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Abstract
The book graph B(k)

n consists of n copies of Kk+1 joined along a common Kk. In the prequel to this paper,
we studied the diagonal Ramsey number r(B(k)

n , B(k)
n ). Here we consider the natural off-diagonal vari-

ant r(B(k)
cn , B(k)

n ) for fixed c ∈ (0, 1]. In this more general setting, we show that an interesting dichotomy
emerges: for very small c, a simple k-partite construction dictates the Ramsey function and all nearly-
extremal colourings are close to being k-partite, while, for c bounded away from 0, random colourings
of an appropriate density are asymptotically optimal and all nearly-extremal colourings are quasirandom.
Our investigations also open up a range of questions about what happens for intermediate values of c.
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1. Introduction
Given two graphs H1 and H2, their Ramsey number r(H1,H2) is the smallest positive integer N
such that every red/blue colouring of the edges of KN is guaranteed to contain a red copy of
H1 or a blue copy of H2. One of the main open problems in Ramsey theory is to determine the
asymptotic order of r(Kn,Kn). However, despite intense and longstanding interest, the lower and
upper bounds

√
2n ≤ r(Kn,Kn)≤ 4n for this problem have remained largely unchanged since 1947

and 1935, respectively [11, 13].
Anothermajor question in graph Ramsey theory, which has seenmore progress, is to determine

the growth rate of the off-diagonal Ramsey number r(Ks,Kn), where we think of s as fixed and let
n tend to infinity. The first non-trivial case is when s= 3, where it is known that

r(K3,Kn)=�

(
n2

log n

)
,

with the upper bound due to Ajtai, Komlós, and Szemerédi [1] and the lower bound to Kim [15].
Subsequent work of Shearer [23], Bohman–Keevash [3], and Fiz Pontiveros–Griffiths–Morris [20]
has led to a better understanding of the implicit constant, which is now known up to a factor of
4+ o(1). However, the successes in estimating r(K3,Kn) have not carried over to r(Ks,Kn) for
any other fixed s and a polynomial gap persists between the upper and lower bounds for all s≥ 4
(though see [17] for a promising approach to improving the lower bound).
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The book graph B(k)n is the graph obtained by gluing n copies of the clique Kk+1 along a com-
mon Kk. The ‘book’ terminology comes from the case k= 2, where B(2)n consists of n triangles
glued along a common edge. Continuing the analogy, each Kk+1 is called a page of the book
and the common Kk is called the spine. Ramsey numbers of books arise naturally in the study
of r(Kn,Kn); indeed, Ramsey’s original proof [21] of the finiteness of r(Kn,Kn) proceeds induc-
tively by establishing the finiteness of certain book Ramsey numbers, while the Erdős–Szekeres
bound [13] and its improvements [8, 22] are also best interpreted through the language of books.
Because of this, Ramsey numbers of books have attracted a great deal of attention over the years,
starting with papers of Erdős, Faudree, Rousseau, and Schelp [12] and of Thomason [25]. Both of
these papers prove bounds of the form 2kn− ok(n)≤ r

(
B(k)n , B(k)n

)≤ 4kn, where we think of k as
fixed and n→ ∞, with Thomason conjecturing that the lower bound is closer to the truth. This
was confirmed in a recent breakthrough result of the first author [9], who proved that, for every
fixed k,

r
(
B(k)n , B(k)n

)
= 2kn+ ok(n).

The original proof of this result relied heavily on an application of Szemerédi’s celebrated regular-
ity lemma, leading to rather poor control on the error term. In the prequel to this paper [10], we
gave two alternative proofs of this result, one a simplified version of the first author’s original proof
and the other a proof which avoids the use of the full regularity lemma, allowing us to gain sig-
nificantly better control over the error term (for a discussion of how further improvements might
ultimately impinge on the estimation of r(Kn,Kn), we refer the reader to [10]). We also proved a
stability result, saying that extremal colourings for this Ramsey problem are quasirandom.

In this paper, we study a natural off-diagonal generalization of this problem. Specifically, we
fix some k ∈N and some c ∈ (0, 1] and we wish to understand the asymptotics of the Ramsey
number r(B(k)
cn�, B

(k)
n ) as n→ ∞. Note that for c= 1 this is precisely the question considered above.

Henceforth, we omit the floor signs and write B(k)cn instead of B(k)
cn�.
Our results reveal that the behaviour of the function r(B(k)cn , B(k)n ) varies greatly as cmoves from

0 to 1. As we shall see, for c sufficiently small, the behaviour of this Ramsey number is determined
by a simple block construction, while, for c sufficiently far from 0, its behaviour is determined by
a random colouring. There is also an intermediate range of c where our results say nothing, but
where several interesting questions arise. We will say more about this in the concluding remarks.

To describe our results in detail, we begin by observing that for any positive integers k,m, and
n withm≤ n, we have

r
(
B(k)m , B(k)n

)
≥ k(n+ k− 1)+ 1. (1)

Indeed, let N = k(n+ k− 1). We partition the vertices of KN into k blocks, each of size n+ k− 1.
We colour all edges inside a block blue and all edges between blocks red. Then any blue B(k)n must
appear inside a block, which it cannot, since B(k)n has n+ k vertices. On the other hand, since the
red graph is k-partite, it does not contain any red Kk+1 and so cannot contain a red B(k)m .

This simple inequality is a special case of a more general lower bound, usually attributed to
Chvátal andHarary [7], that r(H1,H2)≥ (χ(H1)− 1)(|V(H2)| − 1)+ 1 providedH2 is connected.
In general, this lower bound is far from optimal,1 but it is tight for certain sparse graphs. The study
of when it is tight goes under the name of Ramsey goodness, a term introduced by Burr and Erdős
[5] in their first systematic investigation of the concept. One of the central results in the field
of Ramsey goodness is due to Nikiforov and Rousseau [18], who proved an extremely general

1For example, for H1 =H2 =Kn, it gives a lower bound of r(Kn,Kn)=�(n2), whereas the truth is 2�(n).
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theorem about when this lower bound is tight. As a very special case of their theorem, one has the
following result; see also [14] for a new proof with better quantitative bounds.

Theorem 1.1 (Nikiforov–Rousseau [19, Theorem 2.12]). For every k≥ 2, there exists some c0 ∈
(0, 1) such that, for any 0< c≤ c0 and n sufficiently large,

r
(
B(k)cn , B

(k)
n

)
= k(n+ k− 1)+ 1.

Moreover, Nikiforov and Rousseau’s proof shows that the unique colouring on k(n+ k− 1)
vertices with no red B(k)cn and no blue B(k)n is the colouring we described, where the red graph is a
balanced complete k-partite graph (meaning that all the parts have orders as equal as possible). By
adapting their proof, we are able to prove a corresponding structural stability result, which says
that any colouring onN = (k+ o(1))n vertices is either ‘close’ to being balanced complete k-partite
in red or contains monochromatic books with substantially more pages than what is guaranteed
by Theorem 1.1. Note that ifN is sufficiently large and congruent to 1modulo k, then Theorem 1.1
says that any red/blue colouring of E(KN) contains a red Kk with at least c

k (N − 1)− c(k− 1)
extensions to a red Kk+1 or a blue Kk with at least 1

k (N − 1)− (k− 1) extensions to a blue Kk+1.

Theorem 1.2. For every k≥ 2 and every θ > 0, there exist c, γ ∈ (0, 1) such that the following holds
for any sufficiently large N and any red/blue colouring of E(KN). Either one can recolour at most θN2

edges to turn the red graph into a balanced complete k-partite graph or else the colouring contains
one of the following:

• at least γNk red Kk, each with at least ( ck + γ )N extensions to a red Kk+1, or
• at least γNk blue Kk, each with at least ( 1k + γ )N extensions to a blue Kk+1.

Informally, this theorem says that either the colouring is close to complete k-partite in red or
else a constant fraction of the k-tuples induce a clique that forms the spine of a monochromatic
book with at least γN more pages than what is guaranteed by the Ramsey bound alone.

However, once c is sufficiently far from 0, the deterministic construction that yields (1) stops
being optimal. Indeed, as in the diagonal case, we can get another lower bound on r

(
B(k)cn , B(k)n

)
by

considering random colourings. More precisely, let us fix k ∈N and c ∈ (0, 1] and define

p= 1
c1/k + 1

∈[ 12 , 1) .
We set N = (p−k − o(1))n and independently colour every edge of KN blue with probability p and
red with probability 1− p. Given a blue Kk in this colouring, the expected number of extensions
to a blue Kk+1 is pk(N − k)= n− o(n). Similarly, the expected number of extensions of a red Kk to
a red Kk+1 is (1− p)k(N − k)= ((1− p)/p)kn− o(n)= cn− o(n), by our choice of p. A standard
application of the Chernoff bound and the union bound then implies that w.h.p.2 this colouring
contains no blue B(k)n and no red B(k)cn , assuming the o(n) terms are chosen appropriately. This
implies that for any k ∈N and any c ∈ (0, 1],

r
(
B(k)cn , B

(k)
n

)
≥
(
c1/k + 1

)k
n− ok(n),

while the lower bound in (1) is that r(B(k)cn , B(k)n )≥ (k+ o(1))n. If c> ((1+ o(1)) log kk )k, then the
quantity (c1/k + 1)k is larger than k+ o(1), where the logarithm is to base e. Thus, once c is
sufficiently far from 0, the bound in (1) is smaller than the random bound.

2As usual, we say that an event E happens with high probability (w.h.p.) ifP(E)→ 1 as n→ ∞, where the implicit parameter
n will be clear from context.
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Our next main result shows that the random bound actually becomes asymptotically tight at
this point.

Theorem 1.3. For every k≥ 2, there exists some c1 = c1(k) ∈ (0, 1] such that, for any fixed
c1 ≤ c≤ 1,

r
(
B(k)cn , B

(k)
n

)
=
(
c1/k + 1

)k
n+ ok(n).

Moreover, one may take c1(k)= ((1+ o(1)) log kk )k.

Our third main result is a corresponding structural stability theorem, which says that all
near-extremal Ramsey colourings (i.e., colourings on roughly (c1/k + 1)kn vertices) must either
contain a monochromatic book substantially larger than what is guaranteed by Theorem 1.3 or
be ‘random-like’. The latter possibility is captured by the notion of quasirandomness, introduced
by Chung, Graham, and Wilson [6]. For parameters p, θ ∈ (0, 1), a red/blue colouring of E(KN) is
said to be (p, θ)-quasirandom if, for every pair of disjoint sets X, Y ⊆V(KN), we have that∣∣eB(X, Y)− p|X||Y|∣∣≤ θN2,

where eB(X, Y) denotes the number of blue edges between X and Y . Note that since the colours
are complementary, this is equivalent to the analogous condition requiring that eR(X, Y) is within
θN2 of (1− p)|X||Y|. In their seminal paper, Chung, Graham, and Wilson, building on previous
results of Thomason [25], showed that this condition is essentially equivalent to a large number of
other conditions, all of which encapsulate some intuitive idea of what it means for a colouring to
be similar to a random colouring with blue density p. With this notion in hand, we can state our
structural stability result.

Theorem 1.4. For every p ∈ [ 12 , 1), there exists some k0 ∈N such that the following holds for every
k≥ k0. For every θ > 0, there exists some γ > 0 such that if a red/blue colouring of E(KN) is not
(p, θ)-quasirandom, then it contains one of the following:

• at least γNk red Kk, each with at least ((1− p)k + γ )N extensions to a red Kk+1, or
• at least γNk blue Kk, each with at least (pk + γ )N extensions to a blue Kk+1.

Remark 1.1. As stated, this theorem does not mention the ‘off-diagonalness’ parameter c from
the previous theorem. But c can easily be recovered as ((1− p)/p)k and the theorem can then be
restated to be about blue books with slightly more than n pages or red books with slightly more
than cn pages. However, since p is what matters while c plays no real role in the argument, we
instead choose to use this language and avoid c entirely.

In Theorem 5.7, we also prove a converse to Theorem 1.4, which implies that for p fixed and
k sufficiently large in terms of p, a colouring of KN (or, more accurately, a sequence of colourings
with N tending to infinity) is (p, o(1))-quasirandom if and only if all but o(Nk) red Kk have at
most ((1− p)k + o(1))N extensions to a red Kk+1 and all but o(Nk) blue Kk have at most (pk +
o(1))N extensions to a blue Kk+1. Thus, we derive a new equivalent formulation for (p, o(1))-
quasirandomness.

