VECTOR FIELDS AND INFINITESIMAL
TRANSFORMATIONS ON ALMOST-HERMITIAN
MANIFOLDS WITH BOUNDARY

ARTHUR L. HILT AND CHUAN-CHIH HSIUNG

Introduction. Many authors have made interesting and important
contributions to the study of vector fields or infinitesimal transformations on
compact orientable Riemannian manifolds and Hermitian manifolds without
boundary. Recently, Hsiung (6, 7, 8) has extended some of these results to
compact orientable Riemannian manifolds with boundary. The purpose of
this paper is to continue Hsiung’s work by studying vector fields and infinite-
simal transformations on almost-Hermitian manifolds with boundary.

Section 1 contains fundamental notations and local operators and formulas
for a Riemannian manifold.

In §2 fundamental formulas for Lie derivatives are given, and the in-
finitesimal transformations and their generating vector fields are defined in
terms of Lie derivatives.

Section 3 is devoted, for compact orientable Riemannian manifolds with
boundary, to a discussion of local boundary geodesic co-ordinates and the
derivation of some integral formulas and theorems, which were obtained by
Hsiung and will be needed in later sections of this paper.

Section 4 contains necessary and sufficient boundary conditions for a Killing
vector field on a compact orientable Riemannian manifold M" with boundary
B™! to be a geodesic vector field, and also a curvature condition of the manifold
M™ for the non-existence on M" of a geodesic vector field subject to the same
boundary conditions.

In §5 we define almost-Hermitian, almost-semi-Kéhlerian and almost-
Kihlerian structures with their relations. Then for almost-Hermitian structures
we derive some formulas which will be useful in the next two sections.

Section 6 is devoted to contravariant analytic vector fields on an almost-
Hermitian manifold M" with boundary B"!, together with their relations to
Killing, projective Killing, and conformal Killing vector fields. First on the
manifold M" we obtain some integral formulas for projective and conformal
Killing vector fields and necessary and sufficient boundary conditions for a
vector field to be contravariant analytic. From the integral formulas, conditions
are then derived for a projective, as well as conformal, Killing vector field on
M" to define an automorphism of the manifold M" leaving the boundary B!
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invariant, where by an automorphism we mean an infinitesimal motion pre-
serving the almost-Hermitian structure.

Section 7 is concerned with covariant analytic vector fields on an almost-
Hermitian manifold with boundary, and contains necessary and sufficient
conditions for a vector field on the manifold to be covariant analytic, obtained
by calculations similar to those in §6.

Finally, §8 is devoted to a study of vector fields on an almost-Kahlerian
manifold with boundary. In particular, an integral formula for a contra-
variant analytic vector field in terms of the canonical connection on the
manifold is obtained. The main results of §§6, 7, 8 constitute an extension of
some recent work of Yano (14) and Tachinaba (12) on almost-Hermitian and
almost-Kihlerian manifolds without boundary respectively.

Throughout this paper, the dimensions of M and B*! are understood to be
n (>2) and » — 1 respectively, all Riemannian manifolds are of class C?, and
all differential forms and vector fields are of class C2.

1. Notations and operators. Let M" be a Riemannian manifold of
dimension #, ||g;|| with g;; = g;; the matrix of the positive definite metric of
the manifold M", and ||g?/|| the inverse matrix of ||gy;||. Throughout this paper
all italic indices take the values 1, ..., #n unless stated otherwise. We shall
follow the usual tensor convention that indices can be raised and lowered by
using g% and g;; respectively; and that when an italic letter appears in any term
as a subscript and superscript, it is understood that this letter is summed
for all the values 1, ..., n. We shall also use v* and v; to denote the contra-
variant and covariant components of a vector field v respectively. Moreover,
if we multiply, for example, the components a,; of a covariant tensor by the
components &% of a contravariant tensor, it will always be understood that j
is to be summed.

Let M be the set {1,...,n} of positive integers less than or equal to #, and
I(p) denote an ordered subset {7i,...,1%,} of the set M for p < n. If the
elements 7y, . .., 7, are in the natural order, that is, if 7; < ... < 7,, then the
ordered set I(p) is denoted by I,(p). Furthermore, let I(p;3|j) be the ordered
set I(p) with the sth element 7, replaced by another element j of %, which
may or may not belong to I(p). We shall use these notations for indices
throughout this paper. When more than one set of indices is needed at one
time, we may use other capital letters such as J, K, . . . in addition to I.

From the metric tensor g with components g,; we have

_ J(n)
L1 .Km = Lirjr - + - Lingn Ok(n)

where 6" is zero when two or more j’s or k’s are the same, and is +1 or —1
according as the j's and k’s differ from one another by an even or odd number
of permutations. Thus the element of area of the manifold M™ at a point P
with local co-ordinates x!, ..., x" is

1.1 dA, = e _,dx' N ... A dx",
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where d and the wedge A denote the exterior differentiation and multiplication
respectively, and

(12) €l.n = +\/gln,ln

By using orthonormal local co-ordinates x!, ..., x" and the relations
(13) €rm) = Bll(ngz €1...ny

(1.4) 5O ki = P! Okt

we can easily obtain

I(p) J(n—p) __ J(n—p)
(1.5) € I K(n—p) € = p! dk(n—p-

From equations (1.3), (1.4), (1.5) it follows that
(1.6) e1. pet "t =1
On the manifold M" let v(, be a differential form of degree p given by
(L.7) Vo) = Vo dx0P,
where we have placed
(1.8) dxT® =dxtt A ... A dx'e.

Then we have
3
4 - Io(p+1D)
1.9) dvy = (—1) lz>. [Vip+l U — Zl Vis U 106; sli,;+1)j| dx ’
p+1>1p §=

where V denotes the covariant derivation with respect to the affine connection
of the Riemannian metric g;;, whose components in the local co-ordinates

x1,...,x" are given by

(1.10) D% = 32"(0gn;/ 0x* + dgm/0x? — dgu/0x").
Moreover, the dual and codifferential operators * and § are defined by
(L.11) W) = €nmron—p v 0P dx’ 0P,

(1.12) 0y = (—1)P+"Hsdx ),

which imply immediately
(1.13) dvpy) = —pgY V;virep—1) dxTo?,

In particular, for a vector field » on the manifold M" we obtain, from
equations (1.9), (1.13),

(1.14) (dv)iy; = Viv; — Vv,
(1.15) o = —V,;vf,

(1.16) (o) = —V, Y, 07,

(1.17) (6dv); = VIV, v, — VIV, 0,
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where V/ = g#V,, Use of equations (1.16), (1.17), and the Ricci identity for
the contravariant components v,

(1.18) [Vk, V]] ‘Z)i = lei”k,
thus gives
(1.19) (A'U)«,; = —VjVj V; + Ri]‘ Uj,

where [V, V] = ViV, — V,; Vi, and A, R%;;, R;; are respectively the Laplace—
Beltrami operator, the Riemann curvature tensor, and the Ricci tensor defined
by

(1.20) A = ds + ad,
(1.21) Ri]-kl = 6F]’k/(')xl —_ OP]Zl/axk + I‘jsk I‘Sil —_ Fjsl Fsik,
(1-22) Rij = Rkijlm

By contraction with respect to < and &, from equation (1.18) we have
(1.23) [V“ Vj]'Ui = R«ij vivj.

