations (7.1), (7.7), (7.8), (7.9) we 
obtain 

(7.10) Vivj = Vjvt + F/lVjVr - VriF/Vs)]. 

Multiplication of equation (7.10) by Ft* and use of equations (5.1), (7.8), (7.9) 
give immediately equation (7.1) for u. Thus we arrive at 

THEOREM 7.2. On an almost-Hermitian manifold Mn if a vector field u is 
covariant analytic, then the vector field u is also. 

For almost-Kâhlerian manifolds with empty boundary, Theorems 7.1, 7.2 
were obtained by Tachibana (12). 

Now let us consider an almost-Kâhlerian manifold Mn with boundary Bn~1
t 

and use the structure tensor Ft
j to define the tensor 

(7.11) R% = hFstRjnsFk\ 

It should be noted that on a pseudo-Kâhlerian manifold R% = Rjk. By using 
the relation Fir = — Fri and the Bianchi identity 

Rfirji T* Rhjir ~T Rfiirj ~ 0, 

we have 

(7.12) Rhrji Fir = 2FtT\Rhrji ~ Rhijr) = 2FTlRhjir-

Multiplying by gi1c the Ricci identity for the tensor Fihy 

[V*;, Vj]Fih = —FrhR
r
ijk — FirR

r
hjk, 

and making use of equations (7.12) and VtF
ij = 0, we are led to 

(7.13) VrV, Frh = hFstRhJts + R/Frh. 

Application of the operator Vj = gjTVr to the equation Fjir = 0 and use of 
equation (7.13) yield 

(7.14) V'Vr FJt = FstRijts + R/Frt - RirFrj. 

On the other hand, by means of the Ricci identity (1.24) for a vector field 
v and the relation Ftj = —Fjif we obtain 

(7.15) ^ ' V , VtVi = -hFstRritsv
r. 
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From equations (7.11), (7.13), (7.15) it follows that 

(7.16) FtYV'VT Fjt = -vTR*rk + vrRTk, 

(7.17) Fk
iF>rV]Vrvt = -vrR*k. 

Let the vector v be denned by equation (7.8) from the vector v. Then 

(7.18) v* = gitvl = -Ft
lv'. 

By computing VV r vt directly from equation (7.8) and making use of equations 
(7.14), (5.2) we are readily led to 

(7.19) (VrVr v{ - Rrt f)vl = (VrVr vt + Rri vr)vl 

- 2R*rivV + 2(VV)(V r FH)FjV. 

Now for a covariant analytic vector u, by applying the operator F^V1 to 
equation (7.2) and using V} F

iT = 0, we obtain, in consequence of equations 
(7.16), (7.17), 

(7.20) T,(u) = 0, 

where 

(7.21) r«(«) = VrVr ut + Rn ur - 2R*ri u
r + v V ( V , Frs + Vr FjJF,: 

Furthermore, for any vector field v we can define the tensor 

(7.22) bjk(v) = (v'VT F/ + Ft'V, vr + F/Vr vs)Fsk 

= vT(Vr F/)Fsk + F/{VTvs)Fsk - V,vk. 

Making use of equation (5.7), from equations (5.22), (7.22) it is easily seen 
that ajk(v) = 0 (that bjk(v) = 0) is equivalent to the fact that the vector field 
v is contra variant analytic (is covariant analytic). Noticing the similarity 
between bjk and a]k defined by equation (5.22), by calculations analogous to 
those in §5 we can show that 

(7.23) |62(f) = ¥ik bik = -vsvr Vs F» V, Ftr 

+ F" Fsk VT vs V, vk + Vj vk V> v\ 

(7.24) Vj(bjk vk) = - (VrVr vk + vTRrkV + 2R*rk vV 

+ vrvkVr F/V'F,, - 2 ( v V ) F / ( V r Fsk)v
k 

- FriFskVrvsVjVk- V,»»vV. 