The rest of the paper is organized as follows. In Section 2, we quote (mostly without proof)
a number of key results that we will use repeatedly. In Section 3, we establish Theorem 1.2, the
stability result for small c. We prove Theorem 1.3, that the random bound is asymptotically tight
once c is not too small, in Section 4 and Theorem 1.4, that extremal colourings are quasirandom
in this range, in Section 5. We end with some concluding remarks and open problems.
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1.1. Notation and terminology
If X and Y are two vertex subsets of a graph, let e(X, Y) denote the number of pairs in X × Y that
are edges. We will often normalize this and consider the edge density

d(X, Y)= e(X, Y)
|X||Y| .

If we consider a red/blue colouring of the edges of a graph, then eB(X, Y) and eR(X, Y) will denote
the number of pairs in X × Y that are blue and red edges, respectively. Similarly, dB and dR will
denote the blue and red edge densities, respectively. Finally, for a vertex v and a set Y , we will
sometimes abuse notation and write d(v, Y) for d({v}, Y) and similarly for dB and dR.

An equitable partition of a graph G is a partition of the vertex set V(G)=V1 
 · · · 
Vm with
||Vi| − |Vj|| ≤ 1 for all 1≤ i, j≤m. A pair of vertex subsets (X, Y) is said to be ε-regular if, for
every X′ ⊆ X, Y ′ ⊆ Y with |X′| ≥ ε|X|, |Y ′| ≥ ε|Y|, we have

|d(X, Y)− d(X′, Y ′)| ≤ ε.
Note that we do not require X and Y to be disjoint. In particular, we say that a single vertex
subset X is ε-regular if the pair (X, X) is ε-regular. We will often need a simple fact, known as the
hereditary property of regularity, which asserts that for any 0<α ≤ 1, if (X, Y) is ε-regular and
X′ ⊆ X, Y ′ ⊆ Y satisfy |X′| ≥ α|X|, |Y ′| ≥ α|Y|, then (X′, Y ′) is (max{ε/α, 2ε})-regular.

For real numbers a, b, we denote by a± b any quantity in the interval [a− b, a+ b]. All
logarithms are base e unless otherwise specified. For the sake of clarity of presentation, we sys-
tematically omit floor and ceiling signs whenever they are not crucial. In this vein, whenever we
have an equitable partition of a vertex set, we will always assume that all of the parts have exactly
the same size, rather than being off by at most one. Because the number of vertices in our graphs
will always be ‘sufficiently large’, this has no effect on our final results.

2. Results from earlier work
In this section, we collect some useful tools for the study of book Ramsey numbers, all of
which have appeared in previous works. We begin with several results from the theory around
Szemerédi’s regularity lemma and then quote two simple analytic inequalities.

2.1. Tools from regularity
We begin with a strengthened form of Szemerédi’s regularity lemma taken from our first paper
[10, Lemma 2.1].

Lemma 2.1. For every ε > 0 and M0 ∈N, there is some M =M(ε,M0)≥M0 such that, for every
graph G with at least M0 vertices, there is an equitable partition V(G)=V1 
 · · · 
Vm into M0 ≤
m≤M parts such that the following hold:

1. Each part Vi is ε-regular and
2. For every 1≤ i≤m, there are at most εm values 1≤ j≤m such that the pair (Vi,Vj) is not
ε-regular.

To complement the regularity lemma, we will also need a standard counting lemma (see, e.g.,
[26, Theorems 2.6.2 and 4.5.1]).

Lemma 2.2. Suppose that V1, . . . ,Vk are (not necessarily distinct) subsets of a graph G such that all
pairs (Vi,Vj) are ε-regular. Then the number of labelled copies of Kk whose i-th vertex is in Vi for
all i is

https://doi.org/10.1017/S0963548322000360 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000360


Combinatorics, Probability and Computing 521

⎛
⎝ ∏

1≤i<j≤k
d(Vi,Vj)± ε

(
k
2

)⎞
⎠ k∏

i=1
|Vi|.

We will frequently use the following consequence of the counting lemma, proved in [10,
Corollary 2.6], designed to count monochromatic extensions of cliques and thus estimate the size
of monochromatic books.

Lemma 2.3. Fix k≥ 2 and let η, α ∈ (0, 1) be parameters with η≤ α3/k2. Suppose U1, . . . ,Uk are
(not necessarily distinct) vertex sets in a graph G and suppose that all pairs (Ui,Uj) are η-regular
with

∏
1≤i<j≤k d(Ui,Uj)≥ α. Let Q be a uniformly random copy of Kk with one vertex in each Ui,

for 1≤ i≤ k, and say that a vertex u extends Q if u is adjacent to every vertex of Q. Then, for any
u ∈V(G),

P(u extends Q)≥
k∏

i=1
d(u,Ui)− 4α.

The final result in this subsection is actually a simple consequence of Markov’s inequality and
so does not require any regularity tools to prove. Nonetheless, we will always use it in conjunction
with Lemmas 2.2 and 2.3, which is why we include it here. Both the statement and proof are very
similar to [10, Lemma 5.2].

Lemma 2.4. Let κ , ξ ∈ (0, 1), let 0< ν < ξ , and suppose that Q is a set of at least κNk copies of
Kk in an N-vertex graph. Suppose that a uniformly random Q ∈Q has at least ξN extensions to a
Kk+1 in expectation. Then the graph contains at least (ξ − ν)κNk copies of Kk, each with at least νN
extensions.

Proof. Let X be the random variable counting the number of extensions of a random Q ∈Q and
let Y =N − X. Then Y is a non-negative random variable with E[Y]=N −E[X]≤ (1− ξ )N. By
Markov’s inequality,

P(X ≤ νN)= P(Y ≥ (1− ν)N)≤ E[Y]
(1− ν)N

≤ (1− ξ )N
(1− ν)N

= 1− ξ

1− ν
.

Thus,

P(X ≥ νN)≥ 1− 1− ξ

1− ν
= ξ − ν

1− ν
≥ ξ − ν,

which implies that the number of Q ∈Q with at least νN extensions is at least (ξ − ν)|Q| ≥ (ξ −
ν)κNk, as desired. �

2.2. Analytic inequalities
The following lemma is a multiplicative form of Jensen’s inequality and is a simple consequence
of the standard version. For a proof, see [10, Lemma A.1].

Lemma 2.5 (multiplicative Jensen inequality). Suppose 0< a< b are real numbers and
x1, . . . , xk ∈ (a, b). Let f : (a, b)→R be a function such that y �→ f (ey) is strictly convex on the
interval (log a, log b). Then, for any z ∈ (ak, bk), subject to the constraint

∏k
i=1 xi = z,

1
k

k∑
i=1

f (xi)

is minimized when all the xi are equal (and thus equal to z1/k).
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The following theorem is the well-known ‘defect’ or ‘stability’ version of Jensen’s inequality.
For a proof, see [24, Problem 6.5].

Theorem 2.6 (Hölder’s defect formula). Suppose ϕ : [a, b]→R is a twice-differentiable function
with ϕ′′(y)≥m> 0 for all y ∈ (a, b). For any y1, . . . , yk ∈ [a, b], let

μ= 1
k

k∑
i=1

yi and σ 2 = 1
k

k∑
i=1

(yi −μ)2

be the empirical mean and variance of {y1, . . . , yk}. Then
1
k

k∑
i=1

ϕ(yi)− ϕ(μ)≥ mσ 2

2
.

3. The k-partite regime
In this section, we analyze what happens when c is very small. Recall, from the introduction, that
a simple k-partite construction yields a lower bound for r

(
B(k)cn , B(k)n

)
and, by a result of Nikiforov

and Rousseau [19], this construction is tight for c sufficiently small.

Theorem 1.1 (Nikiforov–Rousseau [19, Theorem 2.12]). For every k≥ 2, there exists some c0 ∈
(0, 1) such that, for any 0< c≤ c0 and n sufficiently large,

r
(
B(k)cn , B

(k)
n

)
= k(n+ k− 1)+ 1.

Our aim here is to adapt the methods of [19] to prove a stability version of this theorem, our
Theorem 1.2. We first make the following definition.

Definition 3.1. For c, γ > 0, we say that a red/blue colouring of E(KN) contains (c, γ )-many books
if it contains

• at least γNk red Kk, each with at least ( ck + γ )N extensions to a red Kk+1, or

• at least γNk blue Kk, each with at least ( 1k + γ )N extensions to a blue Kk+1.

With this definition in place, we may restate Theorem 1.2 as follows.

Theorem 1.2’. For every k≥ 2 and every θ > 0, there exist c, γ ∈ (0, 1) such that the following holds.
If a red/blue colouring of E(KN) does not have (c, γ )-many books, then one can recolour at most θN2

edges to turn the red graph into a balanced complete k-partite graph.

As well as referring to Section 2, we will need the following classical result of Andrásfai, Erdős,
and Sós [2] (see also [4] for a simpler proof).

Theorem 3.2 (Andrásfai–Erdős–Sós [2]). For every k≥ 2, there exists ρ > 0 such that if G is a
Kk+1-free graph on m vertices with minimum degree greater than (1− 1

k − ρ)m, then G is k-partite.
Moreover, one may take ρ = 1/(3k2 − k).

This is a stability version of Turán’s theorem. Indeed, Turán’s theorem implies that if a graph
on m vertices has minimum degree at least

(
1− 1

k
)
m, then it contains a copy of Kk+1, while

the Andrásfai–Erdős–Sós theorem says that as long as the minimum degree is not too far below
(1− 1

k )m, every such graph must be k-partite.
Before proceeding to the technical details, let us briefly sketch the proof of Theorem 1.2. We

are given a red/blue colouring of E(KN) and we wish to prove that either the colouring is close to
complete k-partite in red or it contains (c, γ )-many books for some c, γ > 0.We begin by applying
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Lemma 2.1 to the red graph of the colouring to obtain an equitable partition V(KN)=V1 
 · · · 

Vm, where each part Vi and most pairs (Vi,Vj) are η-regular for some small η > 0. We now wish
to improve our understanding of the colouring with respect to this partition.

First, we show that all the parts Vi must have very low internal red density. Indeed, if some
part Vi has dR(Vi)≥ δ, for some fixed δ > 0, then the counting lemma, Lemma 2.2, implies that
Vi contains many red Kk+1. By a simple averaging argument, this implies that some k-tuple of
vertices in Vi lies in many red Kk+1, yielding a red book with c

kN pages. In fact, by using Lemma
2.4 in place of the averaging argument, we find (c, γ )-many books if dR(Vi)≥ δ, so we may assume
that dR(Vi)< δ for all i.

We next build a reduced graph G with vertex set v1, . . . , vm, where we make vivj an edge if and
only if (Vi,Vj) is η-regular and dR(Vi,Vj)≥ δ. We claim that every vertex of G has degree at least
(1− 1

k − σ )m for some small σ > 0. Indeed, if some vertex vi of G has degree smaller than this,
then we find that Vi has very high blue density to roughly ( 1k + σ )m of the remaining parts Vj.
Since Vi also has very high internal blue density, we can use this to find many blue books with
spines in Vi and (1k + γ )N pages for some 0< γ < σ . This again yields (c, γ )-many books in the
colouring.

So we may assume that the graph G has high minimum degree. By applying Theorem 3.2, we
find that either G is k-partite or it contains a copy of Kk+1. In the former case, we can show that
the colouring itself is close to k-partite in red. In the latter case, this Kk+1 yields k+ 1 parts, say
V1, . . . ,Vk+1, such that all pairs are η-regular and have red density at least δ. By another appli-
cation of the counting lemma and an averaging argument, we can then show that this structure
again yields (c, γ )-many red books.

We now turn to the details of the proof. We will need the following fact about bipartite graphs,
which is a simple consequence of a double-counting technique first introduced by Kővári, Sós,
and Turán [16].

Lemma 3.3. Let k≥ 2 and d ∈ (0, 1) and let ζ = (d/4)k. Let H be a bipartite graph with parts A, B,
where |B| ≥ 2k/d, and suppose that H has at least d|A||B| edges. Let H be a k-uniform hypergraph
with vertex set B and at least (1− ζ )

(|B|
k

)
edges. Then there are at least ζ

(|B|
k

)
edges ofH such that

the vertices of each such edge have at least ζ |A| common neighbours in A.

