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On Knowledge
The definition of ‘knowledge’ is ‘a justified true belief’. Philosophers 
of science took a few centuries to arrive at this definition. The reason-
ing on which it is based is that knowledge is a ‘belief’ because a belief 
is defined as ‘conviction of the truth of some statement’ and is related 
to the verb ‘to believe’, which means ‘to hold something as true’ or ‘to 
give credence that something is true’. Because science does not deal 
with revelations or their interpretation, the justification of holding a 
particular belief can only be found in evidence, which thus makes it 
a ‘true belief’. Finally, as many things are seen by people and taken as 
evidence (even if not true – think of Cold Fusion), the belief and the 
evidence for it must be ‘justified’. Justification is found in an entire 
corpus of other, related, evidence.

Ecologists have been studying the African buffalo in the wild for 
about 70 years. Before that time, most knowledge came from hunt-
ers, and with hindsight it is reasonable to assume that the information 
so gathered was often more closely related to storytelling than to what 
we consider science. Prins and Sinclair (2013) and Cornélis et al. (2014) 
provide good recent summaries of what we think we know about the 
African buffalo. New knowledge added since the publication of these 
works is reported in the different chapters of the present book. We dare 
to assert that with this book and all of the publications referred to in 
it, the African buffalo is now the best-known animal of all Bovidae, so 
even better known than the American bison (Bison bison), the European 
wisent (B. bonasus) or any antelope, wild sheep, or goat. Are there 
other terrestrial wild mammals that are better known than the African 
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buffalo? We believe that two or three species can compete for that 
honour, namely the red deer (wapiti, American elk; Cervus elaphus), the 
white-tailed deer (Odocoileus virginianus) and, perhaps, the mule deer 
(O. hemionus). The white-tailed deer is said to be the most studied large 
mammal in the world (Hewitt, 2011). Many books have been pub-
lished on this species, but, like for the mule deer, most are on its man-
agement for hunting. However, the knowledge gathered on reindeer 
(Rangifer tarandus) (Leader-Williams, 1988; Forbes et al., 2006; Tryland 
and Kutz, 2019) and especially red deer has contributed much more to 
science, as exemplified by Clutton-Brock et al. (1982). The other mam-
mal species that has been of great significance for science is the elephant 
seal (Mirounga angustirostris; Le Boeuf and Laws, 1994; Le Boeuf and Le 
Boeuf, 2021). Yet of all these species, the African buffalo may present 
the biggest challenge because of its intricate relationships with domestic 
cattle in its network of diseases and parasites.

However, after exulting and crowing about how good we, students 
of the African buffalo are and have been, we would like to identify the 
knowledge deficits that remain. Our aim is to bring our science of ‘nya-
tology’ (from ‘Nyati’ = buffalo in kiSwahili and other Bantu languages) to 
such a level that it morphs into deep-seated contributions to the theory 
of evolutionary ecology, behavioural ecology, functional ecology, dis-
ease ecology and, perhaps, biology. Too much of our ‘nyatology’ remains 
basically descriptive and is, at best, testing hypotheses derived from more 
general science. Yet we believe that this amazing species, comprising 
phenomenally robust and well-adapted individuals with a social orga-
nization so intricate that it approaches eusociality, has more in store for 
us to learn, and its students will be able to generate hypotheses that can 
be tested on other organisms. Indeed, the house mouse (Mus domesti-
cus) or the fruit fly (Drosophila spp.) may be wonders of adaptation too, 
but they became model organisms probably more as historical accidents 
than because of their wonderful resistance against diseases, their enor-
mous distribution associated with complicated clinal variations in (eco-)
morphs and richness of genetic patterning, or their social organization. 
So, where are the knowledge deficits that we must fill? To identify the 
holes in our knowledge, we surveyed this book’s authors, who collec-
tively may be the most knowledgeable group of scientists and practitio-
ners concerning the African buffalo alive (Figure 17.1).

Former Secretary of Defence of the United States of America Donald 
Rumsfeld once made a famous distinction between the different sorts 
of knowledge that one has. He said on 12 February 2002, ‘There are 
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known knowns; there are things we know we know. We also know 
there are known unknowns; that is to say we know there are some 
things we do not know. But there are also unknown unknowns – the 
ones we don’t know we don’t know …it is the latter category that 
tends to be the difficult ones’. We scientists are very good at reporting 
on ‘known knowns’. This book and earlier publications such as those 
of Sinclair (1977), Prins (1996) and the many, many good papers on the 
African buffalo (check all references in this book) offer a wealth of infor-
mation about what we know on African buffalo. However, what about 
the ‘known unknowns’ and ‘unknown unknowns’? And we would like 
to add a category, namely, ‘unknown knowns’ – which we posit refers 
to sound scientific knowledge that appears to have been forgotten. Too 
many scientists do not read scientific papers that are older than 10 years 
or so, or they only read abstracts, and knowledge that used to be in the 
scientific domain thus tends to fall out of it. This is called ‘knowledge 
decay’. The term does not describe the process through which knowl-
edge becomes outdated, but rather one through which knowledge is 
forgotten.

Figure 17.1  Four African lions about to kill a juvenile male of Cape African 
buffalo, Mana Pools National Park, Zimbabwe. © Alexandre Caron.
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On purpose, we have not formulated ‘hypotheses’ in this chapter 
for several reasons. We believe that what we need most is ‘descriptive 
ecology’ and ‘natural history’ (see Prins and Gordon, 2014; Gordon 
and Prins, 2019), while the use of storylines (linked to the assessment 
of their plausibility) probably offers better heuristic tools to approach 
best understanding (see De Jong and Prins, 2023; Prins and Gordon, 
2023). The following knowledge deficits were identified in a pro-
cess of questioning the collective of authors who contributed to this 
book.

