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Abstract

Let M be an n-dimensional space-like hypersurface in a locally symmetric Lorentz
space, with n(n − 1)R = κH(κ > 0) and satisfying certain additional conditions on the
sectional curvature. Denote by S and H the squared norm of the second fundamental
form and the mean curvature of M , respectively. We show that if the mean curvature is
nonnegative and attains its maximum on M , then:

(1) if H2 < 4(n − 1)c/n2, M is totally umbilical;
(2) if H2

= 4(n − 1)c/n2, M is totally umbilical or is an isoparametric hypersurface;
(3) if H2 > 4(n − 1)c/n2 and S satisfies some pinching conditions, M is totally

umbilical or is an isoparametric hypersurface.

2000 Mathematics subject classification: primary 53B20; secondary 53A10.

Keywords and phrases: locally symmetric, Lorentz space, hypersurfaces, totally
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1. Introduction

Let Mm
s be an m-dimensional connected semi-Riemannian manifold of index s(s ≥ 0);

it is called a semi-definite space of index s. In particular, Mm
1 is called a Lorentz space.

When the Lorentz space Mm
1 is of constant curvature c, it is called a Lorentz space form

and denoted by Mm
1 (c). A hypersurface M of a Lorentz space Mm

1 is said to be space-
like if the metric on M induced by that of the Lorentz space Mm

1 is positive definite.
It is well-known that space-like hypersurfaces with constant mean curvature in

arbitrary space–time are of interest in relativity theory (see [10] and [15]). Therefore,
space-like hypersurfaces in a Lorentz space form have recently been investigated by
many differential geometers from both the physical and the mathematical points of
view; see, for example, [1, 4, 5, 7, 8, 11, 13] and [14]. Goddard [8] conjectured
that a complete space-like hypersurface in de Sitter space Mn+1

1 with constant mean
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curvature H must be totally umbilical. Akutagawa [1] and Ramanathan [13] proved
independently that the conjecture is true if H2

≤ 1 when n = 2 and n2 H2 < 4(n − 1)
when n ≥ 3.

We note that the investigation of space-like hypersurfaces for which the scalar
curvature n(n − 1)R and the mean curvature H are linearly related is also a very
important and interesting problem. Cheng [4] and Li [9] obtained some characteristic
theorems, in terms of the sectional curvature, on space-like hypersurfaces where the
scalar curvature n(n − 1)R and the mean curvature H are linearly related. Recently,
the author proved a characteristic theorem concerning such hypersurfaces in terms of
the mean curvature H [14].

All of the above results were obtained under the assumption that the ambient
manifolds possess very nice symmetry properties. Many researchers have recently
begun to study ambient manifolds which do not have symmetry in general: for
example, the general Lorentz space or locally symmetric Lorentz space; see [3]
and [16], for instance. In [3], Baeket al. obtained some important results on complete
space-like hypersurfaces in locally symmetric Lorentz space with constant mean
curvature.

In this paper, we consider (n + 1)-dimensional Lorentz space Mn+1
1 of index 1.

We denote by ∇̄, K̄ and R̄ the semi-Riemannian connection, sectional curvature
and curvature tensor on Mn+1

1 , respectively. If the Lorentz space Mn+1
1 satisfies the

following conditions:

1. for any space-like vector u and any time-like vector v, K̄ (u, v)=−c1/n where
c1 is a constant;

2. for any space-like vectors u and v,

K̄ (u, v)≥ c2, (1.1)

where c2 is a constant;

then we shall say that Mn+1
1 is a locally symmetric Lorentz space satisfying

condition (∗).

REMARK 1. The Lorentz space form Mn+1
1 (c) satisfies condition (∗), with −c1/n

= c2 = c.

In what follows, we shall investigate space-like hypersurfaces, with the scalar
curvature n(n − 1)R and the mean curvature H being linearly related, in a locally
symmetric Lorentz space satisfying condition (∗). We shall prove the following results.

THEOREM 1.1. Let M be an n-dimensional space-like hypersurface with n(n − 1)R
= κH, where κ is a positive constant, in a locally symmetric Lorentz space Mn+1

1 that
satisfies condition (∗). Suppose that the mean curvature H is nonnegative and attains
its maximum on M; then the following properties hold.
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(1) If H2 < 4(n − 1)c/n2, then M is totally umbilical.
(2) If H2

= 4(n − 1)c/n2, then M is totally umbilical or is an isoparametric
hypersurface with two distinct principal curvatures, one of which is simple.

