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Abstract

We compute the characters of the simple GL-equivariant holonomic D-modules on the
vector spaces of general, symmetric, and skew-symmetric matrices. We realize some of
these D-modules explicitly as subquotients in the pole order filtration associated to
the determinant/Pfaffian of a generic matrix, and others as local cohomology modules.
We give a direct proof of a conjecture of Levasseur in the case of general and skew-
symmetric matrices, and provide counterexamples in the case of symmetric matrices.
The character calculations are used in subsequent work with Weyman to describe the
D-module composition factors of local cohomology modules with determinantal and
Pfaffian support.

1. Introduction

When G is an algebraic group acting on a smooth algebraic variety X over C, it is a natural
problem to describe the simple G-equivariant holonomic D-modules on X. When G acts with
finitely many orbits, all such D-modules have regular singularities, and they are classified via
the Riemann–Hilbert correspondence by the G-equivariant simple local systems on the orbits of
the group action. Describing these D-modules explicitly is however a difficult problem (see open
problem 3 in [MV86, § 6], and [Vil85]). In this paper we consider the case when X is a vector
space of matrices (general, symmetric, or skew-symmetric) and G is a natural rank-preserving
group of symmetries. In all these cases G is a reductive group and the D-modules are G-admissible
representations (they decompose into a direct sum of irreducible representations, each appearing
with finite multiplicity). The purpose of this paper is to describe these representations (which
we will refer to as the characters of the equivariant D-modules) and to realize these D-modules
explicitly. The motivation for this work is two-fold.

– Computing local cohomology. In [RW14, RWW14, RW15], we describe the characters, and
the D-module composition factors of the local cohomology modules H•Y (X,OX) in the case
when X is a space of matrices (general, symmetric, or skew-symmetric) and Y is any orbit
closure for the natural group action on X. We expect that the combination of D-module
and commutative algebra techniques that we employ to study local cohomology in the case
of matrices will apply to other cases of interest [Lev09, Appendix]. We note that character
calculations in the context of analyzing local cohomology modules appear also in [Kem78,
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VdB99]: in both cases, the representations are T -admissible for T a maximal torus in G; the
equivariant D-modules that we study in this paper are G-admissible, but in general they
are too large to be T -admissible.

– Levasseur’s conjecture. For a class of multiplicity-free G-representations X, Levasseur
conjectured [Lev09, Conjecture 5.17] an equivalence between the category C of equivariant
holonomic D-modules whose characteristic variety is a union of conormal varieties to the
orbits of the group action, and a module category admitting a nice quiver description. His
formulation is equivalent to the fact that any simple D-module M in C contains sections
which are invariant under the action of the derived subgroup G′ = [G,G]. Our character
description provides a direct proof of this conjecture for general and skew-symmetric
matrices, and yields counterexamples for symmetric matrices.

Our work complements the existing literature that studies the categories of D-modules on rank
stratifications [Nan08, Nan12] (see also [BG99] for the corresponding categories of perverse
sheaves), in that we realize concretely the simple objects of these categories and discuss some
applications, filling some gaps in the arguments and generally painting a more transparent
picture. To give a flavor of the level of concreteness that we seek, we begin with the following
result (Zndom denotes the set of dominant weights λ = (λ1 > · · · > λn) ∈ Zn, and Sλ denotes the
Schur functor associated to λ; throughout the paper we use the convention λs = ∞ for s 6 0,
λs = −∞ for s > n).

Theorem 1.1. Let X = Cn×n be the vector space of n× n matrices and let S = C[xi,j ] be the
coordinate ring of X. If we write det = det(xi,j) and let Sdet be the localization of S at det, then
we have a filtration

0 ( S ( 〈det−1〉D ( · · · ( 〈det−n〉D = Sdet,

where Fs = 〈det−s〉D denotes the D-submodule of Sdet generated by det−s for s = 0, . . . , n (and
F−1 = 0). The successive quotients As = Fs/Fs−1, s = 0, . . . , n, are the simple GLn(C)×GLn(C)-
equivariant holonomic D-modules on X (for the natural action by row and column operations)
and their characters are given by

As =
⊕

λ∈Zndom
λs>s>λs+1

SλCn⊗SλCn.

In the case of symmetric matrices, the D-modules obtained as in Theorem 1.1 cover roughly
half of the simple equivariant D-modules. The remaining half are more mysterious, and they
provide counterexamples to [Lev09, Conjecture 5.17]. In the case of m×n matrices with m > n,
as well as in the case of skew-symmetric matrices of odd size, the simple equivariant D-modules
arise as local cohomology modules, while in the case of skew-symmetric matrices of even size
the simple equivariant D-modules arise, just as in Theorem 1.1, from the pole order filtration
associated with the Pfaffian of the generic skew-symmetric matrix. Most of our simple D-modules
have irreducible characteristic variety, but for roughly half of the ones arising from symmetric
matrices the characteristic variety has two connected components: this is deduced in Remark 1.5
as a consequence of the character information.

As suggested by Theorem 1.1, one motivation behind our investigation is that the simple
D-modules are the building blocks for many D-modules of interest that one would like to
understand. More precisely, every holonomic D-module M has finite length, i.e. it has a
finite filtration (composition series) whose successive quotients (composition factors) are simple
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holonomic D-modules. When G is connected and M is G-equivariant, the composition factors
are also G-equivariant [VdB99, Proposition 3.1.2]. We are mainly interested in two types of
G-equivariant holonomic D-modules.

– Local cohomology modules. If Y ⊂ X is a G-invariant subset, then the local cohomology
modules H•Y (X,OX) are G-equivariant D-modules. If Y is smooth and irreducible, and if we
write c = codimX(Y ) for the codimension of Y inside X, thenHcY (X,OX) is the unique non-
vanishing local cohomology module and it is simple. In general, for an irreducible subvariety
Y ⊂ X one can define an intersection homology D-module L(Y,X) which is simple (and it is
G-equivariant when Y is a G-subvariety), and we have an inclusion L(Y,X) ⊂ HcY (X,OX),
whose cokernel is supported on a proper subset of Y . The case when X = Cn×n and Y is the
subvariety of singular matrices is implicitly described in Theorem 1.1: c = 1, L(Y,X) = A1,
H1
Y (X,OX) = Sdet/S, and the cokernel H1

Y (X,OX)/L(Y,X) has composition factors A2,
. . . , An. In general, the local cohomology modules HiY (X,OX) for i 6= c may be non-zero,
but they are all supported on proper subsets of Y : it is an interesting problem to decide
their (non-)vanishing, or at a more refined level to understand their D-module composition
factors.

– The D-module (generated by) fα. For a non-zero polynomial f ∈ S = C[x1, . . . , xN ] and a
complex number α, we can define 〈fα〉D – the (holonomic) D-module generated by fα (see
[Wal15] for a recent survey). A strict inclusion 〈fα+1〉D ( 〈fα〉D implies that α is a root of
the Bernstein–Sato polynomial of f (this can happen only when α is rational and negative
[Kas76]). It is an interesting question to decide whether each root α gives rise to such a strict
inclusion (see [Wal15, Question 2.1] and [Sai15, Question 1, § 4]). More generally, one may
be interested in the composition factors of 〈fα〉D. For α ∈ Z and f = det, this is completely
answered by Theorem 1.1. When α /∈ Z, 〈detα〉D is a simple D-module (see the proof of
Theorem 7.1). Similar conclusions are obtained when f is the symmetric determinant, or
the Pfaffian of a skew-symmetric matrix of even size.

Before stating our results in more detail, we give a simple example to illustrate how character
calculations alone can allow one to determine the D-module composition factors.

Example 1.2. Let X = CN be the N -dimensional affine space and let G = (C∗)N be the N -
dimensional torus. The orbits XI of the G-action are indexed by subsets I ⊂ [N ] = {1, . . . , N},
where

XI = {x ∈ CN : xi 6= 0 if and only if i ∈ I}.
The stabilizer of each XI is connected, so there is a one-to-one correspondence between orbits
and simple G-equivariant holonomic D-modules DI (Theorem 2.7 and Remark 2.8), given by
DI = L(YI , X), where YI = XI is the corresponding orbit closure. Since YI is an affine space of
codimension N − |I|, it is in particular smooth, and therefore the D-module DI is just a local

cohomology module DI = H
N−|I|
YI

(X,OX). If we write S = C[x1, . . . , xN ] for the coordinate ring

of X, then each YI is defined by the ideal generated by the variables xj , j /∈ I. Using the Čech
complex description of local cohomology, we get

DI =
⊕
λ∈ZN

λi>0 if and only if i∈I

C ·xλ11 · · ·xλNN ,

which is a decomposition into irreducible G-representations. If we take f = x1 · · ·xN , then we
get

Sf =
⊕
λ∈ZN

C ·xλ11 · · ·xλNN .
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The torus weights appearing in the modules DI form a partition of those appearing in Sf , so
each DI appears as a D-module composition factor of Sf with multiplicity one. Using a similar
argument for X = Cn×n, we obtain a proof of Theorem 1.1 (see § 5).