Proof. For a k-tuple Q ∈
(
B
k

)
, let ext(Q) denote the number of common neighbours of Q in A. We

double-count the number of stars K1,k in H whose central vertex is in A to find that

∑
Q∈
(B
k

) ext(Q)=
∑
a∈A

(
deg(a)

k

)
≥ |A|

(
1

|A|
∑

a∈A deg(a)
k

)
≥ |A|

(
d|B|
k

)
,

where the first inequality follows from convexity. If we split the left-hand side into a sum over
tuples Q which are non-edges ofH, a sum over tuples Q that are edges ofH with fewer than ζ |A|
extensions, and the remainder, we find that

|A|
(
d|B|
k

)
≤
∑

Q/∈E(H)
ext(Q)+

∑
Q∈E(H)

ext(Q)<ζ |A|

ext(Q)+
∑

Q∈E(H)
ext(Q)≥ζ |A|

ext(Q)

≤ ζ |A|
(

|B|
k

)
+ ζ |A|

(
|B|
k

)
+ |A||{Q ∈ E(H) : ext(Q)≥ ζ |A|}|.

Therefore, the number of edges of H with at least ζ |A| common neighbours is at least
(
d|B|
k

)
−

2ζ
(|B|

k

)
. We note that
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(
d|B|
k

)
(|B|

k

) = d|B|
|B| · d|B| − 1

|B| − 1
· · · d|B| − (k− 1)

|B| − (k− 1)
≥
(
d
2

)k
= 2kζ ,

where we used our assumption that |B| ≥ 2k/d. Thus, the number of edges ofH with at least ζ |A|
common neighbours in A is at least(

d|B|
k

)
− 2ζ

(
|B|
k

)
≥ (2kζ − 2ζ )

(
|B|
k

)
≥ ζ
(

|B|
k

)
.

�
With these preliminaries in place, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix some k≥ 2, θ ∈ (0, 1), and a red/blue colouring of E(KN). Let σ =
(θ/(12k4))k, M0 = k, δ= σ 2, and η= δk

2 . Let M =M(η,M0) be the parameter from Lemma 2.1
and let c= δk

2
/M4 and γ = δ2k

2
/M2k. We apply Lemma 2.1 to the red graph in our colouring with

parametersM0 and η. This yields an equitable partitionV(KN)=V1 
 · · · 
Vm withM0 ≤m≤M
such that each part Vi is η-regular in red and, for each i, there are at most ηm values of j �= i for
which (Vi,Vj) is not η-regular in red.

First suppose that some part, say V1, has internal red density at least δ. By the counting lemma,

Lemma 2.2, we see thatV1 contains at least 1
(k+1)!

(
δ

(k+1
2

)
− η
(
k+1
2

) )
|V1|k+1 redKk+1. Since each

red Kk+1 contains exactly k+ 1 red Kk, this implies that an average k-tuple of vertices in V1 lies in
at least

k+1
(k+1)!

(
δ

(k+1
2

)
− η

(
k+ 1
2

))
|V1|k+1

(
|V1|
k

) ≥
(
δ

(k+1
2

)
− η

(
k+ 1
2

))
|V1| =: ξM|V1|

red Kk+1. That is, if we pick a uniformly random k-tuple of vertices from V1, then the expected

number of red Kk+1 containing it is at least ξM|V1|. If we also define κ =
(
δ

(k
2

)
− η
(
k
2

) )
/(k!Mk),

then Lemma 2.2 implies that V1 contains at least κNk red Kk, with an average one having at least
ξN extensions to a redKk+1, where we use the fact that |V1| ≥N/M since the partition is equitable
and has m≤M parts. If we now set ν = ξ/2 and apply Lemma 2.4, we conclude that V1 contains
at least (ξκ/2)Nk red Kk, each with at least (ξ/2)N extensions to a red Kk+1. By our choice of
parameters,

ξ = 1
M

(
δ

(k+1
2

)
− η

(
k+ 1
2

))
≥ δk

2

2M

and, therefore, ξ/2≥ c/k+ γ . Similarly, κ ≥ δk2/Mk and, therefore, ξκ/2≥ γ . Thus, we find that
in this case the colouring contains (c, γ )-many books.

Therefore, we may assume that all Vi have dR(Vi)< δ. We build a reduced graph G with vertex
set v1, . . . , vm and declare {vi, vj} ∈ E(G) if (Vi,Vj) is η-regular and dR(Vi,Vj)≥ δ. Suppose that
some vertex of G, say v1, has degree less than (1− 1

k − σ )m. Since at most ηm non-neighbours
of v1 can come from irregular pairs, we find that dB(V1,Vi)≥ 1− δ for at least ( 1k + σ − η)m
choices of i ∈ [m]. Let I ⊆ [m] be the set of such i. Since dB(V1)≥ 1− δ and δ ≤ 1/k2, we see that,
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for α = kδ/4,

dB(V1)
(k
2

)
≥ (1− δ)

(k
2

)
≥ 1−

(
k
2

)
δ ≥ α.

Moreover, we have that η < α3/k2 by our choice of η. Therefore, we may apply Lemma 2.3,
which implies that if Q is a randomly chosen blue Kk in V1 and u is some vertex in KN , then
P(u extends Q)≥ d(u,V1)k − 4α. In particular, if we sum this up over all u ∈⋃i∈I Vi, we find that
the expected number of blue extensions of Q is at least∑

i∈I

∑
u∈Vi

(d(u,V1)k − 4α)≥ |I|N
m

(
(1− δ)k − 4α

)
≥
(
1
k

+ σ − η

) (
(1− δ)k − 4α

)
N,

where the first inequality follows from the convexity of the function x �→ xk. Using η < σ/2, we
have that (

1
k

+ σ − η

) (
(1− δ)k − 4α

)
≥
(
1
k

+ σ

2

)
(1− 2kδ)≥ 1

k
+ σ

2
− 2kδ,

where the last step follows from the bound 1/k+ σ ≤ 1/k+ 1/k≤ 1. By our choice of δ = σ 2 ≤
σ/(8k), we see that the expected number of blue extensions of Q is at least ( 1k + σ

4 )N. Moreover,

by Lemma 2.2, the number of choices for Q is at least 1
k!
(
(1− δ)

(k
2

)
− η
(
k
2

))
(N/M)k ≥ κNk.

Therefore, if we apply Lemma 2.4 with parameters κ , ξ = 1
k + σ

4 , and ν = 1
k + γ , then we find

that the colouring contains (c, γ )-many books.
Therefore, we may assume that every vertex in G has degree greater than (1− 1

k − σ )m, so,
by Theorem 3.2 and the fact that σ < 1/(3k2 − k), we see that either G contains a Kk+1 or G
is k-partite. Assume first that there is a Kk+1 in G. By relabelling the vertices, we may assume
that v1, . . . , vk+1 form a clique. By the counting lemma, Lemma 2.2, we have that V1, . . . ,Vk

span at least
(
δ

(k
2

)
− η

(
k
2

) )
(N/m)k ≥ κNk red Kk and V1, . . . ,Vk+1 span at least

(
δ

(k+1
2

)
−

η
(
k+1
2

) )
(N/m)k+1 red Kk+1. Every such red Kk+1 contains exactly one red Kk with one vertex in

each of V1, . . . ,Vk, so an average k-tuple (v1, . . . , vk) ∈V1 × · · · ×Vk lies in at least(
δ

(k+1
2

)
− η

(
k+ 1
2

))
(N/m)k+1

(N/m)k
≥
(
δ

(k+1
2

)
− η

(
k+ 1
2

))
N
M

= ξN.

Thus, we have a set of at least κNk red Kk with at least ξN extensions on average and so, applying
Lemma 2.4 as before, our colouring has (c, γ )-many books.

Thus, we may assume that G is k-partite. Let this k-partition of V(G) be A1 
 · · · 
Ak. Note
that |A�| ≤

( 1
k + σ

)
m for every �, since the minimum degree of G is at least (1− 1

k − σ )m and
each A� is an independent set in G. This in turn implies that |A�| ≥

( 1
k − kσ

)
m for every �, since

|A�| =m−∑
�
′ �=�|A�′ | ≥ ( 1k − kσ )m. We lift this partition to a partition of the vertices of KN

into k parts X1, . . . , Xk by letting X� =⋃vi∈A� Vi, noting that our observations above imply that
|X�| = ( 1k ± kσ )N for all �. We claim that each X� contains at most 3δ

2

(|X�|
2

)
red edges. Indeed,

observe that if vi, vj are two (not necessarily distinct) vertices ofG that are in the same partA�, then
they must be non-adjacent in G. This means that either (Vi,Vj) is an irregular pair or dR(Vi,Vj)<
δ. There are at most ηm2 irregular pairs, so the irregular pairs can contribute at most ηN2 ≤
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4k2η|X�|2 ≤ 10k2η
(|X�|

2

)
red edges inside X�, where we used that |X�| ≥ ( 1k − kσ )N ≥N/(2k). All

other pairs of parts inside each X� have red density at most δ, so the total number of red edges
inside X� is at most δ

(|X�|
2

)
+ 10k2η

(|X�|
2

)
≤ 3δ

2

(|X�|
2

)
, since η≤ δ/(20k2). This implies that the

number of ordered pairs of (not necessarily distinct) vertices in X� which do not form a blue edge
is at most 2δ|X�|2.

This already implies that the red graph can be made k-partite by recolouring at most 2δN2

edges, so it only remains to show that by recolouring a small number of additional edges, we
can make the red graph balanced complete k-partite. For this, suppose that dB(X1, X2)≥ θ/k2. If
we sample (with repetition) a random k-tuple Q of vertices from X2, then the probability that it
does not form a blue clique is at most

(
k
2

)
· 2δ ≤ k2δ, since each random pair of vertices does not

span a blue edge with probability at most 2δ. Moreover, the expected number of common blue
neighbours of Q inside X2 is at least (1− 2δ)k|X2| − k≥ (1− 2kδ)|X2|, by convexity. By applying
Markov’s inequality as in the proof of Lemma 2.4, the probability that Q has fewer than (1−√
δ)|X2| common blue neighbours in X2 is at most 2k

√
δ. Therefore, the probability that Q is a

blue clique with at least (1− √
δ)|X2| common blue neighbours in X2 is at least 1− k2δ − 2k

√
δ ≥

1− 3k
√
δ, since

√
δ ≤ 1/k. LetH be the k-uniform hypergraph with vertex set X2 whose edges are

all blue Kk in X2 with at least (1− √
δ)|X2| common blue neighbours in X2. Then H has at least

(1− 3k
√
δ)
(|X2|

k

)
edges.

We now apply Lemma 3.3 to the hypergraphH and to the bipartite graph of blue edges between
X1 and X2, which has edge density d ≥ θ/k2 by assumption. We have that (d/4)k ≥ (θ/(4k2))k ≥
3kσ = 3k

√
δ by our choice of σ and δ, so we may indeed apply Lemma 3.3 to conclude that at

least (θ/(4k2))k
(|X2|

k

)
of the edges of H have at least (θ/(4k2))k|X1| common blue neighbours in

X1. This yields at least (
θ

4k2

)k ( |X2|
k

)
≥
(
θ |X2|
4k3

)k
≥
(
θ

8k4

)k
Nk ≥ γNk

blue Kk, each of which has at least

(1− √
δ)|X2| +

(
θ

4k2

)k
|X1| ≥

(
1− √

δ +
(
θ

4k2

)k
)(

1
k

− kσ
)
N

≥
(
1
k

+
(
θ

4k3

)k
− √

δ − 2kσ

)
N

≥
(
1
k

+
(
θ

4k3

)k
− 3kσ

)
N

≥
(
1
k

+ γ

)
N

extensions to a blue Kk+1, where in both computations we used the fact that |X1|, |X2| ≥ ( 1k −
kσ )N ≥N/(2k), as well as our choices of

√
δ = σ = (θ/(12k4))k. Thus, in this case, we have again

found (c, γ )-many books, a contradiction.
Hence, we may assume that dB(X1, X2)< θ/k2. By the same argument, all the blue den-

sities between different parts X� can be assumed to be at most θ/k2. Since we have already
argued that the red density inside each part is at most 2δ, we see that, by recolouring at most
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((
k
2

)
θ/k2 + 2kδ

)
N2 edges, we can make the red graph complete k-partite. Finally, we recall that

each partX� has size |X�| = ( 1k ± kσ )N. Therefore, by moving at most k2σN arbitrary vertices into
another part, we see that we can make our partition equitable. We then recolour the edges inci-
dent with any moved vertex to obtain a balanced complete k-partite red graph. Doing so entails
recolouring at most k2σN2 additional edges. Thus, in total, we recolour at most((

k
2

)
θ

k2
+ 2kδ + k2σ

)
N2 ≤

(
θ

2
+ 3k2σ

)
≤ θN2

edges, where we used that δ ≤ σ and σ ≤ (θ/(12k4))k ≤ θ/(6k2). �

4. An upper boundmatching the random bound
In this section, we prove Theorem 1.3, which says that when c is not too small, the random lower
bound for r(B(k)cn , B(k)n ) is asymptotically tight. To prove this theorem, we will mimic our simplified
proof of the diagonal result from [10, Section 3], though it needs to be adapted to the off-diagonal
setting in several ways. Before proceeding with the details, we sketch the proof at a high level,
indicating which parts require new ideas beyond those already present in [10].