Multiplication of equation (1.18) by g, gives the Ricci identity for the co-
variant components v,

(1.24) [Viy, Vvi = —v; Ry,

which can also be written as

(1.25) —VyViv; + Vi(Viv; + Vo) — V; Vo, = —o; R
Multiplying equation (1.25) by g%g* and using equation (1.19), we thus
obtain

(1.26) (00)" — (Mo)* = V(Vi* + VRl — V'V, o7,

where

(1.27) Q)" =2R v

Let u;,y and v,y be two tensor fields of the same order p on a compact
orientable manifold M™. Then the local and global scalar products {x, v) and
(u, v) of the two tensor fields # and v are defined by

(1.28) (u,v) = — u 29 1o

(1.29) (u,v) = an {u, v) d4,.

From equations (1.28), (1.29) it follows that (u, #) is non-negative, and that
(#, #) = 0 implies that # = 0 on the whole manifold M".

2. Lie derivatives and infinitesimal transformations. Let v be a
non-zero vector field on a Riemannian manifold M*, and let 7, and L, denote,
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respectively, the interior product and the Lie derivative with respect to the
vector field ». Then for a covariant tensor a of order 7, the interior product
1, @ is a tensor of order » — 1 defined by

2.1) (s @) 1-1y = ¥? @j1r-1y,

and according to H. Cartan (2) we have

(22) L,=1,d+ divy
from which it follows that
(2.3) L,d =dL, = di,d.

For later developments we shall use the following known formulas for Lie
derivatives in terms of local co-ordinates «x?, ..., x” of the manifold M" (for
these formulas see, for instance, 9, 13):

(2.4) L,u®, = v’Voutl, — us, Vvt — us, Vool + u¥, V, 08,
(2.5) L,(Viuly) — Vill,uly) = (L, Tii)u'y
— (L, TP )uleq — (L, Tf)uly,
(2.6) Ly g2i; = Vz V; + Vj Vi
2.7 L, T4 =V, Vvt 4+ Riy, v},

where u %, and #%;; are tensor fields of class at least C* on the manifold M*, the
contravariant and covariant orders of each being the numbers of superscripts
and subscripts respectively. By applying equation (2.5) to g;; we can easily
obtain

(2.8) L, T% = 3g"[V,(L, gu) + V(Lo g11) — Vi(L, g)].

The infinitesimal transformation on the manifold M" generated by a non-
zero vector field v is called an infinitesimal motion (or isometry), affine
collineation, projective motion, or conformal motion, and the corresponding
v a Killing, an affine Killing, a projective Killing, or a conformal Killing
vector field according as

(2.9) Lygi; =0,

(2.10) L, T% =0,

(2.11) L,T;% = p,; 0" + Pu 85,
or

(2.12) L,gi; = 208

where

(2.13) pi=0p/dxt =V;p
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is a gradient vector field on the manifold M*, and ¢ is a scalar. An infinitesimal
conformal motion defined by equation (2.12) is called a homothetic motion
if ¢ is constant.

From equations (2.6), (2.9) it follows that v is a Killing vector field if

(2.14) Viv; 4+ Vv, =0,
which with equation (1.15) implies
(2.15) év = 0.
From equations (2.7), (2.11) for any projective Killing vector field » we have
(2.16) L, 0% =V, V00 4+ Ry vt = p,; 8,0 + pr 6,5
Contraction with respect to 7 and j in equation (2.16) and use of the identity
R, = 0 give
2.17) br=

By means of equations (1.16), (1.19), (1.27), (2.17), and the equation obtained
by multiplying equation (2.16) by g% we thus have

2
n+1

Similarly, for a conformal Killing vector field v, from equations (2.7), (2.15),
(2.8) we have

vV, Vo'

(2.18) Ay — dév = Qu.

(2.19) Viv; + Vv, = 2¢g4,
(2.20) —ov = n¢v
(2.21) L, T4 =V, V0t + Riy, vt

=¢;0" + ¢x8," — ¢'g,
where we have placed
(2.22) b, = V,;¢ = 3¢/dx’, t=g"¢,

Multiplication of equation (2.21) by g’ and substitution of equation (2.20) in
the resulting equation yield immediately

(2.23) Av + <1 - 1%) dév = Q.

3. Local boundary geodesic co-ordinates and integral formulas.
Throughout this paper, by an (# — 1)-dimensional boundary B® ! of a compact
n-dimensional submanifold M" of an #-dimensional manifold IN* (n > 2) we
mean either an empty or a non-empty subdomain on the submanifold M*
satisfying the following condition: At every point P of the boundary B™! there
is a full neighbourhood U(P) of the point P on the manifold IN" and admissible
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local co-ordinates x!, . . ., x” such that U(P) M M™ appears in the space of the
x's as a hemisphere

(3.1) 3 &)<, %<0,
i=1

the base x! = 0 of the hemisphere corresponding to the boundary B*-1. For
non-empty boundary B! we shall choose the local co-ordinates «?, ..., x" to
be boundary geodesic co-ordinates so that at each point P of the boundary
the x-curve is a geodesic of the manifold M", with x! as its arc length measured
from the boundary B"!, and is orthogonal to the x*curves, 1 =2,...,n.
Thus on the boundary B*! we can easily obtain (cf. 3, p. 57)

(3.2) g = gt =1, g1 =g"=0 (z=2,...,n).

Moreover, by equation (3.1) the unit tangent vector N of the x!-curve at
every point P of the boundary B"~! is the unit outer normal vector of the
boundary B*! in the sense that x! is increasing along the x!-curve in the direc-
tion of the vector M.

By using local boundary geodesic co-ordinates, from equations (1.10), (3.2),
it is easily seen that on the boundary B"~!

(3.3) r,4 =0, 4y =0, r; =0, 2T.% = g™agu/oxt,
(3.4) bij = (vj—‘?ix")g;,k N* +glr NT Fhlk V,-x"ij"
= Filj = —%ag,j/axl (’L,j = 2, .. ,n),

where b,; are the coefficients of the second fundamental form on the boundary
B™1 relative to the outer normal vector N on the manifold M"*, and V denotes

the covariant derivation with respect to the metric tensor g;; (4,7 = 2,...,n)
of the boundary B™1 (cf. 3, p. 147). Equations (3.3), (3.4) imply immediately
that

(3.5) bt = g% by = — T

The boundary B"!is said to be convex or concave on the manifold M"according
as the matrix ||| for 4, j = 2,...,n is negative or positive definite. If
b;; =0 for 4, j =2,...,n, then all the geodesics of the boundary B*! are

geodesics of the manifold M", and the boundary B"! is said to be totally
geodesic on the manifold. Moreover, in terms of local boundary geodesic
co-ordinates the tangential and normal components of a vector » are respec-
tively v;, 7 # 1, and v;.

