J. Austral. Math. Soc. (Series A) 42 (1987), 322-329

ENDOMORPHISM RINGS OF BUTLER GROUPS

D. M. ARNOLD and C. I. VINSONHALER

(Received 20 June 1985)

Communicated by H. Lausch

Abstract

This note is devoted to the question of deciding whether or not a subring of a finite-dimensional algebra over the rationals, with additive group a Butler group, is the endomorphism ring of a Butler group (a Butler group is a pure subgroup of a finite direct sum of rank-1 torsion-free abelian groups). A complete answer is given for subrings of division algebras. Several applications are included.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 K 15.

A. L. S. Corner, in 1963, proved that each reduced subring of a finite-dimensional Q-algebra is isomorphic to the endomorphism ring of a finite-rank torsion-free abelian group, where Q denotes the field of rationals. M. C. R. Butler, in 1965, defined a class of finite-rank torsion-free abelian groups, subsequently called Butler groups. This class is the smallest class that contains all rank-1 torsion-free abelian groups and is closed under pure subgroups, torsion-free homomorphic images, and finite direct sums ([6]).

In 1965, S. Brenner and M. C. R. Butler showed that each finite-dimensional Q-algebra is isomorphic to the quasi-endomorphism ring of a Butler group, where the quasi-endomorphism ring of G is the tensor product of Q, over Z, with the endomorphism ring of G. Furthermore, the additive group of the endomorphism ring of a Butler group is again a Butler group ([6]). A partial converse to the latter result is:

THEOREM I. Assume that R is a subring of K = QR, a finite-dimensional Q-algebra and that the additive group of R is a Butler group.

(a) If R is p-reduced for at least 5 primes of Z, then there is a Butler group G with endomorphism ring isomorphic to R.

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

(b) The group G may be chosen with rank = $2m \operatorname{rank}(R)$, where m - 1 is the cardinality of a set of Q-algebra generators of K containing 1_{K} .

A Butler group G is a B_0 -group (called torsionless in [6]) if $G^*(\tau)$ is a pure subgroup of G for each type τ , where $G^*(\tau)$ is the subgroup of G generated by $\{x \in G | type_G(x) > \tau\}$. Among the class of almost completely decomposable groups, the B_0 -groups are precisely the completely decomposable groups. Thus, the endomorphism ring of an indecomposable, almost completely decomposable Butler group of rank > 1 cannot be isomorphic to the endomorphism ring of a B_0 -group in this restricted class. On the other hand, if the endomorphism ring of a Butler group is a subring of a division algebra, then the following theorem shows that the ring is also the endomorphism ring of a B_0 -group.

THEOREM II. Assume that R is a subring of K = QR, a finite-dimensional division Q-algebra. The following statements are equivalent:

(a) R is isomorphic to the endomorphism ring of a Butler group;

(b) R is isomorphic to the endomorphism ring of a B_0 -group;

(c) R is a free S-module for some rank-1 torsion-free ring S; if R is p-reduced for at most 4 primes of Z, then $K = Q(\gamma)$ for some γ ; and if R is p-reduced for at most 3 primes of Z, then K = Q.

As a consequence of Theorem II, not every subring of a finite-dimensional Q-algebra, with additive group a Butler group, is isomorphic to the endomorphism ring of a Butler group. For example, $R = H(Z_p)$, the ring of Hamiltonian quaternions over the integers localized at a prime p fails to satisfy Theorem II (c). Applications of Theorem II are given in Examples 2 and 3.

If G is a Butler group, then typeset(G) is finite and $\langle G^*(\tau) \rangle_*/G^*(\tau)$ is finite for each type τ , where $\langle G^*(\tau) \rangle_*$ is the pure subgroup of G generated by $G^*(\tau)$ ([6]). It is conjectured in [6], that each Butler group contains a B_0 -group as a subgroup of finite index. This conjecture is resolved, in the negative, by Example 4.

Notation and terminology are, unless otherwise noted, as in [1] and [2]. We write M^n for the direct sum of *n* copies of *M* and $\operatorname{End}_R(M)$ for the ring of *R*-endomorphisms of an *R*-module *M*. If $S \subseteq M$, then *RS* denotes the *R*-sub-module of *M* generated by *S*.

A torsion-free abelian group is completely decomposable (of finite rank) if it is isomorphic to a finite direct sum of subgroups of Q and almost completely decomposable if it contains a completely decomposable group as a subgroup of finite index.

