UNIFORM O-ESTIMATES OF CERTAIN ERROR FUNCTIONS CONNECTED WITH k-FREE INTEGERS

In memoriam V. Ramaswami
D. SURYANARAYANA
(Received 14 January 1969)
Communicated by E. S. Barnes

1. Introduction and notation

Let k be a fixed integer $\geqq 2$. A positive integer m is called k-free if m is not divisible by the k 'th power of any integer >1. Let $q_{k}(m)$ be the characteristic function of the set of k-free integers; that is, $q_{k}(m)=1$ or 0 according as m is k-free or not. It can be easily shown that $q_{k}(m)=\sum_{d^{k} \delta=m} \mu(d)$, where $\mu(n)$ is the Möbius function. Let $x \geqq 1$ denote a real variable and n be a positive integer. Let $Q_{k}(x, n)$ and $Q_{k}^{\prime}(x, n)$ be the number and the sum of the reciprocals of the k-free integers $\leqq x$ which are prime to n respectively.

Let $\sigma_{t}^{*}(n)$ be the sum of the t 'th powers of the squarefree divisors of n and $\psi_{k}(n)$ be the arithmetical function defined by

$$
\begin{equation*}
\psi_{k}(n)=n \prod_{p \mid n}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{k-1}}\right), \tag{1.1}
\end{equation*}
$$

the product being extended over all prime divisors p of n. It is clear that

$$
\begin{equation*}
\psi_{k}(n)=\frac{J_{k}(n)}{n^{k-2} \varphi(n)}, \tag{1.2}
\end{equation*}
$$

where $\varphi(n)$ is the Euler totient function and $J_{k}(n)$ is the Jordan totient function (cf. [4], p. 147) which have the following arithmetical forms:

$$
\begin{equation*}
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right), \quad J_{k}(n)=n^{k} \prod_{p \mid n}\left(1-\frac{1}{p^{k}}\right) . \tag{1.3}
\end{equation*}
$$

It has been stated by R. L. Robinson ([6], lemma 2) that

$$
\begin{equation*}
Q_{k}(x, n) \equiv \sum_{\substack{m \leq x \\(m, n)=1}} q_{k}(m)=\frac{n x}{\zeta(k) \psi_{k}(n)}+O\left(\theta(n) x^{1 / k}\right) \tag{1.4}
\end{equation*}
$$

the O-estimate being uniform in n and x; where $\theta(n)=\sigma_{0}^{*}(n)$, the number of square-
free divisors of n and $\zeta(k)$ is the Riemann Zeta function. In case $k=2$, the result (1.4) has already been established by E. Cohen (cf. [2], lemma 5.2).

The object of this paper is to improve the error term in (1.4) to $O\left(\sigma_{-s}^{*}(n) x^{1 / k}\right)$, where s is any number with $o \leqq s<1 / k$ and to establish an asymptotic formula for $Q_{k}^{\prime}(x, n)$ with a corresponding uniform O-estimate (See Theorems 1 and 2 below).

2. Preliminaries

In this section we mention some of the known results which are needed in our discussion and prove some lemmas. Throughout the following s denotes a non-negative real number. The following elementary estimates are well-known:

$$
\begin{array}{ll}
\sum_{n \leqq x} \frac{1}{n^{s}}=O\left(x^{1-s}\right) & \text { if } o \leqq s<1 \\
\sum_{n>x} \frac{1}{n^{s}}=O\left(\frac{1}{x^{s-1}}\right) & \text { if } s>1 \tag{2.2}
\end{array}
$$

Let $\varphi(x, n)$ denote the number of integers $\leqq x$ which are prime to n. Then we have

Lemma 1. (cf. [3], (4)). For each s, with $o \leqq s<1$,

$$
\begin{equation*}
\varphi(x, n)=\frac{x \varphi(n)}{n}+O\left(x^{s} \sigma_{-s}^{*}(n)\right) \tag{2.3}
\end{equation*}
$$

uniformly.
Lemma 2. (cf. [8], lemma 2.1).