A key notion used in the proof is that of a red-blocked configuration. Informally, a red-blocked
configuration consists of k disjoint vertex sets such that each set and all pairs are η-regular for
some small η, every set has red density at least δ for some small δ, and every pair has blue density
at least δ. A blue-blocked configuration is defined similarly, except with the roles of red and blue
interchanged. Like the good and great configurations defined in [10], we care about such con-
figurations because their existence automatically implies the existence of large monochromatic
books. The precise statement is given in Lemma 4.3, but, roughly, it says that if we have a red/blue
colouring of the complete graph on (c1/k + 1)kn+ o(n) vertices which contains a red-blocked or a
blue-blocked configuration and k is sufficiently large with respect to c, then the colouring contains
a red B(k)cn or a blue B(k)n . This is the key lemma which underlies the entire proof. Its proof is similar
to that of [10, Lemma 3.3], but requires a few modifications. First, the analytic inequality which
yields the result is more complicated in the off-diagonal setting and this is where the (necessary)
assumption that k is large with respect to c comes from. Second, the averaging arguments used in
the proof of Lemma 4.3 require a little more care than those used in the proof of [10, Lemma 3.3],
because we must take (p, 1− p)-weighted averages here. Finally, though in principle one needs
separate arguments to deal with red-blocked configurations and blue-blocked configurations, it
turns out that the same proof works for both cases, simply by interchanging the roles of red and
blue and of p and 1− p.

The remainder of the proof now comes down to finding a red-blocked or blue-blocked con-
figuration or else finding a large monochromatic book directly. To do this, we begin by applying
Lemma 2.1 to the red graph of the colouring, obtaining a regular equitable partition V(KN)=
V1 
 · · · 
Vm. Call a part red if it contains more red edges than blue edges and blue otherwise.
We assume for now that at least pm of the parts are blue; the case where at least (1− p)m of the
parts are red runs similarly. We build a reduced graph G whose vertices are in bijection with the
blue parts and where edges represent pairs of parts that are regular and have red density at least δ
for some small δ > 0. By definingG in this way, we see that aKk inG corresponds to a blue-blocked
configuration in the original colouring, so it suffices to find a Kk in G.

To do this, we first show that every vertex in G must have degree at least roughly (1−
pk−1)|V(G)|. Indeed, if this is not the case, since |V(G)| ≥ pm, we find that there is some blue
part Vi which has very high blue density to at least roughly pkm other parts. This can then be used
to find a blue B(k)n , where n≈ pkN. So we may conclude that every vertex in G has high degree.
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But, by Turán’s theorem, plus the fact that pk−1 < 1/(k− 1) for sufficiently large k, this implies
that G contains a copy of Kk, as desired.

We now begin the detailed proof of Theorem 1.3. The following result generalizes a key analytic
inequality from the diagonal case [10, Lemma 3.4].

Lemma 4.1. For every p ∈ (0, 1), there exists some k1 ∈N such that if k≥ k1 and x1, . . . , xk ∈ [0, 1],
then

p1−k
k∏

i=1
xi + (1− p)1−k

k

k∑
i=1

(1− xi)k ≥ 1.

Moreover, one may take

k1(p)=

⎧⎪⎨
⎪⎩
6 if p≥ 1− 5/(4e)

1+ 5−log log 1
1−p+log (−log log 1

1−p )
log 1

1−p
otherwise.

Proof. First suppose that xj ≤ 1
k for some j ∈ [k]. Then we have that

(1− p)1−k

k

k∑
i=1

(1− xi)k ≥ (1− p)1−k

k
(1− xj)k ≥ (1− p)1−k

k

(
1− 1

k

)k
≥ (1− p)1−k

e2k
=: f (p, k),

where we used the inequality 1− x≥ e−2x for x ∈ [0, 12 ]. If p≥ 1− 5/(4e), then 1− p≤ 5/(4e),
so f (p, k)≥ (4/5)k−1ek−3/k. Once k≥ 6, this last expression is at least 1, so in the case where
p≥ 1− 5/(4e), we may take k1(p)= 6.

For p< 1− 5/(4e), let λ= λ(p)= log 1
1−p and

k1(p)= 1+ 5− log λ+ log log 1
λ

λ
= 1+

5− log log 1
1−p + log

(
−log log 1

1−p

)
log 1

1−p
.

We now claim that

f (p, k)≥ 1 if k≥ k1(p). (2)

By differentiating, we see that f (p, k) is monotonically increasing in k for k≥ 1/ log 1
1−p = 1/λ.

Since p< 1− 5/(4e), we have that 5− log λ+ log log 1
λ
> 1 and so we are in the monotonicity

regime. It therefore suffices to prove the statement for k= k1(p). Note now that

(1− p)1−k1(p) = (1− p)(5−log λ+log log 1
λ
)/ log (1−p) = e5 log 1

λ

λ

and let g(p)= 1+ λ/ log 1
λ

+ 5/ log 1
λ

+ log log 1
λ
/ log 1

λ
. Then we have

f (p, k1(p))= e5 log 1
λ

λ
· 1
e2k1(p)

= e3 log 1
λ

λ+ 5+ log 1
λ

+ log log 1
λ

= e3

g(p)
.

Thus, to prove that f (p, k1(p))≥ 1, it suffices to prove that g(p)≤ e3 for all p< 1− 5/(4e). By
differentiating, one can check that g(p) is monotonically increasing in p ∈ [0, 1− 5/(4e)]. Thus,
it suffices to check that g(1− 5/(4e))≤ e3. But g(1− 5/(4e))≈ 18.4< e3, so f (p, k1(p))≥ 1, as
claimed. Hence, from now on, we may assume that all the xi are in

( 1
k , 1
]
.

For themoment, let’s assume that all the xi are in ( 1k , 1). Note that the function ϕ : y �→ (1− ey)k

is strictly convex on the interval (log 1
k , 0). By the multiplicative Jensen inequality, Lemma 2.5, this

implies that, subject to the constraint
∏k

i=1 xi = z, the term 1
k
∑k

i=1(1− xi)k is minimized when
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all the xi are equal to z1/k. Therefore,

p1−k
k∏

i=1
xi + (1− p)1−k

k

k∑
i=1

(1− xi)k ≥ p1−kz + (1− p)1−k(1− z1/k)k.

So it suffices to minimize this expression as a function of z. Changing variables to w= z1/k, it
suffices to minimize

ψ(w)= p1−kwk + (1− p)1−k(1−w)k

as a function of w. By differentiating, we find that ψ is minimized at w= p, where ψ(p)= 1. This
proves the desired result as long as all the xi are in [0, 1). By continuity, the result then extends to
all xi ∈ [0, 1]. �
Definition 4.2. Fix parameters k ∈N and η, δ ∈ (0, 1) and suppose that we are given a red/blue
colouring of E(KN). Then a k-tuple of pairwise disjoint vertex sets C1, . . . , Ck ⊆V(KN) is called a
(k, η, δ)-red-blocked configuration if the following properties are satisfied:

1. Each Ci is η-regular with itself,
2. Each Ci has internal red density at least δ, and
3. For all i �= j, the pair (Ci, Cj) is η-regular and has blue density at least δ.

Similarly, we say that C1, . . . , Ck is a (k, η, δ)-blue-blocked configuration if properties (1–3)
hold, but with the roles of red and blue interchanged.

The reason we care about these configurations is that, for appropriate choices of the parameters
η and δ, their existence yields the existence of the required monochromatic books. This idea (or,
rather, the version of it when red and blue play symmetric roles) already appears implicitly in the
work of the first author [9], but was made much more explicit in the prequel to this paper [10].
The precise statement we will need here is given by the next lemma.

Lemma 4.3. For every p ∈ [ 12 , 1), there is k2 ∈N such that the following holds. Let k≥ k2, c= ((1−
p)/p)k, and 0< ε < 1

2 and suppose 0< δ ≤ (1− p)ε and 0<η≤ δ4k2 . Suppose that the edges of KN
with N = (p−k + ε)n are red/blue coloured and this colouring contains either a (k, η, δ)-red-blocked
configuration or a (k, η, δ)-blue-blocked configuration. Then, in either case, the colouring contains
either a red B(k)cn or a blue B(k)n . Moreover, one may take k2(p)= k1(1− p), where k1 is the constant
from Lemma 4.1.

Proof. We tackle the two cases separately: suppose first that the colouring has a (k, η, δ)-red-
blocked configuration, say C1, . . . , Ck. By the counting lemma, Lemma 2.2, we know that the
number of blue Kk with one vertex in each Ci is at least⎛

⎝ ∏
1≤i<j≤k

dB(Ci, Cj)− η

(
k
2

)⎞⎠ k∏
i=1

|Ci| ≥
(
δ

(k
2

)
− η

(
k
2

)) k∏
i=1

|Ci|> 0,

so there is at least one blue Kk with one vertex in each of C1, . . . , Ck. By a similar computation, we
see that each Ci contains at least one red Kk.

For a vertex v and i ∈ [k], let xi(v) := dB(v, Ci) ∈ [0, 1]. We observe that from the definition in
Lemma 4.1, we have that k1(1− p)≥ k1(p) for all p≥ 1

2 . Therefore, Lemma 4.1 implies that since
k≥ k2 ≥ k1(p), we have that

p

⎛
⎝p−k

k∏
i=1

xi(v)

⎞
⎠+ (1− p)

⎛
⎝ (1− p)−k

k

k∑
i=1

(1− xi(v))k
⎞
⎠≥ 1
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for all v ∈V . Summing this fact up over all v, we find that

p

⎛
⎝p−k

∑
v∈V

k∏
i=1

xi(v)

⎞
⎠+ (1− p)

⎛
⎝ (1− p)−k

k

k∑
i=1

∑
v∈V

(1− xi(v))k
⎞
⎠≥N. (3)

This says that a (p, 1− p)-weighted average of two numbers is at leastN, which means that at least
one of them is at least N. Suppose first that the first term is at least N, that is, that

∑
v∈V

k∏
i=1

xi(v)≥ pkN.

Let Q be a uniformly random blue Kk spanning C1, . . . , Ck, which must exist by our computa-
tions above. Let α = δk

2 ≤∏i<j dB(Ci, Cj) and observe that η≤ δ4k2 = α4 ≤ α3/k2. Thus, for any
v, we can apply Lemma 2.3 to conclude that the probability v extends Q to a blue Kk+1 is at least∏

i xi(v)− 4α. Therefore, the expected number of extensions of Q to a blue Kk+1 is at least

∑
v∈V

⎛
⎝ k∏

i=1
xi(v)− 4α

⎞
⎠≥ (pk − 4α)N

≥ (pk − 4α)(p−k + ε)n

≥ (1+ pkε− 8αp−k)n

≥ n, (4)

where (4) uses that α= δk
2 ≤ ((1− p)ε)k2 ≤ (pε)k2 ≤ p2kε/8. Therefore,Q has at least n extensions

in expectation, so there must exist some blue Kk with at least n extensions, that is, a blue B(k)n .
Now assume that the other term in the weighted average in (3) is at least N, that is, that

1
k

k∑
i=1

∑
v∈V

(1− xi(v))k ≥ (1− p)kN.

Then there must exist some i for which∑
v∈V

(1− xi(v))k ≥ (1− p)kN.