Symmetric matrices
Our results run in parallel for the three spaces of matrices (general, symmetric, and skew-
symmetric). We have made an effort to apply a uniform strategy to all three cases, but we were
not able to treat the combinatorial details uniformly. For the sake of brevity, we have chosen
to treat only the case of symmetric matrices in full detail, and only indicate the changes that
are required in the other cases. Two features that make the case of symmetric matrices more
interesting are (a) the presence of non-trivial equivariant local systems and (b) the existence of
counterexamples to Levasseur’s conjecture.

For each positive integer n and for s = 0, . . . , n, we consider the collections of dominant
weights

C1(s, n) = {λ ∈ Zndom : λi
(mod 2)≡ s+ 1 for i = 1, . . . , n, λs > s+ 1 > λs+2},

C2(s, n) =

{
λ ∈ Zndom : λi

(mod 2)≡
{
s+ 1 for i = 1, . . . , s

s for i = s+ 1, . . . , n
, λs > s+ 1, λs+1 6 s

}
.
(1.1)

Note that C1(n, n) = C2(n, n). For a positive integer n, we identify Sym2 Cn with the vector space
M symm of n×n symmetric matrices, where the squares w2, w ∈ Cn, correspond to matrices of rank
at most one. We write M symm

i for the subvariety of matrices of rank at most i. For s = 0, . . . , n
and j = 1, 2, we define

Cjs =
⊕

λ∈Cj(s,n)

SλCn.

Theorem on equivariant D-modules on symmetric matrices. [§ 4] There exist 2n + 1
simple GLn(C)-equivariant holonomic D-modules on M symm, whose characters are Cjs, s = 0,
. . . , n, j = 1, 2. More precisely, if we denote by Cjs the D-module with character Cjs, then C1

n =
C2
n = L({0},M symm) is the simple holonomic D-module supported at the origin and, for s < n,

Cjs =

{
L(M symm

n−s ,M symm) if j ≡ s (mod 2),

L(M symm
n−s ,M symm; 1/2) if j ≡ s+ 1 (mod 2).

Here L(M symm
n−s ,M symm) is the usual intersection homology D-module, while L(M symm

n−s ,
M symm; 1/2) is the intersection homology D-module associated to the non-trivial irreducible
GLn(C)-equivariant local system on the orbit of rank-(n− s) matrices.

We let S = C[xi,j ] be the coordinate ring of M symm, where xi,j = xj,i. We write sdet =
det(xi,j) for the determinant of the generic symmetric matrix, and let Ssdet be the localization of

S at sdet. We consider Fs = 〈sdet−s/2〉D, the D-submodule of Ssdet (or of Ssdet · sdet1/2) generated
by sdet−s/2 for s = 0, . . . , n+ 1 (and F−1 = 0). We have that C2

0 = F0 = S, and C1
s = Fs+1/Fs−1

for s = 0, . . . , n.

Remark 1.3. The D-modules C2
s for s = 1, . . . , n−1 contain no SLn(C)-invariant sections, so they

provide counterexamples to [Lev09, Conjecture 5.17]. It may be interesting to note that when
n > 3, among these counterexamples there are the intersection homology D-modules L(M symm

n−s ,
M symm) with s even, so the failure of Levasseur’s conjecture cannot be solely explained by the
presence of non-trivial local systems.
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Remark 1.4. We can now give a quick derivation for the Bernstein–Sato polynomial of sdet [Kim03,
Appendix]:

bsdet(s) =

n∏
i=1

(
s+

1 + i

2

)
. (1.2)

It follows from Cayley’s identity that bsdet(s) divides
∏n
i=1(s + (1 + i)/2), while for each i = 1,

. . . , n the strict inclusion Fi−1 ( Fi+1 shows that −(1 + i)/2 is a root of bsdet(s). This is enough
to conclude the equality (1.2).

Remark 1.5. It is interesting to note that the character calculation allows us to determine the
characteristic varieties for the D-modules Cjs . The Fourier transform F (see § 2.5) permutes
the D-modules Cjs , and ‘rotates’ their characteristic varieties by 90◦ (note that ‘rotating’ the
conormal variety to the orbit of rank-s matrices yields the conormal variety to rank-(n − s)
matrices). The formula (2.29), where U =

∧2 Cn, together with (1.1), shows that F(C1
s ) = C1

n−s−1

for s = 0, . . . , n−1, and F(C2
s ) = C2

n−s for s = 0, . . . , n. Since C1
s has support M symm

n−s and F(C1
s )

has support M symm
s+1 , it follows that the characteristic variety of C1

s has two components, namely
the conormal varieties to the orbits of rank-(n− s) and rank-(n− s− 1) matrices. Since C2

s has
support M symm

n−s and F(C2
s ) has support M symm

s , it follows that the characteristic variety of C2
s

is irreducible, namely it is the conormal variety to the orbit of rank-(n − s) matrices. Similar
considerations show that for general and skew-symmetric matrices, the characteristic varieties of
the simple equivariant D-modules are irreducible. The calculation of characteristic varieties can
also be deduced from [BG99].

Strategy for computing the characters of equivariant D-modules
Our approach to computing characters of equivariant D-modules is based on performing Euler
characteristic calculations using the D-module functoriality together with some combinatorial
and geometric methods. More precisely, for the inclusion of an orbit ι : O ↪→ X, the D-
module direct image

∫
ιOO is an object in the derived category of G-equivariant DX -modules,

whose cohomology groups
∫ j
ι OO are (in the cases that we study) G-admissible representations.

Analyzing the inclusion ι directly is complicated, so we make use of a resolution of singularities Z
of the orbit closure O. The variety Z is a vector bundle over a Grassmannian G (or a product of
Grassmannians), and the inclusion j : O ↪→ Z is an affine open immersion. The map π : Z → X
factors as p ◦ s:

O �
� j // Z �

� s //

�� π
##

X ×G
p

��
O �
� // O �

� // X

where s is a regular embedding and p is the projection onto the first factor. We compute the
Euler characteristic of

∫
ιOO as a virtual admissible G-representation, by using the factorization

ι = p ◦ s ◦ j. If we pretend that there is a one-to-one correspondence between simple equivariant
D-modules and orbits (which is true for general and skew-symmetric matrices), and write Xs

for the D-module corresponding to matrices of rank s, then the Euler characteristic calculations
together with general considerations regarding the structure of D-module direct images allow us
to write down an upper-triangular matrix with ones on the diagonal that represents the change of
coordinates in the Grothendieck group of admissible representations, from (Xs)s to appropriately
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defined linearly independent characters (Xs)s. The Fourier transform on one hand preserves this

matrix, and on the other hand it makes it lower-triangular, which allows us to conclude that the

matrix is in fact the identity and therefore Xs = Xs for all s (see § 2.6).

In the process of computing Euler characteristics, we are led to the following combinatorial

problem. Let X = G(k,Cn) be the Grassmannian of k-dimensional quotients of Cn, with OX(1)

denoting the Plücker line bundle, and Ωi
X denoting the sheaf of differential i-forms on X, and

define the virtual GLn(C)-representation

pk,r =

k · (n−k)∑
i=0

(−1)i ·χ(X,Ωi
X(r)).

The problem is to compute pk,r ⊗SλCn for λ ∈ Zndom. When k = 1, p1,r corresponds to the

rth power sum symmetric function, and the answer is given in [Mac95, Exercise I.3.11(1)]. The

relevance of this formula for computing Euler characteristics is as follows: if we write E = L({0},
X) for the simple holonomic D-module supported at the origin, Ok for the orbit of rank-k

matrices, and ιk for the inclusion of Ok into the ambient space, then (up to minor adjustments,

depending on which space of matrices we analyze)

χ

(∫
ιk

OOk
)

=
∑
j∈Z

(−1)j
∫ j

ιk

OOk = lim
r→∞

pk,r ⊗E,

where the limit is taken in the Grothendieck group of admissible representations (see § 2.1.1 for

a precise formulation, and § 3 for the calculations).

Organization

In § 2, we establish the notation and basic results concerning the representation theory of general

linear groups and D-modules that will be used throughout the rest of the paper. In § 3, we

compute the relevant Euler characteristics as limits in the Grothendieck group of GL-admissible

representations. In §§ 4–6, we prove the main results on characters of equivariant D-modules.

Finally, in § 7, we discuss the simple D-modules that arise from non-equivariant local systems

on the orbits, and prove Levasseur’s conjecture for skew-symmetric and general matrices.

2. Preliminaries

2.1 Representation theory [Wey03, ch. 2]

Let W be a complex vector space of dimension dim(W ) = n, and denote by GL(W ) the

group of invertible linear transformations of W . The irreducible finite-dimensional GL(W )-

representations, denoted SλW , are indexed by dominant weights λ = (λ1 > · · · > λn) ∈ Zn.

A dominant weight λ is said to be a partition if all its parts λ1, . . . , λn are non-negative. The size

of λ is |λ| = λ1 + · · · + λn. The conjugate partition λ′ is defined by transposing the associated

Young diagram: λ′i is the number of the j for which λj > i; for example, (5, 2, 1)′ = (3, 2, 1, 1, 1).

