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Abstract

Let p be a prime. In this paper, we use techniques from Iwasawa theory to study questions about rank
jump of elliptic curves in cyclic extensions of degree p. We also study growth of the p-primary Selmer
group and the Shafarevich–Tate group in cyclic degree-p extensions and improve upon previously known
results in this direction.
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1. Introduction

A fundamental result in the theory of elliptic curves is the Mordell–Weil theorem. It
states that given an elliptic curve E defined over a number field F, its F-rational points
form a finitely generated abelian group, that is,

E(F) � Zr ⊕ E(F)tors

where r is a nonnegative integer called the rank and E(F)tors is a finite group, called the
torsion subgroup. Over Q, the possible structures of E(Q)tors are known by the work of
Mazur (see [Maz77, Maz78]). These techniques have been extended by Kamienny,
Kenku, and Momose (see for example [KM88, Kam92]) to provide the complete
classification of torsion subgroups for quadratic fields. More recently, in a series of
works by several authors, the classification of torsion subgroups for cubic fields has
been completed (see, for example, [BN16, DEvH+21, DN19, JKL11, JKS04, Naj16,
Wan15]). In [Mer96], Merel proved that for elliptic curves over any number field, the
bound of the order of the torsion subgroup depends only on the degree of the number
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field. Despite remarkable advances made toward understanding the torsion subgroup,
the rank remains mysterious and, to date, there is no known algorithm to compute
it. Almost always, obtaining information about the rank of the elliptic curve involves
studying the Selmer group.

Let p be a prime number. In [Maz72], Mazur initiated the study of p-primary Selmer
groups of elliptic curves in Zp-extensions. Since then, Iwasawa theory of elliptic curves
has been successfully used by many authors to study rank growth in towers of number
fields. However, the scope of this paper is different. We use results from Iwasawa
theory of Selmer groups of elliptic curves to obtain results on rank growth in cyclic
degree-p extensions. Let L/Q be a finite extension and E an elliptic curve over Q.
Mazur and Rubin [MRL18] define E to be diophantine-stable in L if E(L) = E(Q). This
property is of significant importance and has applications to Hilbert’s 10th problem for
number fields. In this paper, we answer the following two questions about growth of
Selmer groups in cyclic degree-p extensions.

(1) Given an elliptic curve E/Q with trivial p-primary Selmer group, for what
proportion of degree-p cyclic extensions does the p-primary Selmer group
remain trivial upon base-change?

(2) Given a prime p � 2, 3, varying over all elliptic curves defined over Q, for what
proportion of elliptic curves does there exist at least one Z/pZ-extension where
the p-primary Selmer group remains trivial upon base-change?

The proportion of elliptic curves is computed with respect to height (see Equation
(3-3)). Our results are proven for elliptic curves E/Q with Mordell–Weil rank 0. Using
standard arguments from Iwasawa theory, one can show that the p-primary Selmer
group has rank 0 over the cyclotomic Zp-extension of a number field L (in particular,
over L itself) if and only if the associated μ-invariant and λ-invariant are trivial (see
for example [KR21a, Corollary 3.6]). Controlling the μ-invariant is relatively easy
and it is known to behave well in p-extensions (see Theorem 2.3). So the key idea
involves showing how often the λ-invariant remains trivial upon base-change to L/Q.
Given n ≥ 0, let Ln denote the cyclotomic Z/pnZ extension of L. This is the unique
Z/pnZ-extension of L contained inside L(μp∞). We note that we have at this point in
our notation suppressed the dependence on the prime p. Since λp(E/L) ≥ rankZ(E(Ln))
(see Lemma 2.2), proving triviality of the λ-invariant upon base-change implies the
rank does not change in L. In fact, we prove a stronger result, and show that the rank
does not in fact increase in Ln for all n ≥ 0. To answer the first question, we prove the
following result.

THEOREM A. Let E/Q be a non-CM (complex multiplication) elliptic curve and p be a
fixed prime number ≥ 5 such that the residual representation at p is surjective. Further
suppose that μp(E/Q) = λp(E/Q) = 0. Then, there are infinitely many Z/pZ-extensions
of Q in which the λ-invariant does not increase. In particular, in infinitely many cyclic
degree-p number fields L/Q, the rank does not grow in Ln for all n ≥ 0, that is,

rankZ E(Q) = rankZ E(Ln) for all n ≥ 0.
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[3] Growth questions in Z/pZ-extensions 3

In the case that E/Q is a CM elliptic curve, we can prove a similar result under an
additional independence hypothesis which we make precise in Hypothesis 3.10.

The condition λp(E/Q) = 0 can only be satisfied for elliptic curves E/Q of
Mordell–Weil rank 0, and thus the above result shows that the rank remains 0 in
the fields Ln.

Even though our proof suggests that the λ-invariant does not jump in many
Z/pZ-extensions, we are unable to show that this is true for a positive proportion
of Z/pZ-extensions. It is known by the work of Greenberg [Gre99, Theorem 5.1]
that given a rank 0 elliptic curve E over Q, for density one good ordinary primes,
μp(E/Q) = λp(E/Q) = 0.

In a recent paper (see [GJN20]), González-Jiménez and Najman investigated the
question of when the torsion group does not grow upon base-change (see Theorem
3.12 for the precise statement). This, when combined with the above theorem, allows
us to comment on when the Mordell–Weil group does not grow in Z/pZ-extensions.
More precisely, we have the following corollary.

COROLLARY A. Given a non-CM elliptic curve E/Q and a prime p > 7 such that
the residual representation at p is surjective and μp(E/Q) = λp(E/Q) = 0, there are
infinitely many Z/pZ-extensions L/Q such that

E(L) = E(Q).

The same assertion holds for elliptic curves with CM provided Hypothesis 3.10
holds.

A natural extension of the previous question is the following: when does the
p-primary Selmer group grow upon base-change? We address this question in
Section 4. First, we prove a result regarding the growth of the p-primary Selmer
group of an elliptic curve E/Q upon base-change of a Z/pZ-extension (see Proposition
4.1). This result gives a criterion for either the rank to jump or the order of the
Shafarevich–Tate group to increase upon base-change. It applies to all primes p ≥ 5
and the method relies on exploiting the relationship between Iwasawa invariants and
the Euler characteristic. It is motivated by ideas from [RS19, RS20], as well as the use
of Kida’s formula (Theorem 2.3). This criterion is then used to show that the Selmer
group becomes nonzero in a large family of Z/pZ-extensions. Given an elliptic curve
E/Q and a prime p, we set E[p] to denote the p-torsion subgroup of E(Q̄). The residual
representation at p refers to the Galois representation

ρ̄ : Gal(Q̄/Q)→ GL2(Fp)

on E[p]. More precisely, we can prove the following result.

THEOREM B. Let p ≥ 5 be a fixed prime and E/Q be an elliptic curve with good
ordinary reduction at p. Suppose that the image of the residual representation is
surjective, the p-primary Selmer group over Q is trivial, and μp(E/Q) = λp(E/Q) =
0. Then, there is a set of primes of the form q ≡ 1 (mod p) with density at least
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p/(p − 1)2(p + 1) such that the p-primary Selmer group becomes nontrivial in the
unique Z/pZ-extension contained in Q(μq).

However, we remark that this method is unable to distinguish between jumps in rank
and jumps in the order of the Shafarevich–Tate group. These methods are currently
being refined by the third named author, and in a subsequent paper, will be applied to
a large number of problems in Diophantine stability and arithmetic statistics.

In response to the second question, we show the following.

THEOREM C. Suppose that the Shafarevich–Tate group is finite for all rank 0 elliptic
curves defined over Q and Hypothesis 3.19 holds. For a positive proportion of rank
0 elliptic curves defined over Q, there is at least one Z/pZ-extension over Q disjoint
from the cyclotomic Zp-extension, Qcyc/Q, with trivial p-primary Selmer group upon
base-change.

Hypothesis 3.19 is the assumption that the proportion of rank 0 elliptic curves
(ordered by height) with a fixed reduction type at a prime q is the same as the
proportion of all elliptic curves (ordered by height) with the same property. In other
words, the reduction type at q is independent of the rank of the elliptic curve.

We remark that the main reason for us to restrict the study to elliptic curves at
primes of good ordinary reduction is to ensure that we can use results on λ-invariants of
elliptic curves from [HM99]. There are recent results which extend the aforementioned
theorem to the nonordinary case. It seems reasonable to expect that our results
should extend to the supersingular case using the work of Hatley and Lei in [HL19,
Theorem 6.7].

In [Čes17], Česnavičius showed that the p-Selmer group of elliptic curves over
a number field becomes arbitrarily large when varying over Z/pZ-extensions. This
result is not surprising, as it is widely believed that the growth of ideal class groups
and Selmer groups of elliptic curves are often analogous. The unboundedness of
the 2-part of the ideal class group in quadratic extensions goes back to Gauss; for
its generalization to an odd prime, see [BCH+66, VII-12, Theorem 4]. The rank
boundedness conjecture for elliptic curves asks whether there is an upper bound for
the Mordell–Weil rank of elliptic curves over number fields. This question is widely
open and experts are unable to come to a consensus on what to expect; see [PPVW19,
Section 3] for a historical survey. Those in favor of unboundedness argue that this
phenomenon provably occurs in other global fields, and that the proven lower bound
for this upper bound increases every few years. For instance, N. Elkies discovered an
elliptic curve over Q with Mordell–Weil rank at least 28. However, a recent series
of papers by B. Poonen et al. provides a justified heuristic inspired by ideas from
arithmetic statistics which suggests otherwise (see for example [Poo18]).

The interplay between the rank, Selmer group, and the Shafarevich–Tate group
raises the question of producing elliptic curves with ‘large Shafarevich–Tate groups’.
More precisely, given a number field F, a prime p, and a positive integer n, does there
exist an elliptic curve E/F whose Shafarevich–Tate group contains at least n elements
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of order p? A dual question one can ask is the following: given E/Q, a positive integer
n, and a prime p, does there exist a number field F/Q (with additional properties) such
that the Shafarevich–Tate group, denoted by X(E/F), contains at least n elements of
order p?

In the final section, we study growth questions for Shafarevich–Tate groups.
When p = 2, K. Matsuno showed that the 2-rank of the Shafarevich–Tate group
becomes arbitrarily large in quadratic extensions of number fields (see [Mat09]). In
Theorem 5.7, we prove an effective version of this theorem for elliptic curves without
any exceptional primes. In particular, given n > 0, we find an upper bound on the
minimal conductor of the quadratic extension (say K) such that rank2 X(E/K) :=
dimF2 X(E/K)[2] > n. Recently, it has been shown in [MP22] that there are infinitely
many elliptic curves with large rank2 X(E/K). When p � 2, P. Clark and S. Sharif
showed that varying over all degree-p extensions of Q, not necessarily Galois, the
p-rank of the Shafarevich–Tate group can become arbitrarily large; see [CS10]. They
further raised a question as to whether this result is the best possible. In Section 5.2, we
show that if a conjecture of C. David, J. Fearnley, and H. Kisilevsky is true (see Section
2.2 for the precise statement), then the result of Clark and Sharif can be improved. In
particular, instead of varying over all degree-p extensions, it suffices to vary over all
Z/pZ-extensions of Q.