[2]

Let G be a torsion-free abelian group of finite rank. Then G is *p*-reduced for a prime p of Z if G contains no elements of infinite p-height. If τ is a type, then $G(\tau) = \{x \in G | type_G(x) \ge \tau\}$ is a pure fully invariant subgroup of G. Thus, $G^*(\tau)$ is the subgroup of G generated by $\{G(\sigma) | \sigma > \tau\}$. Define $typeset(G) = \{type_G(x) | 0 \ne x \in G\}$. The group G is homogeneous if typeset(G) has cardinality 1.

LEMMA 1 (BRENNER [4]). Let K be a finite-dimensional Q-algebra and let m - 1 be the cardinality of a set of Q-algebra generators for K that contains 1_{K} .

(a) There are five left K-submodules of K^{2m} such that K is isomorphic to the algebra of Q-endomorphisms of K^{2m} that leave each of the submodules invariant.

(b) If m - 1 = 2, then there are four left K-submodules of K^2 such that K is isomorphic to the algebra of Q-endomorphisms of K^2 that leave each of the submodules invariant.

PROOF. An explicit construction of these submodules is given for later reference.

(a) Define $m \times 2m$ matrices as follows: $M_1 = (IO)$, $M_2 = (OI)$, $M_3 = (II)$, $M_4 = (IJ)$, and $M_5 = (IM)$, where I is an $m \times m$ identity matrix, O is an $m \times m$ zero matrix, J is an $m \times m$ Jordan matrix with ones on the superdiagonal and zeros elsewhere, M is an $m \times m$ matrix of the form

	(0	0	0	• • •	0	0	0)
	1	0	0 0	• • •	0	0	0
	γ_2	0 1	0	• • •	0	0	0
<i>M</i> =	0 : 0	γ ₃	1	•••	0	0	0
	•	•	•		•	•	• 1
	1:	:	:		:	:	:
	0	0	0	•••	1	0	0
	0	0	0	•••	γ_{m-1}	1	0)

and $\Gamma = \{\gamma_1 = 1, \gamma_2, \dots, \gamma_{m-1}\}$ is a set of *Q*-algebra generators of *K*. Define K_i to be the *K*-submodule of K^{2m} generated by the rows of M_i .

Note that left multiplication induces a well-defined algebra injection from K to

$$\left\{ f \in \operatorname{End}_{Q}(K^{2m}) \mid f(K_{i}) \subseteq K_{i}, 1 \leq i \leq 5 \right\}.$$

Next, let $f \in \operatorname{End}_{Q}(K^{2m})$ with $f(K_{i}) \subseteq K_{i}$ for each *i*. Represent *f* as a $2m \times 2m$ matrix with entries in $\operatorname{End}_{Q}(K)$, say,

$$f = \begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \end{pmatrix}$$

 $N_1 = N_4$, since $f(K_3) \subseteq K_3$; N_1 is a lower triangular matrix with equal diagonal elements and equal subdiagonal elements, since $f(K_4) \subseteq K_4$; N_1 is a diagonal matrix with equal diagonal elements, since f sends the first row of M_5 into K_5 ; and there is $k \in K$ with f acting as left multiplication by k, since $f(K_5) \subseteq K_5$ and Γ is a set of Q-algebra generators for K. For the latter statement, observe that if $f = \alpha I_{2m \times 2m}$ for some $\alpha \in \text{End}_Q(K)$, then $\alpha(k\gamma_i) = \alpha(k)\gamma_i$ for each $k \in K$, $2 \leq i \leq m - 1$, since $f(K_5) \subseteq K_5$. Therefore, f is left multiplication by $\alpha(1)$, as desired.

(b) Let $\Gamma = \{1, \gamma\}$, $x_1 = (1, 0)$, $x_2 = (0, 1)$, $x_3 = (1, 1)$, and $x_4 = (1, \gamma)$. Define K_i to be the K - submodule of K^2 generated by x_i . Then, as in the proof of (a), left multiplication induces an isomorphism $K \to \{f \in \operatorname{End}_Q(K^2) | f(K_i) \subseteq K_i, 1 \le i \le 4\}$.

PROOF OF THEOREM I. Choose distinct primes p_1 , p_2 , p_3 , p_4 , p_5 such that R is p_i -reduced. Let X_j be the subgroup of $Q1_K \subseteq K$ generated by $\{1_K/p_i^k | 1 \le i \ne j \le 5, k = 1, 2, ...\}$. Define $B = (X_1R)^m \oplus \cdots \oplus (X_5R)^m \subseteq K^{5m}$. Then B is a Butler group, since R is a Butler group, noting that $X_1R \simeq X_1 \otimes_Z R$ and X_1 is a flat Z-module.