Write [n] for the set {1, . . . , n}, and for a given subset I ⊂ [n] and an integer u, let (uI) be the

sequence µ ∈ Zn having µi = u when i ∈ I, and µi = 0 when i /∈ I. When I = [k] for k 6 n, we

simply write (uk) instead of (uI). We have that S(1k)W =
∧kW is the kth exterior power of W ,

and we let det(W ) denote the top exterior power
∧nW .
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2.1.1 Admissible representations. Given a reductive algebraic group G, we write Λ for the set
of (isomorphism classes of) finite-dimensional irreducible G-representations. We will be mainly
interested in the case when G = GL(W ) is a general linear group: we write Γ(G) = Γ(W ) and
Λ = {SλW : λ ∈ Zndom}. We also consider G = GL(W1)×GL(W2), dim(W1) = m, dim(W2) = n,
and write Γ(G) = Γ(W1,W2) and Λ = {SδW1⊗SλW2 : δ ∈ Zmdom, λ ∈ Zndom}. An admissible
G-representation decomposes as

M =
⊕
L∈Λ

L⊕aL ,

where each aL ∈ Z>0. We say that M is finite if only finitely many of the aL are non-zero. We
define the Grothendieck group Γ(G) of admissible representations to be ZΛ, the direct product of
copies of Z, indexed by the set Λ. We call the elements of Γ(G) virtual representations. We write
a typical element U ∈ Γ(G) as

U =
∑
L∈Λ

aL ·L,

where aL ∈ Z, and define 〈U ,L〉 = aL to be the multiplicity of L inside U . A sequence (Ur)r of
virtual representations is said to be convergent (in Γ(G)) if, for every L ∈ Λ, the sequence of
integers 〈Ur , L〉 is eventually constant. If (Ur)r is convergent, we write aL = limr→∞〈Ur , L〉 for
each L ∈ Λ. We define U =

∑
L∈Λ aL ·L to be the limit of (Ur)r, and write

lim
r→∞

Ur = U.

2.1.2 Combinatorics of weights. It will be convenient to make sense of SλW even when
λ ∈ Zn is not dominant. In order to do so, we let δ = (n − 1, n − 2, . . . , 1, 0) and consider
λ+ δ = (λ1 +n− 1, λ2 +n− 2, . . . , λn−1 + 1, λn). We write sort(λ+ δ) for the sequence obtained
by rearranging the entries of λ+ δ in non-increasing order. If λ+ δ has non-repeated entries, we
let sgn(λ) denote the sign of the unique permutation realizing the sorting of the sequence λ+ δ.
We define

λ̃ = sort(λ+ δ)− δ,
and let SλW be the element of Γ(W ) defined by

SλW =

{
sgn(λ) ·Sλ̃W if λ̃ is dominant (i.e. if λ+ δ has non-repeated entries),

0 otherwise.
(2.1)

For example, we have S(2,1,4,3)W = 0 and S(1,1,0,7)W = −S(4,2,2,1)W . Note that in particular

SλW = 0 if λi+1 = λi + 1 for some i = 1, . . . , n− 1. (2.2)

We denote by
([n]
k

)
the collection of subsets I ⊂ [n] of size |I| = k, and write P (k, n− k) for

the set of partitions µ = (µ1 > · · · > µk) with µ1 6 n− k. There is a one-to-one correspondence

between sets I ∈
([n]
k

)
and partitions µ ∈ P (k, n− k) given by

I = {µk + 1, µk−1 + 2, . . . , µ2 + (k − 1), µ1 + k}. (2.3)

If we write µ′ ∈ P (n− k, k) for the conjugate partition of µ, then the complement of I in [n] is
given by

Ic = [n]\I = {k + 1− µ′1, k + 2− µ′2, . . . , n− µ′n−k}. (2.4)
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For every λ ∈ Zn, I ∈
([n]
k

)
, and r ∈ Z, we define λ(r, I) ∈ Zn as follows: we write the elements

of I and Ic in increasing order:

I = {i1 < · · · < ik}, Ic = {ik+1 < · · · < in}, (2.5)

and let

λ(r, I)t =

{
r + t+ λit − it for t = 1, . . . , k,

t+ λit − it for t = k + 1, . . . , n.
(2.6)

We define λ1(I) ∈ Zk and λ2(I) ∈ Zn−k via

λ1(I)t = t+ λit − it for t = 1, . . . , k,

λ2(I)t−k = t+ λit − it for t = k + 1, . . . , n,
(2.7)

so that λ(r, I) is the concatenation of λ1(I) + (rk) and λ2(I). In particular,

λ1([k]) = (λ1, . . . , λk) and λ2([k]) = (λk+1, . . . , λn).

We define the permutation σ(I) of [n] via

σ(I)t = it for t = 1, . . . , n. (2.8)

With this notation, we obtain

Sλ+(rI)W = sgn(σ(I)) ·Sλ(r,I)W = (−1)|µ| ·Sλ(r,I)W, (2.9)

and note that if λ is dominant and r is sufficiently large, then λ(r, I) is also dominant.
We define for h, j ∈ Z/2Z the sets of partitions

P h,j(a, b) = {µ ∈ P (a, b) : µi ≡ h (mod 2) for i = 1, . . . , a, µ′i ≡ j (mod 2) for i = 1, . . . , b}.
(2.10)

A quick counting argument yields the following result.

Lemma 2.1. The cardinality of P h,j(a, b) is computed by

|P 0,0(a, b)| =
(ba2c+ b b2c

b b2c

)
, |P 0,1(a, b)| =


(ba−1

2 c+ b
2

b
2

)
b even,

0 b odd.

|P 1,0(a, b)| =


(a

2 + b b−1
2 c

b b−1
2 c

)
a even,

0 a odd,

|P 1,1(a, b)| =


(a−1

2 + b−1
2

b−1
2

)
a, b odd,

0 otherwise.
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2.1.3 A generalized Pieri rule. The Grothendieck group Γ(W ) is a module over the
representation ring R(W ) of finite-dimensional GL(W )-representations. As a ring, R(W ) is
generated by the exterior powers

∧kW , k 6 n, and by the inverse det(W )−1 =
∧nW ∗ =

S(−1n)W of det(W ). We have SλW ⊗det(W ) = Sλ+(1n)W . The following lemma generalizes

this by describing the multiplicative action of the exterior powers
∧kW on Γ(W ) (since the

multiplication is continuous, i.e. it commutes with limits, it suffices to determine its action on
the indecomposables SλW ).

Lemma 2.2 (Pieri’s rule). For every λ ∈ Zn, we have the following equality in Γ(W ):

( k∧
W
)
⊗SλW =

∑
I∈([n]k )

Sλ+(1I)W. (2.11)

Proof. We may assume without loss of generality that λ is dominant. If λi+1 = λi and I is such
that i /∈ I and i + 1 ∈ I, then it follows from (2.2) that Sλ+(1I)W = 0. For all the other terms

appearing on the right-hand side of (2.11), we have that µ = λ+ (1I) is dominant and µ/λ is a
vertical strip (i.e. µi − λi ∈ {0, 1} for all i) of size k. Equation (2.11) then follows from the usual
Pieri formula [Wey03, Corollary 2.3.5]. 2

We define elements pk,r(W ) ∈ R(W ) for every r ∈ Z and 0 6 k 6 n by

pk,r(W ) =
∑

I∈([n]k )

S(rI)W, (2.12)

and note that pk,1(W ) =
∧kW . We have the following generalization of Pieri’s rule.

Lemma 2.3. For every λ ∈ Zn, we have the following equality in Γ(W ):

pk,r(W )⊗SλW =
∑

I∈([n]k )

Sλ+(rI)W. (2.13)

Proof. When k = 0, p0,r(W ) = C is the identity element of R(W ), so the conclusion is trivial. We
may thus assume that k > 0. As before, we also assume that λ is dominant. Multiplication by
det(W ) is an invertible operation, so proving (2.13) for λ is equivalent to proving it for λ+ (1n).
In particular, we may assume that λ is a partition and that moreover λn = 0.

We consider the ordering of the partitions λ with at most n parts induced by the graded
reverse lexicographic order on their conjugates: more precisely, we say that λ � µ if |λ| > |µ|,
or if |λ| = |µ| and for the largest index i for which λ′i 6= µ′i one has λ′i > µ′i. We prove (2.13) for
all partitions λ, by induction with respect to the said ordering. When λ is the empty partition,
(2.13) coincides with (2.12).

Assume now that λ1 > 0 and consider the partition µ obtained from λ by removing the
last column of its Young diagram: the conjugate µ′ is given by µ′i = λ′i for i < λ1 and µ′i = 0
for i > λ1. We let l = λ′λ1 denote the size of the column removed from λ. Using the induction
hypothesis for µ ≺ λ and Lemma 2.2, we get

(pk,r(W )⊗SµW )⊗
( l∧

W
)

=
∑

J∈([n]l )

( ∑
I∈([n]k )

Sµ+(rI)+(1J )W

)
. (2.14)
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Consider the collection of partitions P = {α : α/µ is a vertical strip of size l}, so that

SµW ⊗
( l∧

W
)

=
∑
α∈P

SαW,

and note that λ ∈ P and that α ≺ λ for every λ 6= α ∈ P. We can then rewrite the left-hand side
of (2.14) as ∑

α∈P
pk,r(W )⊗SαW,

so in order to prove (2.13) for λ it is sufficient to show that the right-hand side of (2.14) is equal
to ∑

α∈P

( ∑
I∈([n]k )

Sα+(rI)W

)
.