Known Unknowns – These Are the Next Research 
Questions Sitting in the Backs of Our Minds
These research issues represent, relatively speaking, low-hanging fruit – 
others already have given them much thought, allowing one to delve 
deeper. The following thoughts and ideas were shared among us, which 
we have collected under a suite of subsections.

Natural History, Climate Change and Conservation

	1.	 As compared to the Cape buffalo from the area ranging between 
Kenya and South Africa, precariously little is known about the buf-
falo ranging between Senegal and Sudan. Perhaps the only exception 
is the work of Cornélis et al. (2011), and only little is known on forest 
buffalo despite the work of especially Korte (see Cornélis et al., 2014) 
but also of others (e.g. Bekhuis et al., 2008).

	2.	 In a number of countries where African buffalo still occur or did 
occur in the recent past, the respective ‘departments of wildlife’ 
(whatever their name) are not allocated sufficient funds to survey 
animal populations on a regular basis. In some of these countries, 
trend analyses and/or population estimates are thus frequently not 
very reliable. Offtake quotas are ideally set on reliable and precise 
population estimates (from which reliable and trustworthy trends can 
be deduced), and thus may not be set correctly (see e.g. Hagen et al., 
2014; Milner-Gulland and Shea, 2017; see also Pellikka et al., 2005; 
Morellet et al., 2007). Additionally, offtake quotas may be set on the 
wrong premise of population stability (Chapter 5). Does this uncer-
tainty in the data and the application of the wrong models negatively 
impact some local populations of buffalo?
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	3.	 The IPCC (2022) predicts that temperatures will rise in coming 
decades over much of the African buffalo’s range. Heatwaves are 
on the increase (ACSS, 2021), implying that heat stress for African 
buffalo (and other large mammals) may become severe. The search 
terms ‘heat stress’ associated with ‘cattle’ or ‘water buffalo’ yield 
thousands of publications. Much more research on the thermal 
ecology of the species is needed (see Hetem et  al., 2009, 2010, 
2013; Shrestha et al., 2012, 2014; Fuller et al., 2014, 2021; Strauss 
et al., 2016).

	4.	 Increasing CO2 levels could lead to a strengthening of the woody 
layer, resulting in an inexorable march to a thicker tree layer com-
peting strongly with the grass layer (e.g. Bond and Midgley, 2000; 
Kgope et al., 2010), although the simplicity of the mechanism has been 
contested (Gosling et  al., 2022; Raubenheimer and Ripley, 2022). 
Regardless, many former grasslands in African savannas have densified. 
In extreme circumstances where grazing pressure is high and the grass 
layer is stressed, a drought pushes grazers such as buffalo into a marginal 
space for survival. Most past research findings may hence no longer be 
applicable.

	5.	 Even though there is much arm-waving about climate change and its 
impact, there is a significant lack of fundamental knowledge on the 
habitats of the African buffalo (in the Sahel, the savannas of East and 
Southern Africa, but also in the rainforests).

	6.	 What are the exact workings of the transcription of DNA, the trans-
lation of RNA and the functionality of proteins in relation to the 
development and physiology of the African buffalo? In cattle, much 
progress has been made (see e.g. Drackley et al., 2006; Beerda et al., 
2008; Kirkpatrick, 2015; Cesar et  al., 2016; Barshad et  al., 2018). 
There are some intriguing findings by Van Hooft et al. (2007) that 
have yet to be clearly explained (Van Hooft et  al., 2018). Indeed, 
many techniques are already in place (see e.g. Smitz et al., 2016) for 
tackling this.

	7.	 For the forest buffalo, there may be more unknowns than for the 
Cape buffalo. As shown elsewhere in this book, it appears as if the 
forest buffalo evolved later than the savanna buffalo. Yet there are 
many gaps in our knowledge concerning gene flow between the dif-
ferent forms. Too much credit is given to subjective assessments of 
horn forms or the proportions of calves with reddish coats versus 
blackish ones. The exchange of individuals between groups of forest 
buffalo is an identified knowledge gap.
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Ecology

	 1.	 Research is needed to understand the causal factors underlying 
behavioural avoidance between buffalo groups. Many studies have 
shown very little spatial overlap between neighbouring groups of 
buffalo, but the mechanism by which segregation is maintained 
remains poorly understood (scent marking, perhaps). Research is 
also needed that goes beyond mere speculation about the function-
ality of this spatial segregation of groups. One can think, of course, 
about competition for resources or the prevention of transmission 
of pathogens. However, exhaustive systematic reviews of the litera-
ture to discover whether competition has been proven show a lack 
of evidence for interspecific competition (Prins, 2016; Schieltz and 
Rubenstein, 2016) but good evidence for intraspecific competition 
(see e.g. Prins, 1989b).

	2.	 Information is needed on male contact patterns – males could be 
important vectors of pathogens at the population level due to group 
affiliation behaviour between groups of females and bachelor groups. 
More work should focus on understanding the movements of adult 
males (e.g., how often they encounter mixed groups, how long and 
where). Such work also is needed to better understand the socioeco-
logical organization of the species (see also Prins, 1989a). For forest 
buffalo, this lack of knowledge is even more prevalent.