(3) If H2 > 4(n − 1)c/n2 and the squared norm S of the second fundamental
form satisfies S ≤ nH2

+ (B−H,n,c)
2 or S ≥ nH2

+ (B+H,n,c)
2, then M is totally

umbilical or is an isoparametric hypersurface with two distinct principal
curvatures, one of which is simple, with c = 2c2 + (c1/n) (c2 > 0) and

B±H,n,c =
√

n

4(n − 1)

[
(n − 2)H ±

√
n2 H2 − 4(n − 1)c

]
.

REMARK 2. Note that if Mn+1
1 is the de Sitter space Mn+1

1 (c), where c =−c1/n
= c2 > 0, then Theorem 1.1 reduces to [14, Theorem 1.2].

2. Preliminaries

Let M be an n-dimensional space-like hypersurface in Lorentz space Mn+1
1 . Let

{e1, e2, . . . , en, en+1} be a local frame of orthonormal vector fields in Mn+1
1 such that,

restricted to M , the vectors {e1, e2, . . . , en} are tangent to M , and the vector en+1 is
normal to M . Let {ω1, ω2, . . . , ωn, ωn+1} be the dual frame field. We shall use the
following convention on the ranges of indices:

1≤ i, j, k, . . .≤ n, 1≤ A, B, C, . . .≤ n + 1.

We write εi = 1 and εn+1 =−1; then Mn+1
1 satisfies the structure equations

dωA = −
∑

B

εBωAB ∧ ωB, ωAB + ωB A = 0,

dωAB = −
∑

C

εCωAC ∧ ωC B −
1
2

∑
C,D

εCεD R̄ABC DωC ∧ ωD, (2.1)

where R̄ABC D denotes the components of the Riemannian curvature tensor
of Mn+1

1 . We denote by R̄C D and R̄ the Ricci tensor and the scalar curvature of
Mn+1

1 , respectively; then

R̄C D =
∑

B

εB R̄BC DB, R̄ =
∑

A

εA R̄AA.

Now, let us write R̄ABC D;E for the covariant derivative of R̄ABC D . Then the
components R̄ABC D;E are defined by∑

E

εE R̄ABC D;EωE

= d R̄ABC D −
∑

E

εE (R̄E BC DωE A + R̄AEC DωE B + R̄AB E DωEC + R̄ABC EωE D).
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Since Mn+1
1 is a locally symmetric manifold,

R̄ABC D;E = 0. (2.2)

We have, for M , that

dωi = −
∑

j

ωi j ∧ ω j , ωi j + ω j i = 0,

dωi j = −
∑

k

ωik ∧ ωk j −
1
2

∑
k,l

Ri jklωk ∧ ωl .

The Gauss equation is given by

Ri jkl = R̄i jkl − (hilh jk − hikh jl), (2.3)

n(n − 1)R =
∑
i, j

R̄i j j i − n2 H2
+ S, (2.4)

where S =
∑

i, j (hi j )
2, H = (1/n)

∑
i hi i and R denote, respectively, the squared

norm of the second fundamental form, the mean curvature and the normalized scalar
curvature of M .

Let {hi jk} and {hi jkl} be the covariant derivatives of {hi j } and {hi jk}, respectively.
Then the Codazzi equation and Ricci identities are

hi jk − hik j = R̄n+1i jk, (2.5)

hi jkl − hi jlk =
∑

m
him Rmjkl +

∑
m

hmj Rmikl . (2.6)

Upon restricting R̄ABC D;E to M , R̄n+1i jk;l is given by

R̄n+1i jk;l = R̄n+1i jkl + h jl R̄n+1in+1k + hkl R̄n+1i jn+1 +
∑

m
hml R̄mi jk, (2.7)

where the R̄n+1i jkl are defined by∑
l

R̄n+1i jklωl = d R̄n+1i jk −
∑

l

R̄n+1l jkωli −
∑

l

R̄n+1ilkωl j −
∑

l

R̄n+1i jlωlk .

Let f be a smooth function on M . The first and second covariant derivatives fi , fi j
and the Laplacian of f are defined by

d f =
∑

i

fiθi ,
∑

j

fi jθ j = d fi +
∑

j

f jθ j i , 1 f =
∑

i

fi i .