Since P = {µ+(1J) : J ∈
([n]
l

)
, µ+(1J) dominant}, we only have to check that when α = µ+(1J)

is not dominant then ∑
I∈([n]k )

Sα+(rI)W = 0. (2.15)

Note that the only way in which α = µ + (1J) can fail to be dominant is if for some index j,
µj = µj+1 and j /∈ J , j+1 ∈ J . Fix such an index j, and note that αj+1 = αj +1. It follows from
(2.2) that when I ⊂ [n] is such that both j, j + 1 ∈ I, or both j, j + 1 /∈ I, then Sα+(rI)W = 0.
To show (2.15), it is then enough to prove that∑

I∈([n]k )
j∈I,j+1/∈I

Sα+(rI)W +
∑

I′∈([n]k )
j /∈I′,j+1∈I′

Sα+(rI′ )W = 0. (2.16)

There is a one-to-one correspondence between the collection of subsets I with j ∈ I, j + 1 /∈ I,
and subsets I ′ with j /∈ I ′, j + 1 ∈ I ′, given by I ′ = (I ∪ {j + 1})\{j}. Moreover, for such a pair
I, I ′ it follows from (2.1) that Sα+(rI)W = −Sα+(rI′ )W (because α + (rI) + δ is obtained from

α+(rI
′
)+δ by switching the jth part with the (j+1)st part), which proves (2.16) and concludes

the proof of the lemma. 2

2.2 Bott’s theorem for Grassmannians [Wey03, ch. 4]
We consider X = G(k, V ), the Grassmannian of k-dimensional quotients of V (or k-dimensional
subspaces of W = V ∗), with the tautological sequence

0 −→ R −→ V ⊗OX −→ Q −→ 0, (2.17)

where Q is the tautological rank-k quotient bundle, and R is the tautological rank-(n− k) sub-
bundle. Bott’s theorem for Grassmannians [Wey03, Corollary 4.1.9] computes the cohomology
of a large class of GL-equivariant bundles on X. We only need a weaker version that computes
Euler characteristics.

Suppose that M is a quasi-coherent GL(W )-equivariant sheaf on X. We say that M has
admissible (respectively finite) cohomology if its cohomology groups Hj(X,M) are admissible
(respectively finite) for j = 0, . . . ,dim(X). We can therefore make sense of the Euler characteristic
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of M as an element of Γ(W ) (respectively R(W )). We define the Euler characteristic of M to be
the virtual representation

χ(X,M) =

k · (n−k)∑
j=0

(−1)jHj(X,M). (2.18)

Theorem 2.4 (Bott). Let α ∈ Zkdom and β ∈ Zn−kdom be dominant weights, and let λ = (α, β) ∈ Zn
be their concatenation. The Euler characteristic of SαQ⊗SβR is given (with the convention
(2.1)) by

χ(X,SαQ⊗SβR) = SλV.

We can now give an alternative interpretation of the elements pk,r introduced in (2.12).

Lemma 2.5. If we let Ωi
X =

∧i(R⊗Q∗) denote the sheaf of i-differential forms on X, and write
OX(1) = det(Q) for the Plücker line bundle on X, then

pk,r(V ) =

k · (n−k)∑
i=0

(−1)i ·χ(X,Ωi
X(r)).

Proof. Cauchy’s formula [Wey03, Corollary 2.3.3] yields

i∧
(R⊗Q∗) =

⊕
µ∈P (k,n−k), |µ|=i

SµQ∗⊗Sµ′R.

Twisting by OX(r) = det(Q)⊗ r = S(rk)Q, and taking Euler characteristics, we get using
Theorem 2.4

χ(X,Ωi
X(r)) =

∑
µ∈P (k,n−k), |µ|=i

S(r−µk,r−µk−1,...,r−µ1,µ′1,...,µ′n−k)V.

Using (2.9) with λ = 0, we get S(r−µk,r−µk−1,...,r−µ1,µ′1,...,µ′n−k)V = (−1)|µ| ·S(rI)V , so

k · (n−k)∑
i=0

(−1)i ·χ(X,Ωi
X(r)) =

∑
I∈([n]k )

S(rI)V = pk,r(V ). 2

2.3 D-modules [BGK+87, HTT08]
For a smooth algebraic variety X over C, we let DX denote the sheaf of differential operators on
X [HTT08, § 1.1]. A D-module M on X (or a DX -module) is a quasi-coherent sheaf M on X,
with a left module action of DX .

Definition 2.6. Let G be an algebraic group acting on X, and let M be a DX -module.
Differentiating the action of G on X yields a map d : Lie(G) → DerX from the Lie algebra
of G to the vector fields on X. The DX -module operation

DX ⊗M→M, (2.19)

composed with d, yields an action of Lie(G) on M. The DX -module M is G-equivariant if:
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(a) M admits an action of G compatible with (2.19) (see [HTT08, Definition 11.5.2] for a
precise meaning of compatibility);

(b) the action of Lie(G) onM obtained by differentiating the action of G onM coincides with
the one induced from d : Lie(G) → DerX and (2.19).

As discussed in the Introduction, examples of G-equivariant holonomic DX -modules are OX
and, for a G-invariant subset Y ⊂ X, the local cohomology modules H•Y (X,OX), as well as the
intersection homology D-modules L(Y,X). When X = U is a vector space, and Y = {0} is the
origin, we let

E = L({0}, U) = Hdim(U)
{0} (U,OU ) (2.20)

be the unique simple DU -module supported at the origin. As a vector space (and a G-
representation),

E = det(U)⊗Sym(U). (2.21)

The following theorem gives a classification of the simple equivariant holonomic D-modules,
for a group action with finitely many orbits (see [HTT08, § 11.6]).

Theorem 2.7. Let G be an algebraic group acting with finitely many orbits on a smooth
algebraic variety X. There is a one-to-one correspondence between:

(a) simple G-equivariant holonomic DX -modules;

(b) pairs (O,L), where O is a G-orbit and L is an irreducible G-equivariant local system on O;

(b′) pairs (O,L), where O is a G-orbit and L is an irreducible representation of the component
group of the isotropy group of O.

Here by the isotropy group of O we mean the stabilizer of any element in O (they are all
isomorphic). For an algebraic group H, we denote by H0 the connected component of the identity,
which is a normal subgroup of H. The quotient H/H0 is called the component group of H.

Remark 2.8. When the representation L in Theorem 2.7(b′) is trivial, the corresponding DX -
module in part (a) is L(O,X), where O is the closure of O. It follows that in the case when
the isotropy groups for the G-action on X are connected, there is a one-to-one correspondence
between simple G-equivariant DX -modules and orbits of the group action.

Let m > n be positive integers and consider the complex vector spaces M of general m× n
matrices, M symm of n×n symmetric, and M skew of n×n skew-symmetric matrices, respectively.
These spaces admit a natural action of a group GL via row and column operations: GLm(C)×
GLn(C) acts on M , and GLn(C) acts on M symm and M skew. We write Ms (respectively M symm

s )
for the subvariety of M (respectively M symm) consisting of matrices of rank at most s, for
s = 0, . . . , n, and M skew

s for the subvariety of M skew consisting of skew-symmetric matrices of
rank at most 2s, for s = 0, . . . , bn/2c. We have the following result.

Theorem 2.9 (Classification of simple GL-equivariant holonomic D-modules on spaces of
matrices).

– (General matrices.) There are n+ 1 simple GL-equivariant D-modules on the vector space
M of m×n matrices, namely the intersection homology D-modules L(Ms,M), s = 0, . . . , n.
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– (Symmetric matrices.) There are 2n + 1 simple GL-equivariant D-modules on the vector
space M symm of n × n symmetric matrices, n + 1 of which are the intersection homology
D-modules L(M symm

s ,M symm), s = 0, . . . , n, while the remaining ones are the intersection
homology D-modules L(M symm

s ,M symm; 1/2), s = 1, . . . , n, corresponding to the non-trivial
irreducible equivariant local systems on the orbits.

– (Skew-symmetric matrices.) There are bn/2c+ 1 simple GL-equivariant D-modules on the
vector space M skew of n×n skew-symmetric matrices, namely L(M skew

s ,M skew), s = 0, . . . ,
bn/2c.