Organization: Including this Introduction, the article has six sections. Section 2 is
preliminary in nature; after introducing the main objects of interest, we record relevant
results from Iwasawa theory. We also mention some conjectures and heuristics on rank
growth of elliptic curves in Galois extensions. In Section 3, we use techniques from
Iwasawa theory to prove results on rank jump of elliptic curves in cyclic degree-p
extensions. In Section 4, we study arithmetic statistics related questions pertaining
to the growth of the p-primary Selmer groups in Z/pZ-extensions. In Section 5,
we study the growth of the p-rank of the Shafarevich–Tate group in cyclic degree-p
extensions. One of our results on rank growth requires a mild hypothesis; we provide
computational evidence for the same. The table is included in Section 6.

2. Preliminaries

Let F be a number field and E/F be an elliptic curve defined over F. Fix an algebraic
closure of F and write GF for the absolute Galois group Gal(F/F). For a given integer
m, set E[m] to be the Galois module of all m-torsion points in E(F). If v is a prime in
F, we write Fv for the completion of F at v. The main object of interest is the Selmer
group.

DEFINITION 2.1. For any integer m ≥ 2, the m-Selmer group is defined as follows:

Selm(E/F) = ker
(
H1(GF, E[m])→

∏
v

H1(GFv , E)[m]
)
.
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This m-Selmer group fits into the following short exact sequence:

0→ E(F)/mE(F)→ Selm(E/F)→X(E/F)[m]→ 0. (2-1)

Here, X(E/F) is the Shafarevich–Tate group which is conjecturally finite. Throughout
this article, we assume the finiteness of the Shafarevich–Tate group.

2.1. Recollections from Iwasawa theory. For details, we refer the reader to stan-
dard texts in Iwasawa theory (for example, [Was97, Ch. 13]). Let p be a fixed
prime. Consider the (unique) cyclotomic Zp-extension of Q, denoted by Qcyc. Set
Γ := Gal(Qcyc/Q) � Zp. The Iwasawa algebra Λ is the completed group algebra
Zp[[Γ]] := lim←−−n

Zp[Γ/Γpn
]. Fix a topological generator γ of Γ; there is the following

isomorphism of rings:

Λ
∼−→ Zp[[T]]

γ 
→ 1 + T .

Let M be a cofinitely generated cotorsion Λ-module. The structure theorem of
Λ-modules asserts that the Pontryagin dual of M, denoted by M∨, is pseudo-isomorphic
to a finite direct sum of cyclic Λ-modules. In other words, there is a map of Λ-modules

M∨ −→
( s⊕

i=1

Λ/(pmi )
)
⊕
( t⊕

j=1

Λ/(hj(T))
)

with finite kernel and cokernel. Here, mi > 0 and hj(T) is a distinguished polynomial
(that is, a monic polynomial with nonleading coefficients divisible by p). The
characteristic ideal of M∨ is (up to a unit) generated by the characteristic element,

f (p)
M (T) := p

∑
i mi
∏

j

hj(T).

The μ-invariant of M is defined as the power of p in f (p)
M (T). More precisely,

μ(M) = μp(M) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if s = 0,

s∑
i=1

mi if s > 0.

The λ-invariant of M is the degree of the characteristic element, that is,

λ(M) = λp(M) :=
t∑

j=1

deg hj(T).

Let E/F be an elliptic curve with good reduction at p. We assume throughout that
the prime p is odd. Let N = NE denote the conductor of E and denote by S the (finite)
set of primes that divide N p. Let FS be the maximal algebraic extension of F that
is unramified at the primes v � S. Set E[p∞] to be the Galois module of all p-power
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torsion points in E(F). For a prime v ∈ S and any finite extension L/F contained in the
unique cyclotomic Zp-extension of F (denoted by Fcyc), write

Jv(E/L) =
⊕

w|v
H1(GLw , E)[p∞],

where the direct sum is over all primes w of L lying above v. Then, the p-primary
Selmer group over L is defined as follows:

Selp∞(E/L) := ker
{
H1(Gal(FS/L), E[p∞]) −→

⊕
v∈S

Jv(E/L)
}
.

It is easy to see that Selp∞(E/L) = lim−−→n
Selpn (E/L), see for example [CS00, Section

1.7]. By taking direct limits of Equation (2-1), the p-primary Selmer group over F fits
into a short exact sequence,

0→ E(F) ⊗ Qp/Zp → Selp∞(E/F)→X(E/F)[p∞]→ 0. (2-2)

Next, define

Jv(E/Fcyc) = lim−−→ Jv(E/L),

where L ranges over finite extensions contained in Fcyc and the inductive limit is taken
with respect to the restriction maps. The p-primary Selmer group over Fcyc is defined
as follows:

Selp∞(E/Fcyc) := ker
{
H1(Gal(FS/Fcyc), E[p∞]) −→

⊕
v∈S

Jv(E/Fcyc)
}
.

When E is an elliptic curve defined over Q, p is an odd prime of good ordinary
reduction, and F/Q is an abelian extension, K. Kato proved (see [Kat04, Theorem
14.4]) that the p-primary Selmer group Selp∞(E/Fcyc) is a cofinitely generated
cotorsionΛ-module. Therefore, in view of the structure theorem ofΛ-modules, we can
define the μ and λ-invariants, which we denote as μp(E/F) and λp(E/F), respectively.

Given a number field F, we set Fcyc to be the composite of F with Qcyc. It is the
unique Zp-extension of F that is contained in the infinite cyclotomic field F(μp∞).
Given n ≥ 0, let Fn be the subfield of Fcyc such that [Fn : F] = pn. The following
lemma relating the λ-invariant of the Selmer group to the rank of the elliptic curve
is well known but we include it for the sake of completeness.

LEMMA 2.2. Let E/F be an elliptic curve and assume that Selp∞(E/Fcyc) is cotorsion
as a Λ-module, and let n ≥ 0. Then, λp(E/F) ≥ rankZ(E(Fn)).

PROOF. Denote by Γn the Galois group Gal(Fcyc/Fn) and let rn denote the Zp-corank
of Selp∞(E/Fcyc)Γn . Since Selp∞(E/Fcyc) is cotorsion over the Iwasawa algebra, it has
finite Zp-corank, and it is an easy consequence of the structure theorem that

λp(E/F) = corankZp (Selp∞(E/Fcyc)).
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We deduce from Equation (2-2) that

corankZp Selp∞(E/Fn) ≥ rankZ(E(Fn)), (2-3)

with equality if X(E/Fn)[p∞] is finite. It follows from the structure theory of
Λ-modules that λp(E/Fn) ≥ rn. It suffices to show that rn ≥ rankZ(E(Fn)). This is
indeed the case, since Mazur’s control theorem asserts that there is a natural map

Selp∞(E/Fn)→ Selp∞(E/Fcyc)Γn

with finite kernel. From Equation (2-3), we see that rn ≥ rankZ(E(Fn)) and the result
follows. �

Let L/Q be a degree-p Galois extension. The following theorem relates the
λ-invariants of Selp∞(E/Qcyc) and Selp∞(E/Lcyc).

THEOREM 2.3. Let p ≥ 5 be a fixed prime. Let L/Q be a Galois extension of degree a
power of p disjoint from the cyclotomic Zp-extension of Q. Let E/Q be a fixed elliptic
curve with good ordinary reduction at p and suppose that Selp∞(E/Qcyc) is a cofinitely
generated Zp-module. Then, Selp∞(E/Lcyc) is also a cofinitely generated Zp-module.
Moreover, their respective λ-invariants are related by the following formula:

λp(E/L) = pλp(E/Q) +
∑
w∈P1

(eLcyc/Qcyc (w) − 1) + 2
∑
w∈P2

(eLcyc/Qcyc (w) − 1),

where eLcyc/Qcyc (w) is the ramification index, and P1, P2 are sets of primes in Lcyc such
that

P1 = {w : w � p, E has split multiplicative reduction at w},
P2 = {w : w � p, E has good reduction at w, E(Lcyc,w) has a point of order p}.

PROOF. [HM99, Theorem 3.1]. �

REMARK 2.4. We remind the reader that a cofinitely generated cotorsion Λ-module M
is a cofinitely generated Zp-module precisely when the associated μ-invariant is 0.

We record the following result which was first proven by Greenberg.

PROPOSITION 2.5. Let E/Q be a rank 0 elliptic curve and assume that the
Shafarevich–Tate group is finite. Then, for density one good (ordinary) primes,
μp(E/Q) = λp(E/Q) = 0.

PROOF. See [Gre99, Theorem 5.1] or [KR21a, Theorem 3.7]. �

REMARK 2.6. In [KR21a, Corollary 3.6], it is shown that μp(E/Q) = λp(E/Q) = 0 is
equivalent to the vanishing of Selp∞(E/Qcyc). This happens when Selp∞(E/Q) = 0, the
Tamagawa numbers at the primes of bad reduction of E are not divisible by p, and p is
not an anomalous prime in the sense of [Maz72].

https://doi.org/10.1017/S1446788723000034 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000034


[9] Growth questions in Z/pZ-extensions 9

2.2. Results, conjectures, and heuristics on ranks of elliptic curves. There are
several important conjectures in the theory of elliptic curves. The first one of interest
is the rank distribution conjecture which claims that over any number field, half
of all elliptic curves (when ordered by height) have Mordell–Weil rank zero and
the remaining half have Mordell–Weil rank one. Finally, higher Mordell–Weil ranks
constitute zero percent of all elliptic curves, even though there may exist infinitely
many such elliptic curves. Therefore, a suitably defined average rank would be 1/2.
The best results in this direction are by Bhargava and Shankar (see [BS15a, BS15b]).
They show that the average rank of elliptic curves over Q is strictly less than one, and
that both rank zero and rank one cases comprise nonzero densities across all elliptic
curves over Q (see [BS13]).

Given an elliptic curve E defined over Q and base-changed to F, we have the
associated Hasse–Weil L function, LE(s, F). Let F/Q be an abelian extension with
Galois group G and conductor f. Let Ĝ be the group of Dirichlet characters, χ :
(Z/ fZ)× → C×. We further know that

LE(s, F) =
∏
χ∈Ĝ

LE(s, χ),

where the terms appearing on the right-hand side are the L-functions of E/Q twisted
by the character χ.

CONJECTURE 2.7 (Birch and Swinnerton-Dyer). The Hasse–Weil L-function has
analytic continuation to the whole complex plane, and

ords=1 LE(s, F) = rankZ(E(F)).

It follows from the Birch and Swinnerton-Dyer (BSD) conjecture that the vanishing
of the twisted L-functions LE(s, χ) at s = 1 is equivalent to the existence of rational
points of infinite order on E(F).

The following conjecture of David, Fearnley, and Kisilevsky predicts that given an
elliptic curve over Q, the rank ‘rarely’ jumps in Z/pZ-extensions with p � 2. More
precisely, we have the following conjecture.

CONJECTURE 2.8 [DFK07, Conjecture 1.2]. Let p be an odd prime and E/Q be an
elliptic curve. Define

NE,p(X) := #{χ of order p | cond(χ) ≤ X and LE(1, χ) = 0}.