Therefore, if Q is a random red Kk inside this Ci, then, by Lemma 2.3, the expected number of
extensions of Q is at least3∑

v∈V

[
(1− xi(v))k − 4α

]
≥
[
(1− p)k − 4α

]
(p−k + ε)n

≥
((

1− p
p

)k
+ (1− p)kε− 8αp−k

)
n

≥ cn, (5)

where we use the fact that c= ((1− p)/p)k and that

α = δk
2 = ((1− p)ε)k

2 ≤ pk(1− p)kε/8,

3Strictly speaking, if v ∈ Ci, then dR(v, Ci) �= 1− xi(v), as v has no edge to itself. However, this tiny loss can be absorbed into
the error terms and the result does not change.
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since 1− p≤ p. Thus, the expected number of red extensions of a red Kk in Ci is at least cn, so
there must exist a red B(k)cn . This concludes the proof under the assumption that the colouring
contains a (k, η, δ)-red-blocked configuration.

Now, we instead assume that the colouring contains a (k, η, δ)-blue-blocked configuration and
aim to conclude the same result; the proof is more or less identical, but with the role of p now
played by q= 1− p. As before, we find that there is at least one red Kk spanning C1, . . . , Ck and
that each Ci contains at least one blue Kk. For a vertex v and i ∈ [k], let yi(v)= dR(v, Ci) ∈ [0, 1]
and write q= 1− p. Since k≥ k2 = k1(q), we can sum the result of applying Lemma 4.1 over all
v ∈V to find that

q

⎛
⎝q−k

∑
v∈V

k∏
i=1

yi(v)

⎞
⎠+ (1− q)

⎛
⎝ (1− q)−k

k

k∑
i=1

∑
v∈V

(1− yi(v))k
⎞
⎠≥N.

As before, this is a (q, 1− q)-weighted average of two terms, which means that one of the terms
must be at least N. Suppose first that the first term is at least N, that is, that

∑
v∈V

k∏
i=1

yi(v)≥ qkN.

If Q is a uniformly random red Kk spanning C1, . . . , Ck and α= δk
2 , then, as before, we find that

the expected number of extensions of Q to a red Kk+1 is at least

∑
v∈V

⎛
⎝ k∏

i=1
yi(v)− 4α

⎞
⎠≥ (qk − 4α)N ≥ ((1− p)k − 4α)(p−k + ε)n≥ cn,

by the computation in (5). Therefore, in this case, there must exist some red Kk with at least cn
red extensions, giving the desired red B(k)cn . So we may assume instead that

1
k

k∑
i=1

∑
v∈V

(1− yi(v))k ≥ (1− q)kN,

which implies that for some i ∈ [k], ∑
v∈V

(1− yi(v))k ≥ pkN.

Thus, if Q is a random blue Kk inside this Ci, we find that the expected number of blue extensions
of Q is at least ∑

v∈V

[
(1− yi(v))k − 4α

]
≥ (pk − 4α)N ≥ (pk − 4α)(p−k + ε)n≥ n,

by the same computation as in (4). This gives us our blue B(k)n , completing the proof. �
With this result in hand, we can now prove Theorem 1.3.

Proof of Theorem 1.3. Given an integer k≥ 2, let c1(k) be the infimum of c ∈ (0, 1] such that
k2((c1/k + 1)−1)≤ k, where k2 is the constant from Lemma 4.3. Note that we declare this infi-
mum to equal 1 if no c ∈ (0, 1] satisfies this condition (as happens for k= 2). In this case, there
is nothing to prove, since Theorem 1.3 for c= 1 is already known [9]. We now fix c ∈ [c1, 1] and
p= 1/(c1/k + 1) ∈ ( 12 , 1], noting that we have k≥ k2(p).

Fix 0< ε < 1
2 and suppose we are given a red/blue colouring of E(KN) where N = (p−k + ε)n.

Our goal is to prove that if n is sufficiently large in terms of ε, then this colouring contains a
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red B(k)cn or a blue B(k)n . To do this, we fix parameters δ = (1− p)2kε/(4k) and η=min{δ4k2 , (1−
p)/(4k)} depending on c, k, and ε.

We apply Lemma 2.1 to the red graph from our colouring with parameters η and M0 = 1/η
to obtain an equitable partition V(KN)=V1 
 · · · 
Vm, where each Vi is η-regular and, for each
i, there are at most ηm values 1≤ j≤m such that the pair (Vi,Vj) is not η-regular. Moreover,
M0 ≤m≤M =M(η,M0). Note that since the colours are complementary, the same properties
also hold for the blue graph. Call a part Vi blue if dB(Vi)≥ 1

2 and red otherwise.
Suppose first that at leastm′ ≥ pm of the parts are blue and rename the parts so thatV1, . . . ,Vm′

are these blue parts. We build a reduced graph G whose vertex set is v1, . . . , vm′ by making {vi, vj}
an edge if and only if (Vi,Vj) is η-regular and dR(Vi,Vj)≥ δ. Suppose that some vertex in G, say
v1, has degree at most (1− pk−1 − η/p)m′ − 1. Since v1 has at most ηm≤ ηm′/p non-neighbours
coming from irregular pairs (V1,Vj), this means that there are at least pk−1m′ parts Vj such that
(V1,Vj) is η-regular and dB(V1,Vj)≥ 1− δ. Let J be the set of all these indices j and U =⋃j∈J Vj
be the union of all of these Vj. We then have

eB(V1,U)=
∑
j∈J

eB(V1,Vj)≥
∑
j∈J

(1− δ)|V1||Vj| = (1− δ)|V1||U|. (6)

Let V ′1 ⊆V1 denote the set of vertices v ∈V1 with eB(v,U)≥ (1− 2δ)|U|. Then we may write

eB(V1,U)=
∑
v∈V′

1

eB(v,U)+
∑

v∈V1\V′
1

eB(v,U)≤ |V ′
1||U| + (1− 2δ)|V1 \V ′

1||U|. (7)

Combining inequalities (6) and (7), we find that |V ′
1| ≥ 1

2 |V1|, where every vertex in V ′
1 has blue

density at least 1− 2δ into U. Moreover, since η < 1
6 , we may apply the η-regularity of V1 to

conclude that the internal blue density of V ′
1 is at least 1

2 − η≥ 1
3 , while the hereditary property

of regularity implies that V ′1 is 2η-regular. Then the counting lemma, Lemma 2.2, implies that V ′1
contains at least

1
k!

(
dB(V ′1)

(k
2

)
− 2η

(
k
2

))
|V ′1|k ≥ 1

k!

(
3−
(k
2

)
− 2η

(
k
2

))
|V ′1|k > 0

blueKk, so thatV ′1 contains at least one blueKk. Every vertex of this blueKk has at least (1− 2δ)|U|
blue neighbours in U, so the blue Kk has at least (1− 2kδ)|U| blue extensions into U. Moreover,
since we assumed that |J| ≥ pk−1m′ ≥ pkm and the partition is equitable, we find that |U| ≥ pkN.
Therefore,

(1− 2kδ)|U| ≥ (1− 2kδ)pk(p−k + ε)n

= (1− 2kδ)(1+ pkε)n

≥ (1+ pkε− 4kδ)n

≥ n,

since our choice of δ yields 4kδ = (1− p)2kε≤ pkε. Thus, we find that any blue Kk inside V ′
1 must

have at least n blue extensions, giving us our blue B(k)n .
So we may assume that every vertex in G has degree at least (1− pk−1 − η/p)m′. Recall from

(2) that f (1− p, k)= p1−k/(e2k)≥ 1 for k≥ k1(1− p). Since we assume that k≥ k2(p)= k1(1− p),
this implies that

pk−1 ≤ 1
e2k

≤ 1
3(k− 1)

. (8)
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Additionally, by our choice of η≤ (1− p)/(4k)≤ p/(4k), we know that
η

p
≤ 1

3(k− 1)
.

The previous two inequalities imply that

1− pk−1 − η

p
> 1− 1

k− 1
,

so that G contains a Kk by Turán’s theorem. Let vi1 , . . . , vik be the vertices of this Kk and let
Cj =Vij for 1≤ j≤ k. Then we claim that C1, . . . , Ck is a (k, η, δ)-blue-blocked configuration. The
fact that each Ci is η-regular follows immediately from our application of Lemma 2.1 and the fact
that dB(Ci)≥ δ follows from the fact that we assumed dB(Ci)≥ 1

2 . Finally, the definition of edges
in G implies that (Ci, Cj) is η-regular with dR(Ci, Cj)≥ δ for all i �= j. Thus, our colouring contains
a (k, η, δ)-blue-blocked configuration with δ ≤ (1− p)ε and η≤ δ4k2 , so Lemma 4.3 implies that
the colouring contains either a red B(k)cn or a blue B(k)n .

We have now finished the proof if at least pm of the partsVi are blue. Therefore, wemay assume
instead that at leastm′′ ≥ (1− p)m of the parts are red and again rename the parts so that these red
parts are V1, . . . ,Vm′′ . We construct a reduced graph G on vertices v1, . . . , vm′′ by connecting vi
to vj if (Vi,Vj) is η-regular with dB(Vi,Vj)≥ δ. Suppose that some vertex in G, say v1, has degree
at most (1− (1− p)k−1 − η/(1− p))m′′ − 1. As before, v1 has at most ηm≤ ηm′′/(1− p) non-
neighbours coming from irregular pairs. Thus, if we let J denote the set of indices j for which
(V1,Vj) is η-regular with dR(V1,Vj)≥ 1− δ, then we find that |J| ≥ (1− p)k−1m′′ ≥ (1− p)km.
Thus, if U =⋃j∈J Vj, then we see that |U| ≥ (1− p)kN, since the partition is equitable. Next, as
above, we let V ′1 ⊆V1 denote the set of vertices v ∈V1 with eR(v,U)≥ (1− 2δ)|U| and find that
|V ′

1| ≥ 1
2 |V1|. Therefore, as above, we know that V ′

1 contains at least one red Kk and this red Kk
has at least (1− 2kδ)|U| red extensions in U. Moreover,

(1− 2kδ)|U| ≥ (1− 2kδ)(1− p)kN

= (1− 2kδ)(1− p)k(p−k + ε)n

= (1− 2kδ)(c+ (1− p)kε)n (9)

≥ (c+ (1− p)kε− 4kδ)n

≥ cn, (10)

where in (9) we used the definition of p, which implies that ((1− p)/p)k = c, and in (10) we used
our choice of δ to see that δ ≤ (1− p)kε/(4k). Thus, in this case, we can find a red B(k)cn .

We may therefore assume that every vertex in G has degree at least (1− (1− p)k−1 − η/(1−
p))m′′. As before, we know that, since k≥ k2(p),

(1− p)k−1 ≤ pk−1 ≤ 1
3(k− 1)

and our choice of η≤ (1− p)/(4k) implies that
η

1− p
≤ 1

3(k− 1)
.

Thus, by Turán’s theorem, G must contain a Kk, with vertices vi1 , . . . , vik . If we let Cj =Vij , then
C1, . . . , Ck will be a (k, η, δ)-red-blocked configuration, by the definition of edges in G and the
assumption that N is sufficiently large in terms of ε. Thus, by Lemma 4.3, we can again conclude
that the colouring contains either a red B(k)cn or a blue B(k)n .
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To finish, we note that, as claimed, we may take c1(k)≤
(
(1+ o(1)) log kk

)k
. Indeed, for any c

and k, let p(c, k)= (c1/k + 1)−1 and y= y(c, k)= 1/ log [1/p(c, k)]. Then, from Lemma 4.3 and
4.1, we see that k2(p(c, k))= 1+ y(5+ log y+ log log y). Thus, if y≤ (1+ o(1))k/ log k, then k≥
k2(p(c, k)). Since y= 1/ log(1+ c1/k), this condition is equivalent to c1/k ≥ exp

(
(1+ o(1)) log kk

)
−

1= (1+ o(1)) log kk , which yields the desired bound. �

5. Quasirandomness
In the previous section, we showed that for a certain range of c and k, the Ramsey number
r
(
B(k)cn , B(k)n

)
is, as n→ ∞, asymptotically equal to the lower bound coming from a p-random

construction. In this section, we strengthen this result, showing that all colourings whose number
of vertices is close to the Ramsey number must either be quasirandom or else contain substantially
larger books than the Ramsey property implies. We make the following definition.

Definition 5.1. For p ∈[ 12 , 1) and γ > 0, we say that a red/blue colouring of E(KN) contains (p, γ )-
many books if it contains

• at least γNk red Kk, each with at least ((1− p)k + γ )N extensions to a red Kk+1, or
• at least γNk blue Kk, each with at least (pk + γ )N extensions to a blue Kk+1.

Here is the restatement of Theorem 1.4 in terms of (p, γ )-many books that we will prove.