Addition of equations (7.23), (7.24) and the use of equation (5.13) yield 

(7.25) V\bjk vk) + \b\v) = - (VrVr v
l + vTRri)v

l 

+ 2R*TlvV - 2VV(VT Fjs)FkY. 

Equations (7.25) and (7.19) imply, by subtraction, 

(7.26) i [ ( W r 0 , - vrR„)v' - Vj(bjkv
k)] = v'Tt(v) + ib*(v). 

https://doi.org/10.4153/CJM-1965-021-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-021-2


234 ARTHUR L. HILT AND CHUAN-CHIH HSIUNG 

Integrating equation (7.26) over the manifold ikP, applying the integral 
formulas (3.11), (3.17) for the vector field v, and using equation (7.21), we 
obtain 

THEOREM 7.3. For any vector field v on a compact almost-Kdhlerian manifold 
Mn with boundary Bn~1

1 the following integral formula is valid: 

(7.27) j M n [v'TM + W(v) + $S(v)] dAn 

= j / B n- i (vt Vi vl — vj Vj vi + vi Vt vl - bu vk) dAn-u 

where v, bjk, b2(v), Tt(v) are defined by equations (7.8), (7.22), (7.23), (7.21) 
respectively, and 

(7.28) S(v) = (dv, dv) + {bv, ôv). 

By means of equations (7.8), (7.18), (7.22), (5.1), (6.5) and Fi
rvrv

tV1 Ft
l = 0, 

which can be derived from equation (5.13), it is easily seen that if the vector 
field v has zero tangential component on the boundary Bn~l and satisfies 
equations (3.20) and (7.20) on Bn~l and Mn respectively, then equation (7.27) 
is reduced to 

(7.29) jMn [P(v) + 2S(v)] dAn + 4f fl»-i vh, brs F1"F1
S dAn^ = 0. 

If the boundary Bn~l is convex or totally geodesic, then from equation (7.29) 
it follows that b2(v) = 0, showing that v is covariant analytic. Since we have 
already shown that a covariant analytic vector v satisfies equation (7.20), we 
therefore arrive at 

THEOREM 7.4T. On a compact almost-Kdhlerian manifold Mn with a convex 
or totally geodesic boundary Bn~1 let v be a vector field which on the boundary Bn~l 

has zero tangential component and satisfies equation (3.20). Then a necessary 
and sufficient condition that the vector v be covariant analytic is that it satisfy 
equation (7.20) on the manifold Mn. 

Similarly, we have 

THEOREM 7.4N. On a compact almost-Kdhlerian manifold Mn with boundary 
Bn~l on which V* F\j = 0 for i, j = 1, . . . , n, let v be a vector field which on 
the boundary Bn~l has zero normal component and satisfies V*,Vj = 0 for all i and j 
not equal to 1 at the same time. Then a necessary and sufficient condition that the 
vector v be covariant analytic is that it satisfy equation (7.20) on the manifold Mn. 

If the boundary Bn~l is convex or totally geodesic, from equation (7.29) it 
follows also that Siv) = 0, which with equations (7.28), (4.8) for the vector v 
implies that the vector v is harmonic. Hence we have 

THEOREM 7.5T. Under the same assumptions as those in Theorem 7.4T, if the 
vector field v is covariant analytic, then the vector field v is harmonic. 

Similarly, we obtain 
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THEOREM 7.5N. Under the same assumptions as those in Theorem 7.4N, if 
the vector field v is covariant analytic, then the vector field v is harmonic. 

For the case of an empty boundary, Theorems 7.3, 7.4T, 7.4N, 7.5T, 7.5N 
were obtained by Tachibana (12). 

8. Almost-Kâhlerian manifolds. Let Mn be an almost-Kâhlerian mani-
old. Then from equation (5.7) we have 

(8.1) 2Vr Fti = Vr Fti + Vt Fri - Vt Frt. 