We introduce an operator 2 due to Cheng and Yau [6]:

2 f =
∑
i, j

(nHδi j − hi j ) fi j . (2.8)
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Setting f = nH in (2.8), from (2.2) and (2.4) we obtain

2(nH) =
∑
i, j

(nHδi j − hi j )(nH)i j

=

∑
i

(nH)(nH)i i −
∑
i, j

hi j (nH)i j

=
1
2
1(nH)2 −

∑
i

(nHi )
2
−

∑
i, j

hi j (nH)i j

= −
1
2

n(n − 1)1R +
1
2
1S − n2

|∇H |2 −
∑
i, j

hi j (nH)i j . (2.9)

The Laplacian 1hi j of the second fundamental form h of M is defined by 1hi j
=
∑n

k=1 hi ikk . From (2.5) and (2.6) it follows that

1hi j =
∑

k

hik jk +
∑

k

R̄n+1i jkk

=

∑
k

{
hkik j −

∑
l

(hkl Rli jk + hil Rlk jk)+
∑

k

R̄n+1i jkk

}
.

Using hkik j = hkki j + R̄n+1kik j , we find that

1hi j =
∑

k

hkki j +
∑

k

(
R̄n+1i jkk + R̄n+1kik j

)
−

∑
k,l

(hkl Rli jk + hil Rlk jk); (2.10)

and from (2.3), (2.7) and (2.10), we obtain

1hi j =
∑

k

hkki j +
∑

k

(
R̄n+1i jk;k + R̄n+1kik; j

)
−

∑
k

(
hi j R̄n+1kn+1k − hkk R̄n+1in+1 j

)
−

∑
k,l

(
2hkl R̄li jk + h jl R̄lkik + hil R̄lk jk

)
− nH

∑
l

hilhl j + Shi j .

Since Mn+1
1 is locally symmetric, from (2.2) we have R̄n+1i jk;k = 0 and R̄n+1kik; j = 0.

Choose a local frame of orthonormal vector fields {ei } such that, at an arbitrary point
of M ,

hi j = λiδi j . (2.11)
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Then
1
2
1S =

∑
i, j,k

h2
i jk +

∑
i, j

hi j1hi j

=

∑
i, j,k

h2
i jk +

∑
i, j

hi j (nH)i j −

(
S
∑

k

R̄n+1kn+1k −
∑
i, j

nHhi j R̄n+1 jn+1i

)
−

∑
i, j,k,l

2
(
hi j hkl R̄li jk + hi j hli R̄lk jk

)
− nH

∑
j

λ3
j + S2. (2.12)

By (2.9) and (2.12),

2(nH) =
∑
i, j,k

h2
i jk − n2

|∇H |2 −
1
2

n(n − 1)1R

−

(
S
∑

k

R̄n+1kn+1k −
∑
i, j

nHhi j R̄n+1 jn+1i

)
−

∑
i, j,k,l

2
(
hi j hkl R̄li jk + hi j hli R̄lk jk

)
− nH

∑
j

λ3
j + S2. (2.13)

The following result, due to Okumura [12] and Alencar and do Carmo [2], will be
very important for our purposes.

LEMMA 2.1 ([2, 12]). Let µ1, µ2, . . . , µn be real numbers such that
∑

i µi = 0 and∑
i µ

2
i = β

2, where β is a nonnegative constant. Then

−
n − 2
√

n(n − 1)
β3
≤

∑
i

µ3
i ≤

n − 2
√

n(n − 1)
β3,

with equality if and only if (n − 1) of the numbers µi are equal to β/
√

n(n − 1) or
(n − 1) of the numbers µi are equal to −β/

√
n(n − 1).

3. Proof of Theorem 1.1

Let |8|2 be a nonnegative C2 function defined by

|8|2 = S − nH2
; (3.1)

then M is totally umbilical if and only if |8|2 = 0.
By (2.11) and condition (∗),

−

(
S
∑

k

R̄n+1kn+1k −
∑
i, j

nHhi j R̄n+1 jn+1i

)
=−

(
S
∑

k

R̄n+1kn+1k −
∑

k

nHλk R̄n+1kn+1k

)
=−

∑
k

(S − nHλk)R̄n+1kn+1k =
∑

k

(S − nHλk)
c1

n
= c1|8|

2 (3.2)
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and

−

∑
i, j,k,l

(
hi j hkl R̄li jk + hi j hli R̄lk jk

)
= −

∑
j,k

(
λ jλk R̄k j jk − λ

2
k R̄k j jk

)
= −

∑
j,k

(
λ jλk − λ

2
k

)
R̄k j jk ≥ nc2

(
S − nH2)

= nc2|8|
2. (3.3)

Since
∑

i (H − λi )= 0 and
∑

i (H − λi )
2
= S − nH2

= |8|2, it follows from
Lemma 2.1 that ∣∣∣∣∑(H − λi )

3
∣∣∣∣≤ n − 2
√

n(n − 1)
|8|3.