Theorem 1.4. For every p ∈ [ 12 , 1), there exists some k0 ∈N such that the following holds for every
k≥ k0. For every θ > 0, there exists some γ > 0 such that if a red/blue colouring of E(KN) is not
(p, θ)-quasirandom, then it contains (p, γ )-many books.

To prove Theorem 1.4, we will need a few technical lemmas. At a high level, the proof closely
follows the proof of the main quasirandomness theorem in [10, Section 5], as follows. First, we
prove a strengthening of Lemma 4.1, which can be thought of as a stability version of that result; it
says that if our vector (x1, . . . , xk) is bounded in �∞ away from the minimizing point (p, . . . , p),
then the value of the function in Lemma 4.1 is bounded away from its minimum of 1. Using this,
we can strengthen Lemma 4.3 to say that not only does a blocked configuration imply the existence
of the desired monochromatic book, but in fact it implies the existence of a larger book unless
every part of the blocked configuration is ε-regular to the entire vertex set. Therefore, assum-
ing our colouring does not contain many blue B(k)(pk+γ )N or red B(k)((1−p)k+γ )N , we will be able to
repeatedly pull out vertex subsets that are ε-regular to the entire vertex set until we have almost
partitioned all the vertices into such subsets. At that point, we can use the structure coming from
this partition to deduce that the colouring is (p, θ)-quasirandom, as desired.

We begin with the strengthening of Lemma 4.1.

Lemma 5.2. For p ∈ (0, 1), let k1 = k1(p) be as in Lemma 4.1. Then, for every integer k≥ k1 and
any ε0 > 0, there exists some δ0 > 0 such that if x1, . . . , xk ∈ [0, 1] are numbers with |xj − p| ≥ ε0
for some j, then

p1−k
k∏

i=1
xi + (1− p)1−k

k

k∑
i=1

(1− xi)k ≥ 1+ δ0.

Proof. Let

F(x1, . . . , xk)= p1−k
k∏

i=1
xi + (1− p)1−k

k

k∑
i=1

(1− xi)k
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and ϕ(y)= (1− ey)k. The goal is to apply Hölder’s defect formula, Theorem 2.6, using the strict
convexity of the function ϕ. However, ϕ is only strictly convex on the interval (log 1

k , 0) and, in
order to apply Theorem 2.6, we in fact need a positive lower bound on ϕ′′, but no such bound
exists for the whole interval (log 1

k , 0). Because of this, we need to separately analyze the cases
where all the variables are inside a large subinterval of

( 1
k , 1
)
and when one of them is outside

such a subinterval.
First, suppose that one of the variables, say x1, is in the interval

[
0, 1+ε1k

]
, for some small

constant ε1 > 0. Then we have that

F(x1, . . . , xk)≥ (1− p)1−k

k
(1− x1)k ≥ (1− p)1−k

k

(
1− 1+ ε1

k

)k
.

From the proof of Lemma 4.1, we see that this quantity is strictly larger than 1 for all k≥ k1(p),
so, by choosing δ0 appropriately, we see that F(x1, . . . , xk)≥ 1+ δ0 in this case. We may therefore
assume from now on that all the variables are at least 1+ε1

k .
Next, suppose that there exist values x1, . . . , xk−1 ∈ [ 1+ε1k , 1

]
such that F(x1, . . . , xk−1, 1)= 1.

We observe that

∂F
∂xk

∣∣∣∣
xk=1

=
⎡
⎣p1−k

k−1∏
i=1

xi − (1− p)1−k(1− xk)k−1

⎤
⎦
xk=1

= p1−k
k−1∏
i=1

xi > 0.

This implies that if we move from xk = 1 to xk = 1− ε2 for some sufficiently small ε2, the value
of F will decrease. Therefore, there will exist a vector (x1, . . . , xk) for which F(x1, . . . , xk)< 1,
contradicting Lemma 4.1 as long as k≥ k1(p). Thus, for every choice of x1, . . . , xk−1 ∈ [ 1+ε1k , 1

]
,

we have that F(x1, . . . , xk−1, 1)> 1. Since the space
[ 1+ε1

k , 1
]k−1 × {1} is compact, we in fact

find that F(x1, . . . , xk−1, 1)≥ 1+ δ′1 for all x1, . . . , xk−1 ∈ [ 1+ε1k , 1
]
, for some sufficiently small δ′1

depending on p and k. Finally, by continuity of F, we have that F(x1, . . . , xk)≥ 1+ δ1 whenever
xk ≥ 1− ε2 for some other δ1, ε2 > 0. Since F is a symmetric function of its variables, the same
conclusion holds if xi ≥ 1− ε2 for any i. Thus, as long as we take the δ0 in the lemma statement to
be smaller than δ1, we can assume from now on that xi ∈ [ 1+ε1k , 1− ε2] for all i.

By Lemma 2.5, subject to the constraint
∏k

i=1 xi = z, the term 1
k
∑k

i=1(1− xi)k is minimized
when xi = z1/k for all i. As in the proof of Lemma 4.1, this shows that F(x1, . . . , xk)≥ψ(z1/k),
where ψ(w)= p1−kwk + (1− p)1−k(1−w)k. The function ψ has a global minimum at w= p,
where its value is 1. This shows that F(x1, . . . , xk)≥ 1+ δ0 if |z1/k − p| ≥ ε3, for some ε3 > 0
depending on p, k, and δ0. Moreover, by picking δ0 sufficiently small, we can make ε3 as small
as we wish. Therefore, we may now assume that z1/k = p± ε3, which implies that log (z1/k)=
(log p)± ε4 for some ε4 > 0, which can also be made arbitrarily small by picking δ0 appropriately.

We are now ready to apply Hölder’s defect formula. First, we observe that for y ∈
[log 1+ε1

k , log (1− ε2)], we have

ϕ′′(y)= key(1− ey)k−2(key − 1)≥ k · 1+ ε1
k

· εk−2
2 · ε1 =:m,

where m is a fixed, strictly positive constant. Let yi = log xi for 1≤ i≤ k, so that 1
k
∑k

i=1 yi =
log (z1/k). We assumed that |xj − p| ≥ ε0 for some j, which implies that |yj − log p| ≥ ε0 as well,
since the derivative of log x is bounded below by 1 on the interval (0, 1). Therefore, choosing δ0
small enough that ε4 < ε0, we see that

1
k

k∑
i=1

(
yi − log

(
z1/k
))2 ≥ 1

k
(
yj − log

(
z1/k
))2 ≥ 1

k
(ε0 − ε4)2,
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since log (z1/k)= (log p)± ε4 and |yj − log p| ≥ ε0. Hence, by Theorem 2.6, we have that

F(x1, . . . , xk)= p1−kz + (1− p)1−k

k

k∑
i=1

(1− xi)k

= p1−kz + (1− p)1−k · 1
k

k∑
i=1

ϕ(yi)

≥ p1−kz + ϕ
(
log
(
z1/k
))+ m

2k
(ε0 − ε4)2

=ψ(z1/k)+ m
2k

(ε0 − ε4)2

≥ 1+ δ0,

where we use the fact that ψ(w)≥ 1 for all w ∈ [0, 1] and take δ0 sufficiently small. �
Using Lemma 5.2, we can now prove the following strengthening of Lemma 4.3, which says

that if we have a blocked configuration C1, . . . , Ck and many vertices whose blue density into Ci is
far from p, then we can find a substantially larger monochromatic book than what is guaranteed
by Lemma 4.3.

Lemma 5.3. Fix p ∈ [ 12 , 1) and let k≥ k2(p), where k2 is the constant from Lemma 4.3. Suppose
0< ε0 < 1

4 and let δ0 = δ0(ε0) be the parameter from Lemma 5.2. Let 0< δ ≤ (1− p)δ0ε0 and 0<
η≤ δ4k2 and suppose that C1, . . . , Ck is either a (k, η, δ)-red-blocked configuration or a (k, η, δ)-
blue-blocked configuration in a red/blue colouring of KN. Define

Bi = {v ∈KN : |dB(v, Ci)− p| ≥ ε0}.
Then the following hold:

(a) If |Bi| ≥ ε0N for some i, then the colouring contains a blue B(k)(pk+β)N or a red B(k)((1−p)k+β)N,
where β = (1− p)kδ0ε0/2.

(b) If, in addition, |Ci| ≥ τN for all i and some τ > 0, then there exists some 0< γ < β
depending on ε0, τ , and δ such that the colouring contains (p, γ )-many books.

Proof. We may assume without loss of generality that |B1| ≥ ε0N. As in the proof of Lemma 4.3,
we need to split into two cases, depending on whether C1, . . . , Ck is blue-blocked or red-blocked.
We begin by assuming that it is (k, η, δ)-red-blocked.

First, as in the proof of Lemma 4.3, observe that each Ci contains at least one red Kk and there
is at least one blue Kk spanning C1, . . . , Ck. Moreover, if we assume that |Ci| ≥ τN for all i, then
Lemma 2.2 shows that the number of blue Kk spanning C1, . . . , Ck is at least⎛

⎝ ∏
1≤i<j≤k

dB(Ci, Cj)− η

(
k
2

)⎞⎠ k∏
i=1

|Ci| ≥
(
δ

(k
2

)
− η

(
k
2

))
(τN)k ≥

⎛
⎜⎝δ

(k
2

)
τ k

2

⎞
⎟⎠Nk

and similarly, with an additional factor of 1/k!, for the number of red Kk inside each Ci.
For a vertex v and i ∈ [k], let xi(v)= dB(v, Ci). Lemma 4.1 implies that, for any v ∈V ,

p

⎛
⎝p−k

k∏
i=1

xi(v)

⎞
⎠+ (1− p)

⎛
⎝ (1− p)−k

k

k∑
i=1

(1− xi(v))k
⎞
⎠≥ 1.
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Additionally, if v ∈ B1, then |x1(v)− p| ≥ ε0, so Lemma 5.2 implies that, for v ∈ B1,

p

⎛
⎝p−k

k∏
i=1

xi(v)

⎞
⎠+ (1− p)

⎛
⎝ (1− p)−k

k

k∑
i=1

(1− xi(v))k
⎞
⎠≥ 1+ δ0.

Adding these two equations up over all v ∈V shows that

p

⎛
⎝p−k

∑
v∈V

k∏
i=1

xi(v)

⎞
⎠+ (1− p)

⎛
⎝ (1− p)−k

k

k∑
i=1

∑
v∈V

(1− xi(v))k
⎞
⎠≥N + δ0|B1| ≥ (1+ δ0ε0)N.

That is, a (p, 1− p)-weighted average of two quantities is at least (1+ δ0ε0)N, which implies that
one of the quantities must itself be at least (1+ δ0ε0)N. Suppose first that

p−k
∑
v∈V

k∏
i=1

xi(v)≥ (1+ δ0ε0)N.

Let Q be a uniformly random blue Kk with one vertex in each of C1, . . . , Ck. Let α = δk
2 ≤∏

i<j dB(Ci, Cj), so that η≤ δ4k2 = α4 ≤ α3/k2. Therefore, applying Lemma 2.3 to each v and
summing up the result, we find that the expected number of blue extensions of Q is at least

∑
v∈V

⎛
⎝ k∏

i=1
xi(v)− 4α

⎞
⎠≥ (pk + pkδ0ε0 − 4α)N.

Next, observe that

4α = 4δk
2 ≤ δk

2
≤ ((1− p)δ0ε0)k

2
≤ (1− p)kδ0ε0

2
≤ pkδ0ε0

2
, (11)

which implies that the expected number of blue extensions of Q is at least (pk + β)N, where
β = (1− p)kδ0ε0/2. Thus, there exists a blue B(k)(pk+β)N , proving (a) in this case. Moreover, if we
assume that |Ci| ≥ τN for all i, then our earlier computation shows that Q is chosen uniformly at

random from a set of at least κNk monochromatic cliques, where κ = δ

(k
2

)
τ k/2. We may there-

fore apply Lemma 2.4 with ξ = pk + β and ν = pk + γ , for some appropriately chosen 0< γ < β ,
to conclude that in this case our colouring contains at least γNk blue cliques, each with at least
(pk + γ )N blue extensions, proving (b).

Therefore, we may assume that the second term in the weighted average is the large one, that
is, that

(1− p)−k

k

k∑
i=1

∑
v∈V

(1− xi(v))k ≥ (1+ δ0ε0)N,

which implies that, for some i,∑
v∈V

(1− xi(v))k ≥ (1− p)k(1+ δ0ε0)N.