	3.	 Research is needed on how extractive industries (notably, for instance, 
mining gold using mercury) might impact buffalo and their habitat 
across their range. It is known that extractive industries influence the 
habitat (e.g. Foster et al., 2019). In water buffalo, health effects have 
been measured (e.g. Singh et al., 2018), in cattle as well (e.g. Ranjan 
et al., 2008; Pati et al., 2020), and mining has been shown to have 
unexpected consequences for African elephant distribution (Sach 
et al., 2020). The effects of gold mining using mercury have been 
studied in South America (e.g. Markham and Sangermano, 2018), 
North America (e.g. Eagles-Smith et al., 2016) and the Arctic (e.g. 
Dietz et  al., 2013). It appears that most problems can be expected 
in aquatic environments (Basu et al., 2018), but because buffalo are 
closely tied to water, the problem may be large.

	4.	 The expansion of cotton growing (most of it Gossypium hirsutum, a 
native to Central America), especially in West and Central Africa 
(but also elsewhere in Africa), is a threat especially to the north-
ern savanna buffalo because cotton appears to thrive where this 
buffalo form has its native range. Cotton growers rely heavily on 
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phytosanitary procedures, and the widespread use in Africa of highly 
dangerous chemicals prohibited by, for example, the Stockholm 
Convention since 2001 (see, for instance, Hagen and Walls, 2005) is 
putting at risk entire ecosystems but is very much understudied. The 
presence of these chemicals has been found in African animals living 
in ‘cotton regions’ (e.g. Aïkpo et al., 2017; Houndji et al., 2020). 
Simple toxicology analysis would easily help to describe and mea-
sure the phenomenon, its magnitude, risk analysis, etc. (cf. Baudron 
et al., 2009).

	5.	 Do buffalo use auditive clues in their communication? There is 
much we do not understand concerning hearing (see e.g. Benoit 
et al., 2020) in ungulates and there is much to learn about vocaliza-
tion (e.g. Blank, 2021). Who would have thought that Sumatran 
rhinoceros (Dicerorhinus sumatrensis) have song-like vocalizations 
(Von Muggenthaler et  al., 2003) or that giraffe (Giraffa camelopar-
dalis) and okapi (Okapi johnstonii) use infrasound (Badlangana et al., 
2011; Von Muggenthaler and Bashaw, 2013)? Given the fact that 
buffalo are generally so silent in the audible range for humans, one 
would not be surprised if they use infrasound too in their commu-
nication, especially in dense vegetation.

	6.	 The mechanisms underlying collective movements, particularly at the 
time of group fission, are still unknown in buffalo. In other words, 
how do individuals decide to join one of the subgroups that form at 
the time of fission? The probability of following one of the subgroups 
could depend on the number of individuals already involved in the 
movement, regardless of their identity, social or affiliative relationships 
with individuals already moving or still at rest or their needs at the time. 
It would be interesting to examine decision-making during group fis-
sion in buffalo to measure the weight of social influence, compared to 
ecological influence (often examined), on group stability. This lack of 
knowledge appears to be even stronger in the forest buffalo.

	7.	 Group decision-making has been studied in buffalo (e.g. Prins, 1996, 
p. 218 ff), but also in other mammals. Theory has been developed by 
for example Conradt and Roper (2003) and reviewed by Conradt 
and Roper (2005). See also Couzin et al. (2005). Much can be gained 
by further studying this under different ecological circumstances.

	8.	 What is the effect of genetic relatedness on fission and fusion pat-
terns (see Prins, 1996, p. 77 ff; p. 54 ff)?

	9.	 What are the impacts of human disturbance on buffalo grouping 
patterns and social decisions? Do buffalo groups tend to be more 
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transient when encounters and disturbances from human activities 
are higher (human–wildlife interfaces versus within a park)? A test-
able idea could be that the higher the intensity and frequency of buf-
falo–human (including livestock) interactions, the higher frequency 
of the fission–fusion events, which would perhaps lead to smaller 
groups of buffalo closer to the borders of protected areas without 
fences (as compared to areas that are fenced). This ought to be con-
trolled for possible competitive effects and poaching (see for instance 
Clegg, 1994; Leweri et al., 2022; cf. Dave and Jhala, 2011). One can 
also imagine that undisturbed animals maintain diseases within their 
own groups (e.g. Delahay et al., 2000), but disturbed animals do so 
less (cf. Smith and Wilkinson, 2003). Network analysis (e.g. Jacoby 
et al., 2012; Yin et al., 2020) will need to be applied to buffalo in 
disturbed and undisturbed situations.

	10.	 What are the effects of poaching on social cohesion and fission–
fusion patterns in buffalo? In the African elephant (Loxodonta afri-
cana), poaching has been shown to affect social patterns (e.g. Prins 
et al., 1994; Archie et al., 2008), but it is not known how poaching 
affects buffalo.

	11.	 While more is understood about the functioning of key resource 
areas in animal migrations (e.g. Scholte and Brouwer, 2008; Moritz 
et  al., 2010; Cornélis et  al., 2011, 2014; Fynn et  al., 2015; Moritz 
et al., 2015), much less is understood regarding how buffalo main-
tain themselves in areas without such green floodplains during the 
late dry season, for example in Kruger National Park (South Africa). 
Where do buffalo get sufficient (crude) protein and energy to sup-
port foetus development or peak lactation, which is even more 
demanding? Indeed, perhaps it can be found in the maintenance of 
grazing lawns (e.g. Vesey-FitzGerald, 1969; 1974; Cromsigt et al., 
2013; Muthoni et al., 2014; Hempson et al., 2015). Gut morphology 
(e.g. Hofmann, 1973) is key to gaining a better understanding, as is 
the digestibility of the forage.