Hence

−nH
∑

i

λ3
i = −3nH2S + 2n2 H4

+ nH
∑

i

(H − λi )
3

≥ −3nH2(
|8|2 + nH2)

+ 2n2 H4
− n|H |

n − 2
√

n(n − 1)
|8|3

= −3nH2
|8|2 − n2 H4

− n|H |
n − 2
√

n(n − 1)
|8|3. (3.4)

From (2.13) and (3.1)–(3.4), we obtain

2(nH) ≥
∑
i, j,k

h2
i jk − n2

|∇H |2 −
1
2

n(n − 1)1R

+ |8|2
{

nc − nH2
−

(n − 2)
√

n(n − 1)
n|H ||8| + |8|2

}
, (3.5)

where c = 2c2 + c1/n.
In order to prove our theorems, we introduce an important operator

L =2+ (κ/2n)1.

We can now establish the following propositions.

PROPOSITION 3.1. Let M be an n-dimensional space-like hypersurface with
nonnegative mean curvature in a locally symmetric Lorentz space that satisfies
condition (∗). If n(n − 1)R = κH(κ > 0) and c2 > 0, then L =2+ (κ/2n)1 is
elliptic and R > 0, H > 0.

PROOF. Since the mean curvature of M is nonnegative, we have the scalar curvature
n(n − 1)R ≥ 0. Choose a local frame of orthonormal vector fields {ei } such that, at an
arbitrary point of M , (2.11) holds. Then

n(n − 1)R =
∑
i, j

R̄i j j i − n2 H2
+

∑
j

λ2
j , (3.6)∑

j

λ2
j = κH −

∑
i, j

R̄i j j i + n2 H2.
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Therefore, R > 0. In fact, if there exists a point x such that R = 0, then H = 0 at this
point; however, from (1.1) and (3.6),

0=
∑
i, j

R̄i j j i +
∑

j

λ2
j ≥ n(n − 1)c2

at this point, which is impossible since we have assumed c2 > 0. Thus, we obtain
R > 0 and H > 0.

By (3.6) and (1.1), for any i ,

(
nH − λi +

κ

2n

)
=

∑
j

λ j − λi +
1
2

∑
j λ

2
j − n2 H2

+
∑

i, j R̄i j j i

nH

≥

[(∑
j

λ j

)2

− λi

∑
j

λ j −
1
2

∑
l 6= j

λlλ j +
1
2

n(n − 1)c2

]
(nH)−1

=

[∑
j

λ2
j +

1
2

∑
l 6= j

λlλ j − λi

∑
j

λ j +
1
2

n(n − 1)c2

]
(nH)−1

=

[∑
j 6=i

λ2
j +

1
2

∑
l 6= j

l, j 6=i

λlλ j +
1
2

n(n − 1)c2

]
(nH)−1

=
1
2

[∑
j 6=i

λ2
j +

(∑
j 6=i

λ j

)2

+ n(n − 1)c2

]
(nH)−1 > 0.

Thus L is an elliptic operator. This completes the proof of Proposition 3.1. 2

PROPOSITION 3.2. Let M be an n-dimensional space-like hypersurface in a locally
symmetric Lorentz space that satisfies condition (∗). If n(n − 1)R = κH(κ > 0) and
c2 > 0, then

∑
i, j,k h2

i jk ≥ n2
|∇H |2.