Therefore, ifQ is now a random redKk inside thisCi, Lemma 2.3 implies that the expected number
of red extensions of Q is at least∑

v∈V

[
(1− xi(v))k − 4α

]
≥
[
(1− p)k + (1− p)kδ0ε0 − 4α

]
N.
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But, by (11), 4α ≤ (1− p)kδ0ε0/2, which implies that the expected number of red extensions of Q
is at least ((1− p)k + β)N, proving (a). As before, if we also assume that |Ci| ≥ τN for all i, then

wemay apply Lemma 2.4 with κ = δ

(k
2

)
τ k/2k!, ξ = (1− p)k + β , and ν = (1− p)k + γ to find that

our colouring contains at least γNk red Kk, each with at least ((1− p)k + γ )N red extensions for
some appropriately chosen γ ∈ (0, β), yielding (b). This concludes the proof of the lemma in the
case where C1, . . . , Ck is a (k, η, δ)-red-blocked configuration.

As in the proof of Lemma 4.3, the other case, where C1, . . . , Ck is a (k, η, δ)-blue-blocked con-
figuration, follows in an almost identical fashion. We define yi(v)= dR(v, Ci) for all v ∈V and
i ∈ [k] and let q= 1− p. We then apply Lemma 4.1 and 5.2 with these y variables and with q
instead of p. The remaining details are exactly the same. �

Next, we strengthen Lemma 5.3 by showing that not only does every part of a blocked configu-
ration have density roughly p to most vertices, but it is in fact (p, ε)-regular to the entire vertex set.
Here, by saying that a pair of vertex subsets (X, Y) is (p, ε)-regular, we mean that |d(X′, Y ′)− p| ≤
ε for every X′ ⊆ X, Y ′ ⊆ Y with |X′| ≥ ε|X|, |Y ′| ≥ ε|Y|. Note that (p, ε)-regularity is equivalent,
up to a linear change in the parameters, to ε-regularity with density p± ε.

Lemma 5.4. Fix p ∈ [ 12 , 1) and let k≥ k2(p). Suppose 0< ε1 < 1
4 , ε0 = ε21/2, and let δ0 = δ0(ε0) be

the parameter from Lemma 5.2. Let 0< δ ≤ (1− p)δ0ε0 and 0<η≤ ε12−4k2δ4k
2 and suppose that

C1, . . . , Ck is either a (k, η, δ)-red-blocked or a (k, η, δ)-blue-blocked configuration in a red/blue
colouring of KN. Then the following hold:

(a) If, for some i, the pair (Ci,V) is not (p, ε1)-regular in blue, then the colouring contains a blue
B(k)(pk+β)N or a red B(k)((1−p)k+β)N, where β = (1− p)kδ0ε0/2.

(b) If, in addition, |Ci| ≥ τN for all i and some τ > 0, then the colouring contains (p, γ )-many
books for some 0< γ < β depending on ε1, δ, and τ .

Proof. Without loss of generality, suppose that (C1,V) is not (p, ε1)-regular in blue. Then there
exist C′

1 ⊆ C1,D⊆V with |C′
1| ≥ ε1|C1|, |D| ≥ ε1N such that |dB(C′

1,D)− p|> ε1. Assume first
that dB(C′

1,D)≥ p+ ε1. Let D1 ⊆D denote the set of vertices v ∈D with dB(v, C′
1)< p+ ε1

2 and
let D2 =D \D1. Then we have that(

p+ ε1
) |C′

1||D| ≤
∑
v∈D1

eB(v, C′
1)+

∑
v∈D2

eB(v, C′
1)≤

(
p+ ε1

2

)
|C′

1||D| + |C′
1||D2|,

which implies that |D2| ≥ ε1
2 |D| ≥ ε21

2 N = ε0N, where each v ∈D2 has dB(v, C′
1)≥ p+ ε1

2 . Now,
consider the k-tuple of sets C′

1, C2, . . . , Ck; by the hereditary property of regularity, we see that
this is a (k, η′, δ′)-blocked configuration, where η′ = η/ε1 and δ′ = δ − η≥ δ/2. This implies that
δ′ ≤ (1− p)δ0ε0 and η′ ≤ (δ′)4k2 . Therefore, we may apply Lemma 5.3 to the (k, η′, δ′)-blocked
configuration C′

1, C2, . . . , Ck to conclude that the colouring contains a blue B(k)(pk+β)N or a red

B(k)((1−p)k+β)N . Moreover, if we assume that |Ci| ≥ τN for all i, then |Ci′| ≥ ε1τN for all i, where
Ci′ = Ci if i≥ 2. Thus, Lemma 5.3 implies that in this case the colouring contains (p, γ )-many
books for some 0< γ < β depending on ε1, δ, and τ .

To complete the proof of the lemma, we also need to check the case where dB(C′
1,D)≤ p− ε1.

However, the proof is essentially identical: we find a subset D2 ⊆D such that every vertex v ∈D2
has dB(v, C′

1)≤ p− ε1
2 and such that |D2| ≥ ε1

2 |D| and then the rest of the proof is as above. �
Our next technical lemma gives the inductive step for our proof of Theorem 1.4. The proof

mimics that of Theorem 1.3, except that the vertex set is split into parts that were already pulled out
as regular and a part that has not yet been touched. Inside the untouched part, we build a reduced
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graph and use it to find either many large monochromatic books or a blocked configuration, at
which point Lemma 5.4 implies that the induction can continue.

Lemma 5.5. Fix p ∈ [ 12 , 1) and let k≥ k2(p). Fix 0< ε≤ p/(20k) and suppose that the edges of the
complete graph KN with vertex set V have been red/blue coloured. Suppose that A1, . . . ,A� are
disjoint subsets of V such that (Ai,V) is (p, ε2)-regular for all i. Let W =V \ (A1 ∪ · · · ∪A�) and
suppose that |W| ≥ εN. Then either there is some A�+1 ⊆W such that (A�+1,V) is (p, ε2)-regular
or else the colouring contains (p, γ )-many books for some γ > 0 depending on ε, p, and k.

Proof. Let ε1 = ε2, ε0 = ε21/2, and δ0 = δ0(ε0) be the parameter from Lemma 5.2 and set δ = (1−
p)δ0ε0, η= ε22−4k2δ4k

2 , β = kpk−1ε2, and β ′ = 4ε. We apply Lemma 2.1 to the subgraph induced
on W, with parameters η and M0 = 1/η, to obtain an equitable partition W =W1 
 · · · 
Wm,
where M0 ≤m≤M =M(η,M0). Call a part Wi blue if dB(Wi)≥ 1

2 and red otherwise. As in the
proof of Theorem 1.3, we first assume that at leastm′ ≥ pm of the parts are blue and rename them
so thatW1, . . . ,Wm′ are the blue parts.

We build a reduced graph G on vertex set w1, . . . ,wm′ , connecting wi1 and wi2 by an edge
if (Wi1 ,Wi2 ) is η-regular and dR(Wi1 ,Wi2 )≥ δ. Suppose that w1 has at most (1− pk−1 − β ′/p−
η/p)m′ − 1 neighbours in G. Since w1 has at most ηm≤ ηm′/p non-neighbours coming from
irregular pairs, this means that there are at least (pk−1 + β ′/p)m′ parts Wj with 2≤ j≤m′ such
that (W1,Wj) is η-regular and dB(W1,Wj)≥ 1− δ. Let J be the set of these indices j and set U =⋃

j∈J Wj. By the counting lemma, Lemma 2.2,W1 contains at least 1
k!

(
2−
(k
2

)
− η
(
k
2

))
|W1|k blue

copies of Kk and

1
k!

(
2−
(k
2

)
− η

(
k
2

))
|W1|k ≥ 2−k2

k!
( |W|

M

)k
≥
(
εN

k2kM

)k
,

where we use that η≤ δ4k2 ≤ δ
(k
2

)
/
(
k
2

)
and that 2−

(k
2

)
− δ

(k
2

)
> 2−k2 , along with our assumption

that |W| ≥ εN. If we set κ = (ε/k2kM)k, then this implies that W1 contains at least κNk blue Kk.

If we pick a uniformly random such blue Kk, then Lemma 2.3 with α = δk
2 ≤ 2−

(k
2

)
≤ dB(W1)

(k
2

)
implies that its expected number of blue extensions inside U is at least∑

u∈U

(
dB(u,W1)k − 4α

)
≥
[
(1− δ)k − δk

]
|U| ≥ (1− 2kδ)|U|,

where we first use Jensen’s inequality applied to the convex function x �→ xk to lower bound∑
u dB(u,W1)k by (1− δ)k|U| and then use that (1− δ)k ≥ 1− kδ and 4δk2 ≤ δk ≤ kδ. Since we

assumed that J was large and the partition is equitable, we find that

|U| ≥ (pk−1 + β ′/p)m′|Wj| ≥ (pk + β ′)|W|.
Thus, a random blue Kk insideW1 has at least (1− 2kδ)(pk + β ′)|W| blue extensions inW.

Now, suppose that instead of justw1 having low degree inG, we have a set of at least εm vertices
wj ∈V(G), each with at most (1− pk−1 − β ′/p− η/p)m′ − 1 neighbours in G. Let S be the set of
these j and T =⋃j∈S Wj. By the above argument, for every j ∈ S, we have thatWj contains at least
κNk blue Kk such that a uniformly average one among them has at least (1− 2kδ)(pk + β ′)|W|
blue extensions intoW. Moreover, we have that

|T| = |S||Wj| ≥ εm |W|
m

= ε|W| ≥ ε2|V|.
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We may therefore apply the (p, ε2) regularity of (Ai,V) to conclude that dB(Ai, T)= p± ε2 for all
i. Thus, if we pick j ∈ S randomly, then E[dB(Wj,Ai)]= p± ε2. Therefore, if we first sample j ∈ S
randomly and then pick a random blue Kk inside Wj, then Lemma 2.3 implies that this random
blue Kk will have in expectation at least∑

a∈Ai

(
dB(a,Wj)k − 4δk

2
)

≥
[(
p− ε2

)k − δk
]
|Ai|

≥
[
pk
(
1− kε2

p

)
− δk

]
|Ai|

≥ pk
(
1− 2kε2

p

)
|Ai|

blue extensions into Ai, again by Jensen’s inequality. This implies that this random Kk has in
expectation at least (1− 2kε2/p)pk|A1 ∪ · · · ∪A�| extensions into A1 ∪ · · · ∪A�. Adding up the
extensions into this set and intoW, its complement, shows that this random blue Kk has in expec-
tation at least ξN blue extensions, where ξ is a weighted average of (1− 2kε2/p)pk and (1−
2kδ)(pk + β ′), and where the latter quantity receives weight at least ε, since |W| ≥ εN. Thus,

ξ ≥ (1− ε)
(
1− 2kε2

p

)
pk + ε(1− 2kδ)(pk + β ′)

≥
(
1− 2kε2

p
− ε

)
pk + ε(1− 2kδ)(1+ p−kβ ′)pk

≥
(
1− 2kε2

p
− ε

)
pk + ε

(
1+ 3kε

p

)
pk

= pk
(
1+ kε2

p

)

= pk + β ,

where we used the definition of β , the fact that 2kδ < p−kβ ′/4, that (1− x/4)(1+ x)≥ 1+ x/2
for all x ∈ [0, 1], and that p−kβ ′ ≥ 6kε/p, which follows since β ′ = 4ε and, as in the proof of
Lemma 4.1, p1−k ≥ e2k≥ 3

2k for k≥ k2(p). Therefore, by Lemma 2.4, we can find at least γNk

blue Kk, each with at least (pk + γ )N blue extensions, for some γ < β depending on ε and β and,
thus, only on ε, p, and k.