	12.	 There is no understanding of the forage traits that buffalo select 
under different constraints and demands. In other words, the prox-
imate factors in food selection are not understood, and a simple 
description, ‘roughage selector’, does not do justice to either the 
animals or the plants. What forage traits help buffalo to maximize 
intake of energy, protein and minerals for growth and reproduc-
tion, and what is the optimal height of the sward? What forage traits 
provide optimal reserves of forage for the early dry season, the late 

https://doi.org/10.1017/9781009006828.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009006828.024


Knowns and Unknowns in Ecology and Management  ·  495

dry season and during droughts? For example, we know that buffalo 
rather select for leafy, medium-height grasses such as Themeda trian-
dra, Digitaria eriantha and the lawn-forming grass Cynodon dactylon, 
but what is it about these grasses that they like? Are the leaves more 
digestible, is it the leaf-to-stem ratio, is it the height and the bite size 
they offer for a tongue-sweeping forager, or some combination of 
the above? What are the traits of drought refuges – that is what level 
of leaf and stem toughness can they tolerate to avoid severe loss of 
body stores and starvation during droughts? See also below under 
‘unknown knowns’, point ii.

	13.	 Much modern buffalo research nowadays depends on darting ani-
mals, immobilizing them and fitting them with a measuring device 
(like a GPS collar). The assumption is that the animal, once given 
its antidote, ‘immediately’ reverts to its normal behaviour, finds its 
herd and assumes its normal social position. In human patients, the 
standards are set high, but much has still to be learned before one 
really knows what one does to memory (Borrat et al., 2018; Galarza 
Vallejo et al., 2019; Veselis and Arslan-Carlon, 2021). In companion 
animals, rather in-depth analysis is carried out to investigate what is 
done to the animals (e.g. Biermann et al., 2012; Reader et al., 2019; 
Abouelfetouh et al., 2021) and likewise in horses (e.g. Hubbell and 
Muir, 2006; Schauvliege et  al., 2019; Cock et  al., 2022). Even in 
ruminants, precious little is known about the effects of key processes 
in the intact animal (e.g. Nicol and Morton, 2020; Waite et al., 2021). 
Research is urgently needed not only on the effects on the animals’ 
well-being, but also on their social behaviour and ranging behaviour.

	14.	 Time series of total population alone may lead to erroneous predic-
tions about the population without detailed knowledge of its age 
structure (Chapter 5). Without this detailed knowledge, incorrect 
deductions may be made about possible density-related effects or 
sustainable harvesting regimes. Nyatiologists need to find a way to 
more precisely identify the age of individuals in the field.

Disease

	 1.	 Some key resource areas, like floodplains, play a critical role in sup-
porting buffalo over the late dry season. Yet, these areas also may 
harbour internal parasites, such as giant fluke (Fasciola gigantea) and 
the small fluke (Dicrocoelium hospes), and many other Platyhelminthes 
and Trematodes that can make cattle very sick if they are not properly 
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treated (e.g. Swai and Wilson, 2017). How do buffalo contend with 
liver flukes? Indeed, they are widely infected (Hammond, 1972), 
but in the Central African Republic, 12 of 33 inspected buffalo that 
were infested with both flukes had no apparent clinical signs (Graber 
et al., 1972). It is worrying to note that African buffalo that are not 
infected with such parasites are resistant to bTB (Ezenwa et al., 2010; 
c.f. Budischak et al., 2012), but it is gratifying to know that a grazing 
alternation between ruminants and hindgut fermenters may reduce 
parasite burdens (Odadi et al., 2011).

	2.	 Do buffalo use natural plant chemicals to treat themselves for flukes 
and other parasites? Species that spring to mind are Lippia javanica and 
Tarchonanthus camphoratus (e.g. Koné et al., 2012; Kosgei, 2014; Hassen 
et al., 2022), and an evolutionary arms race may already have been on 
for a long time (see Beesley et al., 2017). By and large, however, evi-
dence is scant and the literature abounds with ‘potential effects’ versus 
real ones, and ethnoveterinary storytelling instead of proven remedies.

	3.	 What is the influence of group formation dynamics on pathogen 
dynamics in buffalo? Cross et  al. (2004) and Wielgus et  al (2021) 
studied the influence of contact patterns within groups on pathogen 
dynamics. However, the aggregation of contact indices across time 
(e.g. per month) may lead to a misleading prediction of pathogen 
dynamics, as it ignores short-term interactions that change due to 
ecology and social behaviour (i.e. fission–fusion behaviour), which 
could have a significant effect on pathogen transmission patterns. 
See also Prins (1989a), Cross et al. (2012), Sintayehu et al. (2017a, 
2017b) and Davis et al. (2018).

	4.	 What are the veterinary standards for health, or good reproduc-
tion, in buffalo (or for other wild mammals)? Little is known about 
the normal parameter values of blood, liver or other tissue, and too 
often one must rely on cattle standards. However, African buffalo 
are not at all closely related to cattle or Asian buffalo (see Chapter 2), 
and it is thus not very plausible that cattle standards are informative 
for African buffalo.

	5.	 More research is needed on foot and mouth disease (FMD), (bovine) 
tuberculosis ([b]TB) and brucellosis in free-ranging buffalo popula-
tions in unfenced ecosystems of central, eastern and western Africa; 
for the latter, these diseases pose public health problems as they are. 
Work on FMD in cattle in East Africa has shown how the model 
developed for this disease in southern Africa does not capture the 
whole story, nor do controls need to be so draconian with the options 
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of commodity-based trade. This potential for a different perspective 
in terms of management of landscape and animal agriculture/wildlife 
economy and tolerance/control of the disease needs to be investigated 
further. This will need an integrated programme of socioeconomic, 
cultural, environmental (including climate change), biodiversity, agri-
cultural, political and ecological benefits of living with FMD. The 
work of Sintayehu (2017a, 2017b) provides good pointers.