$$
\begin{equation*}
\sum_{\substack{m \leq x \\(m, n)=1}} \frac{1}{m}=\frac{\varphi(n)}{n}(\log x+\gamma+\alpha(n))+O\left(\frac{\theta(n)}{x}\right) \tag{2.4}
\end{equation*}
$$

uniformly, where $\alpha(n)$ is given (cf. [1]) by the following:

$$
\begin{equation*}
\alpha(n) \equiv-\frac{n}{\varphi(n)} \sum_{d \mid n} \frac{\mu(d) \log d}{d}=\sum_{p \mid n} \frac{\log p}{p-1} \tag{2.5}
\end{equation*}
$$

and γ is Euler's constant.
Lemma 3.

$$
\begin{equation*}
\alpha_{k}(n) \equiv-\frac{n^{k}}{J_{k}(n)} \sum_{d \mid n} \frac{\mu(d) \log d}{d^{k}}=\sum_{p \mid n} \frac{\log p}{p^{k}-1} \tag{2.6}
\end{equation*}
$$

Proof. This can be proved by the same method adopted in [1] for proving (2.5).

Lemma 4. (cf. [8], lemma 2.3). For $s>1$,

$$
\begin{equation*}
\sum_{\substack{m=1 \\(m, n)=1}}^{\infty} \frac{\mu(m)}{m^{s}}=\frac{n^{s}}{\zeta(s) J(s, n)}, \tag{2.7}
\end{equation*}
$$

where $J(s, n)$ is defined for all $s>1$ by

$$
\begin{equation*}
J(s, n)=n^{s} \prod_{p \mid n}\left(1-\frac{1}{p^{s}}\right) . \tag{2.8}
\end{equation*}
$$

In particular, for $s=k$ by (1.3),

$$
\begin{equation*}
J(k, n)=J_{k}(n) \tag{2.9}
\end{equation*}
$$

Lemma 5. (cf. [8], lemma 2.5). For $s>1$,

$$
\begin{equation*}
\sum_{\substack{m=1 \\(m, n)=1}}^{\infty} \frac{\mu(m) \log m}{m^{s}}=\frac{n^{s}}{\zeta(s) J(s, n)}\left\{\alpha(s, n)+\frac{\zeta^{\prime}(s)}{\zeta(s)}\right\}, \tag{2.10}
\end{equation*}
$$

where $\zeta^{\prime}(s)$ is the derivative of $\zeta(s)$, and

$$
\begin{equation*}
\alpha(s, n)=\sum_{p \mid n} \frac{\log p}{p^{s}-1} . \tag{2.11}
\end{equation*}
$$

In particular, for $s=k$ by (2.6),

$$
\begin{equation*}
\alpha(k, n)=\alpha_{k}(n) \tag{2.12}
\end{equation*}
$$

Lemma 6. For any arbitrary q and $x \geqq 2$,

$$
\begin{equation*}
M_{n}(x) \equiv \sum_{\substack{m \leq x \\(m, n)=1}} \mu(m)=O\left(\frac{\theta(n) x}{\log ^{q} x}\right) \tag{2.13}
\end{equation*}
$$

uniformly.
Proof. It is known (cf. [5], p. 594) that

$$
M_{1}(x)=\sum_{m \leqq x} \mu(m)=O\left(\frac{x}{\log ^{q} \mathrm{x}}\right) \quad \text { for any arbitrary } q
$$

Since $x / \log ^{q} x$ is monotonically increasing, we have for any given $t \geqq 1$,

$$
\begin{equation*}
M_{1}\left(\frac{x}{t}\right)=O\left(\frac{x}{\log ^{q} x}\right) \tag{2.14}
\end{equation*}
$$

We have

$$
\begin{aligned}
M_{n}(x) & =\sum_{d \mid n} \sum_{j d \leq x} \mu(d) \mu(j d)=\sum_{d \mid n} \mu(d) \sum_{\substack{j d \leq x \\
(j, d)=1}} \mu(j d) \\
& =\sum_{d \mid n} \mu^{2}(d) \sum_{\substack{j \leq x / d \\
(j, d)=1}} \mu(j),
\end{aligned}
$$

so that

$$
\begin{equation*}
M_{n}(x)=\sum_{d \mid n} \mu^{2}(d) M_{d}\left(\frac{x}{d}\right) \tag{2.15}
\end{equation*}
$$