Next, define $G = \text{Image } \Phi \cap B$, where $\Phi: K^{2m} \to K^{5m}$ is given by $\Phi(x, y) = (y, x, y - x, y - x\alpha, y - x\gamma), y \in K^m, x = (x_1, \ldots, x_m) \in K^m, x\alpha = (0, x_1, x_2, \ldots, x_{m-1}), x\gamma = (x_2 + x_3\gamma_2, x_3 + x_4\gamma_3, \ldots, x_m, 0), \text{ and } \Gamma = \{1 = \gamma_1, \gamma_2, \ldots, \gamma_{m-1}\} \subseteq R$ is a set of Q-algebra generators for K = QR. Then G is a Butler group, being a pure subgroup of B. Moreover, $\operatorname{rank}(G) = \dim_Q(\operatorname{Image} \Phi) = 2m \dim_Q(K) = 2m \operatorname{rank}(R)$, since $QB = K^{5m}$, Φ is an injection, and QR = K.

It is sufficient to prove that left multiplication induces an isomorphism μ : $R \to \text{End}(G)$. Note that RB = B and μ is a well-defined ring injection. The strategy is to first prove that if $f \in \text{End}(G)$, then f is left multiplication by some $k \in K$ and then to prove that $k \in R$.

Define $\tau_j = \text{type}(X_j^*S)$ for each $1 \le j \le 5$, where S is the pure subgroup of R generated by $1_R = 1_K$, and $X_j^* = \bigcap \{X_i | 1 \le i \ne j \le 5\} = Z[1/p_j] \cdot 1_K$. Since G is a pure subgroup of B, then $G(\tau_j) = G \cap B(\tau_j)$, is a fully invariant subgroup of G. In fact, $B(\tau_j) = \bigoplus \{(X_iR)^m | 1 \le i \ne j \le 5\}$, since if $i \ne j$ then $\tau_j \le \text{type}(x)$ for each $x \in X_iR$ while $\tau_j \le \text{type}(x)$ for each non-zero x in X_jR . Consequently, $QG(\tau_j) = \Phi(K_j)$, where K_j is defined as in Lemma 1.a, since $\Phi(K_j) = \{\Phi(x, y) | (x, y) \in K^{2m} \text{ and the } j \text{ the ordinate of } \Phi(x, y) = 0\}$.

Now let $f \in \text{End}(G)$. Then $f(G(\tau_j)) \subseteq G(\tau_j)$, whence $f(QG(\tau_j)) \subseteq QG(\tau_j)$, for each $1 \leq j \leq 5$. Therefore, by Lemma 1 and the fact that $\Phi(K_j) = QG(\tau_j)$, f is left multiplication by some $k \in K$.

To prove that $k \in R$, let $x = y = (1, 0, ..., 0) \in K^m$. Then $\Phi(0, y) \in G(\tau_2)$, $f(\Phi(0, y)) = k\Phi(0, y) = (ky, 0, ky, ky, ky) \in G(\tau_2) \subseteq B$, and $k \in X_1R \cap X_3R$ $\cap X_4R \cap X_5R$. Similarly, $k\Phi(x, 0) \in G(\tau_1)$ implies that $k \in X_2R$. Thus, $k \in K_1$ $\bigcap \{X_i R | 1 \le i \le 5\} = R$, since $Z \cdot 1_K = \bigcap \{X_i | 1 \le i \le 5\}$. Consequently, $k \in R$, as desired.

PROOF OF THEOREM II. (b) \Rightarrow (a) is clear.

(a) \Rightarrow (c). Assume that R = End(G) for some Butler group G. Then R is a free S-module, where S is the pure subgroup of R generated by 1_R , by [2], Corollary 5.2. Note that if p is a prime, then R is p-reduced if and only if R is not p-divisible, whence R is p-reduced if and only if G is not p-divisible.

It is now sufficient to prove that if R is divisible by all but four, respectively three, primes, then there are four, respectively three, QR-submodules of QG such that QR is the algebra of Q-endomorphisms of QG that leave each of these submodules invariant. In this case, $QR = Q(\gamma)$, respectively QR = Q, as a consequence of [4], Proposition 5 and Section 7.