	6.	 Buffalo are resistant to a number of diseases, but the mechanisms for 
such resistances are not well known (for trypanosomiasis it remains 
quite unclear). Strikingly, even livestock-focused scientists have 
expressed little interest in understanding how to take advantage of 
such mechanisms in buffalo to apply to livestock production. Cases 
in point are: how are African buffalo capable of maintaining FMD 
on a permanent basis without expressing any symptoms (asymptom-
atic, or are they healthy carriers)? Applied to domestic artiodactyls, 
meat commercial trade rules would be reshuffled with new FMD 
policies. How do African buffalo resist African trypanosomes (genus 
Trypanosoma) and how can they live and thrive in areas that are heav-
ily infested with the vector tsetse flies? What causes buffalo to be 
insensitive to CBPP (contagious bovine pleuropneumonia), Peste des 
petits ruminants (PPR), East Coast fever (ECF), heart water, babe-
siosis, streptothricosis/dermatophylosis and many other potential 
diseases which are so deadly for cattle? If we knew, we would not 
need to spend billions in yearly national cattle vaccination campaigns. 
Once again, African buffalo are probably not bovids (Chapter 2).

	7.	 The role of closed (i.e. fenced) versus open (i.e. non-fenced) sys-
tems with bTB expression and prevalence needs further research, but 
again in areas other than the southern African region where much of 
the work has been done already. The nature of the force of infection 
in a mixed livestock–buffalo system needs to be explored in the con-
text of different cattle breeds. The potential risks of buffalo zoonotic 
bTB transmission through hunting or sustainable use of infected buf-
falo herds (managed culling and processing) needs to be explored.

Management

	 1.	 What is the economic value of different land uses, namely, buffalo 
hunting (but also other species), agriculture (without buffalo but with 
livestock), conservation without hunting (but with buffalo) or any 
form of co-management including cattle and buffalo? Some work 
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has been done on this (e.g. Hearne et al., 1996; chapters in Hearne 
et al., 2000; Prins et al., 2000; Mayaka et al., 2005; Mwakiwa et al., 
2016; Poshiwa et al., 2013a, 2013b; Mwakiwa, 2019). Yet these eco-
nomic analyses seem to encounter difficulties in entering more freely 
formulated, data-free discourses espoused by many conservationists. 
The implications of this are severe (see e.g. Scholte et  al., 2022). 
These economic value assessments could be placed in the context 
of climate change scenarios in the contexts of Africa too. This lack 
of knowledge is even more pertinent for the forest and northern 
savanna buffalo.

	2.	 The often-positive role of controlled trophy hunting is insuffi-
ciently acknowledged by too many conservationists even though 
the Sustainable Use Principles of the Convention on Biological 
Diversity, in which its role is acknowledged, have been endorsed 
by all signatory States (COP Decision VII/12: see www.cbd.int/​
decision/cop/?id=7749). There is much disagreement between 
NGOs, but also for instance Kenya does not acknowledge the 
acceptability and effectiveness of hunting as a conservation tool 
(although it is under ministerial review). This contrast between dif-
ferent parties is intensified by a lack of reliable data on the impact 
of trophy hunting on wildlife. Much information on African trophy 
hunting is still available only as unpublished grey literature, and thus 
is difficult to access (for instance, Snyman et al., 2021; but see Baker, 
1997; Hurt and Ravn, 2000; Lindsey et al., 2007; Schalkwyk et al., 
2010) and more efforts should be done to collate information.

	3.	 Even though theories of non-equilibrium dynamics were formu-
lated some 40 years ago (e.g. Ellis and Swift, 1988) and have been 
tested for savanna systems (e.g. Gillson, 2004; Accatino and De 
Michele, 2016; Engler and von Wehrden, 2018), too much work on 
buffalo and their ranging still is not placed in that context. African 
rangelands necessitate management strategies that acknowledge the 
unpredictability of weather, markets and politics. Many pastoralists 
realize this (e.g. Mace and Houston, 1989; Mace, 1990), but many 
managers do not (e.g. Shawiah, 2016) and are thus overwhelmed by 
so-called black swan events. In modelling for game ranching, some 
progress has been made (e.g. Joubert et al., 2007; Dlamini, 2011), 
but this is still unsatisfactory. The collapse of live buffalo prices, for 
example, made many an enterprise in South Africa suddenly unprof-
itable, and the effects of drought reverberate for many years through 
a population’s age structure (Chapter 5).

https://doi.org/10.1017/9781009006828.024 Published online by Cambridge University Press

http://www.cbd.int/decision/cop/?id=7749
http://www.cbd.int/decision/cop/?id=7749
https://doi.org/10.1017/9781009006828.024