Now consider a compact orientable Riemannian manifold M” with boundary
B™1 and let # be a vector field of class C? on M™. Then on the manifold M"
we can construct the differential form

(3.6) w = *u;dxt
By means of equations (1.11), (1.3) we can easily obtain

l...n i Jo(n—1)
(37) w = 51',]0(”-1) €., U dx otn ,
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which becomes, on the boundary B™ ! in terms of local boundary geodesic
co-ordinates,

(38) w = U dAn—ly
where
3.9 dd,—1 = e _,dx2 N\ ... A dx"

is the element of area of the boundary B*!. Use of equations (3.7), (1.1)
gives immediately

(3.10) do = 835t e1..n Vi u? dx® A dx”°C?

= V,u’dA,.
By applying Stokes’ theorem we thus obtain the integral formula
(3.11) Jan Viu?dA, = [ g1 u1 dA4,_s.

For a vector field v on a compact orientable Riemannian manifold M™ with
boundary B"!, replacement of the vector field #7 in equation (3.11) by the
vectors v’V v'V,;9?, 97V, 9% and use of equations (1.19), (1.27), (1.28),
(1.29), (1.15) yield the integral formulas, respectively,

(3.12) Qv — Av,v) + 2(Vy, Vo) = an_l vViv;dA,,
(3.13) 2(TVZ), V?)) + an vjVi Vj ot dAn = an—l Uivi U1 dAn_l,
(3.14) (B‘U, 611) + an WjVj Vi ﬂidA,, = an—l 1 Vi 'Z)idAn_l,

where for a covariant tensor u;;
(3.15) (Tu)i; = uyu
Subtraction of equation (3.14) from equation (3.13) and substitution of equa-
tions (1.23), (1.27) give immediately
3.16) (30v,v) 4+ 2(T Vo, Vo) — (b, 6v) = an—x @iV,vy — v, V0% dA,_,.
By subtracting equation (3.16) from equation (3.12) we obtain, in consequence
of equation (1.14),
(3.17) —(Av, v) + (dv, dv) + (6v, 6)

= fgn—l [vi(Vx Vi — Vﬂ!l) + V1 Vivi] dAn._l.
Similarly, addition of equations (3.12), (3.16) and use of equation (2.6) yield
(3.18) (Qv — Av,v) + (Lo g, L, g) — (6v, 6v)

= an—l [v"(Vl Vi + Vivl) — U1 Vi'l}i] dA,,_l.

The integral formulas (3.11),..., (3.14), (3.16), (3.17), (3.18) were first
obtained by Hsiung (6, 8).

From equations (2.14), (2.15), (2.16) it follows immediately that a Killing
vector field » on any Riemannian manifold satisfies

(3.19) Ay — Qv = 0.
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For the converse, suppose that on a compact orientable Riemannian manifold
M™ with boundary B™! a vector field v has zero tangential component on the
boundary B*! and satisfies equations (2.15), (3.19). If V,9; = 0 on the boun-
dary B*! in local boundary geodesic co-ordinates, then by using equations
(2.15), (3.19), from equation (3.18) it follows that the vector field v satisfies
equation (2.9), and therefore is a Killing vector field on the manifold M™".
Hence we obtain.

THEOREM 3. 1T. On a compact orientable Riemannian manifold M"™ with
boundary B™', a necessary and sufficient condition for a vector field v with zero
tangential component on the boundary B" ' to be a Killing vector field is that it
satisfy equations (2.15), (3.19) on the manifold M™ and

(3.20) Vivy =0 on B™1
in local boundary geodesic co-ordinates.
Similarly, from equation (3.18) we have

THEOREM 3. IN. On a compact orientable Riemannian manifold M" with
boundary B™ ', a necessary and sufficient condition for a vector field v with zero
normal component on the boundary B" ! to be a Killing vector field is that it
satisfy equations (2.15), (3.19) on the manifold M" and

n

(3.21) > o' (Vivi 4+ Vi) =0 on B™

=2

in local boundary geodesic co-ordinates.

It should be noted that the letters 7" and N in Theorems 3.1T and 3.1N are
used to denote similar theorems on vector fields with zero tangential and
normal components on the boundary B"! of the manifold M" respectively; for
convenience we shall use this notation throughout this paper.

4. Geodesic vector fields. It is well known that on a Riemannian manifold
a necessary and sufficient condition that an infinitesimal transformation
generated by a vector field v transform a geodesic into a geodesic and preserve
the affine arc length s is that

dx® dx’

n n By @X_4X°
(41) (Vj V,;i) + R ijlcv ) dS dS 0
Accordingly, for a unit vector # at any point P of the manifold M", the vector
U defined by
(4:.2) Uh = (V] V; vh + Rhijk ‘Uk)uiuj

is called the geodesic deviation vector of the vector # with respect to the
vector field v. For » mutually orthogonal unit vectors |, (¢ =1, ..., n) at

https://doi.org/10.4153/CJM-1965-021-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-021-2

222 ARTHUR L. HILT AND CHUAN-CHIH HSIUNG

the point P of the manifold M", we can then form the mean of the geodesic
deviation vectors U, of #, with respect to :

1 « 1 ¢
(43) 7_2 Z_:l U|ha = ';L Zl (V] V,;'Uh + Rhijk)ulia u{a.
By using the relation
(4.4) g = Z_‘i ufy uly,

(cf. 3, p. 98), equation (4.3) becomes
4.5) LS vh = 1wt 4 R0,

Since the right side of equation (4.5) is independent of the choice of the =
mutually orthogonal unit vectors u,, we call the left side of equation (4.5)
the mean geodesic deviation vector at the point P with respect to the vector
field ». A vector field v, with respect to which the mean geodesic deviation vector
vanishes, is called a geodesic vector field. Thus a vector field » satisfying
equation (3.19) is geodesic.

The following theorem is an immediate consequence of equations (1.26),
(2.14), (2.15).

THEOREM 4.1. On any Riemannian manifold M" every Killing vector field is
geodesic.

Substituting equation (3.19) in equation (3.17), for any geodesic vector
field » we have

(4.6) (Qv,v) = (dv, dv) 4+ (v, 6v)

—an—l (viV1 Vi — ‘Z)jVj V1 + V1 Viz}") dAn_l.
If the boundary B"! is convex or totally geodesic, and on the boundary B*!
the geodesic vector field v has zero tangential component and satisfies equation
(3.20), then the integrand of the boundary integral in equation (4.6) is non-

positive. Since the integrands of the first two integrals on the right side of
equation (4.6) are non-negative, we thus have

(4.7) (Qv,v) > 0.

If the equality holds in equation (4.7), from equation (4.6) it follows that on
the manifold M”

(4.8) dv =0, 60=0,

that is, v is a harmonic vector field on M". A combination of equation (3.19)
with the second equation of (4.8) and an application of Theorem 3.1T show
that v is also a Killing vector field. From equation (2.14) and the first equation
of (4.8) we can thus conclude that V;o; = 0.
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Similar arguments can be applied to the case where the geodesic vector
field v has zero normal component on the boundary B*!. Hence we have

THEOREM 4.2. On a compact orientable Riemannian manifold M"™ with a convex
or totally geodesic boundary B" ' let v be a geodesic vector field, which on the
boundary B"! has zero tangential component and satisfies equation (3.20) (or has
zero mormal component and satisfies equations (3.21) and Viv; =0, 7 % 1).
Then we have

4.9 (Quv,v) >0,

where the equality implies that the geodesic vector field v is a parallel vector field,
that is, v has zero covariant derivative over the whole manifold M™.