The case that G is divisible by all but four primes, say p_1 , p_2 , p_3 , p_4 , is proved and the other case, having an analogous proof, is left to the reader.

The four desired submodules of QG are $L_i = QG(\tau_i)$ for $1 \le i \le 4$, where $\tau_j = \inf\{\sigma_i | 1 \le i \ne j \le 4\}$, $\sigma_i = \operatorname{type}(Z_{p_i})$, and Z_{p_i} is the localization of Z at p_i . To see this is indeed the case, first note that $\operatorname{typeset}(G) \subseteq T$, the finite sublattice of the lattice of all types generated by σ_1 , σ_2 , σ_3 , σ_4 . Then τ_1 , τ_2 , τ_3 , τ_4 are minimal elements of $T \setminus \{\tau_0\}$, where $\tau_0 = \inf\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$, and σ_1 , σ_2 , σ_3 , σ_4 are maximal elements of $T \setminus \{\operatorname{type}(Q)\}$.

Since typeset(G) $\subseteq T$, G is a pure subgroup of $C = C_1 \oplus \cdots \oplus C_n$, with $C_i \subseteq Q$ and type(C_i) $\in T$ ([6]). For each $1 \le i \le 4$, typeset($C(\sigma_i)$) $\subseteq \{\sigma_i, \text{type}(Q)\}$ so that $G(\sigma_i)$ is a summand of $C(\sigma_i)$ ([1], Exercise 5.7), hence of G. Therefore, $G(\sigma_i) = 0$, since Q End(G) $\simeq K$, a division algebra, implies that G is indecomposable. It now follows that typeset(G) $\subseteq \{\tau_0, \tau_1, \tau_2, \tau_3, \tau_4, \tau^{ij} | 1 \le i \ne j \le 4\}$, where $\tau^{ij} = \sup\{\tau_i, \tau_j\} = \inf\{\sigma_k, \sigma_i\}$, and $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

Finally, assume that $f \in \operatorname{End}_Q(QG)$, with $f(L_i) \subseteq L_i$ for each $1 \leq i \leq 4$. Then $f(QG(\tau^{ij})) \subseteq QG(\tau^{ij})$, for each $1 \leq i \neq j \leq 4$, noting that $QG(\tau^{ij}) = QG(\tau_i) \cap QG(\tau_j)$ for each $\tau \in \operatorname{typeset}(G)$. Therefore, $f \in Q$ End(G) by [2], Theorem 1.5. Consequently, left multiplication induces an isomorphism $QR \to \{f \in \operatorname{End}_Q(QG) | f(L_i) \subseteq L_i, 1 \leq i \leq 4\}$, as desired.

(c) \Rightarrow (b). If R is p-reduced for at most 3 primes, then K = Q, by hypothesis. In this case, the additive group of R is a B_0 -group with endomorphism ring R.

The next case considered is that R is p-reduced for at least 5 primes. The construction of Theorem I yields a Butler group $G = \text{Image } \Phi \cap B$ with $R \simeq \text{End}(G)$, where $B = (X_1R)^m \oplus \cdots \oplus (X_5R)^m \subseteq K^{5m}$ and $\Gamma = \{1 = \gamma_1, \ldots, \gamma_{m-1}\}$ is a set of Q-algebra generators of K, which may be assumed to be a subset of R since K = QR. We prove that G is a B_0 -group.

Since R is a free S-module, $X_i R$ is homogeneous completely decomposable with type = $\sigma_i = \text{type}(X_i S)$. Recall, from the proof of Theorem I, that $X_j^* = \bigcap\{X_i | 1 \le i \ne j \le 5\}, \tau_j = \text{type}(X_j^*S)$, and $\Phi(K_j) = QG(\tau_j)$, where K_j is as defined in Lemma 1.a.

A routine calculation shows that if $1 \le i \ne j \le 5$, then $K_i \cap K_j = 0$, unless $\{i, j\} = \{1, 4\}$ or $\{1, 5\}$. Consequently, typeset $(G) \subseteq \{\tau_0, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau^{14}, \tau^{15}\}$, where type $(S) = \tau_0 = \inf\{\tau_1, \tau_2, \tau_3, \tau_4, \tau_5\}$ and $\tau^{ij} = \sup\{\tau^i, \tau^j\}$.