Proof. The theorem follows from Theorem 2.7 and Remark 2.8, since the isotropy groups for
general and skew-symmetric matrices are connected, while for symmetric matrices the isotropy
groups of the non-zero orbits have two connected components. 2

2.4 Computing Euler characteristics
Let X be a smooth complex projective algebraic variety and denote its dimension by dX . Consider
a finite-dimensional vector space U , and a short exact sequence

0 −→ ξ −→ U ⊗OX −→ η −→ 0, (2.22)

where ξ, η are locally free sheaves on X. We think of U∗ as an affine space, and of U as linear
forms on U∗. We let Y = TotX(η∗) denote the total space of the bundle η∗, and define a morphism
π : Y → U∗ via the commutative diagram

Y = TotX(η∗) �
� //

π
''

U∗ ×X

��
U∗

(2.23)

where the top map is the inclusion of η∗ into the trivial bundle U∗, and the vertical map is the
projection onto the U∗ factor. We will be interested in understanding the (Euler characteristic
of the) D-module pushforward

∫
πM along the map π for certain DY -modules M. For affine

morphisms X ′ → X, we will identify freely quasi-coherent sheaves on X ′ with quasi-coherent
OX′-modules on X as in [Har77, Exercise II.5.17(e)].

We let S = SymOX (η), so that Y = Spec
X

(S), and consider a locally free sheaf L of rank

one with L ⊂ Symi(η) for some i > 0. We pull back L to Y , define L = TotY (L∗) to be the total
space of the line bundle L∗, and write p : L → Y for the natural map. The inclusion L ⊂ Symi(η)
defines a section z : Y → L of p [Har77, Exercise II.5.18(c)], and we define Z to be the zero
locus of z. If X = Spec(C), then Y is an affine space, S is the ring of polynomial functions on
Y , L corresponds to (the vector space spanned by) a polynomial f ∈ S of degree i, and Z is the
vanishing locus of f .

We consider the complement Y 0 = Y \Z and let j : Y 0
→ Y denote the inclusion. Since j is

an affine open immersion,
∫
j OY 0 = OY 0 can be thought of as a quasi-coherent sheaf of algebras

on Y (or on X):
OY 0 = lim−→

r

L−r ⊗OY = lim−→
r

L−r ⊗S.

In the case when X = Spec(C), we have that OY 0 = Sf is the localization of S at f , which
is a D-module on the affine space Y . We define the quasi-coherent sheaf S∨ on X (the graded
dual of S) by

S∨ = det(η∗)⊗SymOX (η∗).
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Proposition 2.10. With the notation above, we assume that X admits an action of a reductive
group G, that U is a finite-dimensional G-representation, and that ξ, η,L are G-equivariant
locally free sheaves. Assume further that we have an isomorphism of G-equivariant quasi-coherent
sheaves on X:

OY 0 ' lim−→
r

Lr ⊗S∨. (2.24)

Let M be a DY -module which is isomorphic, as a quasi-coherent G-equivariant sheaf on X, to
OY 0 ⊗OXL′, with L′ a line bundle on X. We denote by Ωi

X the sheaf of i-differential forms on
X, and assume that for every i = 0, . . . , dX the sheaves Ωi

X ⊗M⊗ det(ξ∗)⊗ SymOX (ξ∗) have
G-admissible cohomology. If we define the sequence Pr(X,L;L′) ∈ Γ(G) via

Pr(X,L;L′) =

dX∑
i=0

(−1)dX−i ·χ(X,Lr ⊗L′⊗Ωi
X),

then

χ

(∫
π
M
)

= lim
r→∞

Pr(X,L;L′)⊗det(U∗)⊗SymC(U∗). (2.25)

Remark 2.11. We will apply Proposition 2.10 in the case when X = G(k, V ) is a Grassmann
variety, and L = OX(1) is the Plücker line bundle (or its square). It follows from Lemma 2.5
that

Pr(X,OX(1);OX) = (−1)k(n−k) · pk,r(V ).

It follows that if X = G(k, V1)×G(k, V2), where dim(V1) = m, dim(V2) = n, and if L = OX(1, 1),
then Pr(X,OX(1);OX) = (−1)k · (m−n) · pk,r(V1)⊗ pk,r(V2).

Proof of Proposition 2.10. Since the sheaves Ωi
X ⊗M⊗ det(ξ∗)⊗SymOX (ξ∗) have admissible

cohomology, it follows from [Rai16, Corollary 2.10] that

χ

(∫
π
M
)

=

dX∑
i=0

(−1)dX−i ·χ(X,Ωi
X ⊗M⊗ det(ξ∗)⊗SymOX (ξ∗)). (2.26)

Computing Euler characteristics commutes with colimits and associated graded constructions.
By (2.22), we get a filtration of U∗⊗OX with gr(U∗⊗OX) = ξ∗ ⊕ η∗, which yields a filtration
of SymOX (U∗⊗OX) with gr(SymOX (U∗⊗OX)) = SymOX (ξ∗)⊗SymOX (η∗). We also get that
det(U∗⊗OX) = det(ξ∗)⊗det(η∗) and therefore

χ(X,Ωi
X ⊗L′⊗Lr ⊗S∨⊗det(ξ∗)⊗SymOX

(ξ∗)) = χ(X,Ωi
X ⊗L′⊗Lr ⊗det(U∗)⊗ SymOX

(U∗⊗OX))

U∗ is a trivial bundle
= χ(X,Ωi

X ⊗L′⊗Lr)⊗det(U∗)⊗ SymC(U∗).

Multiplying this equality by (−1)dX−i, summing over i = 0, . . . , dX , taking the limit as r →∞,
and using the identification (2.24) tensored with L′, we get (2.25). 2

2.5 The Weyl algebra and the Fourier transform
For a positive integer N , the Weyl algebra

C[x1, . . . , xN , ∂1, . . . , ∂N ], ∂i =
∂

∂xi
(2.27)
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is the ring of differential operators on CN . In this section, we give a coordinate-independent
description of the Weyl algebra, and use it to describe the Fourier transform.

Given a finite-dimensional C-vector space U of dimension N , we write 〈 , 〉 for the natural
pairing U × U∗ → C. We let Ũ = U ⊕ U∗ and define a non-degenerate skew-symmetric form
ω : Ũ ⊗ Ũ → C by

ω(u, u′) =


〈u , u′〉 if u ∈ U, u′ ∈ U∗,
−〈u′ , u〉 if u′ ∈ U, u ∈ U∗,
0 otherwise.

We write Tn(Ũ) for the tensor product Ũ ⊗n, and let T (Ũ) =
⊕

n>0 Tn(Ũ) denote the tensor

algebra on Ũ . We have a natural inclusion
∧2 Ũ ⊂ T2(Ũ), and define the Weyl algebra DU∗ as the

quotient

DU∗ = T (Ũ)

/〈
x− ω(x) : x ∈

2∧
Ũ

〉
(2.28)

of the tensor algebra by the bilateral ideal generated by differences x − ω(x), with x ∈ ∧2 Ũ .
Note that DU∗ is the ring of differential operators on the vector space U∗. If we choose a basis
x1, . . . , xN of U , and the dual basis ∂1, . . . , ∂N of U∗, then DU∗ coincides with (2.27).

Lemma 2.12 (Fourier transform). If M is a (left) DU -module, then det(U∗)⊗M has the
structure of a (left) DU∗-module.

Example 2.13. The most basic example is when M = Sym(U∗) is the coordinate ring of U . In
that case det(U∗)⊗Sym(U∗) is equal to E, the simple holonomic DU∗-module supported at the
origin (see (2.20)).

Proof of Lemma 2.12. Using the identification of Ũ∗ with Ũ coming from the natural
isomorphism U∗⊕U ' U⊕U∗, it is easy to see thatDU∗ 'Dop

U , where op denotes the opposite ring.
Since M is a left DU -module, it is also a right Dop

U -module, i.e. it can be identified with a right
DU∗-module. The canonical sheaf ωU∗ on the vector space U∗ is a free rank-one module generated
by det(U). By [HTT08, Proposition 1.2.12], the association M 7→ ω−1

U∗ ⊗M = det(U∗)⊗M gives
an equivalence between the categories of right DU∗-modules and left DU∗-modules. 2

Motivated by Lemma 2.12, we define a Fourier transform relative to U , denoted FU , on the
Grothendieck group Γ(G) of admissible G-representations as follows:

FU
(∑

ai ·Mi

)
=
∑

ai · (det(U∗)⊗M∗i ). (2.29)

The context in which we apply the Fourier transform is as follows: we will have constructions
which are functorial in U for certain DU -modules MU which are admissible representations for
some group G, in such a way that

MU =
⊕
i

M⊕aii if and only if MU∗ =
⊕
i

(M∗i )⊕ai .

By Lemma 2.12, the Fourier transform of the DU∗-module MU∗ has character equal to
FU (

∑
i ai ·Mi). We will slightly imprecisely refer to this as the character of the Fourier transform

of MU .
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2.6 A little linear algebra
Consider a finite partially ordered set P, and let A denote the free abelian group with basis
{vp : p ∈ P}. We write p � q to indicate that p is strictly larger than q with respect to the
partial order, and p � q when we allow equality. Assume that F : P −→ P is an order-reversing
bijection, i.e. p � q if and only if F(q) � F(p). By abuse of notation, we also write F : A −→ A
for the induced automorphism of A, given by F(vp) = vF(p). We have the following result.

Lemma 2.14. Suppose that we have a collection of elements vp ∈ A for p ∈ P, for which there
exist relations

vp = vp +
∑
q�p

apq · vq for some integers apq . (2.30)

If the automorphism F of A permutes the elements vp, then vp = vp for all p ∈ P (and hence all
apq = 0).