Now, if p is a prime and $(p, n)=1$, then

$$
\begin{align*}
M_{p_{n}}(x) & =M_{n}(x)+M_{p_{n}}\left(\frac{x}{p}\right) \tag{2.16}\\
& =\sum_{i=0}^{c} M_{n}\left(\frac{x}{p^{i}}\right), \quad \text { where } c=\left[\frac{\log x}{\log p}\right]
\end{align*}
$$

In particular, taking $n=1$ in (2.16),

$$
\begin{align*}
M_{p}(x) & =\sum_{i=0}^{c} M_{1}\left(\frac{x}{p^{i}}\right)=O\left(\frac{c x}{\log ^{q} x}\right), \quad \text { by (2.14) } \tag{2.17}\\
& =O\left(\frac{x}{\log ^{q} x}\right), \quad \text { since } q \text { is arbitrary. }
\end{align*}
$$

Again, if p_{1} and p_{2} are primes, then by (2.16), taking $p=p_{1}$ and $n=p_{2}$,

$$
\begin{aligned}
M_{p_{1} p_{2}}(x) & =\sum_{i=0}^{c_{1}} M_{p_{2}}\left(\frac{x}{p_{1}^{i}}\right), & & \text { where } c_{1}=\left[\frac{\log x}{\log p_{1}}\right] \\
& =O\left(\frac{c_{1} x}{\log ^{q} x}\right), & & \text { by }(2.17) \\
& =O\left(\frac{x}{\log ^{q} x}\right), & & \text { since } q \text { is arbitrary }
\end{aligned}
$$

Similarly, if $p_{1}, p_{2}, \cdots p_{r}$ are distinct primes, then for any given $t \geqq 1$.

$$
M_{p_{1} p_{2} \cdots p_{r}}\left(\frac{x}{t}\right)=O\left(\frac{x}{\log ^{q} x}\right) .
$$

Hence for any square-free divisor d of n,

$$
M_{d}\left(\frac{x}{d}\right)=O\left(\frac{x}{\log ^{q} x}\right),
$$

so that the lemma follows by (2.15).
Lemma 7. For any arbitrary $q, x \geqq 2$ and $s>1$,

$$
\begin{equation*}
\sum_{\substack{m>x \\(m, n)=1}} \frac{\mu(m)}{m^{s}}=O\left(\frac{\theta(n)}{x^{s-1} \log ^{q} x}\right) \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\substack{m>x \\(m, n)=1}} \frac{\mu(m) \log m}{m^{s}}=O\left(\frac{\theta(n)}{x^{s-1} \log ^{q} x}\right), \tag{2.19}
\end{equation*}
$$

uniformly.
Proof. Let $\varepsilon(n)=1$ or 0 according as $n=1$ or $n>1$, so that $M_{n}(x)$ in (2.13) turns out to be $\sum_{m \leq x} \mu(m) \varepsilon((m, n))$. Putting $f(m)=1 / m^{s}$ and $g(m)=$ $\log m / \mathrm{m}^{\mathrm{s}}$, it has been shown by the author (cf. [7], lemmas 3.1 and 3.2) that

$$
f(m+1)-f(m)=O\left(\frac{1}{m^{s+1}}\right) \quad \text { and } \quad g(m+1)-g(m)=O\left(\frac{\log m}{m^{s+1}}\right) .
$$

We give the proof of (2.19) only, since (2.18) can be proved more easily following the same line of arguement.

By partial summation and (2.13),

$$
\begin{aligned}
\sum_{m>x} \mu(m) \varepsilon((m, n)) g(m)= & -M_{n}(x) g([x]+1) \\
& -\sum_{m>x} M_{n}(m)[g(m+1)-g(m)] \\
& =O\left(\frac{\theta(n)}{x^{s-1} \log ^{q} x}\right)+O\left(\sum_{m>x} \frac{\theta(n)}{m^{s} \log ^{q} m}\right)
\end{aligned}
$$

since q is arbitrary.
The second O-term is $O\left(\theta(n) / \log ^{q} x\right) \sum_{m>x} 1 / m^{s}$ which is $O\left(\theta(n) / x^{s-1} \log ^{q} x\right)$, by (2.2).