An examination of the integrand of (4.9) gives immediately

CoRrOLLARY 4.2.1. On a compact orientable Riemannian manifold M™ with a
convex or totally geodesic boundary B"Y, if the Ricci curvature R ;; v%? 1s negative
definite everywhere, then there exists no non-zero geodesic vector field v satisfying
the same boundary conditions on B"! as those in Theorem 4.2; if the Ricci curva-

ture 1s negative semi-definite, then such a geodesic vector field v is a parallel vector
field.

For the case of empty boundary B*~!, Theorems 4.1, 4.2, and Corollary 4.2.1
were obtained by Yano and Nagano (15).
Now suppose that a Riemannian manifold is an Einstein manifold so that

(4.10) Ri; = Rgyy/n,
which implies that

(4.11) R = g¥Ry;.
From Theorem 4.2 we thus obtain

CorOLLARY 4.2.2. On a compact orientable Einstein manifold M" with a
convex or totally geodesic boundary B"', if the scalar curvature R is megative
definite everywhere, then there exists no non-gero geodesic vector field v satisfying
the same boundary conditions on B"! as those in Theorem 4.2.

5. Almost-Hermitian structures. On a Riemannian manifold M"* with
the metric tensor g;;, if there exists a mixed tensor field F;/ of the second
order satisfying

(5.1) FJFf = =68,

then F;7is said to define an almost-complex structure on the manifold M", and
M™ is called an almost-complex manifold. If an almost-complex structure
tensor F,;? further satisfies

(5.2) gij F' Fyd = g,
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then F? is said to define an almost-Hermitian structure on the manifold M?,
and M" is called an almost-Hermitian manifold. From equations (5.1), (5.2) it
follows that the tensor F;; defined by

(5.3) Fij = gir F;

is skew-symmetric, since F;; = g F* F.* F;7 = — F;;. By using multiplication
of determinants, from equation (5.1) we readily see that a necessary condition
for the existence of an almost-complex structure on a Riemannian manifold
M™ is that the dimension # of the manifold M" should be even. It should also
be remarked that an almost-complex manifold is always orientable, and the
orientation depends only on the tensor F7.

On a Riemannian manifold M”* an almost-Hermitian structure F,? with
vanishing Nijenhuis tensor N;;’ defined by

(5-4) Nhij = Fhr(vr Fz‘j - Vi Frj) - Fir(vr th — Vi Frj)

is called a pseudo-Hermitian structure, and the manifold a pseudo-Hermitian
manifold. An almost (pseudo)-Hermitian structure F;/ defined on a manifold
M™ is called an almost (pseudo)-Kihlerian structure if the associated differen-
tial form

(55) w = Fijdxi AN dx?
is closed, that is,

(5.6) do = 0;

and the manifold M™ is accordingly called an almost (pseudo)-Kihlerian mani-
fold. From equations (5.5), (5.6) it is easily seen that an almost (pseudo)-
Kihlerian structure F;’ satisfies

(57) F;”‘j = Vh Fij + V, th ‘{‘ Vj Fhi = 0.

The tensor Fj;; is obviously skew-symmetric in all indices.
An almost-Hermitian structure F;7 (an almost-Hermitian manifold) with
vanishing vector F; defined by

(5.8) Fi-_‘ _ijif

is called an almost-semi-Kdhlerian structure (an almost-semi-Kéihlerian
manifold). In particular the structure F;/ is Kéhlerian if V; F,f = 0.
Multiplying equation (5.3) by F*? we obtain

(5.9) Fij Fki = _6]]6.

Making use of equation (5.8) and covariant differentiation of both sides of
equation (5.9), from equation (5.7) it is easily seen that

(5.10) Fhij Fij = 2FhiFi.

https://doi.org/10.4153/CJM-1965-021-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-021-2

VECTOR FIELDS 225

Thus an almost-semi-Kéhlerian structure satisfies
(5.11) F}”‘j F” = 0.
Multiplying equation (5.10) by F;* and using equation (5.9) we obtain
(5.12) Fk = —%F)”‘j F”Fkh,
which shows that an almost-Kihlerian structure (an almost-Kéhlerian mani-
fold) is also an almost-semi-Kihlerian structure (an almost-semi-Kihlerian
manifold).
The remainder of this section is devoted to the establishment of some

formulas, which will be needed later, for an almost-Hermitian structure F;’.
Covariant differentiation of equation (5.1) gives immediately

(5.13) Fith ij = - F/‘V;, Fij.

From equation (5.8) it follows that

(5.14) Fi = ghkF, =V, F4,

Since F7 is skew-symmetric and T, is symmetric with respect to j and 7,
we have

(5.15) FIL, T =0.

By means of equations (5.14), (5.15), (2.7), (2.4), from equation (2.5) we can
easily obtain

(5.16) FaL, Fi = F'V,V, Fit — F2V, Fi'Vo! — FAF'V, V, o' + Rl
Similarly, by putting

(5.17) F.s = g"*F,q

and using equations (5.7), (2.4) we find that

(5.18) —LiF, M, Fs = —(V, FMviv, F's — L(V*F, vV, F'S
+ (Vr Fsh)F”Vz‘ v¢ — (Vs Frh)F”Vivs + (VhFrs)F”Vi v°.

Suppose that
(5.19) SY =g L, F/,
from which it follows that
(5.20) Sij=guL, Fi

A simple calculation with use of equations (5.19), (5.20), (2.4), (5.1), (5.13)
suffices to demonstrate that
(5.21) %S”Sij = %(ZJTVT F”)vsvs Fji - 2(Fjs V*‘vi)v’V, Fit

—_ (F‘“VT v’)FH Vj [A + vaiVj Ui
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By putting
(5.22) an(®) = Fu L, F/,
applying the ordinary product rule for differentiation to V?(ay v*), and making
use of equations (2.4), (5.1), (5.16), (5.18), (5.21) we can finally arrive at
(5.23) —Vj(a,-k vk) = (V’Vl vh + Rih'z)i - FihLv Fi
- %Frsh Lv F”)‘ZJ;, + ’zl'SijSi]V

6. Contravariant analytic vector fields. On an almost-Hermitian
manifold M™ a vector field v is called a contravariant almost-analytic vector,
or simply a contravariant analytic vector, if it satisfies

(6.1) L,F/=0.

By applying the ordinary product rule for differentiation to V(F,* L, F,"),

making use of equations (2.4), (5.13), (5.16), (5.18), and noticing that
gi"(V*F, )L, F;* = V'F,(v'V; F™* — 2F"'V, 9),

we can easily see that condition (6.1) implies

(6.2) vv,v + Ry — FJL,F* — }F,JL,Fs =0.