Substituting equation (8.1) in equation (7.19) and making use of the integral 
formula (3.17) for v we obtain 

LEMMA 8.1. On a compact almost-Kâhlerian manifold Mn with boundary Bn~l 

for any vector v satisfying 

(8.2) VV(V r Fti + Vt Fri)FjV = 0, 

the following integral formula is valid: 

(8.3) JMn [(VTVr vt + Rri vT)vl - (2R*rj v
T + F,* V, Frt V W + S(v)\ dAn 

= jBn-i (y1 Vi Vi — vj Vj vi + vx Vt V*) dAn_u 

where v, S(v) are defined by equations (7.8), (7.28) respectively. 

Let v be a contravariant analytic vector field on an almost-Kâhlerian 
manifold Mn. Then from equation (7.6) we have 

(8.4) vr Vr Ftj = Ft
T Vr vj + F/ Vt vr. 

By means of equations (8.4), (7.2), (5.1) we obtain immediately 

LEMMA 8.2. On an almost-Kâhlerian manifold Mn if a contravariant analytic 
vector field v is also covariant analytic, then it is a parallel vector field. 

Substitution of equation (5.7) in equation (8.4) and use of equation (7.8) 
give readily 

(8.5) VjVt - ViVj = -F/iVrVi + ViVr), 

which with equations (5.1), (5.13) implies that 

(8.6) (VjVi - V , « g ( V * 7 W r = ~VkF
it{Vtvi+ Vtvt) = 0 , 

since V̂  Fu and V tVi + V* vt are, respectively, skew-symmetric and symmetric 
in i and t. Applying V* to equation (8.4) and using equations (5.7), (5.8), 
(5.12), we obtain 

(8.7) V V Vr FtJ + vr V'Vr Fa - Ft
r VlVT Vj - V'F/ Vt vr - F/ V'V* vT = 0. 

Multiplication of equations (8.7), (8.4) by Fk
j and use of equations (7.16), 

(7.17), respectively, yield 
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(8.8) V'Vr vk + RTk vr + W ( V , Frj + Vr FtJ)Fk
3 = 0, 

(8.9) V, vk = / W VT vj - FkV Vr Ftj. 

On the other hand, from equations (5.1), (5.7), (5.13) and Ftj = —Fji it 
follows that 

(8.10) Fh
3 Fs

T(VhFst)Ft
i = -Fh

j(ViFrh + VrFhi). 

Interchanging r and j in equation (8.10) and adding the resulting equation to 
equation (8.10) we obtain, in consequence of equation (5.13), 

(8.11) VjVT(VjFTt + VrFjt)Ft
i = -Fh

jFs
rVjVr(V

hFst + VsFht)Ft\ 

Substituting equation (8.9) for VjVT on the right side of equation (8.11) and 
noticing that Fh

jViFjs and (VhFst + VsFht)Ft
i are, respectively, skew-

symmetric and symmetric in h and 5 so that their product is zero, for any 
contravariant analytic vector field v on the manifold Mn we thus have 

(8.12) Vjvr(V
jFrt + V'F^^Ft1 = 0. 

Making use of equations (5.7), (6.2), (6.8), (6.16), (7.21), (8.12), Theorem 
7.3, and Lemma 8.2, and applying to equation (7.27) the arguments on the 
boundary conditions in the proofs of Theorems 7.4T, 7.4N, we can easily 
arrive at 

THEOREM 8.1. On a compact almost-Kàhlerian manifold Mn with a convex or 
totally geodesic boundary Bn~l let v be a contravariant analytic vector field which 
on the boundary Bn~x has zero tangential component and satisfies equation (3.20) 
(or on a compact almost-Kàhlerian manifold Mn with boundary B71"1 on which 
Vi Fk

j = 0 for i, j , k = 1, . . . , n, let v be a contravariant analytic vector field 
which on the boundary Bn~1 has zero normal component and satisfies Vt Vj = 0 for 
all i and j not equal to 1 at the same time). Then 

jMnRirvV dAn > 0, 

where the equality implies that v is a parallel vector field. 