Hence the lemma follows.
Lemma 8. For any arbitrary $q, x \geqq 2$ and $s>1$,

$$
\begin{align*}
& \sum_{\substack{m \leq x \\
(m, n)=1}} \frac{\mu(m)}{m^{s}}=\frac{n^{s}}{\zeta(s) J(s, n)}+O\left(\frac{\theta(n)}{x^{s-1} \log ^{q} x}\right) \tag{2.20}\\
& \sum_{\substack{m \leq x \\
(m, n)=1}} \frac{\mu(m) \log m}{m^{s}}=\frac{n^{s}}{\zeta(s) J(s, n)}\left\{\alpha(s, n)+\frac{\zeta^{\prime}(s)}{\zeta(s)}\right\}+O\left(\frac{\theta(n)}{x^{s-1} \log ^{q} x}\right), \tag{2.21}
\end{align*}
$$

uniformly.
Proof. (2.20) follows by (2.7) and (2.18). (2.21) follows by (2.10) and (2.19).

3. Main results

We are now in a position to prove the following:
Theorem 1. For $0 \leqq s<1 / k$,

$$
\begin{equation*}
Q_{k}(x, n) \equiv \sum_{\substack{m \leq x \\(m, n)=1}} q_{k}(m)=\frac{n x}{\zeta(k) \psi_{k}(n)}+O\left(\sigma_{-s}^{*}(n) x^{1 / k}\right) \tag{3.1}
\end{equation*}
$$

uniformly.
Proof. We have $q_{k}(m)=\sum_{d^{k} \delta=m} \mu(d)$. Hence

$$
\begin{aligned}
Q_{k}(x, n) & =\sum_{\substack{m \leq x \\
(m, n)=1}} \sum_{d^{k} \delta=m} \mu(d)=\sum_{\substack{d^{k} \delta \leq x \\
(d, n)=(\bar{\delta}, n)=1}} \mu(d) \\
& =\sum_{\substack{d \leq \sum^{k} \sqrt{j} x \\
(d, n)=1}} \mu(d) \sum_{\substack{\delta \leq x / d^{k} \\
(\delta, d)=1}} 1=\sum_{\substack{d \leq \leq^{k} \sqrt{k} x \\
(d, n)=1}} \mu(d) \varphi^{\prime}\left(\frac{x}{d^{k}}, n\right) .
\end{aligned}
$$

By lemma 1,

$$
\begin{aligned}
Q_{k}(x, n) & =\sum_{\substack{d \leq k \\
(d, n)=1}} \mu(d)\left\{\frac{x}{d^{k}} \frac{\varphi(n)}{n}+O\left(\frac{x^{s}}{d^{s k}} \sigma_{-s}^{*}(n)\right)\right\} \\
& =\frac{x \varphi(n)}{n} \sum_{\substack{d=1 \\
(d, n)=1}}^{\infty} \frac{\mu(d)}{d^{k}}+O\left(x \sum_{d>x^{k} \sqrt{ } x} d^{-k}\right) \\
& +O\left(x^{s} \sigma_{-s}^{*}(n) \sum_{d \leq \leq^{k} \sqrt{ }} d^{-s k}\right) .
\end{aligned}
$$

The first O-term is $O\left(x^{1 / k}\right)$ by (2.2) and the second O-term is $O\left(\sigma_{-s}^{*}(n) x^{1 / k}\right)$ by (2.1), restricting s to the range $0 \leqq s<1 / k$.