On a pseudo-Kihlerian manifold a contravariant almost-analytic vector is a
contravariant pseudo-analytic vector (cf. 11).

Using equation (5.22) to replace 7 in the integral formula (3.11) by a™; v*
we thus obtain

THEOREM 6.1. For a vector field v on a compact almost-Hermitian manifold M"
with boundary B"Y, the following integral formula is valid:

(63) (Sijy Sw) + fM" (Vrvr Wj + Rrjvr - Fiij Fi - %Frsj LvF”)vj dAn
= —an—l [v’(V, Flj) ij _— Fli(Vi Uj)Fﬂc - Vl vk]v"dAn_l.
Now let us consider a compact almost-Hermitian manifold M* with boundary
B™1and use local boundary geodesic co-ordinates. The boundary B*'is called a

semi-pseudo boundary if on B! the normal component of the structure tensor
F? is covariant constant, that is, if

(6.4) V. Fit = k=2,...,m;2=1,...,n) on B,

Since Fy; is skew-symmetric in ¢ and j, we have Fy; = 0, which implies that
Fit =0 on B™L On the other hand, from equation (5.1) it followsthat
(Vi Fi7)Fy is skew-symmetric in 7 and k. Thus we have

(65) (Vh Flj) Fjl =0 on B*1,

If B™'is concave or totally geodesic and on B* ! a vector field v has zero tan-
gential component and satisfies equation (3.20), then the integrand of the
boundary integral in equation (6.3) is non-negative in consequence of equation
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(6.5). By using equations (6.1), (6.2) and noticing from equation (5.19) that
S% = 0 for all 7, j implies that L, F;” = 0, we therefore obtain

THEOREM 6.2T. On a compact almost-Hermitian manifold M™ with a concave
or totally geodesic boundary B! let v be a vector field which on the boundary B*!
has zero tangential component and satisfies condition (3.20). Then a necessary and
sufficient condition that the vector field be contravariant analytic is that it satisfy

(6.6) V'V, + R — FJL, F' — }F, /L, F"* = 0.

Now on a compact almost-Hermitian manifold M" with boundary B*! let
v be a vector field having zero normal component, instead of zero tangential
component, on B" L, It is easily seen that if the boundary B*! is semi-pseudo
and the vector field v satisfies different boundary conditions on B*~1, by using
the same arguments as those in the proof of Theorem 6.2T we can obtain

THEOREM 6.2N. On a compact almost-Hermitian manifold M" with a semi-
pseudo boundary B" ' let v be a vector field which on the boundary B™ ! has zero
normal component and satisfies

Viv; =0 G=2,...,mj=1,...,n),

6.7) Viog =0 (¢ =2,...,n).

Then a necessary and sufficient condition that the vector field v be contravariant
analytic is that it satisfy equation (6.6).

From equations (3.19), (6.6) and Theorems 6.2T, 6.2N follows immediately

THEOREM 6.3. On an almost-Hermitian manifold M" let v be a vector field
satisfying

(68) Fij Lv F? + %F”j Lv Fs =0.

If the vector field v is contravariant analytic, then it is geodesic. Conversely, on an
almost-Hermitian manifold M™ with boundary B"~! a geodesic wvector field v
satisfying the condition (6.8) is contravariant analytic, if (i) the boundary B*!
is concave or totally geodesic, and on B"~! the vector field v has zero tangential
component and satisfies equation (3.20), or if (ii) the boundary B" ' is semi-
pseudo, and on B"! the vector field v has zero normal component and satisfies the
conditions (6.7).

From the first part of Theorem 6.3 follows immediately

COROLLARY 6.3.1. Theorem 4.2 and Corollaries 4.2.1, 4.2.2 are also true for a
contravariant analytic vector field v satisfying equation (6.8) on an almost-
Hermitian manifold M™ with a convex or totally geodesic boundary B" ',

By means of equations (5.12), (5.14) it is readily seen that every vector
field v on an almost-Kihlerian manifold M™" satisfies equation (6.8). Thus from
the first part of Theorem 6.3 we also have

https://doi.org/10.4153/CJM-1965-021-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-021-2

228 ARTHUR L. HILT AND CHUAN-CHIH HSIUNG

COROLLARY 6.3.2. Theorem 4.2 and Corollaries 4.2.1, 4.2.2 are also true for a
contravariant analytic vector field v on an almosi-K ihlerian manifold M™ with a
convex or totally geodesic boundary B L.

For the case of empty boundary B"1, Corollaries 6.3.1, 6.3.2 were obtained
by Tachibana (12).
An application of Theorems 3.1T, 3.1N gives the following two theorems.

THEOREM 6.4T. On a compact almost-Hermitian manifold M™ with boundary
B! let v be a contravariant analytic vector field which satisfies equation (6.8) on
the manifold M"™ and which on the boundary B"' has zero tangential component
and satisfies equation (3.20). Then a necessary and sufficient condition that v be a
Killing vector field is that 1t satisfy equation (2.15) on M™.

THEOREM 6.4N. On a compact almost-Hermitian manifold M"™ with boundary
B™1 let v be a contravariant analytic vector field which satisfies equation (6.8) on
the manifold M™ and which on the boundary B" ' has zero normal component and
satisfies equations (6.7). Then a necessary and sufficient condition that v be a
Killing vector field is that v satisfy equations (2.15) and (3.21) on M™ and B™!
respectively.

Theorems 6.2T, 6.2N, 6.4T, 6.4N were obtained by Tachibana (12) for
almost-Kihlerian manifolds with empty boundary.
From equations (6.3), (2.18) we obtain

THEOREM 6.5. For any projective Killing vector field v satisfying equation (6.8)
on a compact almost-Hermitian manifold M™ with boundary B"!, the following
integral formula is valid:

2
6.9) (S Siy) — P+ 1 (v, dow)

= -—-an—l [‘U’(V, Flj)ij _ Fli(Vi 'ZJj)ij —_ V] vk]vk dAn—l-

If on a compact almost-Hermitian manifold M" with boundary B*! a vector
field v generates an infinitesimal transformation 7, leaving the boundary B*!
invariant, then from the definition of an infinitesimal transformation, the
vector field » must have zero normal component on B*~!. The infinitesimal
transformation 7', is called an automorphism of the manifold M” if v is an
infinitesimal motion and preserves the almost-Hermitian structure F.,7, that is,
L,Fj=0.

Now let » be a projective Killing vector field satisfying equation (6.8) on a
compact almost-Hermitian manifold M"* with boundary B"~!. Substituting

(6.10) (v, ddv) = (ov, ov) + V7 (v, o)

in the integral formula (6.9) and applying equation (3.11) to the integral
an V,;@'V;2%) d4,, we obtain
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2 .
(6.11)  (S4j Si5) — n +““‘i (o0, v) = — J;'H{['”i(vt F')Fy
i j 2
- Fl (Vi'l)])ij - VI vk]‘vk - n + 1 7)1 62}} dAn_l.

Making use of equations (6.11), (6.1), (6.2), (6.5), (5.19) and Theorems
6.4T, 6.4N we thus arrive at the following two theorems.