(1) If p = 3, then as X → ∞,

log NE,p(X) ∼ 1
2 log X.

(2) If p = 5, then as X → ∞, the set NE,p(X) is unbounded but NE,p(X) � Xε for any
ε > 0.

(3) If p ≥ 7, then NE,p(X) is bounded.
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Under BSD, #NE,p(X) can be rewritten as

(p − 1)#{F/Q is cyclic of degree p | cond(F) ≤ X and rankZ(E(F)) > rankZ(E(Q))}.

In [Dok07, Theorem 1], T. Dokchitser showed that given an elliptic curve E/Q, there
are infinitely many Z/3Z extensions where the rank jumps. More recently, B. Mazur
and K. Rubin have shown (see [MRL18, Theorem 1.2]) that given an elliptic curve E,
there is a positive density set of primes (call it S) such that for each p ∈ S, there are
infinitely many cyclic degree-p extensions over Q with rankZ(E(L)) = rankZ(E(Q)).
However, the result is unable to provide a positive proportion. Mazur and Rubin
revisited this conjecture in a recent preprint (see [MR19]) and their heuristics, based
on the distribution of modular symbols, predicts the same statement as the conjecture
of David, Fearnley, and Kisilevsky.

3. Rank jump in degree-p Galois extensions

Let E/Q be a rank 0 elliptic curve and p be an odd prime number. In this section,
we are interested in studying two questions for a given pair (E, p). First, we analyze in
how many (or what proportion of) cyclic degree-p Galois extensions over Q does the
rank of E not jump. This question is addressed in Theorem 3.11: for non-CM elliptic
curves, the result is unconditional; whereas for the CM-case, we prove the same result
under an additional independence Hypothesis 3.10. Next, we study the dual problem,
that is, for what proportion of elliptic curves does the rank not jump in at least one
degree-p Galois extension over Q. This question is discussed in Section 3.2.

Even though such questions have been studied in the past, our approach involving
Iwasawa theory is new. Let E/Q be an elliptic curve with good ordinary reduction at
a fixed odd prime p. In Lemma 2.2, we show that over any number field, λp(E/F) ≥
rankZ(E(F)). It is well known (see for example [KR21a, Corollary 3.6]) that if E/Q is a
rank 0 elliptic curve with good (ordinary) reduction at an odd prime p, then μp(E/Q) =
λp(E/Q) = 0 if and only if Selp∞(E/Qcyc) = 0. We remind the reader that in Proposition
2.5, we show that the triviality of Selp∞(E/Qcyc) is observed often. The same statement
holds for any number field, under the additional hypothesis that the Shafarevich–Tate
group is finite in every layer of its cyclotomic Zp-extension. Our key idea is to start
with a rank 0 elliptic curve E/Q for which μp(E/Q) = λp(E/Q) = 0 and count how
often μp(E/L) = λp(E/L) = 0, where L/Q is a cyclic degree-p extension.

For a number field F, it is possible that λp(E/F) > rankZ(E(F)). So, our method fails
to measure all instances when the rank of the elliptic curve does not change; that is,
our results only provide a lower bound. However, we succeed in answering a stronger
question, that is, how often the p-primary Selmer group Selp∞(E/Fcyc) is trivial upon
base-change.

3.1. Let E/Q be a fixed rank 0 elliptic curve of conductor N with good ordinary
reduction at a fixed prime p ≥ 5 such that μp(E/Q) = λp(E/Q) = 0. Recall that the
rank distribution conjecture predicts that half of the elliptic curves (ordered by height
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or conductor) have rank 0. Moreover, Proposition 2.5 asserts that there are density
one good ordinary primes satisfying the condition of vanishing Iwasawa invariants.
Lastly, when an elliptic curve does not have CM, density one of the primes are good
ordinary; in the CM case, the good ordinary and the good supersingular primes each
have density 1/2.

Throughout this section, L/Q denotes a Z/pZ-extension disjoint from the cyclo-
tomic Zp-extension. Let q be a prime number distinct from p such that E has good
reduction at q, that is, gcd(q, N) = 1. Let w|q be a prime in L, Lw be the completion
at w, and κ be the residue field of characteristic q. We know that there is an exact
sequence of abelian groups (see [Sil09, Proposition VII.2.1]),

0→ E1(Lw)→ E0(Lw)→ Ẽns(κ)→ 0,

where Ẽns(κ) is the set of nonsingular points of the reduced elliptic curve, E0(Lw) is
the set of points with nonsingular reduction, and E1(Lw) is the kernel of the reduction
map. Since p � q, we know that E1(Lw)[p] is trivial (see [Sil09, VII.3.1]). Because q
is assumed to be a prime of good reduction, E0(Lw) = E(Lw). Hence,

E(Lw)[p] � Ẽ(κ)[p].

Since L/Q is a Z/pZ-extension, the residue field is either Fqp or Fq depending on
whether q is inert in the extension or not.

As explained above, (under standard hypotheses) we know that λp(E/L) ≥
rankZ(E(L)). Since we have assumed that μp(E/Q) = 0, it follows from Theorem
2.3 that μp(E/L) = 0. To show that λp(E/L) = 0, it suffices to show that∑

w∈P1

(eLcyc/Qcyc (w) − 1) =
∑
w∈P2

(eLcyc/Qcyc (w) − 1) = 0.

Recall that all primes in the cyclotomic Zp-extension are finitely decomposed and the
only primes that ramify are those above p. Moreover, L ∩ Qcyc = Q and p � P1 ∪ P2
(recall the definition of these sets from Theorem 2.3). Therefore, eLcyc/Qcyc = eL/Q. Since
p ≥ 5, the reduction type does not change upon base-change. In particular, if q(� p)
is a prime of additive reduction for E/Q, then it has additive reduction over Lcyc (see
[ST68, page 498] or [HM99, page 587]). Finally, since Lcyc,w/Lw is a pro-p group, we
have that E(Lcyc,w)[p∞] = 0 if and only if E(Lw)[p∞] = 0. Thus, it suffices to show that

∑
w∈P1

(eL/Q(w) − 1) =
∑
w∈P2

(eL/Q(w) − 1) = 0, (3-1)

where P1, P2 are now sets of primes in L. More precisely,

P1 = {w ∈ L : w � p, E has split multiplicative reduction at w},
P2 = {w ∈ L : w � p, E has good reduction at w, E(Lw) has a point of order p}.
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It is often possible that P1 = ∅ but the set P2 is never empty. In fact, it is known that
(see for example [Coj04, Section 2])

lim
X→∞

#{q ≤ X | q � pN, p | #Ẽ(Fq)}
π(X)

≈ 1
p

.

Here, π(X) is the prime counting function.

REMARK 3.1. Henceforth, the sets P1, P2 will denote sets of primes in L (rather than
Lcyc). By our assumption that L ∩ Qcyc = Q, we have excluded the case that p is the
only ramified prime. If two or more primes are ramified, then it is possible that p is
(wildly) ramified in L. However, by definition, p � P1 ∪ P2. Therefore, the ramification
of p in L/Q does not contribute to the λ-jump. It suffices to focus on the ramification
of primes q � p.

The above discussion can be summarized in the result below.

PROPOSITION 3.2. Let E/Q be a rank 0 elliptic curve with good ordinary reduction
at p ≥ 5 such that μp(E/Q) = λp(E/Q) = 0. Let L/Q be any cyclic degree-p extension
disjoint from Qcyc such that Equation (3-1) holds. Then, μp(E/L) = λp(E/L) = 0. This
implies in particular that rankZ(E(Ln)) = 0 for all n ≥ 0.

The conditions imposed in Proposition 3.2 will be required throughout this section.
Therefore, we make the following definition.

DEFINITION 3.3. Given an elliptic curve E/Q of rank 0, a prime p is called irrelevant
if at least one of the following properties hold.

(i) p is a prime of bad reduction.
(ii) p is a prime of supersingular reduction.
(iii) At p, the μ-invariant associated to the p-primary Selmer group is positive.
(iv) At p, the λ-invariant associated to the p-primary Selmer group is positive.

Otherwise, it is called a relevant prime.

Let E be an elliptic curve and let p, q be two distinct primes. Given a triple (E, p, q),
we aim to understand when Equation (3-1) holds. We begin by recalling the following
well-known result.

PROPOSITION 3.4. Let p be an odd prime. Let L/Q be any Z/pZ-extension disjoint
from the cyclotomic Zp-extension that is ramified at exactly one prime q � p. Such
an extension exists precisely when q ≡ 1 (mod p). Moreover, L is unique and has
conductor q.

PROOF. See for example [JR08, Proposition 1.1]. �

In fact, it follows from class field theory (see [MSM16, Lemma 2.5]) that the
primes that ramify in a Z/pZ-extension are either p or precisely those of the form
q ≡ 1 (mod p). By local class field theory, the discriminant of L/Q (denoted d(L/Q))
is given by (see [MSM16, Lemma 2.4])
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d(L/Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

r∏
i=1

qp−1
i if qi is ramified,

r∏
i=1

qp−1
i p2(p−1) if qi and p are ramified.

If q (� p) ramifies in a Z/p-extension, then the ramification is tame.
For primes of the form q ≡ 1 (mod p) (that is, primes that can ramify in

Z/pZ-extensions), we introduce the notion of friendly and enemy primes.

DEFINITION 3.5. Let p be a fixed odd prime and E/Q be a fixed elliptic curve of rank
0 for which p is a relevant prime (see Definition 3.3). Define enemy primes to be
those primes that are of the form q ≡ 1 (mod p) and such that either of the following
conditions hold:

(i) q is a prime of split multiplicative reduction; or
(ii) q is a prime of good reduction and p | #Ẽ(Fq).

If a prime is of the form q ≡ 1 (mod p) with the additional properties that q is a prime
of good reduction and p � #Ẽ(Fq), then q will be called friendly.

REMARK 3.6

(i) A prime q ≡ 1 (mod p) that is a prime of bad reduction but not of split
multiplicative type is neither an enemy prime nor a friendly prime.

(ii) For our purpose, it is enough to work with the residue field Fq because,
eventually, we want the primes q to ramify in the extension L.

Primes w|q in L will also be called an enemy or a friendly prime depending on
the behavior of q. The following lemma will play a crucial role in the subsequent
discussion.

LEMMA 3.7. Let L/Q be a cyclic degree-p extension disjoint fromQcyc. Then, Equation
(3-1) holds precisely when no ramified prime is an enemy prime.

PROOF. Recall that P1 consists of primes w � p such that E has split multiplicative
reduction at w. Observe that ∑

w∈P1

(eL/Q(w) − 1) � 0

if and only if there exists a ramified prime in L/Q of split multiplicative type. The
assertion is immediate from the definition of an enemy prime.

Since L is disjoint from Qcyc, we know that if p is ramified in L/Q, there must be at
least one other prime that is also ramified. Now,∑

w∈P2

(eL/Q(w) − 1) � 0

precisely when there exists a q (� p) satisfying all of the following conditions:
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(i) q is a prime of good reduction for E;
(ii) q is ramified in the extension L/Q; and
(iii) w is a prime above q with E(Lw)[p] � 0.