For the case of empty boundary Bn~1
} Theorem 8.1 is due to Tachibana (12). 

On an almost-Kàhlerian manifold Mn let us now consider the canonical 
connection defined by 

(8.13) Y i1 j = V t
h j + th

ijf 

where 

(8.14) t\j= -iF/VjF/. 

It is easily seen that the tensors gtj and Ft
j both are covariantly constant with 

respect to the connection 1%, and it should be noted that on the manifold Mn 

there are many other connections having this property. Let Ri
jkT be the 

curvature tensor of the manifold Mn with respect to the connection Tfj. Then 
from equations (1.21), (8.13) we have 
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(8.15) R ijjc — R ijjc + Vj; t ij — V;-1 ik + tsij t sjc — tsijc t Sj. 

By means of equations (8.14), (8.15), (5.13), an elementary calculation suffices 
to demonstrate that 

(8.16) R\jk = %R\jk - $Rr
sjk Fr» Ft

s - \Vk Fr
h V, F/ + JV, Fr* Vk F,r. 

Multiplying equation (8.16) by Fh
l and using equations (5.1), (5.13) we obtain 

(8.17) R\jk Fh* = R\jk Fh* + \Tkh 

where 

(8.18) Tkj = -FSVtFfVjFf. 

On the other hand, use of equations (5.1), (5.7), (5.13) yields immediately 

(8.19) (V, Frn)F
hiF^ Vj Ft* = (V, F/)Fhi F^Vt Frj + Vr FJt) 

= (V, Fh')F
hi(-Frj V, F S - FJt Vr Ffl 

= Vk F'i(Vl FJt + Vj Fit) - Vk Fh
r Vr Ft

h = Vk F>* Vx Fjt. 

From equations (8.17), (8.18), (8.19), (7.11) it follows that 

(8.20) Rjci = ^R ijk Fn
%Fi = Rkî + \Tkj FiJ 

= R*kl-lVkFijVlF
ij. 

For any vector field v on the manifold Mn use of equations (5.7), (7.8) shows 
immediately that 

(8.21) - (V, Frh)v
k = (Vr Fhk - V, Frk)v

k 

= Vr vh - Va vr + Frk Vh v
k - Fhk Vr vk, 

from which with equations (8.18), (5.13) we have 

(8.22) Tkj vk = (Vr vh ~ V, vr) (V, Fi
r)Fht + 2V, Fhk Vh vk. 

If v is a contra variant analytic vector field on the manifold Mn, then by means 
of equations (8.6), (8.20), (8.22) we obtain 

(8.23) v'R*k = vsR% + %Fk
l V, Fhj VV. 

Thus for a contravariant analytic vector field v on a compact amost-Kâhlerian 
manifold Mn with boundary Bn~l, from Lemma 8.1 and equations (5.7), (6.2), 
(6.8), (6.16), (8.12), (8.23), we have 

(8.24) SM«[S(V) -2R*kv
jvk]dAn 

= JBn-i (vl Vi Vi - vs Vj vi + vi Vt vl) dAn-.L 

If S(p) = 0, then from equations (7.28), (4.8) for the vector v it follows that 
v is harmonic, and therefore v is a Killing vector field due to equations (8.5), 
(2.14). Applying to equation (8.24) the arguments on the boundary conditions 
in the proofs of Theorems 7.4T, 7.4N, we thus arrive at 
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THEOREM 8.2. Under the same assumptions as those in Theorem 8.1, 

where the equality implies that v is a Killing vector field and v is harmonic. 

For the case of empty boundary Bn~1
1 Theorem 8.1 is due to Apte (1) for a 

Killing vector field v, and due to Tachibana (12) for a contravariant analytic 
vector field v. 
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