THEOREM 6.6T On a compact almost-Hermitian manifold M™ with a totally
geodesic boundary B"! let v be a projective Killing vector field which satisfies
equation (6.8) on the manifold M" and which on the boundary B™ ! has zero
tangential component and satisfies equation (3.20). Then the following integral
formula holds:

2
(6.12) (Sij, Sij) = n_—i—-_l (57’1 57’).

In particular, if the vector field v is further contravariant analytic, then it is a
Killing vector field.

THEOREM 6.6N. On a compact almost-Hermitian manifold M" with a semi-
pseudo boundary B"' let v be a projective Killing vector field which satisfies
equation (6.8) on the manifold M™ and which on the boundary B! has zero normal
component and satisfies equations (6.7). Then the integral formula (6.12) s still
valid. In particular, if the vector field v is further contravariant analytic, then 1t
defines an automorphism of the manifold M" leaving the boundary B"~! invariant.

For the case of almost-K&hlerian manifolds with empty boundary, Theorems
6.6T, 6.6N are due to Tachibana (12); in this case a vector field v always
satisfies equation (6.8).

Now let v be a conformal Killing vector field which satisfies equation (6.8).
Substituting equations (6.8), (2.23) in the integral formula (6.3), noticing that

(6.13) —9; VIV, vt = (b, dv) + V(v ov),

and applying equation (3.11) to the integral an V(v V,v%) d4,, we can
obtain
THEOREM 6.7. For any conformal Killing vector field v satisfying equation (6.8)
on a compact almost-Hermitian manifold M" with boundary B, the following
integral formula is valid:
n— 2
n

(6.14) (Sij, Sij) + (57), 67)) = — fﬂ—l {[‘U’(V, Flj)ij

— Fli(Vin)ij -V Uk]Wk + z

1 Bv} dA, 1.

By means of equations (6.14), (5.19), (6.1), (6.2), (6.5) and Theorems 6.4T,
6.4N, we are led to the following two theorems.
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THEOREM 6.8T. On a compact almost-Hermatian manifold M™ with a concave
or totally geodesic boundary B! let v be a conformal Killing vector field which
satisfies equation (6.8) on the manifold M"™ and which on the boundary B ' has
zero tangential component and satisfies equation (3.20). Then v is a contravariant
analytic vector field for n = 2, and is a Killing vector field for n > 2.

THEOREM 6.8N. On a compact almost-Hermitian manifold M" with a semi-
pseudo boundary B" ' let v be a conformal Killing vector field which satisfies
equation (6.8) on the manifold M" and which on the boundary B™ ! has zero
normal component and satisfies equations (6.7). Then the vector field v is contra-
variant analytic for n = 2, and defines an automorphism of the manifold M"
leaving the boundary B™ ' invariant for n > 2.

Applying Lie differentiation to equation (5.11) we have
(6.15) F)”‘ij F”"— Filey F)”'j = O,

from which it follows immediately that on an almost-semi-K#hlerian manifold
M™ if a vector field v satisfies

(6.16) Friy Ly F' =0, or FYL, Fy; =0,

it also satisfies equation (6.8). On the other hand, a vector field » on an almost-
Kihlerian manifold always satisfies (6.16). Thus the following two corollaries
are an immediate consequence of Theorems 6.8T, 6.8N.

CoROLLARY 6.8.1. Theorems 6.8T, 6.8N are still true if the almost-Hermitian
manifold M™ is replaced by an almost-semi-K ihlerian manifold M", and the
condition (6.8) by (6.16).

COROLLARY 6.8.2. Theorems 6.8T, 6.8N are still true for a conformal Killing
vector field v on an almost-K ihlerian manifold M™ with equation (6.8) auto-
matically satisfied.

For the case of empty boundary B"~!, Theorems 6.8T, 6.8N and Corollary
6.8.1 were obtained by Yano (14), and Corollary 6.8.2 by Lichnerowicz (10)
and Goldberg (4) for a Kihlerian manifold M" and by Goldberg (5) for an
almost-Kihlerian manifold M™.

7. Covariant analytic vector fields. On an almost-Hermitian manifold
M™ a vector u is called a covariant almost-analytic vector, or simply a covariant
analytic vector, if

(7.1) ViFiu,) =u,V; F;"+ F/ V,u,

In particular, for an almost-Kihlerian manifold, condition (7.1) becomes, in
consequence of equations (5.7) and F;; = —F,,

(7.2) u'V,F”= —F,-'V,uj-}-Fj’Viu,.

On a pseudo-Kihlerian manifold a covariant almost-analytic vector is a co-
variant pseudo-analytic vector (cf. 11).
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LEMMA 7.1. On an almost-semi-K dhlerian manifold M"™ with boundary B™!
let N, u be two scalar functions satisfying

(7.3) Vz A= Fir V, M.

If the normal derivative of one of the two functions \, u on the boundary B!
vanishes, that is, if either Vi X = 0or Vi u = 0 on B"' in terms of local boundary
geodesic co-ordinates, then the two functions \, pare constant over the whole manifold
Mn.

Proof. Multiplying equation (7.3) by F;?and using equation (5.1), we obtain
V;(—u) = F;* V; A\ So without loss of generality we may assume that Vi A\ = 0
on the boundary B" ! From the definition of an almost-semi-Kihlerian
manifold and equation (7.3) it follows that

Vlvl)\ = Fir(vi \ I‘v))

the right side of which is zero, since V; V, wand F*" are, respectively, symmetric
and skew-symmetric with respect to 7z and ». Thus we have

Integrating the above equation over the manifold M" and applying the integral
formula (3.11) to the left side of the equation, we obtain

2(Vi N\, ViN) = [pn1 Vi(A) d4, 1 = 0,

which implies that A is constant over the whole manifold M", and therefore u
is also, because of equations (7.3), (5.1). Hence the lemma is proved.

For an almost-Kéhlerian manifold M* with empty boundary B*1, Lemma
7.1 was obtained by Tachibana (12) and is a generalization of Liouville’s
theorem in the theory of functions of a complex variable.

On an almost-semi-Kihlerian manifold M” let # be a covariant analytic
vector, v a contravariant analytic vector, and A, u two scalar functions defined

by
(7.4) N = FS u,v,
(7.5) w=1u,v.

Since v is contravariant analytic, by definition we have
(7.6) L”Fij=erfFij_Fiervj+Ffjvivr=0-

From equations (7.1), (7.4), (7.5), (7.6) it is easily seen that the two functions
\, u satisfy equation (7.3). By Lemma 7.1 we thus obtain

THEOREM 7.1. On a compact almost-semi-K dhlerian manifold M™ with boundary
B"1 let v be a contravariant analytic vector and u a covariant analytic vector. If
the normal derivative of the inner product p of u and v vanishes on the boundary
B™ 1, then the inner product u is constant over the whole manifold M™.
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Now consider a vector field # on an almost-Hermitian manifold M”, and
define the vector field % by

(7.7) 111 = Fit u,,
from which it follows that
(7.8) ¥, = Fi'v, = —u,
where
(7.9) v; = fi;
If u is covariant analytic, then by equations (7.1), (7.7), (7.8), (7.9) we
obtain
(7.10) Vi V; = Vj Uy + FiT[Vj 7, — VT(FjS ﬂs)].