The conclusion of the lemma is now straightforward. �

3.1.1. For a given pair (E, p), we denote the set of enemy primes by E(E,p) and the set of
friendly primes by F(E,p). Write N(E,p) for the set of primes of the form q ≡ 1 (mod p),
where E has bad reduction not of split multiplicative type. The three sets are disjoint.
We further subdivide the first two of these sets into disjoint sets, namely

F(E,p) = F ord
(E,p) ∪ F

ss
(E,p) and

E(E,p) = Esplit
(E,p) ∪ E

ord
(E,p) ∪ E

ss
(E,p).

Here,F ord
(E,p) (respectivelyF ss

(E,p)) is the set of primes of the form q ≡ 1 (mod p) such that

q is a prime of good ordinary (respectively supersingular) reduction and p � #Ẽ(Fq).
The set Esplit

(E,p) consists of all the primes q ≡ 1 mod p of split multiplicative reduction.
Finally, Eord

(E,p) (respectively Ess
(E,p)) is the set of primes of the form q ≡ 1 (mod p) such

that q is a prime of good ordinary (respectively supersingular) reduction and p|#Ẽ(Fq).

LEMMA 3.8. Let E/Q be an elliptic curve and p ≥ 5 be a relevant prime. Then,
Ess

(E,p) = ∅. In particular, E(E,p) = Esplit
(E,p) ∪ E

ord
(E,p).

PROOF. When q ≥ 7 is a prime of supersingular reduction, then it follows from the
Hasse bound that aq = 0. Therefore,

#Ẽ(Fq) = q + 1 − aq = q + 1.

Note that we require that q ≡ 1 (mod p). Thus, p � #Ẽ(Fq). �

For any subset S′ of the set of primes, let d(S′) denote the Dirichlet density of S′.
With notation as above, we have that

d(E(E,p)) + d(F(E,p)) + d(N(E,p)) =
1
ϕ(p)

=
1

p − 1
. (3-2)

The first equality follows from Dirichlet’s theorem on primes in arithmetic progres-
sions, which asserts that the proportion of primes that are congruent to 1 modulo p
is 1/ϕ(p). The set N(E,p) is finite, and hence d(N(E,p)) = 0. We henceforth disregard
the primes q that are of nonsplit multiplicative and additive reduction type. For the
same reason, we may also disregard (for the purpose of proportion) the primes of split
multiplicative reduction. As X → ∞, the contribution to E(E,p) is primarily from primes
q such that:

(a) q is a prime of good ordinary reduction;
(b) q ≡ 1 (mod p); and
(c) p | #Ẽ(Fq).
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For non-CM elliptic curves, the set of primes of good ordinary reduction has
density 1. In the case of non-CM elliptic curves with surjective residual Galois
representation at p, we know how to calculate the proportion of primes satisfying
conditions (a)–(c).

LEMMA 3.9. Let E/Q be a non-CM elliptic curve and p ≥ 5 be a fixed prime of good
ordinary reduction such that the residual Galois representation at p is surjective. Then,

d(E(E,p)) =
p

(p − 1)2(p + 1)
.

PROOF. The result is well known and follows from the proof of [GFP20, Proposition
4.6]. For the convenience of the reader, we briefly sketch the details here. A more
detailed argument is provided in Section 4.2. Since p ≥ 5, it follows from the proof
of Lemma 3.8 that if conditions (b) and (c) are satisfied, then condition (a) is
automatically satisfied for any prime q of good reduction. Since there are only finitely
many primes q at which E has bad reduction, we may as well assume that q is a prime
of good reduction.

Let Frobq denote the Frobenius at q and set S to be the set of matrices A ∈
GL2(Fp) such that trace(A) = 2 and det(A) = 1. Let ρ̄ : Gal(Q̄/Q)→ GL2(Fp) denote
the residual representation at p, that is, the representation on the group of p-torsion
points E[p]. By assumption, ρ̄ is surjective.

Since q is a prime of good reduction, ρ̄ is unramified at q and the characteristic
polynomial of ρ̄(Frobq) is given by

det (Id−T ρ̄(Frobq)) = T2 − (q + 1 − #Ẽ(Fq))T + q.

Thus, q satisfies both conditions (b) and (c) above if and only if ρ̄(Frobq) is contained in
S. According to Lemma 4.8, the cardinality of S is p2. The cardinality of Image(ρ̄) =
GL2(Fp) is (p2 − 1)(p2 − p). The result follows from the Chebotarev density theorem,
according to which the density of E(E,p) is

#S
# GL2(Fq)

=
p

(p − 1)2(p + 1)
. �

We performed calculations using SageMath [Sag20] to get an estimate of the
proportion of enemy primes in the CM case. More precisely, fix 5 ≤ p ≤ 50. Fix an
elliptic curve E/Q of rank 0 and conductor less than 100. Running through all primes
q less than 200 million, we computed the proportion of enemy primes. The results are
recorded at the end of the article, in Table 2. The data suggest that for elliptic curves
with CM, the proportion of enemy primes is half of that in the non-CM case. We know
from Deuring’s criterion that for a CM elliptic curve, the density of the set of good
ordinary primes is 1/2. It therefore seems reasonable to assume that the enemy primes
are equally likely to be primes of good ordinary or good supersingular reduction. More
precisely, we make the following assumption.
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HYPOTHESIS 3.10. Let E/Q be an elliptic curve with CM and p be a fixed odd prime
of good ordinary reduction. Then, d(E(E,p)) = p/2(p − 1)2(p + 1).

We can now prove the main result of this section.

THEOREM 3.11. Let (E, p) be a given pair of a rank 0 elliptic curve over Q and a
relevant prime p ≥ 5. Then, the following assertions hold.

(1) Suppose that the residual representation at p is surjective. Then, there are
infinitely many cyclic number fields of degree-p in which the λ-invariant does
not jump. In particular, there are infinitely many Z/pZ-extensions L/Q in which
the rank does not jump in Ln for all n ≥ 0.

(2) Let (E, p) be a pair of a rank 0 elliptic curve (defined over Q) with complex
multiplication and a relevant prime p ≥ 5. Suppose further that Hypothesis 3.10
holds. Then the same conclusions hold as in the non-CM case.

PROOF. Since p is assumed to be a relevant prime, we know that μp(E/Q) =
λp(E/Q) = 0. It follows from Theorem 2.3 that μp(E/L) = 0 for every degree p
extension L/Q. The result will follow from Proposition 3.2 if we can show that there
are infinitely many cyclic degree p extensions such that Equation (3-1) holds.

Observe that

d(F(E,p)) =
1

p − 1
− d(E(E,p)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
p2 − p − 1

(p − 1)2(p + 1)
if E does not have CM,

2p2 − p − 2
2(p − 1)2(p + 1)

if E does not have CM.

It follows from Lemma 3.7 that Equation (3-1) holds when every ramified prime is
a friendly prime. From the above discussion, we see that there are infinitely many
friendly primes. We have also shown in Proposition 3.4 that corresponding to each
friendly prime (say q), there is one Z/pZ-extension where only q ramifies. This
completes the proof. �

Note that condition (1) in Theorem 3.11, requiring that the residual representation
is surjective, implies that the elliptic curve does not have complex multiplication. The
Galois representations associated to CM elliptic curves are studied, for instance, in
[LR22]. The following application of our theorem was pointed out by J. Morrow. We
begin by stating a result of González-Jiménez and Najman.

THEOREM 3.12. Let E/Q be an elliptic curve and p > 7 be a prime number. Let L/Q
be a Galois extension with Galois group G � Z/pZ. Then, E(L)tors = E(Q)tors.

PROOF. See [GJN20, Theorem 7.2]. �

Combining Theorems 3.11 and 3.12, the following corollary is immediate.

COROLLARY 3.13. Let (E, p) be a given pair of a rank 0 elliptic curve over Q and a
relevant prime p > 7. If E/Q is an elliptic curve without CM, suppose that the residual
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representation at p is surjective. If E/Q is an elliptic curve with CM, suppose that
Hypothesis 3.10 holds. Then, there are infinitely many Z/pZ-extensions of Q where the
Mordell–Weil group does not grow.

REMARK 3.14. To show that there are ‘infinitely many’ Z/pZ-extensions with no
λ-jump, we only counted those where exactly one friendly prime is ramified. In
particular, we counted only those Z/pZ-extensions that are contained in the cyclotomic
field Q(μq) where q is a prime of the form 1 (mod p). Our count ignored the
contribution from Z/pZ-extensions where two or more primes are ramified, all of
which are either friendly primes or the prime p. It was pointed out to us by R. Lemke
Oliver that Theorem 3.11 can be made explicit using standard analytic number theory
techniques (see for example [Ser74, Théorème 2.4]); however, our approach is still
likely to fall short of proving a positive proportion.

A recent and significant result in this direction is by Mazur and Rubin (see [MRL18,
Theorem 1.2]). They show that given an elliptic curve E, there is a positive density set
of primes (call itS) such that for each p ∈ S, there are infinitely many Z/pZ-extensions
over Q with E(L) = E(Q). In the case of rank 0 elliptic curves (defined over Q), our
result is stronger, in the sense that for p > 7, Corollary 3.13 holds unconditionally for
density 1 primes if E is an elliptic curve without CM. However, for CM elliptic curves,
the result is conditional and applies to a set of primes of density 1/2.

3.1.2. Example: CM case. Now, we work out a particular example in the CM case.
As before, let p ≥ 5 be a fixed prime and q ≡ 1 (mod p) be a different prime. Let
k � 0 (mod q) and consider the family of curves

Ek : y2 = x3 − kx.

Then, either of the following two statements is true (see [Was08, Section 4.4]).

(i) If q ≡ 3 (mod 4), then #Ẽk(Fq) = q + 1.
(ii) If q ≡ 1 (mod 4), write q = s2 + t2 with s ∈ Z, t ∈ 2Z and s + t ≡ 1 (mod 4). Then,

#Ẽk(Fq) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q + 1 − 2s if k is a fourth power mod q,
q + 1 + 2s if k is a square mod q but not a fourth power,
q + 1 ± 2t if k is not a square mod q.

For this family of elliptic curves, the primes q ≡ 3 (mod 4) are supersingular. Recall
from Lemma 3.8 that if q is a supersingular prime and q ≡ 1 (mod p), then the primes
w|q are friendly (except for possibly finitely many). For the sake of concreteness,
suppose that k = 1 (the argument goes through more generally). By the Chinese
remainder theorem, we know that if

q ≡ 3 (mod 4) and
q ≡ 1 (mod p),
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then q ≡ 2p + 1 (mod 4p). By Dirichlet’s theorem for primes in arithmetic progres-
sions, we know that there are infinitely many primes satisfying this congruence
condition. Moreover, the proportion of such primes is

1
ϕ(4p)

=
1

2(p − 1)
.

By Proposition 3.4, we know that corresponding to each such q, there is exactly one
cyclic degree-p extension L/Q in which q is the unique ramified prime. Therefore,
we have produced infinitely many Z/pZ-extensions where the ramified primes are
friendly. By Proposition 3.2, if rankZ(Ek/Q) = 0 and μp(E/Q) = 0 (for example, when
k = 1), then there are infinitely many Z/pZ-extensions over Q where the rank does not
jump.