Proof. Write F(vp) = vσ(p) for some permutation σ : P −→ P. Applying F to (2.30), we get

vσ(p) = vF(p) +
∑
q�p

apq · vF(q),

which is necessarily a permutation of the relations (2.30). Since F is order-reversing, it follows
that σ(p) = F(q) for some q � p and, if σ(p) = F(p), then one also has vσ(p) = vF(p), i.e. apq = 0
for all q � p. We get that F(p) � σ(p) for all p ∈ P, and the equality F(p) = σ(p) implies that
vσ(p) = vF(p). An easy induction on the height of F(p), defined by ht(F(p)) = #{q : F(p) � q},
shows that F(p) = σ(p) for all p, which concludes the proof of the lemma. 2

3. Some limit calculations in the Grothendieck group of admissible representations

Recall the terminology from §§ 2.1.1–2.1.3, which we will be using freely throughout this section.
In particular, recall the notation Γ(G) for the Grothendieck group of admissibleG-representations
for some group G, and the definition of pk,r(V ) from (2.12) (also Lemma 2.5). When W is a
vector space, we write V = W ∗ for its dual. In this section, we compute in three cases limits in
Γ(G) of the type

lim
r→∞

pk,r ⊗E, (3.1)

where (pk,r)r is a sequence of finite virtual G-representations and E = det(U)⊗Sym(U) is
the (character of the) simple DU -module supported at the origin (2.20), where U is a finite-
dimensional G-representation:

– U = Sym2W , G = GL(W ) (so that Γ(G) = Γ(W )), pk,r = pk,r(V ). The limit (3.1) does not
exist if r is arbitrary, but instead we have to consider the cases when r is even (respectively
odd) separately;

– U =W1⊗W2,G= GL(W1)×GL(W2) (so that Γ(G) = Γ(W1,W2)), pk,r = pk,r(V1)⊗ pk,r(V2);

– U =
∧2W , G = GL(W ), pk,r = pk,r(V ) with k even.

As mentioned in the Introduction and explained in § 2.4, the limits (3.1) correspond to Euler
characteristic calculations for certain D-module direct images. They are essential to the character
calculations in §§ 4–6 below. The reader who is not interested in the details of the limit
calculations may wish to record the results of Propositions 3.1, 3.5, and 3.6 below, and skip
to § 4.
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3.1 Symmetric matrices
We let W be a vector space of dimension n. For s = 0, . . . , n and j = 1, 2, we define the elements
Cjs ∈ Γ(W ) via

Cjs =
⊕

λ∈Cj(s,n)

SλW, (3.2)

where Cj(s, n) is defined in (1.1).

Proposition 3.1. If E = det(Sym2W )⊗Sym(Sym2W ), then, for k = 0, . . . , n,

(−1)k(n−k) ·
(

lim
r→∞

r≡k+1 (mod 2)

pk,r(V )⊗E
)

=



n∑
s=n−k
s even

( s−2
2

n−k−2
2

)
·C2

s +

n∑
s=n−k+1
s odd

( s−1
2

n−k
2

)
·C1

s if n− k even,

n∑
s=n−k
s odd

( s−1
2

n−k−1
2

)
·C1

s −
n∑

s=n−k+1
s even

( s−2
2

n−k−1
2

)
·C2

s if n− k odd,

(−1)k(n−k) ·
(

lim
r→∞

r≡k (mod 2)

pk,r(V )⊗E
)

=



n∑
s=n−k
s even

( s
2

n−k
2

)
·C1

s if n− k even,

n∑
s=n−k
s odd

( s−1
2

n−k−1
2

)
·C2

s if n− k odd.

When k = 0, the above equalities are easy to verify: pk,r(V ) = C is the trivial representation,
so the left-hand side reduces to E, regardless of the parity of r; the right-hand side is either C1

n

or C2
n, but E = C1

n = C2
n. We therefore fix 1 6 k 6 n for the rest of this section. We begin with

some notation and preliminary results before proving the proposition. For j ∈ Z/2Z, we let

Cj = {λ ∈ Zkdom : λi ≡ n+ 1 + j (mod 2) for i = 1, . . . , k},
Cj>n+1 = {λ ∈ Zn−kdom : λi ≡ n+ 1 + j (mod 2) for i = 1, . . . , n− k, and λn−k > n+ 1}.

(3.3)

With the convention λ0 =∞, λn+1 = −∞, we define for s = 0, . . . , n,

Z(s) = {λ ∈ Zndom : λs > s+ 1 > λs+1}, (3.4)

and note that the sets Z(s), s = 0, . . . , n, form a partition of Zndom. For h, j ∈ Z/2Z, we let

Ch,j(s) =

{
λ ∈ Z(s) : λi

(mod 2)≡
{
h for i = 1, . . . , s

j for i = s+ 1, . . . , n.

}
, Ch,js =

∑
λ∈Ch,j(s)

SλW. (3.5)
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Comparing with (1.1), we get that C1(s, n) = Cs+1,s+1(s)∪Cs+1,s+1(s + 1) and C2(s, n) =
Cs+1,s(s), so

C1
s = Cs+1,s+1

s + Cs+1,s+1
s+1 and C2

s = Cs+1,s
s . (3.6)

Lemma 3.2. If I ∈
([n]
k

)
, λ1(I) ∈ Ck+1+j , and λ2(I) ∈ C0

>n+1, then:
– λ ∈ Z(s) for some s = n− k, . . . , n;
– {s+ 1, . . . , n} ⊂ I;
– λs+1 ≡ · · · ≡ λn ≡ j (mod 2).

Proof. Consider the unique s for which λ ∈ Z(s). Let s′ be the maximal element of Ic and assume
that s′ > s. We have (using (2.5)) that in = s′ and therefore λs′ 6 λs+1 6 s+ 1 and

λ2(I)n−k
(2.7)
= n+ λin − in = n+ λs′ − s′ 6 n+ s+ 1− s′ < n+ 1,

which contradicts λ2(I) ∈ C0
>n+1. It follows that s′ 6 s and hence {s + 1, . . . , n} ⊂ I, which

implies that n− s 6 k or s > n− k. From (2.5), we get

it = t+ n− k, for t = k − n+ s+ 1, . . . , k,

which, using the fact that λ1(I) ∈ Ck+1+j , yields for t = k − n+ s+ 1, . . . , k

n+ 1 + k + 1 + j
(mod 2)≡ λ1(I)t = t+ λit − it = t+ λt+n−k − (t+ n− k) = λt+n−k + k − n,

so λt+n−k ≡ j (mod 2), concluding the proof of the lemma. 2

Lemma 3.3. Assume that λ ∈ Z(s) and that there exists an index 1 6 i < s such that
λi 6≡ λi+1 (mod 2). For any j ∈ Z/2Z, consider the collection

Pλ(j) =

{
I ∈

(
[n]

k

)
: λ1(I) ∈ Ck+1+j , λ2(I) ∈ C0

>n+1

}
. (3.7)

We have (using the notation (2.8)) ∑
I∈Pλ(j)

sgn(σ(I)) = 0. (3.8)

Proof. We show that if I ∈ Pλ(j), then exactly one of i, i + 1 is contained in I. Moreover, we
show that the assignment I ′ = I\{i} ∪ {i+ 1} establishes a bijection between

{I ∈ Pλ(j) : i ∈ I} and {I ′ ∈ Pλ(j) : i+ 1 ∈ I ′}. (3.9)

Since sgn(σ(I ′)) = −sgn(σ(I)), the conclusion (3.8) follows.
Assume that I is such that i, i + 1 are both in I, or both in Ic. We can then find t < k or

t > k such that it = i and it+1 = i + 1. If t < k, then λ1(I)t 6≡ λ1(I)t+1 (mod 2), contradicting
λ1(I) ∈ Ck+1+j . If t > k, then λ2(I)t−k 6≡ λ2(I)t−k+1 (mod 2), contradicting λ2(I) ∈ C0

>n+1.
Choose now a set I with i ∈ I, i + 1 ∈ Ic, and choose t0 6 k, t1 > k + 1, such that it0 = i,

it1 = i + 1. If we let I ′ = I\{i} ∪ {i + 1}, then λ1(I)t = λ1(I ′)t for t 6= t0, and λ2(I)t = λ2(I ′)t
for t 6= t1 − k. We have

λ1(I)t0 = t0 + λi − i, λ1(I ′)t0 = t0 + λi+1 − (i+ 1),

λ2(I)t1−k = t1 + λi+1 − (i+ 1), λ2(I ′)t1−k = t1 + λi − i
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and, since λi 6≡ λi+1 (mod 2), we get λ1(I)t ≡ λ1(I ′)t (mod 2) and λ2(I)t ≡ λ2(I ′)t (mod 2) for
all t. Since λ2(I)t1−k 6 λ2(I ′)t1−k, the only way in which the correspondence I ↔ I ′ could fail to
induce a bijection (3.9) is if for some I, I ′ we get t1 = n and λ2(I)n−k 6 n < n+ 1 6 λ2(I ′)n−k,
in which case λ2(I) 6∈ C0

>n+1, but λ2(I ′) ∈ C0
>n+1. However, the inequality λ2(I)n−k 6 n would

imply that

λ2(I)t1−k = t1 + λit1 − it1 = n+ λi+1 − (i+ 1) 6 n, or equivalently λi+1 6 i+ 1.