Multiplication of equation (7.10) by F,®and use of equations (5.1), (7.8), (7.9)
give immediately equation (7.1) for %. Thus we arrive at

THEOREM 7.2. On an almost-Hermitian manifold M"™ if a vector field u 1is
covariant analytic, then the vector field i is also.

For almost-Kihlerian manifolds with empty boundary, Theorems 7.1, 7.2
were obtained by Tachibana (12).

Now let us consider an almost-Kéhlerian manifold M" with boundary B"!,
and use the structure tensor F;’ to define the tensor

(7.11) ?Ic = 3Ry Iy

It should be noted that on a pseudo-Kéhlerian manifold R} = Rj. By using
the relation F” = — F"* and the Bianchi identity

thji + thir + Rhirj = 0;
we have

(7.12) Ry ji F7" = F " (Ryrji — Rypijr) = 3F 'Ry i
Multiplying by g* the Ricci identity for the tensor F,

[Ve, VilFin = —Fa R™jp — Fir Ry,
and making use of equations (7.12) and V,;F% = 0, we are led to
(7.13) V'V, Fop = LFS'R, 0 + Ry Fo

Application of the operator V/ = g’’V, to the equation F,;, = 0 and use of
equation (7.13) yield

(7.14) VTVT Fji = F‘”Rijm + Rerri - RiTFfj.

On the other hand, by means of the Ricci identity (1.24) for a vector field
v and the relation F;; = —F;;, we obtain

(7.15) F'V,V,v; = —1FS'R,;,,v".
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From equations (7.11), (7.13), (7.15) it follows that

(7.16) F,w'V?V, F;; = —v'Ry, + 'R,y
(7.17) FkiFerj VT v = —UTRT;S.

Let the vector 9 be defined by equation (7.8) from the vector v. Then
(7.18) 7t = gi'%g, = —F,"»".
By computing V'V, 7, directly from equation (7.8) and making use of equations
(7.14), (5.2) we are readily led to
(7.19) (V'V,9; — R,;#)3' = (V'V,v;, + R,; 9" )0’
— 2R}, 0" + 2(V'0")(V, F ) F, ',

Now for a covariant analytic vector «, by applying the operator F;*V’ to
equation (7.2) and using V; F" = 0, we obtain, in consequence of equations
(7.16), (7.17),

(7.20) Ti(u) =0,

where

(721)  Ti(uw) = V'V, u; + Ry’ — 2Rysu” + V' (V, Fys + V, F,)F'.
Furthermore, for any vector field v we can define the tensor

(7.22) bjk(v) = (DTV, F]_s + FTSV]' o" + F]',VT 'Us)Fsk
= ‘U’(V,— Fjs)Fsk + FjT(VT Ws)ka - Vj Uk

Making use of equation (5.7), from equations (5.22), (7.22) it is easily seen
that a,;(v) = 0 (that b;;,(v) = 0) is equivalent to the fact that the vector field
v is contravariant analytic (is covariant analytic). Noticing the similarity
between b;; and 4, defined by equation (5.22), by calculations analogous to
those in §5 we can show that

(7.23) 102(0) = 30 b = —0v" V, FI'V, F,,
+ FPF*V, 0, V0. + V0, VI oF,
(7.24) Vi) = — (VIV, 0, + 0'R)0" + ZRT,C o"o*
+ 0%V, F,V'F, — 2(V")F,; (V, Fg)o"
— FF*, 9, V0, — V, 1, V",
Addition of equations (7.23), (7.24) and the use of equation (5.13) yield
(7.25)  V(byo*) + 2°@) = —(V'V, 0" 4+ o'R,;)0°
+ 2R>:,- vyt — 2V’ (V, F;,)F%"
Equations (7.25) and (7.19) imply, by subtraction,
(7.26) F(V'V, 3, — 'R, )" — VI(bu "] = v'T,(v) + 10%().
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Integrating equation (7.26) over the manifold M", applying the integral
formulas (3.11), (3.17) for the vector field 9, and using equation (7.21), we
obtain

THEOREM 7.3. For any vector field v on a compact almost-K ihlerian manifold
M" with boundary B"1, the following integral formula is valid:

(7.27)  [aun [0'Ti(0) + 302(0) + 3S(®)] d4,
= %an—l (ﬁ, VI ﬁi b 77‘1 Vj 771 + 771 V,,‘Z‘;Z —_ b]k Uk) dA,l_l,

where 7, by, b*(v), T:(v) are defined by equations (7.8), (7.22), (7.23), (7.21)
respectively, and

(7.28) S(@) = (da, do) + (57, 67).

By means of equations (7.8), (7.18), (7.22), (5.1), (6.5) and F;,"v,2'V, F,' = 0,
which can be derived from equation (5.13), it is easily seen that if the vector
field v has zero tangential component on the boundary B"! and satisfies
equations (3.20) and (7.20) on B™! and M" respectively, then equation (7.27)
is reduced to

(7.29)  [an [02(2) + 25(3)] d4, + 4f g1 9'01 b, Fi"Fi* A,y = 0.

If the boundary B*! is convex or totally geodesic, then from equation (7.29)
it follows that 82(v) = 0, showing that v is covariant analytic. Since we have
already shown that a covariant analytic vector v satisfies equation (7.20), we
therefore arrive at

THEOREM 7.4T. On a compact almost-K dhlerian manifold M* with a convex
or totally geodesic boundary B"! let v be a vector field which on the boundary B*!
has zero tangential component and satisfies equation (3.20). Then a necessary
and sufficient condition that the vector v be covariant analytic is that it satisfy
equation (7.20) on the manifold M™.

Similarly, we have

THEOREM 7.4N. On a compact almost-K dhlerian manifold M™ with boundary
B" ™ on which V; FiY =0 forz, j =1,...,n, let v be a vector field which on
the boundary B! has zero normal component and satisfies V;v; = 0 for all i and j
not equal to 1 at the same time. Then a necessary and sufficient condition that the
vector v be covariant analytic is that it satisfy equation (7.20) on the manifold M™.

If the boundary B"! is convex or totally geodesic, from equation (7.29) it
follows also that S(9) = 0, which with equations (7.28), (4.8) for the vector 3
implies that the vector  is harmonic. Hence we have

THEOREM 7.5T. Under the same assumptions as those in Theorem 7.4T, if the
vector field v is covariant analytic, then the vector field 7 is harmonic.

Similarly, we obtain
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THEOREM 7.5N. Under the same assumptions as those in Theorem 7.4N, if
the vector field v is covariant analytic, then the vector field 7 is harmonic.

For the case of an empty boundary, Theorems 7.3, 7.4T, 7.4N, 7.5T, 7.5N
were obtained by Tachibana (12).