We record a specific case of the above discussion.

THEOREM 3.15. Let p ≥ 5 be a fixed prime, and consider the elliptic curve

E : y2 = x3 − x.

Then, there are infinitely many Z/pZ-extensions L/Q such that Selp∞(E/Lcyc) = 0. In
particular, there are infinitely many Z/pZ-extensions such that rankZ(E(L)) = 0.

3.2. In the last section, we fixed a rank 0 elliptic curve over Q and analyzed in how
many Z/pZ-extensions of Q did the rank jump. Now, we ask the following question.

QUESTION 3.16. Let p ≥ 5 be a fixed odd prime. For what proportion of rank 0 elliptic
curves does there exist at least one degree-p Galois extension overQ disjoint fromQcyc

such that its rank remains 0 upon base-change?

Let E be a rank 0 elliptic curve of conductor N and p be a relevant prime.
Throughout this section, we assume that the Shafarevich–Tate group of rank 0 elliptic
curves defined over Q is finite. Proposition 2.5 asserts that density one good ordinary
primes are relevant. Further assume that N is divisible by at least one prime of the
form 1 (mod p). The following lemma is a special case of Proposition 3.2.

LEMMA 3.17. Keep the setting as above. If E has no prime of split multiplicative
reduction, that is, P1 = ∅, then there exists at least one degree-p cyclic extension L/Q
such that λp(E/L) = 0. In particular, rankZ(E(L)) = 0.

PROOF. By Proposition 3.4, there exists one and only one cyclic degree-p extension
L/Q of conductor q if and only if q ≡ 1 (mod p). By assumption, N has a prime divisor
of this form (say q0). Let L/Q be the Z/pZ-extension of conductor q0. Moreover,
there is no contribution from the last term of the formula in Theorem 2.3; indeed,
for any w ∈ P2, the ramification index is eL/Q(w) = 1. Since L is a Z/pZ-extension, it
follows from Theorem 2.3 that μp(E/L) = 0. In this Z/pZ-extension, we have forced
λp(E/L) = 0. Therefore, Selp∞(E/Lcyc) = 0. Clearly, Selp∞(E/L) is trivial as well; this
forces rankZ(E(L)) = 0. �

https://doi.org/10.1017/S1446788723000034 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000034


[19] Growth questions in Z/pZ-extensions 19

It follows from the proof of the above result that to obtain a lower bound of the
proportion of rank 0 elliptic curves for which there is at least one degree-p cyclic
extension over Q such that Selp∞(E/L) = 0, it is enough to count elliptic curves with
the following properties:

(i) E has good ordinary reduction at p ≥ 5;
(ii) E has any reduction type at primes q � 1 (mod p);
(iii) E has at least one prime of bad reduction that is not of split multiplicative type

at a prime q ≡ 1 (mod p).

Before proceeding with such a count, we need to define the notion of height. For an
elliptic curve defined over Q, consider the long Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Define the height of this Weierstrass equation with integer coefficients a =
(a1, a2, a3, a4, a6) to be

height(a) = max
i
{|ai|1/i}.

Let S be a set of Weierstrass equations with integer coefficients a that are ordered by
height. The proportion of Weierstrass equations that lie in the set S is defined as

lim
X→∞

#{a ∈ S : height(a) < X}
#{a ∈ Z5 : height(a) < X}

. (3-3)

For our purposes, we restrict to Weierstrass equations that are globally minimal.

LEMMA 3.18. Let q be any prime. Suppose that all elliptic curves defined over Q are
ordered by height. Then:

(i) the proportion with split multiplicative reduction at q is (q − 1)/2q2;
(ii) the proportion with good reduction at q is (1 − 1/q).

PROOF. For part (i), see [CS21, Theorem 5.1]. For part (ii), see [CS21, Proposition
2.2]. �

Henceforth, we assume that the rank of the elliptic curve and the reduction type
at 
 are independent of each other. In other words, we assume that even if we only
order the rank 0 elliptic curves by height, the proportion of elliptic curves with split
multiplicative reduction or good reduction is the same as that in Lemma 3.18.

We know from [CS21, Section 3] that the local conditions such as the reduction
type of elliptic curves at distinct primes are independent.

We now record the assumption we have made.

HYPOTHESIS 3.19. The reduction type of an elliptic curve at a prime q is independent
of its rank.
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What we mean is that density results from Lemma 3.18 hold even when we restrict
to rank 0 elliptic curves defined over Q. We can now prove the main result in this
section.

THEOREM 3.20. Let p ≥ 5 be a fixed odd prime. Suppose that Hypothesis 3.19 holds.
Varying over all rank 0 elliptic curves defined over Q and ordered by height, the
proportion with

(i) good reduction at p;
(ii) any reduction type at q � 1 (mod p); and
(iii) at least one prime of bad reduction where the reduction type is not split

multiplicative at a prime q ≡ 1 (mod p) is given by

(
1 − 1

p

)(
1 −

∏
q≡1 (mod p)

(q − 1
2q2 + 1 − 1

q

))
. (3-4)

Further, suppose that the Shafarevich–Tate group is finite for all rank 0 elliptic curves
defined over Q. There is a positive proportion of rank 0 elliptic curves for which
there is at least one degree-p cyclic extension over Q such that Selp∞(E/L) = 0 upon
base-change.

PROOF. Let q ≡ 1 (mod p). We require that among all such primes, there is ‘at least
one prime of bad reduction where the reduction type is not split multiplicative’.
Equivalently, among all primes of the form 1 (mod p), there is ‘at least one prime
of additive or nonsplit multiplicative reduction’. In other words, at q ≡ 1 (mod p), we
want the negation of ‘all primes have either good or split multiplicative reduction’.
This gives Equation (3-4) from Lemma 3.18.

From our earlier discussion, to prove the second assertion, it remains to show that
Equation (3-4) is strictly positive. For any fixed prime p, note that

∏
q≡1(mod p)

(q − 1
2q2 + 1 − 1

q

)
=
∏

q≡1(mod p)

(
1 −
(q + 1

2q2

))
< 1.

The inequality follows from the fact that each term in the product is < 1. Therefore,
(
1 −

∏
q≡1(mod p)

(
1 −
(q + 1

2q2

)))
> 0.

The claim follows. �

In Table 1, we compute Equation (3-4) for 3 ≤ p < 50 and q ≤ 179 424 673 (that is,
the first 10 million primes).

A reasonable question to ask at this point is the following.
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TABLE 1. Values for Equation (3-4).

Primes Value for expression Primes Value for expression

3 0.293 282 23 0.040 462 1
5 0.189 719 29 0.030 333 1
7 0.121 798 31 0.019 883 6
11 0.086 631 6 37 0.019 738 5
13 0.064 784 1 41 0.019 329
17 0.045 347 8 43 0.016 566 4
19 0.034 282 8 47 0.014 143 9

QUESTION 3.21. Let p ≥ 5 be a fixed prime and L/Q be a fixed Z/pZ-extension.
Varying over all rank 0 elliptic curves over Q ordered by height, for what proportion is
Selp∞(E/Lcyc) = 0?

In this direction, we can provide partial answers. Given a number field L/Q, we
can find a lower bound for the proportion of elliptic curves (defined over Q) for which
Equation (3-1) holds.

PROPOSITION 3.22. Let p be a fixed odd prime. Let L/Q be a fixed Z/pZ-extension
that is tamely ramified at primes q1, . . . , qr. The proportion of elliptic curves defined
over Q (ordered by height) such that Equation (3-1) holds has a lower bound of

r∏
qi=1

(qi + 1
2q2

i

)
.

PROOF. Note that for Equation (3-1) to hold, the reduction type at p does not matter.
To find a lower bound, it suffices that all the ramified primes (that is, the qi terms)
are primes of bad reduction of nonsplit multiplicative or additive reduction type.
Indeed, this would ensure P1 = ∅ and the primes of good reduction are not ramified.
Equivalently, each qi is such that it does not have good ordinary or split multiplicative
reduction. By Lemma 3.18, the lower bound is

r∏
qi=1

(
1 −
(qi − 1

2q2
i

+ 1 − 1
qi

))
=

r∏
qi=1

(qi + 1
2q2

i

)
. �

REMARK 3.23. The above proposition is not sufficient to answer the question because
given p, we are unable to compute the proportion of elliptic curves for which p
is relevant. In particular, we do not know precisely for what proportion of elliptic
curves p is a good ordinary prime. A lower bound for this proportion has been
computed for small primes and can be found in [KR21b, Table 1]. From the Hasse
interval, one may conclude (roughly) that supersingular elliptic curves should be
rare among elliptic curves with good reduction over Fp (approximately 1/2

√
p).

Therefore, as p becomes large, 100% of the elliptic curves with good reduction at

https://doi.org/10.1017/S1446788723000034 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000034


22 L. Beneish, D. Kundu and A. Ray [22]

p is of ordinary type (see [Bir68]). It is also reasonable to expect that as p becomes
large, the proportion of rank 0 elliptic curves with μp(E/Q) = λp(E/Q) = 0 approaches
100% (see [KR21a, Conjecture 4.7]). Thus, assuming the rank distribution conjecture,
it might be reasonable to expect that as p becomes large, varying over all elliptic
curves ordered by height, the proportion with good ordinary reduction at p approaches
1
2 (1 − 1/2

√
p)(1 − 1/p).

4. Growth of the Selmer group of an elliptic curve in a Z/pZ-extension

Throughout this section, p ≥ 5 is a fixed prime number and E/Q an elliptic curve
with good ordinary reduction at p for which the following equivalent conditions are
satisfied:

(i) μp(E/Q) = 0 and λp(E/Q) = 0;
(ii) Selp∞(E/Qcyc) = 0.

Let L be a Z/pZ-extension of Q. First, in Proposition 4.1, we establish a criterion
for there to be either a rank-jump or growth in the Shafarevich–Tate group. The result
also explores conditions under which the Selmer groups

Selp∞(E/Q) = 0 and Selp∞(E/L) � 0.

This result is then applied to study a problem in arithmetic statistics which we prove
in Theorem 4.9.

4.1. Here, we first prove a criterion for nontriviality of the p-primary Selmer group.

PROPOSITION 4.1. Let p be an odd prime and L/Q be a Z/pZ-extension linearly
disjoint from Qcyc. In other words, L � Q1, where Q1 is the first layer in the cyclotomic
Zp-extension. Let E/Q be an elliptic curve with good ordinary reduction at p and ΣL

be the set of primes 
 � p that are ramified in L. Assume that the following conditions
are satisfied:

(i) rankZ E(Q) = 0 and E(Q)[p∞] = 0;
(ii) μp(E/Q) = 0 and λp(E/Q) = 0;
(iii) there is a prime 
 ∈ ΣL at which E has good reduction and p|#Ẽ(F
);
(iv) at each prime 
 ∈ ΣL at which E has bad reduction, the Kodaira-type of E/Q
 is

not Im for any integer m ∈ Z≥1;
(v) X(E/L)[p∞] is finite.