PROOF. We choose an orthonormal frame field as in the proof of Proposition 3.1; then
we have S =

∑
i, j h2

i j 6= 0. In fact, if S =
∑

i λ
2
i = 0 at a point x of M , then λi = 0

(for i = 1, 2, . . . , n) at this point. Therefore H = 0 and R = 0 at this point. But,
from (3.6) and (1.1), we have 0=

∑
i, j R̄i j j i ≥ n(n − 1)c2, which is impossible since

we have assumed c2 > 0.
Since R̄ABC D;E = 0, from (2.4) and n(n − 1)R = κH it follows that

κ∇i H = −2n2 H∇i H + 2
∑
j,k

hk j hk ji ,

(
κ

2
+ n2 H

)2

|∇H |2 =
∑

i

(∑
j,k

hk j hk ji

)2

≤

∑
i, j

h2
i j

∑
i, j,k

h2
i jk = S

∑
i, j,k

h2
i jk
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and ∑
i, j,k

h2
i jk − n2

|∇H |2 ≥

[(
κ

2
+ n2 H

)2

− n2S

]
|∇H |2

1
S

=

[
κ2

4
+ n2(κH + n2 H2

− S
)]
|∇H |2

1
S

=

(
κ2

4
+ n2

∑
i, j

R̄i j j i

)
|∇H |2

1
S

≥

(
κ2

4
+ n3(n − 1)c2

)
|∇H |2

1
S
≥ 0.

This completes the proof of Proposition 3.2. 2

PROOF OF THEOREM 1.1. From (3.5) and Proposition 3.2,

L(nH) = 2(nH)+ (κ/2n)1(nH)

= 2(nH)+
1
2

n(n − 1)1R

≥ |8|2
{

nc − nH2
−

(n − 2)
√

n(n − 1)
n|H ||8| + |8|2

}
= |8|2 PH,n,c(|8|) (3.7)

where

PH,n,c(|8|)= nc − nH2
−

(n − 2)
√

n(n − 1)
n|H ||8| + |8|2.

The discriminant of PH,n,c(|8|) is (n/(n − 1))(n2 H2
− 4(n − 1)c).

(1) If H2 < 4(n − 1)c/n2 on M , then PH (|g|) > 0 on M and the right-hand side
of (3.7) is nonnegative. Since the operator L is elliptic and H attains its maximum
on M , from (3.7) we know that H is constant on M . From (3.7) again, we get that
|8|2 PH,n,c(|8|)= 0, so |8|2 = 0 and M is totally umbilical.

(2) If H2
= 4(n − 1)c/n2 on M , then PH,n,c(|8|)= (|8| − (n − 2)

√
c/
√

n)2 ≥ 0
on M . Similarly to the proof of (1), from (3.7) we deduce that H is constant on
M and |8|2 PH,n,c(|8|)= 0. Hence, either |8|2 = 0 and M is totally umbilical, or
PH,n,c(|8|)= 0.

If PH,n,c(|8|)= 0, then |8| = (n − 2)
√

c/
√

n. By (3.7), equality holds in
Lemma 2.1. Therefore we know that (n − 1) of the numbers H − λi are either equal to

|8|
√

n(n − 1)
=

n − 2

n
√

n − 1

√
c

or equal to the negative of the above expression. This implies that M has (n − 1)
principal curvatures which are equal and constant. As H is constant, the remaining
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principal curvature is constant as well; so M is an isoparametric hypersurface with
two distinct principal curvatures, one of which is simple.

(3) If H2 > 4(n − 1)c/n2 on M , we consider two cases (a) and (b).
(a) If H2 < c, then PH,n,c(|8|) has two real roots B−H,n,c and B+H,n,c, given by

B±H,n,c =
√

n

4(n − 1)

[
(n − 2)H ±

√
n2 H2 − 4(n − 1)c

]
.

Clearly, we have B+H,n,c > 0 , B−H,n,c > 0 and B−H,n,c < B+H,n,c. Since we are supposing
that S ≤ nH2

+ (B−H,n,c)
2 or S ≥ nH2

+ (B+H,n,c)
2 on M , which means that |8|

≤ B−H,n,c or |8| ≥ B+H,n,c on M , we know that PH,n,c(|8|)≥ 0 on M . Because L
is elliptic and H attains its maximum on M , we know that H is constant on M
from (3.7). Thus we obtain that |8|2 PH,n,c(|8|)= 0 so that |8|2 = 0 and M is
totally umbilical, or that PH,n,c(|8|)= 0. If PH,n,c(|8|)= 0, then |8| = B−H,n,c or
|8| = B+H,n,c on M . If |8| = B−H,n,c(> 0), then by (3.7) equality holds in Lemma 2.1.
By making use of the same assertion as in the proof of (2) above, we infer that M is
an isoparametric hypersurface with two distinct principal curvatures, one of which is
simple. If |8| = B+H,n,c(> 0), we also have that M is an isoparametric hypersurface
with two distinct principal curvatures, one of which is simple.