8. Almost-Kihlerian manifolds. Let M* be an almost-K&hlerian mani-
old. Then from equation (5.7) we have
(81) 2V, Fyy =V, Fyu+ V Fy — Vi F,,

Substituting equation (8.1) in equation (7.19) and making use of the integral
formula (3.17) for # we obtain

LemmaA 8.1. On a compact almost-K dhlerian manifold M"™ with boundary B"!
for any vector v satisfying

(8.2) Vol (V, Fy + V, F, ) Fv? =0,
the following integral formula is valid:

(8.3) [un [(V'V,0; + R, 90t — (2R, 0" + F;iV, F,, Vioh)o! + S(9)] d4,
= an—l (ﬁi Vl '51 - ﬂj Vj 771 + 771 Vz 771) dAn—l;

where 7, S(9) are defined by equations (7.8), (7.28) respectively.

Let v be a contravariant analytic vector field on an almost-Kihlerian
manifold M". Then from equation (7.6) we have

(84:) o” V,— Fij = Fir V,v]-—i— Fjr Viv,.
By means of equations (8.4), (7.2), (5.1) we obtain immediately

LeEMMA 8.2. On an almost-K dhlerian manifold M™ if a contravariant analytic
vector field v is also covariant analytic, then it is a parallel vector field.

Substitution of equation (5.7) in equation (8.4) and use of equation (7.8)
give readily

(8-5) V0, — V9, = —Fj’(V, v+ Viv,),
which with equations (5.1), (5.13) implies that
(8~6) (Vj 7 — Vi‘ﬁ,-) (Vlc Frj)F" = -V F“(Vtvi + Vi'Uz) =0,

since V; Fttand V,v; + V;v,are, respectively, skew-symmetric and symmetric
in 7 and ¢. Applying V* to equation (8.4) and using equations (5.7), (5.8),
(5.12), we obtain

(87) Viv’ V, F'ij + o7 Vin Fij - Fir ViV, Vj— ViFjT Vi Vr — Fjr V’Vz Vr = 0.

Multiplication of equations (8.7), (8.4) by F;’ and use of equations (7.16),
(7.17), respectively, yield
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(8-8) V'V, 0, + Ry v” + V' (V, F.,+ v, Fij)ij =0,
(89) Vi'l)k = FiTij VT V; — Fk’v’ VT F”.

On the other hand, from equations (5.1), (5.7), (5.13) and F;; = —F;; it
follows that

(8.10) Fy B (VI F G = — FJ(VIF™ 4 VTR,

Interchanging r and j in equation (8.10) and adding the resulting equation to
equation (8.10) we obtain, in consequence of equation (5.13),

(8.11)  V,0,(VIF! 4+ VIFIYF,} = —FFV,v,(V*Fs! 4 V) F,L,

Substituting equation (8.9) for V, v, on the right side of equation (8.11) and
noticing that F,’V,F;; and (V'F' + V*F"Y)F,® are, respectively, skew-
symmetric and symmetric in % and s so that their product is zero, for any
contravariant analytic vector field » on the manifold M" we thus have

(8.12) V,0,(VIFT 4 VI FI)F,i =0,

Making use of equations (5.7), (6.2), (6.8), (6.16), (7.21), (8.12), Theorem
7.3, and Lemma 8.2, and applying to equation (7.27) the arguments on the
boundary conditions in the proofs of Theorems 7.4T, 7.4N, we can easily
arrive at

THEOREM 8.1. On a compact almost-K dhlerian manifold M" with a convex or
totally geodesic boundary B" ! let v be a contravariant analytic vector field which
on the boundary B"! has zero tangential component and satisfies equation (3.20)
(or on a compact almost-K ihlerian manifold M"™ with boundary B™ ' on which
ViFd =0 fori, 5,k =1,...,n, let v be a contravariant analytic vector field
which on the boundary B"~! has gero normal component and satisfies V,v; = 0 for
all i and j not equal to 1 at the same time). Then

[ Riyv'n" dA, > 0,
where the equality implies that v 1s a parallel vector field.

For the case of empty boundary B*!, Theorem 8.1 is due to Tachibana (12).
On an almost-Kihlerian manifold M" let us now consider the canonical
connection defined by

(8.13) Fih]’ = I‘ihj + lhij,
where
(8.14:) th” = —%F,h Vj FiT.

It is easily seen that the tensors g;; and F;? both are covariantly constant with
respect to the connection I*;,, and it should be noted that on the manifold M
there are many other connections having this property. Let R?,, be the
curvature tensor of the manifold M™ with respect to the connection I'/*;. Then
from equations (1.21), (8.13) we have
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(8.15) Ry =RMip 4 Vithy; — Vitty + 5480 — uthy,.

By means of equations (8.14), (8.15), (5.13), an elementary calculation suffices
to demonstrate that

(8.16) R",; = 3Ry — AR F"F® — iV, FV,;F/ +1V,FV, F/.
Multiplying equation (8.16) by F,* and using equations (5.1), (5.13) we obtain

(8-17) Rhijk Fni = Rhijlc Fhi + %Tkj,
where
(8.18) Tkj = —"Fhi VL Frh VJFir.

On the other hand, use of equations (5.1), (5.7), (5.13) yields immediately
(8.19) (Ve F) FFFJ V, F = (Vi F))F FJI(Vi Fry + V, Fy)
= (Vy F\)F"(—=F,; Vi F — F;; V. Fy)
= Vk F‘”(V; Fji + Vj F“) - Vk FhT V, Flh = Vk Fji Vl Fji.
From equations (8.17), (8.18), (8.19), (7.11) it follows that
(8.20) R:z = iR F'F/’ = R:z + 1T F/
= R:l - %V}L Fij Vz F”.

For any vector field v on the manifold M" use of equations (5.7), (7.8) shows
immediately that

(8.21) — (Vi Fa)* = (Ve Fre — Va Fr)o*
=V, 9 — Va0, + Fp Vav* — Fp V, 0,

from which with equations (8.18), (5.13) we have
(8.22) Tkj ‘Uk = (V, ﬁh - Vh 5,) (V] Fir)Fhi + 2V] F;,k Vh Z}k.
If v is a contravariant analytic vector field on the manifold M", then by means
of equations (8.6), (8.20), (8.22) we obtain
(8.23) vy = v'Ry + LF,'V, Fy, Vo',
Thus for a contravariant analytic vector field » on a compact amost-Kéhlerian
manifold M” with boundary B"1, from Lemma 8.1 and equations (5.7), (6.2),
(6.8), (6.16), (8.12), (8.23), we have
(8.24) [ [S@) — 2By o' 0] dA,

= [pn-1 (' V18, — 7 V5 + 6, V,5°) dd, 1.

If S(@) = 0, then from equations (7.28), (4.8) for the vector 7 it follows that
7 is harmonic, and therefore v is a Killing vector field due to equations (8.5),
(2.14). Applying to equation (8.24) the arguments on the boundary conditions
in the proofs of Theorems 7.4T, 7.4N, we thus arrive at
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THEOREM 8.2. Under the same assumptions as those in Theorem 8.1,

an Rjk " > 0,
where the equality tmplies that v 1s a Killing vector field and ¥ is harmonic.

For the case of empty boundary B*!, Theorem 8.1 is due to Apte (1) for a
Killing vector field v, and due to Tachibana (12) for a contravariant analytic
vector field v.
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