Knowns and Unknowns in Ecology and Management  ·  499

	4.	 The effect of trophy hunting is contested, as evidenced by parlia-
mentary debates in, for example, Great Britain in 2022. Intriguingly, 
parliamentary members from western countries allow themselves to 
take decisions that would affect an industry (and positive outcomes 
for local people) in Zimbabwe or Namibia without encouraging par-
liaments in those countries to discuss red deer (Cervus elaphus) hunt-
ing (a.k.a. ‘deer stalking’) in Great Britain. Much more research along 
the lines of Gandiwa et al. (2014) is called for to reveal the hypocrisy 
in this debate (c.f. Curtin, 1940, p. 162 ff). Yet typical examples of 
successful management, at least partly based on utilization, occurred 
in South Africa where trophy hunting has facilitated the recovery 
of bontebok (Damaliscus dorcas), black wildebeest (Connochaetes gnu), 
cape mountain zebra (Equus zebra) and, until recently, southern white 
rhino (Cerathoterium simum). Furthermore, in recent years, trophy 
hunting has also facilitated the recovery of the buffalo and its habitat 
in several hunting areas of Mozambique and South Africa. It can be 
thought, however, that trophy hunting has a negative impact on buf-
falo and other wildlife (cf., #2), and the necessary data should lead to 
clear evidence to move the debate away from only emotions.

	5.	 The fact that large buffalo herds are mobile also means that they sel-
dom ‘camp’ on a patch for a long period of time but are continually 
moving through different landscapes. This means that unlike selec-
tive water-dependent grazers, buffalo will utilize an area and then 
move on, thus reducing the chance of overgrazing (a function of 
time and not necessarily number – the vegetation needs rest accord-
ing to a number of range ecologists). On fragmented (fenced) areas, 
excessive artificially supplied surface water results in high densities of 
sedentary water-dependent species (e.g. impala Aepyceros melampus) 
and less space for buffalo to move. So, where and when should ani-
mal control (including culling) be exercised? Even in unfenced areas, 
animal control may need to be implemented where water point pro-
vision has resulted in increased animal numbers due to their increased 
distribution, resulting in insufficient forage for animals during dry 
periods (obviously more critical in fenced or fragmented situations). 
The alternative is that the population is allowed to fluctuate with 
the prevailing resource conditions, that is a die-off in drought (of 
buffalo in a poor condition or recent weanlings). This may be appro-
priate in unfenced, ‘open’ situations, but is it acceptable in fenced 
areas where animals are unable to move widely? The tricky issue 
if the ‘laissez-faire’ option is pursued is the long-term effect on the 
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resources resulting from overgrazing (see Peel and Smit, 2020) apart 
from the ethical issues surrounding enclosing animals in fenced-off 
areas where droughts occur.

	6.	 Horn size and horn shape drive much of the economics of buffalo 
breeding in South Africa and buffalo hunting. However, little is 
known about the genetics around the inheritance of horn size and 
shape. Equally little is known about the effects of levels of nutrition 
(macro- and micro-nutrients) or of hormones on horn growth. In 
other species, the situation is slightly better (e.g. big horn sheep Ovis 
canadensis: Reich, 2021; domestic sheep: Pan et al., 2018), but even in 
cattle this field is understudied.

	7.	 What are the effects of nutrition on calving rate, calf birth and wean-
ing weight, intercalving interval, milk production, and calf growth? 
Similarly, what are the effects of nutrition on milk composition? 
Milk quality comparisons should be carried out on the milk of wild 
buffalo and those living in different forms of captivity (game ranches, 
farms and zoos). Apart from the scientific importance of these ques-
tions, they could lead to the formulation of standards for the nutrient 
requirements for African buffalo based on real research on buffalo 
rather than on comparative nutrition from cattle or water buffalo (as 
done at present). This is a common problem in wildlife ecology, and 
nutritional knowledge is detailed enough only in deer to have proper 
feeding standards (e.g. Hynd, 2019, p. 263 ff; Anonymous, 2020; 
Kim et al., 2020; Bao et al., 2021).

	8.	 The former Resource Ecology Group under H.H.T. Prins has most 
consistently reported on forage quality parameters as espoused by 
Peter Van Soest (so, apart from crude protein, potassium, phospho-
rus, digestibility parameters such as neutral digestive fibre (NDF) and 
acid digestive fibre (ADF), but also in-vivo digestibility using rumen 
fluid; Van Soest, 1994). An important caveat is that the rumen fluids 
came from domestic cattle, and that NDF and ADF calibration was 
never done with African buffalo (or other African large mammals 
with the exception of blue wildebeest). To really understand buf-
falo fitness or merely performance, it is of paramount importance to 
establish a captive group of buffalo on which depth nutritional mea-
surements can be done. There is not much known about the need for 
micro-nutrients either, and there are no feeding standards.

	9.	 The reliance on opioids for buffalo immobilization (and other large 
mammals) is still enormous. Veterinary authorities and regulators are 
making very little progress to get rid of these substances that are very 
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dangerous to animals and humans. Similarly, we know little of the 
health effects of the use of helicopters for the mass capture of buffalo 
herds, and we are not aware of reliable and stress-free alternatives 
under development.

Unknown Knowns – Evidence-Based 
Scientific Knowledge on Buffalo That 
We Appear To Have Forgotten
The collective of buffalo scientists did not signal many insights that were 
forgotten. Of course, this may simply mean that this older knowledge 
truly has been forgotten or, alternatively, that the corpus of knowledge 
that has been garnered over the last decades is well integrated into our 
present-day knowledge. Finally, it may indicate that we have collectively 
reached the verdict that much of the older knowledge does not meet 
our standards and is thus rejected. However, there are three knowledge 
domains that were flagged as probably forgotten.