Since i < s by hypothesis, we get λs 6 λi+1 6 (i + 1) 6 s, contradicting the fact that
λ ∈ Z(s). 2

Lemma 3.4. If λ ∈ Ch,j(s), s > n−k, then there is a one-to-one correspondence between elements
Pλ(j) and the set Pn−k+j−h,s+1−h(k − n + s, n − k) (defined in (2.10)). Moreover, for every
I ∈ Pλ(j), we have

sgn(σ(I)) = (−1)(n−k) · (k+h),

and Pλ(j) is empty if h ≡ s ≡ j + 1 (mod 2).

Proof. The correspondence between sets I ∈
([n]
k

)
(respectively their complements Ic) and

partitions µ ∈ P (k, n− k) (respectively their conjugates µ′) is given in (2.3) (respectively (2.4)).
If I ∈ Pλ(j), then it follows from Lemma 3.2 that s + 1, . . . , n are the largest elements of
I, namely ik−n+s+1, . . . , ik, so µ1 = · · · = µn−s = n − k. The set I is then determined by
µ = (µn−s+1, . . . , µk) ∈ P (k − n + s, n − k). Since λ ∈ Ch,j(s), the condition λ1(I) ∈ Ck+1+j

is equivalent to µi ≡ n − k + j − h (mod 2). The condition λ2(I) ∈ C0
>n+1 is equivalent to

µ′i ≡ n + 1 − h (mod 2), which in turn is equivalent to µ′i ≡ s + 1 − h (mod 2). It follows that
I ∈ Pλ(j) if and only if µ ∈ Pn−k+j−h,s+1−h(k − n + s, n − k), which establishes the desired
bijection. Moreover,

sgn(σ(I)) = (−1)|µ| = (−1)|µ
′| = (−1)(n−k) · (n+1−h) = (−1)(n−k) · (k+h),

where the last equality follows from the fact that (n−k) · (n+1−k) is even. If h≡ s≡ j+1 (mod 2),
then |Pλ(j)| = |Pn−k+1,1(k − n+ s, n− k)| = 0 by Lemma 2.1. 2

Proof of Proposition 3.1. We have

〈SλW ,pk,r(V )⊗E〉 = 〈SλW ⊗ pk,r(W ) , E〉 (2.13),(2.9)
=

∑
I∈([n]k )

sgn(σ(I)) · 〈Sλ(r,I)W ,E〉.

Since det(Sym2W ) = det(W )⊗ (n+1) = S(n+1)nW , we get using Cauchy’s formula [Wey03,
Proposition 2.3.8] that

E = det(Sym2W )⊗Sym(Sym2W ) =
⊕

λ∈Zndom,λn>n+1
λi≡n+1 (mod 2)

SλW.

Using the notation (2.6)–(2.7) and (3.3), we obtain for r � 0

〈Sλ(r,I)W ,E〉 =

{
1 if λ1(I) ∈ Cr and λ2(I) ∈ C0

>n+1,

0 otherwise.
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It follows (using the notation (3.7)) that for j ∈ Z/2Z,

lim
r→∞

r≡k+1+j (mod 2)

pk,r(V )⊗E =
∑

λ∈Zndom

( ∑
I∈Pλ(j)

sgn(σ(I))

)
·SλW (3.10)

and, by Lemmas 3.2 and 3.3, we only need to consider λ ∈ Z(s) for s > n − k such that (for
some h ∈ Z/2Z)

λ1 ≡ · · · ≡ λs ≡ h (mod 2) and λs+1 ≡ · · · ≡ λn ≡ j (mod 2),

i.e. λ ∈ Ch,j(s). Multiplying both sides of (3.10) by (−1)k · (n−k) and using Lemma 3.4, we get

(−1)k · (n−k) ·
(

lim
r→∞

r
(mod 2)
≡ k+1+j

pk,r(V )⊗E
)

=
∑

n−k6s6n
h=j,j+1

(−1)(n−k) ·h · |Pn−k+j−h,s+1−h(k − n+ s, n− k)| ·Ch,js .

We separate the contributions of the right-hand side according to two cases.
Terms with h = j + 1. By Lemma 3.4, we can consider only the terms with s ≡ j (mod 2),

in which case we get from (3.6) that Ch,js = Cs+1,s
s = C2

s. We have

|Pn−k+j−h,s+1−h(k − n+ s, n− k)|

= |Pn−k+1,0(k − n+ s, n− k)| Lemma 2.1
=



(b s−1
2 c

n−k−1
2

)
n− k odd,( s−2

2
n−k−2

2

)
n− k and s even,

0 otherwise.

Comparing the coefficient of C2
s in Proposition 3.1 with (−1)(n−k) ·h · |Pn−k+j−h,s+1−h(k−n+ s,

n− k)| in each of the cases j = 0, 1 and n− k even and odd, we see that they agree.

Terms with h= j. The terms with s≡ j+1 (mod 2) contribute Ch,js = Cs+1,s+1
s with coefficient

(−1)(n−k) ·h · |Pn−k,0(k−n+s, n−k)|. The terms with s ≡ j (mod 2) contribute Ch,js = Cs,ss with
coefficient (−1)(n−k) ·h · |Pn−k,1(k−n+s, n−k)|. For s= n−k, we get |Pn−k,1(k−n+s, n−k)|= 0,
so Cs,ss only appears for s > n−k. Observing that |Pn−k,0(k−n+s, n−k)| = |Pn−k,1(k−n+s+1,
n − k)| for s > n − k, and using C1

s = Cs+1,s+1
s + Cs+1,s+1

s+1 in (3.6), we conclude that the terms
with h = j contribute ∑

s≡j+1 (mod 2)

(−1)(n−k) ·h · |Pn−k,0(k − n+ s, n− k)| ·C1
s,

where

|Pn−k,0(k − n+ s, n− k)| Lemma 2.1
=



(b s2c
n−k

2

)
n− k even,( s−1

2
n−k−1

2

)
n− k and s odd,

0 otherwise.

Comparing with the coefficient of C1
s in Proposition 3.1, we conclude the proof of the

proposition. 2
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3.2 General matrices
For positive integers m > n and for s = 0, . . . , n, we let

A(s;m,n) = {λ ∈ Zndom : λs > s+m− n, λs+1 6 s}. (3.11)

If λ ∈ A(s;m,n), then we define a dominant weight λ(s) ∈ Zmdom by

λ(s) =

(
λ1 − (m− n), . . . , λs − (m− n), s, . . . , s︸ ︷︷ ︸

m−n

, λs+1, . . . , λn

)
. (3.12)

For vector spaces W1, W2, with dim(W1) = m, dim(W2) = n, and s = 0, . . . , n, we define As ∈
Γ(W1,W2) by

As =
⊕

λ∈A(s;m,n)

Sλ(s)W1⊗SλW2. (3.13)

Proposition 3.5. We write W = W1⊗W2. If E = det(W )⊗Sym(W ), then, for k = 0, . . . , n,

(−1)k · (m−n) ·
(

lim
r→∞

pk,r(V1)⊗ pk,r(V2)⊗E
)

=

n∑
s=n−k

(−1)(m−n) · (n−k−s) ·
(

s

s− n+ k

)
·As.

Proof of Proposition 3.5. Consider dominant weights δ̃ ∈ Zmdom and λ̃ ∈ Zndom, and let

δ = δ̃ − (nm), λ = λ̃− (mn). (3.14)

We obtain using (2.9), (2.13), and easy manipulations that 〈Sδ̃W1⊗Sλ̃W2 , pk,r(V1)⊗ pk,r(V2)⊗E〉
equals ∑

I∈([m]
k ), J∈([n]k )

sgn(σ(I)) · sgn(σ(J)) · 〈Sδ(r,I)W1⊗Sλ(r,J)W2 ,Sym(W )〉.

Using (2.7) and writing µ | (0m−n) for the sequence obtained by appending m−n zeros to µ, we
get for r � 0

〈Sδ(r,I)W1⊗Sλ(r,J)W2 , Sym(W )〉

=

{
1 if δ1(I) = λ1(J), δ2(I) = λ2(J) | (0m−n), and δ2(I) ∈ Zm−k>0 ,

0 otherwise.