Then, Selp∞(E/Q) =X(E/Q)[p∞] = 0 and at least one of the following is true:

(a) rankZ E(L) > 0;
(b) X(E/L)[p∞] � 0.

In particular, the Selmer group Selp∞(E/L) becomes nonzero.
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REMARK 4.2. Condition (iv) is automatically satisfied when E has good reduction at
all primes 
 ∈ ΣL. In a preprint from 2014, J. Brau has made an attempt at a comparable
result on the growth of Selmer groups (see [Bra14, Corollary 1.3]). Our methods differ
significantly from those of Brau and do not require the semi-stability hypothesis.

To prove the above result, we briefly recall some key properties of the Euler
characteristic associated to an elliptic curve. The reader is referred to [CS00, RS19,
RS20] for a more comprehensive discussion of the topic.

Let E/Q be an elliptic curve and L/Q a number field extension. Assume that the
following conditions are satisfied:

(i) rankZ E(L) = 0;
(ii) E has good ordinary reduction at p;
(iii) X(E/L)[p∞] is finite.

Then, the cohomology groups Hi(Lcyc/L, Selp∞(E/Lcyc)) are finite and the Euler
characteristic χ(Lcyc/L, E[p∞]) is defined as follows:

χ(Lcyc/L, E[p∞]) :=
#H0(Lcyc/L, Selp∞(E/Lcyc))

#H1(Lcyc/L, Selp∞(E/Lcyc))
.

The Euler characteristic is an important invariant associated to the Selmer group,
and captures its key Iwasawa theoretic properties. There is an explicit formula for
this invariant, which we now describe. At each prime v � p of L, let cv(E/L) denote
the Tamagawa number at v, and let c(p)

v (E/L) be the p-part, given by c(p)
v (E/L) :=

|cv(E/L)|−1
p . Here, |·|p is the absolute value, normalized by |p|p = p−1. At each prime v

of L, let kv be the residue field at v and Ẽ(kv) be the group of kv-valued points of the
reduction of E at v.

THEOREM 4.3. Let E/Q be an elliptic curve, p an odd prime, and L/Q be a number
field extension. Assume that the following conditions are satisfied:

(i) rankZ E(L) = 0;
(ii) E has good ordinary reduction at p;
(iii) X(E/L)[p∞] is finite.

Then, the following assertions hold:

(a) the Euler characteristic χ(Lcyc/L, E[p∞]) is an integer, further, it is a power of p;
(b) the Euler characteristic is given by the following formula:

χ(Lcyc/L, E[p∞]) =
#X(E/L)[p∞] ×∏v c(p)

v (E/L) ×∏v|p(#Ẽ(kv)[p∞])2

(#E(L)[p∞])2 . (4-1)

PROOF. Assertion (a) follows from [HKR21, Lemma 3.4 and Remark 3.5], and for
assertion (b), the reader is referred to [CS00, Theorem 3.3]. �

The next result relates the Euler characteristic and Iwasawa invariants.
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PROPOSITION 4.4. Let E/L be an elliptic curve satisfying the following conditions:

(i) E has good ordinary reduction at all primes v|p;
(ii) rankZ E(L) = 0;
(iii) X(E/L)[p∞] is finite.

Then, the following are equivalent:

(a) μp(E/L) = 0 and λp(E/L) = 0;
(b) χ(Lcyc/L, E[p∞]) = 1.

PROOF. The conditions on the elliptic curve are in place for the Euler characteristic to
be defined. The result follows from [HKR21, Proposition 3.6]. However, the first proof
of this result was given in [RS19], in a more general context. �

LEMMA 4.5. Let E/Q be an elliptic curve that satisfies the following conditions:

(i) E has good ordinary reduction at p;
(ii) X(E/Q)[p∞] is finite;
(iii) rankZ E(Q) = 0;
(iv) E(Q)[p∞] = 0;
(v) μp(E/Q) = 0 and λp(E/Q) = 0.

Then, we have that Selp∞(E/Q) =X(E/Q)[p∞] = 0.

PROOF. Recall the well-known short exact sequence (see Equation (2-2)),

0→ E(Q) ⊗ Qp/Zp → Selp∞(E/Q)→X(E/Q)[p∞]→ 0.

Since E(Q) is finite and E(Q)[p∞] = 0, it follows from the above that

Selp∞(E/Q) =X(E/Q)[p∞].

It follows from Proposition 4.4 that χ(Qcyc/Q, E[p∞]) = 1. However, by Equation
(4-1),

χ(Qcyc/Q, E[p∞]) = #X(E/Q)[p∞] ×
∏



c(p)



(E/Q) × (#Ẽ(Fp)[p∞])2.

As a result, it is indeed the case that X(E/Q)[p∞] = 0. �

LEMMA 4.6. Let p ≥ 5 be a prime, L/Q be a Z/pZ extension, and 
 � p be a prime
that ramifies in L. Assume that the Kodaira type of E/Q
 is not Im for any integer
m ∈ Z≥1. Then,

∏
v|
 c(p)

v (E/L) = 1.

PROOF. Since 
 � p and L/Q is a Z/pZ-extension, it follows that 
 is tamely ramified
in L. Thus, the results for base-change of Tamagawa numbers in [Kid03, Table 1, pages
556–557] apply. Fix a prime v|
 and let e = eL/Q(v) be the ramification index. Since it
is assumed that 
 is ramified in L, it follows that e = p. Since p ≥ 5, the Tamagawa
number c(p)

v (E/L) � 1 if and only if the Kodaira type of E/Lv is In for an integer n ∈
Z≥1 that is divisible by p (see [Sil09, page 448]). According to [Sil09, page 448], the
only way this is possible is if the Kodaira type of E/Q
 is Im for m ∈ Z≥1. Indeed, if
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the Kodaira type of E/Q
 is Im, then upon base-change to Lv, it becomes Ime = Imp.
However, by assumption, this case does not occur. Therefore, c(p)

v (E/L) = 1 for all
primes v|
 of L. This completes the proof. �

We now give a proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. According to Lemma 4.5, we have that

Selp∞(E/Q) =X(E/Q)[p∞] = 0.

Assume by way of contradiction that

rankZ E(L) = 0 and X(E/L)[p∞] = 0.

Since rankZ E(L) = 0, it follows from Theorem 4.3 that the Euler characteristic
χ(Lcyc/L, E[p∞]) is defined and given by the formula

χ(Lcyc/L, E[p∞]) =
#X(E/L)[p∞] ×∏v c(p)

v (E/L) ×∏v|p(#Ẽ(kv)[p∞])2

(#E(L)[p∞])2 . (4-2)

However, the Euler characteristic χ(Qcyc/Q, E[p∞]) is given by the formula

χ(Qcyc/Q, E[p∞]) = #X(E/Q)[p∞] ×
∏



c(p)



(E/Q) × (#Ẽ(Fp)[p∞])2.

Note that E(Q)[p∞] does not contribute to the above formula since it is assumed to
be trivial. Since it is assumed that μp(E/Q) = 0 and λp(E/Q) = 0, it follows from
Proposition 4.4 that χ(Qcyc/Q, E[p∞]) = 1.

We use this and the assumptions on E to show that χ(Lcyc/L, E[p∞]) = 1 as well.
Since χ(Qcyc/Q, E[p∞]) = 1, it follows that

#X(E/Q)[p∞] = 1,
∏



c(p)



(E/Q) = 1 and #Ẽ(Fp)[p∞] = 1.

To show that χ(Lcyc/L, E[p∞]) = 1, we show that

#X(E/L)[p∞] = 1,
∏

v

c(p)
v (E/L) = 1 and

∏
v|p

#Ẽ(kv)[p∞] = 1.

By assumption, X(E/L)[p∞] = 0, and hence, #X(E/L)[p∞] = 1. It follows from
Lemma 4.6 that

∏
v�p c(p)

v (E/L) = 1. If p splits or ramifies in L, then kv = Fp for all
primes v|p. Since #Ẽ(Fp)[p∞] = 1, it follows that #Ẽ(kv)[p∞] = 1 as well. However,
suppose p is inert in L and v|p is the only prime above p in L. Then, since kv/Fp is a
p-extension, it follows from [NSW13, Proposition 1.6.12] that

#Ẽ(Fp)[p∞] = 1⇒ #Ẽ(kv)[p∞] = 1.

Hence, the numerator of Equation (4-2) is 1. Theorem 4.3 asserts the Euler charac-
teristic is an integer, and so, we deduce that χ(Lcyc/L, E[p∞]) = 1. We deduce from
Proposition 4.4 that

μp(E/L) = 0 and λp(E/L) = 0.
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In particular, we find that

λp(E/L) = λp(E/Q) = 0.

However, recall that according to Kida’s formula,

λp(E/L) = pλp(E/Q) +
∑
w∈P1

(eL/Q(w/
) − 1) +
∑
w∈P2

2(eL/Q(w/
) − 1).

However, there is a prime 
 ∈ ΣL for which E has good reduction at 
 and p|#Ẽ(F
), so
we deduce that ∑

w∈P2

2(eL/Q(w/
) − 1) > 0.

Thus, the above formula shows that

λp(E/L) > λp(E/Q).

In particular, λp(E/L) > 0, this is a contradiction. Therefore, we have shown that either
rankZ E(L) > 0 or X(E/L)[p∞] � 0. �

We illustrate Proposition 4.1 through an example in the case when p = 5.
EXAMPLE. Let L/Q be the unique degree 5 Galois extension contained in Q(μ31). The
only prime that ramifies in L is 
 = 31. Consider the elliptic curve E : y2 = x3 + 42.
Explicit calculation shows that E satisfies conditions (i)–(iv) of the aforementioned
proposition. Assuming the finiteness of the Shafarevich–Tate group over L, we con-
clude that either there is a rank jump or an increase in the size of the Shafarevich–Tate
group. It can be checked via standard computations on Magma that E(L) = E(Q).
Therefore, the growth occurs in the Shafarevich–Tate group.

4.2. We now come to an application to arithmetic statistics. Recall that we fix an
elliptic curve E/Q and a prime p for which the aforementioned conditions are satisfied.
Consider the family of Z/pZ-extensions L of Q not contained in Qcyc and ramified at
precisely one prime. For each prime q ≡ 1 (mod p), there is exactly one such extension
Lq/Q that is ramified at q (see Proposition 3.4). Note that Lq is contained in Q(μq). For
X > 0, let π(X) be the prime counting function (that is, denote the number of primes
q ≤ X) and π′(X) be the number of primes q ≤ X for which:

(i) q ≡ 1 (mod p); and
(ii) Selp∞(E/Lq) � 0.

Note that since Lq/Q is a Z/pZ-extension, we have the following implication:

E(Q)[p∞] = 0⇒ E(Lq)[p∞] = 0;

see [NSW13, Proposition 1.6.12]. Therefore, the nonvanishing of Selp∞(E/Lq) is
equivalent to at least one of the following conditions being satisfied:

(1) rankZ E(Lq) > 0;
(2) X(E/Lq)[p∞] � 0.
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Thus, if the Selmer group becomes nonzero after base-change, then either there is
a rank jump or the Shafarevich–Tate group witnesses growth. The main result of this
section is Theorem 4.9, where it is shown that the set of primes q ≡ 1 (mod p) for
which the above conditions are satisfied is cut out by explicit Chebotarev conditions.
In other words, there is an explicit subset S ⊂ Gal(Q(E[p])/Q) such that for any prime
q � p coprime to the conductor of E,

Frobq ∈ S ⇒ Selp∞(E/Lq) � 0.