It is now sufficient to prove that $G^*(\tau_0) = G$ and that $G^*(\tau_1)$ is pure in G, in which case G must be a B_0 -group. In fact, $G^*(\tau_1) = G(\tau^{14}) + G(\tau^{15})$ is pure in G, since $K_1 \cap K_4 = \Phi^{-1}QG(\tau^{14}) = Q(0, 0, ..., 0, 1, 0, 0, ..., 0)$ and $K_1 \cap K_5 = \Phi^{-1}QG(\tau^{15}) = Q(1, 0, ..., 0, 0, 0, ..., 0)$.

Note that $G^*(\tau_0) = G(\tau_1) + G(\tau_2) + G(\tau_3) + G(\tau_4) + G(\tau_5)$. To see that $G^*(\tau_0) = G$, it is sufficient to prove that if p is a prime, then $Z_p \otimes_Z G = G_p \subseteq G(\tau_1)_p + \cdots + G(\tau_5)_p$, in which case, $G = \bigcap_p G_p \subseteq G^*(\tau_0) = \bigcap_p G^*(\tau_0)_p$. Let $a = (y, x, y - x, y - x\alpha, y - x\gamma) \in G_p \subseteq (X_1R)_p^m \oplus \cdots \oplus (X_5R)_p^m$. If $p \notin \{p_3, p_4, p_5\}$, then $y \in (X_1R)_p^m = (X_2^*R)_p^m$ and $x \in (X_2R)_p^m = (X_1^*R)_p^m$. Hence, $a = \Phi(x, y) = \Phi(0, y) + \Phi(x, 0) \in G(\tau_2)_p + G(\tau_1)_p$. Similarly, if $p = p_3$, then $a = \Phi(0, y - x) + \Phi(x, x\alpha) \in G(\tau_2)_p + G(\tau_4)_p$; if $p = p_4$, then $a = \Phi(0, y - x\gamma) + \Phi(x, x\gamma) \in G(\tau_2)_p + G(\tau_5)_p$. Consequently, $G^*(\tau_0) = G$, as desired.

The final case is that R is *p*-reduced for exactly four primes. The proof, using Lemma 1.b in place of Lemma 1.a, is similar, but easier, and thus is omitted.

EXAMPLE 2. There is a B_0 -group A with $\operatorname{End}(A) \simeq Z \oplus 2Zi \subseteq Q(i)$, where $i^2 = -1$. In particular, $\operatorname{End}(A)$ is not integrally closed in its quotient field Q(i).

Example 2 and Theorem II are a partial resolution of Problem 6.5, [2]. The following example is a counterexample to Conjecture 6.2, [2].

EXAMPLE 3. There are B_0 -groups A and B such that A and B are nearly isomorphic but not isomorphic.

PROOF. Let $S = Z[\sqrt{-5}]$, a Dedekind domain that is not a principal ideal domain. By Theorem II, there is a B_0 -group A with $End(A) \approx S$. Let I be a non-principal ideal of S. Then B = IA is a subgroup of finite index in A, A and B are nearly isomorphic, but A and B are not isomorphic (as in [1], Example 12.11).

EXAMPLE 4. There is a rank-4 Butler group that does not contain a B_0 -group as a subgroup of finite index.

PROOF. Let $V = Qv_1 \oplus Qv_2 \oplus Qv_3 \oplus Qv_4$ and let $\{p_1, \ldots, p_9\}$ be a set of distinct primes. Denote by $Z[1/p_i]$ the subring of Q generated by $1/p_i$, and define $Z^{ij} = Z[1/p_i] + Z[1/p_j]$ whenever $1 < i \neq j \leq 9$. Let G be the subgroup of V generated by $\{A_1, \ldots, A_6\}$, where $A_1 = Z^{15}v_1$, $A_2 = Z^{25}v_2$, $A_3 = Z^{36}v_3$, $A_4 = Z^{46}v_4$, $A_5 = Z^{79}(v_1 + v_2 + p_9v_3)$, and $A_6 = Z^{89}(v_3 + v_4 + p_9v_1)$. Then each A_i is a pure rank-1 subgroup of G and typeset $(G) = \{\tau_1, \ldots, \tau_6, \tau, \tau_{12}, \tau_{34}, \tau_{56}\}$, where $\tau_i = \text{type}(A_i)$, $\tau = \text{type}(Z)$ and $\tau_{ij} = \inf\{\tau_i, \tau_j\}$ (see [2], Theorems 0.1 and 1.7).