Therefore, we may assume that in G, all but εm≤ εm′/p of the vertices have degree at least
(1− pk−1 − β ′/p− η/p)m′. Hence, the average degree in G is at least(

1− ε

p

)(
1− pk−1 − β ′

p
− η

p

)
m′ ≥

(
1− pk−1 − 6ε

p

)
m′ ≥

(
1− pk−1 − 1

3k

)
m′,

since β ′ = 4ε, η≤ ε, and ε≤ p/(20k). By (8), the fact that k≥ k2(p) implies that pk−1 ≤ 1/(3k).
Therefore, the average degree in G is greater than (1− 1/(k− 1))m′, so, by Turán’s theorem, G
will contain a Kk. Let wi1 , . . . ,wik be the vertices of this Kk and let Cj =Wij for 1≤ j≤ k. Then, by
the definition of G, we see that C1, . . . , Ck is a (k, η, δ)-blue-blocked configuration with |Ci| ≥ τN
for all i, where τ = ε/M depends only on ε, p, and k. Thus, by Lemma 5.4, we see that either
the colouring contains (p, γ )-many books for some γ depending on ε, p, and k or else (Cj,V) is
(p, ε2)-regular for all j. In the latter case, we can setA�+1 = C1 (or any otherCj) and get the desired
result.
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Now, we need to assume instead that at least m′′ ≥ (1− p)m of the partsWi are red. However,
just as in the proof of Theorem 1.3, the argument is essentially identical: we first rule out the
existence of too many low-degree vertices in the reduced graph by counting extensions to W
and to A1 ∪ · · · ∪A� and then apply Turán’s theorem to find a Kk in the reduced graph, which
completes the proof by Lemma 5.4. �

By repeatedly applying Lemma 5.5 until W has fewer than εN vertices, we can partition KN
into a collection of subsets Ai such that (Ai,V) is (p, ε2)-regular, plus a small remainder set A�+1
about which we have no such information. Our final technical lemma shows that such a structural
decomposition suffices to conclude that the colouring is (p, θ)-quasirandom.

Lemma 5.6. Let ε≤ θ/3. Suppose we have a partition
V(KN)=A1 
 · · · 
A� 
A�+1

where (Ai,V) is (p, ε)-regular for each 1≤ i≤ � and |A�+1| ≤ εN. Then the colouring is (p, θ)-
quasirandom.

Proof. Fix disjoint X, Y ⊆V(KN). We need to check that∣∣eB(X, Y)− p|X||Y|∣∣≤ θN2.
First, observe that if |Y| ≤ εN, then∣∣eB(X, Y)− p|X||Y|∣∣≤ |X||Y| ≤ εN2 ≤ θN2.
Therefore, from now on, we may assume that |Y| ≥ εN. For 1≤ i≤ �+ 1, let Xi =Ai ∩ X and
define IX = {1≤ i≤ � : |Xi| ≥ ε|Ai|}. Then we have that

∑
i/∈IX

|Xi| ≤ |A�+1| + ε

�∑
i=1

|Ai| ≤ 2εN.

We now write

eB(X, Y)− p|X||Y| =
�+1∑
i=1

(
eB(Xi, Y)− p|Xi||Y|) .

We will split this sum into two parts, depending on whether i ∈ IX or not. First, suppose that i ∈ IX .
Then |Xi| ≥ ε|Ai| and |Y| ≥ ε|V|, so we may apply the (p, ε)-regularity of (Ai,V) to conclude that

∑
i∈IX

∣∣eB(Xi, Y)− p|Xi||Y|∣∣=∑
i∈IX

∣∣dB(Xi, Y)− p
∣∣ |Xi||Y| ≤

∑
i∈IX

ε|Xi||Y| ≤ ε|X||Y| ≤ εN2.

On the other hand, since
∑

i/∈IX |Xi| ≤ 2εN, we have that∑
i/∈IX

∣∣eB(Xi, Y)− p|Xi||Y|∣∣≤ |Y|
∑
i/∈IX

|Xi| ≤ |Y|(2εN)≤ 2εN2.

Adding these together, we conclude that∣∣eB(X, Y)− p|X||Y|∣∣≤ 3εN2 ≤ θN2,
as desired. �

With all these pieces in place, the proof of Theorem 1.4 becomes quite straightforward.

Proof of Theorem 1.4. Fix p ∈ [ 12 , 1) and suppose k≥ k0 := k2(p). Fix θ > 0 and set ε=
min{θ/3, p/(20k)}. Let γ = γ (θ , p, k) be the parameter from Lemma 5.5. Suppose we are given
a colouring of KN without (p, γ )-many books. We wish to prove that the colouring is (p, θ)-
quasirandom. We inductively apply Lemma 5.5 to find a sequence A1, . . . ,A� of vertex subsets
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such that (Ai,V) is (p, ε2)-regular for all i and, therefore, (p, ε)-regular for all i. We continue until
the remainder setW =V \ (A1 ∪ · · · ∪A�) satisfies |W| ≤ εN, at which point the assumptions of
Lemma 5.5 are no longer met, so we set A�+1 =W. However, at this point, we can apply Lemma
5.6 to conclude that our colouring is indeed (p, θ)-quasirandom. �

5.1. The converse
In this section, we prove a converse to Theorem 1.4, which implies that not containing (p, γ )-
many books is an equivalent characterization of p-quasirandomness.

Theorem 5.7. Fix k≥ 2 and p ∈ (0, 1). Then, for every γ > 0, there exists some θ > 0 such that the
following holds for every (p, θ)-quasirandom colouring of E(KN) with N sufficiently large. Apart
from fewer than γNk exceptions, every red Kk has ((1− p)k ± γ )N extensions to a red Kk+1 and
every blue Kk has (pk ± γ )N extensions to a blue Kk+1. In particular, the colouring does not contain
(p, γ )-many books.

Remark 5.2. In this direction, there is no dependence between p and the range of k for which the
result holds. As we know from the fact that the k-partite structure is the extremal structure for
small c, such a dependence is necessary in the forward direction. However, here, all we are saying
is that almost all monochromatic books in a quasirandom colouring are of essentially the correct
size, that is, asymptotic to what they would be in a random colouring.

Proof. Wewill use the well-known result of Chung, Graham, andWilson [6], that a quasirandom
colouring contains roughly the correct count of any fixed monochromatic subgraph. Specifically,
for every δ > 0, there is some θ > 0, such that, in any (p, θ)-quasirandom colouring of E(KN),

B(Kk) := #(blue Kk)= p
(k
2

) (
N
k

)
± δNk,

B(Kk+1) := #(blue Kk+1)= p
(k+1

2

) (
N

k+ 1

)
± δNk+1,

B(Kk+2 − e) := #(blue Kk+2 − e)= p
(k+2

2

)
−1
(

N
k+ 2

)(
k+ 2
2

)
± δNk+2,

where Kk+2 − e is the graph formed by deleting one edge from Kk+2; note that for this count
we have an extra factor of

(
k+2
2

)
to account for the fact that this graph is not vertex-transitive.

On the other hand, we can observe that every blue copy of Kk+2 − e corresponds to two distinct
extensions of a single blue Kk to a blue Kk+1. Therefore,

B(Kk+2 − e)=
∑
Q

(
#(blue extensions of Q)

2

)
,

where the sum is over all blue Kk. Let extB(Q) denote the number of blue extensions ofQ. Then we
can also observe that

∑
Q extB(Q) counts the total number of ways of extending a blue Kk into a

blue Kk+1, which is precisely (k+ 1)B(Kk+1), since each blue Kk+1 contributes exactly k+ 1 terms
to this sum.
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Now, we consider the quantity

E=
∑

Q a blue Kk

(extB(Q)− pkN)2.

On the one hand, we have that if δ ≥ 1/N, then

E=
∑
Q

extB(Q)2 − 2pkN
∑
Q

extB(Q)+
∑
Q

p2kN2

=
⎛
⎝2∑

Q

(
extB(Q)

2

)
+
∑
Q

extB(Q)

⎞
⎠− 2pkN(k+ 1)B(Kk+1)+ p2kN2B(Kk)

= 2B(Kk+2 − e)+ (1− 2pkN)(k+ 1)B(Kk+1)+ p2kN2B(Kk)

≤ 2p
(k+2

2

)
−1
(

N
k+ 2

)(
k+ 2
2

)
− 2pkN(k+ 1)p

(k+1
2

) (
N

k+ 1

)
+ p2kN2p

(k
2

) (
N
k

)
+ 5kδNk+2

= p
k2+3k

2

(
N
k

)
(−N + k2 + k)+ 5kδNk+2

< 5kδNk+2.

On the other hand, suppose there were at least γNk/2 blue Kk with at least (pk + γ )N or at most
(pk − γ )N blue extensions. Then, by only keeping these cliques in the sum defining E, we would
have that

E=
∑
Q

(extB(Q)− pkN)2 ≥ γNk

2
(γN)2 = γ 3

2
Nk+2.

Therefore, if we pick δ < γ 3/10k, we get a contradiction. The same argument with p replaced by
1− p and blue replaced by red shows that there are also fewer than γNk/2 red Kk with at least
((1− p)k + γ )N or at most ((1− p)k − γ )N red extensions. This proves the theorem, since the
total number of exceptional cliques is at most γNk. �

6. Concluding remarks
Putting together the main results of this paper, we obtain the following picture. For every k≥
2, there exist two numbers c0(k), c1(k) ∈ (0, 1] such that if 0< c≤ c0, then r

(
B(k)cn , B(k)n

)= k(n+
k− 1)+ 1, while if 1≥ c≥ c1, then r

(
B(k)cn , B(k)n

)= (c1/k + 1)kn+ ok(n). Moreover, in both these
regimes, there are stability results: there exist c′0(k)≤ c0(k) and c′1(k)≥ c1(k) such that for 0< c≤
c′0, all the near-extremal colourings are close to k-partite,4 while for all 1≥ c≥ c′1, all near-extremal
colourings are quasirandom. Of course, the most natural question remaining is to understand
what happens in the interval (c′0, c′1), where our results say nothing. Note that this gap is real, since
below c′0 all extremal colourings must be k-partite, whereas above c′1 all extremal colourings must
be quasirandom. On the other hand, it is possible that there is no gap between c0 and c1, since it
is conceivable that at the point where the random and k-partite constructions yield comparable
lower bounds on r(B(k)cn , B(k)n ), both are tight.

4For concreteness, we can fix c′0(k) as coming from an application of Theorem 1.2 with θ = 1/k3.
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This question about the gap really comprises at least two separate questions: what happens for
fixed k and what happens as k→ ∞? To address the second question first, our results give some
indication. Indeed, we have shown that both c0(k) and c1(k) tend to 0 as k→ ∞ and thus the gap
interval shrinks as k→ ∞. More precisely, we have that

c0(k)≤
(
(1+ o(1))

log k
k

)k
≤ c1(k)≤

(
(1+ o(1))

log k
k

)k
.

Moreover, the results of [14] show that 1/c0 is at most single-exponential in a power of k. On the
other hand, because we used the regularity lemma, our upper bound for 1/c′0 is only of tower-type.
However, it seems likely that the methods of [14] could also be adapted to improve this.

The other question is what happens for fixed k. Here, our understanding is much more limited,
even for the simplest case k= 2. In this case, Nikiforov and Rousseau [18] proved that c0(2)= 1/6,
in the sense that, for all c< 1/6 and all n sufficiently large, r(B(2)cn , B(2)n )= 2n+ 3, whereas, for
any c> 1/6 and all n sufficiently large, there is a construction showing that r(B(2)cn , B(2)n )> 2n+ 3.
Curiously, our results do not say anything non-trivial about c1(2), other than the fact that the
random bound is correct for c= 1; in other words, we cannot prove that c1(2)< 1 and in fact
believe this to not be the case.

Conjecture 6.1. For every c< 1, the random bound for r
(
B(2)cn , B(2)n

)
is not tight. In other words,

there exists some β = β(c)> 0 such that r(B(2)cn , B(2)n )≥ ((
√
c+ 1)2 + β)n for all n sufficiently large.

Of course, this conjecture is really only the tip of an iceberg, with the general open question
being to understand r(B(2)cn , B(2)n ) for c ∈ (1/6, 1) and n→ ∞. There are many conjectures one
could make about the behaviour of this quantity as a function of c; for instance, perhaps there
are a number of thresholds in the interval (1/6, 1) at which new extremal structures emerge, each
dictating the value of r

(
B(2)cn , B(2)n

)
until the next threshold. Because we know that the random

bound is correct for c= 1 and that quasirandom colourings are the only extremal ones, such a
sequence of extremal examples would need to converge, in some appropriate sense, to the quasir-
andom colouring as c→ 1. However, at the moment we are not even able to conjecture a single
such extremal structure or threshold.

Acknowledgments
We are grateful to the anonymous referee for helpful comments which improved the presentation
of this paper.

References
[1] Ajtai, M., Komlós, J. and Szemerédi, E. (1980) A note on Ramsey numbers. J. Combin. Theory Ser. A 29(3) 354–360.
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[12] Erdős, P., Faudree, R. J., Rousseau, C. C. and Schelp, R. H. (1978) The size Ramsey number. Period. Math. Hungar.
9(1–2) 145–161.
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