Therefore, if the Frobenius of a prime q � N p lies in the Chebotarev set S, then
the Selmer group becomes nonzero when base changed to Lq. We calculate the
size of S and apply the Chebotarev density theorem to obtain a lower bound for
lim supX→∞ π

′(X)/π(X). Stated differently, we are able to show there is growth in the
Selmer group in Lq for a positive density set of primes q. Let ρ̄ : Gal(Q̄/Q)→ GL2(Fp)
be the Galois representation on E[p]. We make the simplifying assumption that ρ̄
is surjective. By the well-known open image theorem of Serre, this assumption is
satisfied for all but finitely many primes p, as long as E does not have complex
multiplication. Let Q(E[p]) be the Galois extension of Q that is fixed by ker ρ̄. We
identify Gal(Q(E[p])/Q) with its image under ρ̄, which, according to our assumption,
is all of GL2(Fp). Let N = NE be the conductor of E. If q is a prime that is
coprime to N p, then q is unramified in Q(E[p]). Set aq(E) := q + 1 − #Ẽ(Fq); then
the characteristic polynomial of ρ̄(Frobq) is x2 − aqx + q. Let S consist of elements
σ ∈ Gal(Q(E[p])/Q) such that

trace ρ̄(σ) = 2 and det ρ̄(σ) = 1.

We arrive at the following useful criterion for p to divide #Ẽ(Fq).

LEMMA 4.7. Let q � N p be a prime. Then, the following conditions are equivalent:

(i) q ≡ 1 (mod p) and p divides #Ẽ(Fq);
(ii) Frobq ∈ S.

PROOF. Since det ρ̄(Frobq) = q, we find that det ρ̄(Frobq) = 1 if and only if q ≡
1 (mod p). Assume that these equivalent conditions are satisfied. Note that p divides
#Ẽ(Fq) if and only if q + 1 − trace(ρ̄(Frobq)) = 0. Since q ≡ 1 (mod p), it follows that
p divides #Ẽ(Fq) if and only if trace(ρ̄(Frobq)) = 2. �

LEMMA 4.8. The cardinality of S is p2.

PROOF. Since ρ̄ is assumed to be surjective, we identify S with the set of all matrices
in GL2(Fp) with trace 2 and determinant 1. These matrices are all of the form
g = ( a b

c 2−a ), where a(2 − a) − bc = 1. We count the number of such matrices. Rewrite
the equation as bc = −1 + a(2 − a) = −(a − 1)2. For each choice of a such that a � 1,
the number of solutions is (p − 1). For a = 1, either b = 0 or c = 0, or both. Thus, the
number of solutions for a = 1 is 2p − 1. Putting it all together,

#S = (p − 1)2 + (2p − 1) = p2. �
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We now prove Theorem B, which is the main result of this section.

THEOREM 4.9. Let p ≥ 5 be a fixed prime and E/Q an elliptic curve for which the
following conditions are satisfied:

(i) E has good ordinary reduction at p;
(ii) rankZ E(Q) = 0 and E(Q)[p∞] = 0;
(iii) μp(E/Q) = 0 and λp(E/Q) = 0;
(iv) the image of the residual representation ρ̄ is surjective.

For X > 0, let π′(X) be the number of primes q ≡ 1 (mod p) for which the following
equivalent conditions are satisfied:

(i) Selp∞(E/Lq) � 0;
(ii) either, rankZ E(Lq) > 0 or X(E/Lq)[p∞] � 0 (or both conditions are satisfied).

Then,

lim sup
X→∞

π′(X)
π(X)

≥ p

(p − 1)2(p + 1)
.

PROOF. Let q be a prime such that q � N p. It follows from Lemma 4.7 that if Frobq ∈
S, then q ≡ 1 (mod p) and p|#E(Fq). Note that ΣLq = {q} and E has good reduction at
q. Since p|#E(Fq), it follows from Proposition 4.1 that Selp∞(E/Lq) � 0. Therefore, by
the Chebotarev density theorem and Lemma 4.8,

lim sup
X→∞

π′(X)
π(X)

≥ #S
#(GL2(Fp))

=
p2

(p2 − 1)(p2 − p)
=

p

(p − 1)2(p + 1)
. �

5. Growth of Shafarevich–Tate groups in cyclic extensions

In this section, we study the growth of the Shafarevich–Tate group. First, when
p = 2, we prove an effective version of Matsuno’s theorem (see Theorem 5.4).

When p � 2, it was shown by Clark and Sharif (see [CS10, Theorem 3]) that there
exists a degree-p extension over Q, not necessarily Galois, such that the p-rank of
the Shafarevich–Tate group becomes arbitrarily large. We study the possibility of
improving this result to Galois degree-p extensions.

DEFINITION 5.1. Let p be any prime. Fix an elliptic curve E/Q with good reduction at
p. Let K/Q be a cyclic degree-p extension. Define the set TE/K to be the set of primes
in K above 
 (� p) satisfying either of the following properties:

(i) 
 is a prime of good reduction of E that is ramified in K/Q and E(Q
) contains
an element of order p;

(ii) 
 is a prime of split multiplicative reduction that is inert in K/Q and the
Tamagawa number c
 is divisible by p.
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DEFINITION 5.2. Let G be an abelian group. Define the p-rank of G as

rankp(G) = rankp(G[p]) := dimFp (G[p]).

The following lemma plays a key role in answering questions pertaining to both
sections.

LEMMA 5.3. With notation as above,

rankp Selp(E/K) ≥ #TE/K − 4.

PROOF. See [Mat09, Proposition 4.3]. �

5.1. Large 2-rank of the Shafarevich–Tate group in quadratic extensions. Given
an elliptic curve E/Q, it is known that the 2-part of the Shafarevich–Tate group becomes
arbitrarily large over some quadratic extension. More precisely, we get the following
theorem.

THEOREM 5.4. Given an elliptic curve E/Q and a nonnegative integer n, there exists a
quadratic number field K/Q such that dimF2 X(E/K)[2] ≥ n.

PROOF. See [Mat09, Proposition B]. �

A reasonable question to ask is whether the above result can be made effective.

QUESTION 5.5. Given an elliptic curve E/Q and a fixed nonnegative integer n, varying
over all quadratic number fields ordered by a conductor, what is the minimal conductor
of a number field such that one can guarantee X(E/K)[2] ≥ n?

5.1.1. Reviewing the proof of Matsuno’s construction. In this section, we briefly
review the proof of Matsuno’s theorem. For details, we refer the reader to the original
article [Mat09]. Fix an elliptic curve E/Q of conductor N = NE. Let K/Q be a quadratic
extension. Let S be a finite set of primes in Q containing precisely the prime number
2, the primes of bad reduction of E, and the archimedean primes.

Let 
1, . . . , 
k be odd rational primes that are coprime to N and split completely in
Q(E[2])/Q. Recall that Q(E[2])/Q is a Galois extension with Galois group isomorphic
to either Z/2Z or Z/3Z or S3. By the Chebotarev density theorem, there is a positive
proportion of primes that split completely in Q(E[2])/Q. Having picked the primes

1, . . . , 
k, it is clear that there exists a quadratic extension K/Q such that the chosen
primes ramify. However, more is true. Results of Waldspurger (see [BFH90, Theorem
in Section 0]) and Kolyvagin (see [Kol89]) guarantee the existence of K/Q such that
the chosen primes ramify and the Mordell–Weil rank of E′(Q) is 0 where E′ is the
quadratic twist of E corresponding to K. It follows that

rankZ(E(K)) = rankZ(E(Q)) + rankZ(E′(Q)) = rankZ(E(Q)).

Observe that the primes 
1, . . . , 
k are primes of good ordinary reduction that lie in
TE/K . Therefore, it follows from Lemma 5.3 that

rank2 Sel2(E/K) ≥ k − 4.
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Using the Kummer sequence, we see that

rank2 X(E/K)[2] ≥ rank2 Sel2(E/K) − rankZ(E/K) − 2
≥ k − 6 − rankZ(E(Q)).

Even though the results of Waldspurger and Kolyvagin guarantee that there exists
a quadratic extension K/Q with the desired properties, it is not easy to determine all
the primes that ramify in K. Using the proof of Matsuno as our inspiration, combined
with more recent results of K. Ono, we prove an effective version of the theorem in
Section 5.1.3. Assuming Goldfeld’s conjecture, we prove an effective version using
simpler arguments in Section 5.1.2.

5.1.2. Effective version conditional on Goldfeld’s conjecture. Let us begin by remind-
ing the reader of Goldfeld’s conjecture. This conjecture predicts that given an elliptic
curve, 50% of the quadratic twists have rank 0 and 50% of the quadratic twists have
rank 1. Therefore, if Goldfeld’s conjecture is true, then for 100% of the time, the
Mordell–Weil rank of E′(Q) is either 0 or 1, where E′ is the quadratic twist of E
(corresponding to a quadratic field K). Since

rankZ(E(K)) = rankZ(E(Q)) + rankZ(E′(Q)),

for 100% of the time, rankZ(E(K)) = rankZ(E(Q)) or rankZ(E(K)) = rankZ(E(Q)) + 1.
Suppose that the primes 
1, . . . , 
k are chosen as in Matsuno’s theorem. These are
primes of good ordinary reduction that lie in TE/K . Therefore, it follows from Lemma
5.3 that

rank2 Sel2(E/K) ≥ k − 4.

Using the Kummer sequence, we see that for 100% of the quadratic fields K,

rank2 X(E/K)[2] ≥ rank2 Sel2(E/K) − rankZ(E(K)) − 2
≥ k − 7 − rankZ(E(Q)). (5-1)

Given E/Q of conductor N and n ∈ Z≥0, we want to find an imaginary quadratic field
K/Qwith minimal conductor fK such that we can guarantee rank2 X(E/K)[2] ≥ n. Let
P = {
1, . . . , 
k} be a set of (distinct) rational primes not dividing N, with the additional
property that they split completely in Q(E[2])/Q and that precisely the primes in P
ramify in K. From Equation (5-1), we need that

rank2 X(E/K)[2] ≥ k − 7 − rankZ(E(Q)) ≥ n.

Equivalently,

k ≥ n + rankZ(E(Q)) + 7.