(b) If H2
≥ c, then B+H,n,c > 0 and B−H,n,c ≤ 0. By making use of the same assertion

as in the proof of case (a) above, we get that |8|2 PH,n,c(|8|)= 0 so that |8|2 = 0 and
M is totally umbilical, or that PH,n,c(|8|)= 0. If PH,n,c(|8|)= 0, then |8| = B−H,n,c
or |8| = B+H,n,c on M . If |8| = B−H,n,c(≤ 0), then |8| = 0 and M is totally umbilical.
If |8| = B+H,n,c(> 0), then by (3.7) equality holds in Lemma 2.1. As in the proof of
(2), we also have that M is an isoparametric hypersurface with two distinct principal
curvatures, one of which is simple. This completes the proof of Theorem 1.1. 2

Acknowledgements

This research was partially supported by the NSF of Shaanxi, People’s Republic of
China (grant nos. 2008JK484 and SJ08A31).

The author thanks Professor Annie Yi Han of the Department of Mathematics, The
City University of New York, USA, for her help and useful discussions. The author
would also like to thank the referee for many valuable suggestions that have really
helped to improve the paper.

References

[1] K. Akutagawa, “On space-like hypersurfaces with constant mean curvature in a de Sitter space”,
Math. Z. 196 (1987) 13–19.

[2] H. Alencar and M. P. do Carmo, “Hypersurfaces with constant mean curvature in spheres”, Proc.
Amer. Math. Soc. 120 (1994) 1223–1229.

[3] J. D. Baek, Q.-M. Cheng and Y. J. Suh, “Complete space-like hypersurfaces in locally symmetric
Lorentz spaces”, J. Geom. Phys. 49 (2004) 231–247.

https://doi.org/10.1017/S1446181108000254 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000254


[11] Space-like hypersurfaces in locally symmetric Lorentz space 11

[4] Q.-M. Cheng, “Complete space-like hypersurfaces of a de Sitter space with r = k H”, Mem. Fac.
Sci. Kyushu Univ. 44 (1990) 67–77.

[5] Q.-M. Cheng and S. Ishikawa, “Space-like hypersurfaces with constant scalar curvature”,
Manuscripta Math. 95 (1998) 499–505.

[6] S. Y. Cheng and S. T. Yau, “Hypersurfaces with constant scalar curvature”, Math. Ann. 225 (1977)
195–204.

[7] Y. Chouque-Bruhat, A. E. Fisher and J. E. Marsdan, “Maximal hypersurfaces and positivity mass”,
in Proc. E. Fermi Summer School of the Italian Physical Society (ed. J. Ehlers), (North-Holland,
Amsterdam, 1979).

[8] A. J. Goddard, “Some remarks on the existence of space-like hypersurfaces of constant mean
curvature”, Math. Proc. Cambridge Philos. Soc. 82 (1977) 489–495.

[9] H. Li, “Global rigidity theorems of hypersurfaces”, Ark. Mat. 35 (1997) 327–351.
[10] J. Marsden and F. Tipler, “Maximal hypersurfaces and foliations of constant mean curvature in

general relativity”, Bull. Am. Phys. Soc. 23 (1978) 84–90.
[11] S. Montiel, “A characterization of hyperbolic cylinders in the de Sitter space”, Tôhoku Math. J. 48

(1996) 23–31.
[12] M. Okumura, “Hypersurfaces and a pinching problem on the second fundamental tensor”, Amer.

J. Math. 96 (1974) 207–213.
[13] J. Ramanathan, “Complete space-like hypersurfaces of constant mean curvature in the de Sitter

space”, Indiana Univ. Math. J. 36 (1987) 349–359.
[14] S. C. Shu, “Complete space-like hypersurfaces in a de Sitter space”, Bull. Austral. Math. Soc. 73

(2006) 9–16.
[15] S. Stumbles, “Hypersurfaces of constant mean extrinsic curvature”, Ann. of Phys. 133 (1981)

28–56.
[16] Y. J. Suh, Y. S. Choi and H. Y. Yang, “On space-like hypersurfaces with constant mean curvature

in a Lorentz manifold”, Houston J. Math. 28 (2002) 47–70.

https://doi.org/10.1017/S1446181108000254 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000254