Hence Theorem 1 follows by (2.7), (2.9) and (1.2).
Corollary 1. $(k=2)$. For $0 \leqq s<\frac{1}{2}$, we have

$$
\begin{equation*}
Q(x, n) \equiv \sum_{\substack{m \leqq x \\(m, n)=1}} \mu^{2}(m)=\frac{n x}{\zeta(2) \psi(n)}+O\left(\sigma_{-s}^{*}(n) \sqrt{x}\right) \tag{3.2}
\end{equation*}
$$

where $\psi(n)$ is Dedekind's ψ-function defined by $\psi(n)=\sum_{d \delta=n} \mu^{2}(d) \delta$.
Theorem 2. For $0 \leqq s<1 / k$,

$$
\begin{align*}
Q_{k}^{\prime}(x, n) \equiv \sum_{\substack{m \leq x \\
(m, n)=1}} \frac{q_{k}(m)}{m}= & \frac{n}{\zeta(k) \psi_{k}(n)}\left(\log x+\gamma-\frac{k \zeta^{\prime}(k)}{\zeta(k)}+\alpha(n)-k \alpha_{k}(n)\right) \tag{3.3}\\
& +O\left(\frac{\sigma_{-s}^{*}(n)}{x^{1-1 / k}}\right)
\end{align*}
$$

uniformly, where $\alpha(n)$ is given by (2.5) and $\alpha_{k}(n)$ is given by (2.6).
Proof.

$$
\begin{aligned}
Q_{k}^{\prime}(x, n) & =\sum_{\substack{m \leq x \\
(m, n)=1}} \frac{1}{m} \sum_{d^{k} \delta=m} \mu(d)=\sum_{\substack{d^{k} \delta \leq x \\
(d, n)=(\delta, n)=1}} \frac{\mu(d)}{d^{k} \delta} \\
& =\sum_{\substack{d \leq k \\
(d, n)=1}} \frac{\mu(d)}{d^{k}} \sum_{\substack{\delta \leq x / d^{k} \\
(\delta, n)=1}} \frac{1}{\delta},
\end{aligned}
$$

so that by lemma 2 ,

$$
\begin{aligned}
Q_{k}^{\prime}(x, n)= & \sum_{\substack{d \leq \leq^{k} \downarrow x \\
(d, n)=1}} \frac{\mu(d)}{d^{k}}\left\{\frac{\varphi(n)}{n}\left(\log \frac{x}{d^{k}}+\gamma+\alpha(n)\right)+O\left(\frac{\theta(n) d^{k}}{x}\right)\right\} \\
= & \frac{\varphi(n)}{n}(\log x+\gamma+\alpha(n)) \sum_{\substack{d \leq \leq^{k}, ~}} \frac{\mu(d)}{(d, n)=1} d^{k} \\
& -\frac{k \varphi(n)}{n} \sum_{\substack{d, k \\
(d, n)=1}} \frac{\mu(d) \log d}{d^{k}}+O\left(\frac{\theta(n)}{x^{1-1 / k}}\right) .
\end{aligned}
$$

By lemma 8, (2.9), (2.12) and (1.2), since q is arbitrary,

$$
\begin{aligned}
Q_{k}^{\prime}(x, n)= & \frac{n}{\zeta(k) \psi_{k}(n)}(\log x+\gamma+\alpha(n))+O\left(\frac{\theta(n)}{x^{1-1 / k} \log ^{q} x}\right) \\
& -\frac{k n}{\zeta(k) \psi_{k}(n)}\left(\alpha_{k}(n)+\frac{\zeta^{\prime}(k)}{\zeta(k)}\right)+O\left(\frac{\theta(n)}{x^{1-1 / k} \log ^{q} x}\right) \\
& +O\left(\frac{\theta(n)}{x^{1-1 / k}}\right)
\end{aligned}
$$

Hence

$$
\begin{align*}
Q_{k}^{\prime}(x, n)= & \frac{n}{\zeta(k) \psi_{k}(n)}\left(\log x+\gamma-\frac{k \zeta^{\prime}(k)}{\zeta(k)}+\alpha(n)-k \alpha_{k}(n)\right) \tag{3.4}\\
& +O\left(\frac{\theta(n)}{x^{1-1 / k}}\right)
\end{align*}
$$

Again,

$$
Q_{k}^{\prime}(x, n)=\sum_{m \leqq x} \frac{q_{k}(m) \varepsilon((m, n))}{m}, \quad \text { where } \varepsilon(1)=1 \quad \text { and } \varepsilon(n)=0 \text { if } n>1
$$