Note that $G(\tau_i) = A_i$, $G^*(\tau_{12}) = A_1 + A_2$, and $G^*(\tau_{34}) = A_3 + A_4$. Since $G(\tau_{12}) \cap G(\tau_{34}) = 0$, $G(\tau_{12}) = (Qv_1 \oplus Qv_2) \cap G = A_1 + A_2 + Z(v_1 + v_2)/p$ and $G(\tau_{34}) = A_3 + A_4 + Z(v_3 + v_4)/p$, where $p = p_9$. Similarly, $G^*(\tau_{56}) = G(\tau_{56})$.

Suppose that H is a subgroup of finite index in G and that H is a B_0 -group. Then typeset(H) = typeset(G), so there exist non-zero integers m_i , such that $H = m_1A_1 + \cdots + m_6A_6$ and $m_iA_i = H(\tau_i)$, since $H(\tau_i) = H \cap G(\tau_i) = H \cap A_i$ ([2], Theorem 2.2).

Furthermore, $m_1A_1 + m_2A_2 = H^*(\tau_{12}) = H(\tau_{12}) = H \cap G(\tau_{12})$ and, similarly, $m_3A_3 + m_4A_4 = H \cap G(\tau_{34})$. In particular, $(m_3A_3 + m_4A_4 + m_5A_5 + m_6A_6) \cap G(\tau_{12}) \subseteq m_1A_1 + m_2A_2$ and $(m_1A_1 + m_2A_2 + m_5A_5 + m_6A_6) \cap G(\tau_{34}) \subseteq m_3A_3 + m_4A_4$. Localizing the first containment at $p = p_9$ yields $(p^{e(3)}Z_pv_3 + p^{e(4)}Z_pv_4 + Qv_5 + Qv_6) \cap (Z_pv_1 + Z_pv_2 + Z_p(v_1 + v_2)/p) \subseteq p^{e(1)}Z_pv_1 + p^{e(2)}Z_pv_2$, where e(i) = p-height (m_i) in Z, $v_5 = (v_1 + v_2 + pv_3)/p$, and $v_6 = (v_3 + v_4 + pv_1)/p$.

Note that $v_5 - v_3 = (v_1 + v_2)/p$. Thus, $-p^{e(3)}v_3 + p^{e(3)}v_5 = p^{e(3)-1}(v_1 + v_2) \in p^{e(1)}Z_pv_1 + p^{e(2)}Z_pv_2$. Hence, $e(3) - 1 \ge e(1)$. However, by a similar argument on the localization of the second containment and the equation $v_6 - v_1 = (v_3 + v_4)/p$, $e(1) - 1 \ge e(3)$. This contradiction completes the proof.

References

- [1] D. Arnold, Finite rank torsion-free abelian groups and rings, Lecture Notes in Mathematics 931, (Springer-Verlag, 1982).
- [2] D. Arnold, 'Pure subgroups of finite rank completely decomposable groups', Proceedings of Oberwolfach abelian group theory conference, Lecture Notes in Mathematics 874, (Springer-Verlag, 1981, pp. 1–31).
- [3] D. Arnold and C. Vinsonhaler, 'Pure subgroups of finite rank completely decomposable groups II', Proceedings of Hawaii abelian group theory conference, Lecture Notes in Mathematics 1006, (Springer-Verlag, 1983, pp. 97-143).
- [4] S. Brenner, 'Endomorphism algebras of vector spaces with distinguished sets of subspaces', J. Algebra 6 (1967), 100-114.
- [5] S. Brenner and M. C. R. Butler, 'Endomorphism rings of vector spaces and torsion free abelian groups', J. London Math. Soc. 40 (1965), 183-187.

Endomorphism rings of Butler groups

- [6] M. C. R. Butler, 'A class of torsion-free abelian groups of finite rank', Proc. London Math. Soc. 15 (1965), 680-698.
- [7] M. C. R. Butler, 'Torsion-free modules and diagrams of vector spaces', Proc. London Math. Soc. 18 (1968), 635-652.
- [8] A. L. S. Corner, 'Every countable reduced torsion-free ring is an endomorphism ring', Proc. London Math. Soc. 13 (1963), 687-710.
- [9] E. L. Lady, 'Extension of scalars for torsion free modules over Dedekind domains', Symposia Mathematica 23 (1979), 287-305.
- [10] J. Kochler, 'The type set of a torsion-free group of finite rank', Illinois J. Math. 9 (1965), 66-86.

Department of Mathematical Sciences New Mexico State University Las Cruces, New Mexico 88003 U.S.A. Department of Mathematics University of Connecticut Storrs, Connecticut 06268 U.S.A.

[8]