	i.	 There was possibly good knowledge of pastoral systems in which 
buffalo also could find a place, or, alternatively, good knowledge 
of systems that could not accommodate buffalo. If this knowledge 
exists or existed, it is probably indigenous knowledge of integrated 
pastoral systems tolerant/intolerant of buffalo. If such indigenous 
knowledge (still) exists, it is extremely likely that it was never writ-
ten down and thus would need a socio-anthropological approach. 
If this knowledge could be ‘tapped’, or somehow ‘resurrected’, it 
could provide valuable insights into future land use possibilities.

	ii.	 In contrast, the second field of knowledge that appears to have been 
forgotten can be found in the scientific literature. This relates to the 
bioenergetics of herbivores, including African buffalo. This field is, 
however, getting renewed attention (see e.g. Malishev and Kramer-
Schadt, 2021). The great measuring systems of herbivores in meta-
bolic chambers that were extremely important for understanding 
the physiology of ruminants (e.g. Blaxter, 1966; Moen, 1973) were 
hardly used for large African mammals. The great exception was the 
work of Martyn Murray. Careful feeding experiments of wild herbi-
vores in captivity have been extremely rare (but see e.g. Murray and 
Brown, 1993) even though very important insights were obtained 
from shot individuals (e.g. Gordon and Illius, 1996). Much is known 
about domestic ruminants and small lagomorphs and geese, but we 
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know little about large tropical wild ruminants (see e.g. Illius and 
Jessop, 1996). Proper measurements of energy expenditure of wild 
ruminants are rare, and non-existent for African buffalo.

Work that was nearly forgotten concerned the horns of bovids 
as possible cooling organs (Taylor, 1966; see also Picard et al., 1999; 
Cain et al., 2006), which was not used in some important reviews 
on thermal adaptation (e.g. McKinley et al., 2018) or just mentioned 
in passing (e.g. Henning et  al., 2018), and experimental evidence 
has hardly been collected since (see Knierim et  al., 2015). Many 
other important works on thermoregulation and water usage from 
the early 1970s by scientists like Taylor (Taylor, 1969, 1970a, 1970b; 
Taylor and Lyman, 1972; Taylor et  al., 1969) deserve to be inte-
grated better into tropical ungulate ecology, and especially that of 
the African buffalo. The current generation is, however, exploring 
this (e.g. Hetem et al., 2009, 2010, 2013; Shrestha et al., 2012, 2014; 
Strauss et al., 2016).

Lastly in this category is the non-use of non-Anglophone pub-
lished literature. A good case in point are the books of Riviere 
(1978), De Vries and Djitèye (1982) and Boudet (1984) on forage 
and foraging, and those on parasites (e.g. Troncy, 1982).

	iii.	 A third issue that has been flagged is the knowledge that is or was 
locked in the grey literature. Le Houérou’s (1980) review of the 
knowledge on browse in Africa perhaps still has not been surpassed, 
but in July 2022 it had been cited only 149 times. Knowledge that 
remains hidden in the grey literature is especially relevant for wildlife 
inventories, game censuses and pest control reports in the archives 
of ministries or of consulting companies. All of this contributes to 
intergenerational amnesia and to the so-called ‘shifting baseline syn-
drome’ (e.g. Papworth et al., 2009; Soga and Gaston, 2009; Prins 
and De Jong, 2022).

Unknown Unknowns – Knowledge That, Once 
Obtained, Will Upset Our Present Thinking, Perhaps 
About African Buffalo, Perhaps About Ecology 
Evolution, or Aspects of Veterinary Sciences
We share these ‘unknowns’ without too much comment, but we hope 
that some of these thoughts may influence your own thinking and 
creativity.
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Overarching in our thinking is Darwinism, which represents life 
as a continuous struggle, and which leaves scientists to think in terms 
of functionality and (negative) selection. To what extent does this 
paradigm cause us to overlook or misinterpret natural patterns and 
processes? The central tenet is that many features of an organism are 
not necessarily adaptive but may arise as a by-product of evolution, 
whatever their subsequent exaptive utility (Gould 1979; Gould and 
Lewontin, 1979). For example, it is assumed too easily that ungulates 
have coevolved with their food, yet the average duration of existence 
of a large mammalian chronospecies is about 1.5 million years (Prins 
and Gordon, 2023) while that of plant chronospecies is about 10 times 
longer (cf. Stanley, 1978). Plant families arise much slower than may 
be thought (see Harris and Davies, 2016). A trait-based approach may 
give false certainty (cf. Gordon and Prins, 2019), as many traits are 
interrelated and should not be viewed in isolation as promoted by the 
‘adaptationists’.

Much selection took place during the bull market for ‘trophy animals’, 
where especially in South Africa much effort was spent on breeding 
bulls with massive horns. We know very little of the possible pleiotro-
pic effects of genes (or of proteins; pleiotropy is the property of a single 
gene or protein to act in a multiplicity of ways). If these occur in African 
buffalo, they immediately throw a stark light on the basis of the selec-
tion for adaptability of traits (see previous paragraph). In cattle, these 
pleiotropic effects have now been discovered (see e.g. Bolormaa et al., 
2014; Saatchi et al., 2014; Xiang et al., 2021). It is intriguing to learn that 
many QTL (quantitative trait locus, a section of DNA that correlates 
quantitatively with phenotype) effects are linked to weight at birth, age 
of weaning, weaning weight and carcass weight in cattle, and that plei-
otropy is involved (Saatchi et al., 2014; Gershoni et al., 2021; Li et al., 
2021; Tiplady et al., 2021; Widmer et al., 2021). One may also assume 
that these vital life-history parameters are governed in a similar way in 
African buffalo. With the effects of inbreeding on the genetic make-up 
of the species and calving and weaning percentages, the lack of connec-
tivity between buffalo populations across the continent may thus affect 
the essential life history of the remnant populations. We would think 
that an effective and rapid first approach would be to assume that genes 
and QTLs that have been discovered in cattle could be looked for as 
candidate genes in African buffalo. A next question to address would be: 
after what level of ‘breeding’ is a buffalo no longer ‘natural’ and thus lost 
to conservation? (See Child et al., 2019). We thus advise much caution 
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when breeding for ‘maximum trophy value’, especially when the spill-
back of animals into nature is not rigorously prevented.