By partial summation, we have

$$
\begin{aligned}
Q_{k}^{\prime}(x, n) & =\frac{Q_{k}(x, n)}{x}-\sum_{m \leqq x-1} Q_{k}(m, n)\left\{\frac{1}{m+1}-\frac{1}{m}\right\} \\
& =\frac{Q_{k}(x, n)}{x}+\int_{1}^{x} \frac{Q_{k}(t, n)}{t^{2}} d t
\end{aligned}
$$

If

$$
\Delta_{k}(x, n)=Q_{k}(x, n)-\frac{n x}{\zeta(k) \psi_{k}(n)},
$$

then by Theorem 1,

$$
\Delta_{k}(x, n)=O\left(\sigma_{-s}^{*}(n) x^{1 / k}\right)
$$

Hence

$$
\begin{align*}
Q_{k}^{\prime}(x, n)= & \frac{n}{\zeta(k) \psi_{k}(n)}+\frac{\Delta_{k}(x, n)}{x}+\int_{1}^{x}\left\{\frac{n}{\zeta(k) \psi_{k}(n) t}+\frac{\Delta_{k}(t, n)}{t^{2}}\right\} d t \\
= & \frac{n}{\zeta(k) \psi_{k}(n)}+\frac{\Delta_{k}(x, n)}{x}+\frac{n \log x}{\zeta(k) \psi_{k}(n)}+\int_{1}^{\infty} \frac{\Delta_{k}(t, n)}{t^{2}} d t \\
& -\int_{x}^{\infty} \frac{\Delta_{k}(t, n)}{t^{2}} d t \\
= & \frac{n}{\zeta(k) \psi_{k}(n)}\left(\log x+c_{k}(n)\right)+O\left(\frac{\sigma_{-s}^{*}(n)}{x^{1-1 / k}}\right) \tag{3.5}
\end{align*}
$$

where $c_{k}(n)$ is independent of x.
Now, keeping n fixed and taking the limit as $x \rightarrow \infty$ of the difference between (3.4) and (3.5) we get that

$$
c_{k}(n)=\gamma-\frac{k \zeta_{\zeta}^{\prime}(k)}{\zeta(k)}+\alpha(n)-k \alpha_{k}(n)
$$

Substituting this value of $c_{k}(n)$ in (3.5), we get Theorem 2.
Corollary 2. $(k=2)$. For $0 \leqq s<\frac{1}{2}$, we have

$$
\begin{align*}
Q^{\prime}(x, n) \equiv \sum_{m \leqq x} \frac{\mu^{2}(m)}{m}= & \frac{n}{\zeta(2) \psi(n)}\left(\log x+\gamma-\frac{2 \zeta^{\prime}(2)}{\zeta(2)}+\alpha(n)-2 \beta(n)\right) \\
& +O\left(\frac{\sigma_{-s}^{*}(n)}{\sqrt{x}}\right), \tag{3.6}
\end{align*}
$$

where $\alpha(n)$ is given by (2.5) and

$$
\beta(n)=-\frac{n^{2}}{J(n)} \sum_{d \mid n} \frac{\mu(d) \log d}{d^{2}},
$$

$J(n)$ being the Jordan totient function of order 2.

References

[1] G. M. Bergmann, 'Solution of the problem 5091', Amer. Math. Monthly 71 (1964), 334-335.
[2] E. Cohen, 'Arithmetical functions associated with the unitary divisors of an integer', Math. Zeit. 74 (1960), 66-80.
[3] E. Cohen, 'Remark on a set of integers', Acta Sci. Math. (Szeged) 25 (1964), 179-180.
[4] L. E. Dickson, History of the Theory of numbers, Vol. I (Chelsea reprint, New York, 1952).
[5] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (Leipzig, 1909; Chelsea reprint, 1953), p. 594.
[6] R. L. Robinson, 'An estimate for the enumerative functions of certain sets of integers', Proc. Amer. Math. Soc. 17 (1966), 232-237.
[7] D. Suryanarayana, 'The number of k-ary divisors of an integer', Monatsh. Math. 72 (1968), 445-450.
[8] D. Suryanarayana, 'The greatest divisor of n which is prime to k ', Maths Student 36 (1968), 171-181.

Department of Mathematics
Andhra University
Waltair, India