Note that this inequality ensures that k can take all but finitely many values. Therefore,
in view of Goldfeld’s conjecture, there exists a nonnegative integer εE such that the
set P contains k + εE (which we still call k by abuse of notation) many primes instead.
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To answer our question, we need to carefully pick the distinct primes 
1, . . . , 
k. Given
any integer M, the number of distinct prime factors denoted by ω(M) is asymptotically
log log M. Recall that the prime number theorem asserts that the average gap between
consecutive primes among the first x many primes is log x. Since 
1 is a prime of good
reduction, 
1 � N. The prime number theorem implies that 
1 ∼ log(ω(N)) ∼ log(3)(N).
However, we need to do more. We require that 
1 splits completely inQ(E[2])/Q. Using
the Chebotarev density theorem, we can conclude that 
1 ∼ c · log (ω(N)), where c is
either 2, 3, or 6 depending on the degree of the Galois extensionQ(E[2])/Q. Of course,
asymptotically, 
1 ∼ log (ω(N)). Next, 
2 � N
1 and splits completely in Q(E[2])/Q.
Note that the number of distinct prime divisors of N
1 ∼ ω(N) + 1. Using the same
argument, we see that 
2 ∼ log (ω(N) + 1). Continuing this process,

f =

k∏
i=1


i ∼
k∏

i=1

(log(ω(N) + (i − 1)))

∼ (log(ω(N) − 1 + k))ω(N)+2+k

exp li(ω(N) − 1 + k)

∼ (log n)n+c

exp li(n)
, (5-2)

where li(x) :=
∫ x

0 (dt/log t) is the logarithmic integral and c is a constant depending on
E. Let us explain the above estimates in greater detail. Setting

P(k) :=
k∏

i=1

log(ω(N) + (i − 1)),

we wish to estimate the sum

log(P(k)) =
k∑

i=1

log(log(ω(N) + (i − 1))).

Using Abel’s partial summation formula (see for example [Apo76, Theorem 4.2])
with f (t) = log(log(ω(N) − 1 + t)), a(n) = 1, and A(x) =

∑
n≤x a(n),

log P(k)

=

k∑
i=1

log log(ω(N) − 1 + i)

= k log log(ω(N) − 1 + k) −
∫ k

0

�x�
(ω(N) − 1 + x) log(ω(N) − 1 + x)

dx

= k log log(ω(N) − 1 + k) −
∫ k

0

x
(ω(N) − 1 + x) log(ω(N) − 1 + x)

dx

+ O
( ∫ k

0

dx
(ω(N) − 1 + x) log(ω(N) − 1 + x)

)
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= k log log(ω(N) − 1 + k) − (li(ω(N) − 1 + x) − (ω(N) − 1) log log(ω(N) − 1 + x))|k0

+ O
( ∫ k

0

dx
(ω(N) − 1 + x) log(ω(N) − 1 + x)

)
= k log log(ω(N) − 1 + k) − li(ω(N) − 1 + k) + (ω(N) − 1) log log(ω(N) − 1 + k)

+ O(log log(ω(N) − 1 + k))

= (k + ω(N) + 1) log log(ω(N) − 1 + k) − li(ω(N) − 1 + k)

+ O(log log(ω(N) − 1 + k)).

This tells us that

P(k) = exp((k + ω(N) + 1) log log(ω(N) − 1 + k) − li(ω(N) − 1 + k)

+ O(log log(ω(N) − 1 + k)))

=
exp((k + ω(N) + 1) log log(ω(N) − 1 + k))

exp(li(ω(N) − 1 + k))
(exp(O(log log(ω(N) − 1 + k))))

=
exp((k + ω(N) + 1) log log(ω(N) − 1 + k))

exp(li(ω(N) − 1 + k))
(O(log(ω(N) − 1 + k)))

=
log(ω(N) − 1 + k)k+ω(N)+2

exp(li(ω(N) − 1 + k))
.

To obtain Equation (5-2), we note that for the given n, the difference between n
and k depends on the rank of E, and further ω(N) depends on E. Thus, we can rewrite
ω(N) + 2 + k as n + c, where c is a constant depending only on the elliptic curve E.

We have therefore proven the following result.

THEOREM 5.6. Suppose that Goldfeld’s conjecture is true. Given an elliptic curve E/Q
and a positive integer n, there exists a quadratic extension K/Q with conductor fK ∼
(log n)n+c/exp li(n) such that rank2 X(E/K)[2] ≥ n. Here, c is an explicit constant
depending only on E.

Using a result of Ono, we can prove an unconditional statement which we now
explain.

5.1.3. An unconditional effective version. Given an elliptic curve E/Q of conductor
N and a positive integer n, we want to find an imaginary quadratic field K/Q with
minimal conductor fK such that we can guarantee rank2 X(E/K)[2] ≥ n.

For this section, we consider elliptic curves E/Q that have no exceptional primes
p, that is, no primes p such that the mod p Galois representation attached to E is
nonsurjective. This condition is a mild one: W. Duke has shown in [Duk97, Theorem 1]
that almost all elliptic curves defined over Q have no exceptional primes.

For such elliptic curves E/Q, [Ono01, Theorem 1] asserts that there exists a
fundamental discriminant DE such that the twisted curve Ed has rank 0, where d =
DE
1 · · · 
k for some even integer k and where the primes 
i are chosen from a set (of
primes) with density 1. Indeed, the aforementioned theorem asserts (more generally)
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that there is a set of primes (call it S) with positive Frobenius density (that is, there
exists a finite Galois extension L/Q such that for all but finitely many primes in this
set, these primes represent a fixed Frobenius conjugacy class in Gal(L/Q)) such that Ed

has rank 0, where d = DE
1 · · · 
k for some even integer k and the primes 
i are chosen
from S. However, it follows from [Ono01, proof of Theorem 2.2] that the field L/Q
in the definition of the Frobenius density is the field that contains the coefficients of
the newform associated to E. Since the elliptic curves we are working with are defined
over Q, it follows from the modularity theorem that the newform will have integral
coefficients, that is, L = Q. Since there is only one Frobenius class in Q, namely the
trivial class, [Ono01, Theorem 1] says that the density of the set S is 1.

Let K be the quadratic field associated with the twist d. Since Ed has rank 0, we
know that rankZ(E(K)) = rankZ(E(Q)). It follows that

rank2 X(E/K)[2] ≥ k − 6 − rankZ(E(Q)).

If K is a quadratic field arising from Ono’s theorem such that rank2 X(E/K)[2] > n,
it is required that

k ≥ n + rankZ(E(Q)) + 6.

To answer our question, we pick the distinct primes 
1, . . . , 
k using the exact same
process as before. We have that

f = DE

k∏
i=1


i ∼
k∏

i=1

(log(ω(N) + (i − 1))) ∼ (log(ω(N) + k))ω(N)+k

exp li(ω(N) + k)
∼ (log n)n+c

exp li(n)
,

where li(x) :=
∫ x

0 (dt/log t) is the logarithmic integral and c is a constant depending
on E.

We have therefore proven the following result.

THEOREM 5.7. Given an elliptic curve E/Q with no exceptional primes and a
positive integer n, there exists a quadratic extension K/Q with conductor fK ∼
(log n)n+c/exp li(n) such that rank2 X(E/K)[2] ≥ n. Here, c is an explicit constant
depending only on E.

5.2. Arbitrarily large X in Z/pZ-extensions. Let E/Q be a fixed rank 0 elliptic
curve of conductor N. Let p be a fixed odd prime. Let F be any number field. We have
the obvious short exact sequence

0→ E(F)/pE(F)→ Selp(E/F)→X(E/F)[p]→ 0.

It follows that

rankp Selp(E/F) = rankZ(E(F)) + rankp E(F)[p] + rankp X(E/F)[p]. (5-3)

When F/Q is a cyclic degree-p Galois extension, we know from Lemma 5.3 that

rankp Selp(E/F) ≥ #TE/F − 4.
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Given an integer n, there exists a number field F(n) such that (see [Čes17, Theorem 1.2])

rankp Selp(E/F(n)) ≥ #TE/F − 4 ≥ n.

Denote the conductor of F(n) by f(F(n)). Varying over all Z/pZ-extensions of Q, there
are infinitely many number fields L/Q such that TE/L ⊇ TE/F(n) , that is, f(F(n)) | f(L). For
each such L,

rankp Selp(E/L) ≥ n.

Recall the conjecture of David, Fearnley, and Kisilevsky from Section 2. If p ≥ 7, it
predicts the boundedness of the set

NE,p(X) := {L/Q cyclic of degree p : f(L) < X and rankZ(E/L) > rankZ(E/Q)}.

If this conjecture is true, then varying over all Z/pZ-extensions of Q, there are only
finitely many cyclic p-extensions L/Q in which there is a rank jump upon base-change.
Therefore, given an integer n, one can find an integer M = M(n) and a number field
L/Q such that:

(i) f(L) > M(n);
(ii) f(F(n)) | f(L);
(iii) rankZ(E(L)) = rankZ(E(Q)).

Thus, given n, there exists a cyclic extension L/Q of degree p ≥ 7 such that Equation
(5-3) becomes

rankp Selp(E/L) = rankZ(E(Q)) + rankp E(L)[p] + rankp X(E/L)[p] ≥ n.

Since rankZ(E(Q)) is independent of L and rankp E(L)[p] is at most 2, it means that
given n, there exists a Z/pZ-extension L/Q such that rankp X(E/L)[p] ≥ n.

We feel that the full force of the conjecture of David, Fearnley, and Kisilevsky is
required. In particular, we do not see if the result of Mazur and Rubin is sufficient. This
is because it is not obvious to us as to why, even if there are infinitely many number
fields L/Q with rankZ(E(L)) = rankZ(E(Q)), there should be any (of these) satisfying
f(F(n)) | f(L).

6. Tables

6.1. In Table 1, we compute the following expression:(
1 − 1

p

)(
1 −

∏
q≡1(mod p)

(q − 1
2q2 + 1 − 1

q

))

for 3 ≤ p < 50 and q ≤ 179 424 673 (that is, the first 10 million primes).

6.2. In Table 2, we record the proportion of enemy primes for CM elliptic curves
with conductor < 100 and p < 50. Here, ‘–’ indicates that for a given elliptic curve,
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TABLE 2. Proportion of enemy primes.

E 5 7 11 13 17 19

p/2(p + 1) 0.002 604 0.012 153 0.004 583 0.003 224 0.001 845 0.001 466
(p − 1)2

27a 0.020 833 0.013 881 – 0.003 471 – 0.001 533
36a – 0.013 880 – 0.003 471 – 0.001 538
49a – – 0.004 989 – – –
64a 0.031 260 – – 0.003 478 0.001 950 –
E 23 29 31 37 41 43
p/2(p + 1) 0.000 990 0.000 616 0.000 538 0.000 376 0.000 305 0.000 277
(p − 1)2

27a – – 0.000 551 0.000 424 – 0.000 279
36a – – 0.000 550 0.000 422 – 0.000 282
49a 0.001 028 0.000 638 – 0.000 423 – 0.000 282
64a – 0.000 640 – 0.000 426 0.000 312 –

p is an irrelevant prime. Since p = 47 is an irrelevant prime for the four elliptic
curves of interest, we have excluded it from our table. In the first row, the value
of p/2(p + 1)(p − 1)2 is recorded. Note that the reduction type depends only on the
isogeny class. The same is true for the λ-invariant of the p-primary Selmer group.
However, it is possible that one or more of the curves in a given isogeny class has
positive μ-invariant, but the others do not (see also [Gre99, Conjecture 1.11]). To keep
the tables succinct, since the Iwasawa invariants are the same for all curves in the
isogeny class, they are clubbed together.

The data in the table are obtained from the code available here.
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