Because African buffalo are very distantly related to other Bovini, 
and perhaps should not even be viewed as bovine but as boselaphine 
(Chapter 2), it is unlikely that ‘genetic pollution’ will occur at the level 
of interspecies hybridization. At the level of crossings between animals 
from widely different locations, as was done for the breeding of ‘bet-
ter’ trophy buffalo (e.g. buffalo from Tanzania and Zimbabwe bred 
in South Africa), we know next to nothing. The genetic distance is 
not small (see Chapter 3). It is thus not clear really why IUCN voices 
concerns because the so-called intra-taxon biodiversity in reality may 
be minimal. Moreover, the suggested argument concerning the associ-
ated growing risk of diminishing the capacity of the taxon to resist ‘all 
sorts of shocks, either expected or not expected’ if buffalo from differ-
ent regions within the same taxon (‘Syncerus caffer caffer’) are crossed, is 
countervailed by concepts of hybrid vigour. In red deer (Cervus elaphus) 
this type of crossbreeding has been measured and evaluated (De Jong 
et al., 2020), but not in buffalo. We thus call for an in-depth evaluation 
of this issue, taking into account societal effects, conservation consider-
ations and genetics.

This crossbreeding and ranching of African buffalo may, under as yet 
unknown circumstances, perhaps lead to a change of perspective of wild-
life versus domestic animals. For 150 years, the Midwest of the United 
States was nicknamed the ‘Red Meat Republic’ (Specht, 2019; Dolan, 
2021), yet it became possible to ‘bring back the bison’. What would hap-
pen if in some African cultures the societal perceptions of ‘bringing back 
the African buffalo’ took hold? Would that be possible through greater 
use of communal land rather than limiting protected areas? That would 
herald a societal earth slide away from seeing wildlife merely as ‘nyama’ 
(in kiSwahili, ‘game’ [alive] and ‘meat’ [the dead product]), towards a 
highly valued, iconic, cultural symbol for a form of African Renaissance. 
What if, as has rarely happened, an African leader actually embraced the 
conservation, sustainable use and pride of African wildlife?

This issue is important, because currently cattle populations are sup-
planting those of buffalo across much of Africa. In West and Central 
Africa this process nearly came to its fulfilment (Chapter 4; Scholte et al., 
2022). The consequences of this replacement – from grazing by a once-
dominant wild herbivore to its domestic surrogate – on soil, animal 
ecologies, resilience and animal and human health are totally unknown, 
although it has been speculated about through what was termed ‘holistic 
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management’ (see Savory, 1983). Conversely, we also know next to 
nothing about the effects of compartmentalization of natural habitats 
and reinforcement (through protection) of buffalo enclaves on ‘mini-
ecosystems’ (i.e. small protected or small game farms) from a variety 
of perspectives, including health and disease. There is much ecological 
thinking about the effects of isolation (and shrinking) of protected areas 
(based on Island Theory; e.g. Prins and Olff, 1998; Olff et al., 2002), but 
we are not aware of so-called ‘before–after’ evidence-based comparisons 
of ecosystem functioning during the process of this isolation and shrink-
ing of protected areas with African buffalo.

The most extreme ‘unknown unknown’ could be this: what would 
happen if the proverbial black swan event occurred that conceivably 
could knock the whole wildlife system off its axis? From the experience 
of COVID-19, one may deduce that some horizon scanning to cre-
ate anticipatory awareness (and perhaps the development of early warn-
ing systems) to build system recoverability after a major disturbance of 
nature and its wildlife is needed. Ecosystem managers should, we think, 
engage much more in scenario-thinking like big industry does (Chapter 
18). We could possibly anticipate the effects of four major processes that 
take place in savanna Africa, namely rising CO2 levels, changing weather 
systems, woody thickening which seem to supress the grass layer and 
probably African buffalo numbers, and the human population explosion 
with associated land hunger and need for fuel wood. Buffalo may feature 
in the development of scenarios not only as a casualty but perhaps also as 
some ecosystem architect (Prins and Van Oeveren, 2014).

Perhaps one day we will finally come to grips with the fact that we do 
not know much about buffalo communication (Figure 17.2). We hardly 
understand their cognitive processes, cognitive maps, or communal deci-
sion making (cf. Prins, 1996). Like most mammals, it is very likely that 
their sense of smell is linked to their perception of other buffalo, the world, 
and their detection of predators and strangers. This world of pheromones 
and smells is for us a closed book, but the emergence of ‘electronic noses’ 
may open this world. Indeed, dogs have learned to understand our lan-
guage (e.g. Grassmann, 2014; Reeve and Jacques, 2022), while we – with 
our ‘superior’ brains and AI tools – do not understand theirs (e.g. Harris, 
2017). When will we then understand African buffalo?

The number of doctoral candidates needed to answer the research 
questions presented in this chapter must be in the order of 100 or 
more (as compared to the 30-odd so far); after they are done, we defi-
nitely will be closer to understanding this splendid species. But truly 
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understanding your partner and family takes a lifetime of study, and be 
honest – did you succeed?
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