Let u ∈ {0, . . . ,m} be the unique index such that δu > u−m > δu+1. The condition δ2(I) ∈ Zm−k>0

is equivalent to the inclusion {u + 1, . . . ,m} ⊂ I, which implies that u > m − k. When m > n,
the last m− n entries of δ2(I) being 0 forces δu = δu−1 = · · · = δu−m+n+1 = u−m, and all the
elements u, u−1, . . . , u−m+n+ 1 to be contained in Ic = [m]\I. We modify δ and I as follows:

we consider δ ∈ Zndom and I ∈
([n]
k

)
defined by

δ = (δ1, . . . , δu−m+n, δu+1 − (m− n), . . . , δm − (m− n)),

I = {i1, . . . , ik−m+u, u+ 1− (m− n), u+ 2− (m− n), . . . , n},

so that I
c

= [n]\I = Ic\{u, u− 1, . . . , u−m+ n+ 1}. The conditions δ1(I) = λ1(J) and δ2(I) =

λ2(J) | (0m−n) are then equivalent to δ
1
(I) = λ1(J) and δ

2
(I) = λ2(J). Since both λ, δ are

dominant weights, these equalities can only hold for δ = λ and I = J . Note that the freedom
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in choosing I (or I = J) is in the choice of an increasing sequence i1 < · · · < ik−m+u inside
{1, . . . , u}, i.e. there are

(
u−m+n
k−m+u

)
choices for I once we fix δ. Writing s = u−m+ n, we get

s > (m− k)−m+ n = n− k,
λs = δs = δu−m+n > δu > u−m = s− n,

λs+1 = δu+1 − (m− n) 6 (u−m)− (m− n) = (s− n)− (m− n) = s−m,

and moreover

δ =

(
λ1, . . . , λs, s− n, . . . , s− n︸ ︷︷ ︸

m−n

, λs+1 + (m− n), . . . , λn + (m− n)

)
.

It follows (using (3.12) and (3.14)) that δ̃ = λ̃(s). Since sgn(σ(I)) = (−1)(m−n) · (m−u) · sgn(σ(I)),
it follows that if I = J and m− u = n− s, then

sgn(σ(I)) · sgn(σ(J)) = (−1)(m−n) · (n−s).

Putting everything together, and using
(
u−m+n
k−m+u

)
=
(

s
s−n+k

)
, we obtain for r � 0

〈Sδ̃W1⊗Sλ̃W2 , pk,r(V1)⊗ pk,r(V2)⊗E〉

=


(−1)(m−n) · (n−s) ·

(
s

s− n+ k

)
if λ̃ ∈ A(s;m,n) and δ̃ = λ̃(s),

for some s > n− k,
0 otherwise.

Multiplying by (−1)k · (m−n) and taking the limit r →∞ yields the desired conclusion. 2

3.3 Skew-symmetric matrices
For a positive integer m and for s = 0, . . . ,m, we let

B(s, 2m) = {λ ∈ Z2m
dom : λ2s > (2s− 1), λ2s+1 6 2s, λ2i−1 = λ2i for all i},

B(s, 2m+ 1) = {λ ∈ Z2m+1
dom : λ2s+1 = 2s, λ2i−1 = λ2i for i 6 s, λ2i = λ2i+1 for i > s}.

(3.15)

For a vector space W with dim(W ) = n, and for s = 0, . . . ,m = bn/2c, we define Bs ∈ Γ(W )
via

Bs =
⊕

λ∈B(s,n)

SλW. (3.16)

Proposition 3.6. If E = det
(∧2W

)
⊗Sym

(∧2W
)

and k = 0, . . . ,m = bn/2c, then

lim
r→∞

p2k,r(V )⊗E =
m∑

s=m−k

(
s

m− k

)
·Bs.

With m = bn/2c and 1 6 k 6 m, we define the following collections of dominant weights:

B = {λ ∈ Z2k
dom : λ2i−1 = λ2i for i = 1, . . . , k},

B>n−1 = {λ ∈ Zn−2k
dom : λ2i−1 = λ2i > n− 1 for i = 1, . . . ,m− k, λn−2k = n− 1 if n is odd}.

(3.17)
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We partition Zndom into the following collections of dominant weights Y(u), u = 0, . . . , n,
defined by

Y(u) = {λ ∈ Zndom : λu > u− 1 > λu+1}. (3.18)

In analogy with Lemma 3.2, one can prove the following result.

Lemma 3.7. If I ∈
([n]

2k

)
, then the conditions λ1(I) ∈ B and λ2(I) ∈ B>n−1 are equivalent to:

– λ ∈ Y(u) for some u = n− 2k, . . . , n;
– {u+ 1, . . . , n} ⊂ I;
– λi2t−1 = λi2t and i2t = i2t−1 + 1 for all t = 1, . . . ,m. If n is odd, then u ∈ Ic is odd and
λu = u− 1.

Lemma 3.8. Assume that λ, I satisfy the equivalent conditions in Lemma 3.7. If n = 2m is even,
then

{(i1, i2), (i3, i4), . . . , (i2m−1, i2m)} = {(1, 2), (3, 4), . . . , (2m− 1, 2m)}. (3.19)

If n = 2m+ 1 is odd and if we write u = 2s+ 1, then we have

{(i1, i2), (i3, i4), . . . , (i2m−1, i2m)} = {(1, 2), . . . , (2s− 1, 2s), (2s+ 2, 2s+ 3), . . . , (2m, 2m+ 1)}.
(3.20)

Moreover, we have that λ ∈ B(s, n) for some s = m− k, . . . ,m.

Proof. The conclusions (3.19)–(3.20) follow from the fact that i1, . . . , in give a permutation of
[n] with i2t = i2t−1 + 1, and in = u is odd when n is odd. If n is odd and u = 2s+ 1, it follows
from u > n− 2k that s >m−k. Moreover, we have λ2s+1 = λu = u− 1 = 2s, and it follows from
(3.20) that λ ∈ B(s, n).

Assume now that n = 2m is even. It follows from (3.19) that in is even, so we can write
in = 2s′. Since in + 1, . . . , n ∈ I, we get n − in 6 2k, i.e. s′ > m − k. Since in 6 u, we have
λ2s′ > λu > u− 1 > 2s′ − 1. We have by (3.19) that λ2i−1 = λ2i for i = 1, . . . ,m, so, taking s to
be the maximal index for which λ2s > 2s − 1, we find that s > s′ and λ2s+1 = λ2s+2 < 2s + 1,
i.e. λ ∈ B(s, n). 2

Lemma 3.9. Let m = bn/2c and, for m− k 6 s 6 m, define the collection of partitions

B(k, n/2− k, s) = {µ ∈ P (2k, n− 2k) : µ′i even for i = 1, . . . , n− 2k, µ′n−2k = 2m− 2s,

µi even for i = 2m− 2s+ 1, . . . , 2k} .
(3.21)

Every partition µ ∈ B(k, n/2− k, s) has even size, and the cardinality of the set B(k, n/2− k, s)
is given by

|B(k, n/2− k, s)| =
{( s

m−k
)

if n = 2m+ 1 is odd,(
s−1

m−1−k
)

if n = 2m is even.

Proof. Since each µ′i is even, |µ| = |µ′| is even. To compute the size of B(k, n/2− k, s), we first
note that the condition µ′n−2k = 2m − 2s implies that µ1 = · · · = µ2m−2s = n − 2k, so any
µ ∈ B(k, n/2− k, s) is determined by µ = (µ2m−2s+1, . . . , µ2k) ∈ P (2(k + s−m), n− 2k). Since
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µ′n−2k = 2m−2s, we must have µ1 < n−2k. The condition µ ∈ B(k, n/2−k, s) is then equivalent
(using (2.10)) to

µ ∈
{
P 0,0(2(k + s−m), 2(m− k)) if n is odd,

P 0,0(2(k + s−m), 2(m− 1− k)) if n is even.

By Lemma 2.1, the number of choices for µ is
(

s
m−k

)
if n is odd, respectively

(
s−1

m−1−k
)

if n is
even. 2

Lemma 3.10. Assume that λ ∈ B(s, n) for some s > m − k. The collection of subsets I ∈
([n]

2k

)
for which λ1(I) ∈ B and λ2(I) ∈ B>n−1 corresponds via (2.3) to B′(k, n/2− k, s), where

B′(k, n/2− k, s) =


B(k, n/2− k, s) if n is odd,

s⋃
s′=m−k

B(k, n/2− k, s′) if n is even.

Proof. Consider λ ∈ B(s, n) for s > m− k, and I ∈
([n]

2k

)
satisfying the conditions of Lemma 3.7.

If n = 2m + 1 is odd, then in = 2s + 1 and I contains 2s + 2, . . . , n, i.e. the corresponding
µ ∈ P (2k, n− 2k) has

µ1 = · · · = µ2m−2s = n− 2k, µ2m−2s+1 < n− 2k,

so µ′n−2k = 2m−2s. For 2k < t < n, we have that it 6 2s, so µ′t−2k = t− it is even by (3.20). The
set of µi with 2m− 2s < i 6 2k coincides with that of differences it− t for 1 6 t 6 2(k−m+ s),
which are all even again by (3.20) and the fact that it 6 2s for t 6 2(k −m+ s).

Assume next that n = 2m is even, and use (3.19) to write in = 2s′. As in the previous
paragraph, this implies that µ′n−2k = 2m − 2s′. By (3.19), all the differences t − it are even, so
all µi, µ

′
i are even. This shows that I ∈ B(k, n/2− k, s′). Since in + 1, . . . , n ∈ I, we get as before

that s′ > m − k. If s′ > s, then λ2(I)n−2k = λin + n − in = λ2s′ + n − 2s′ 6 λ2s+1 + n − 2s′ 6
2s+ n− 2s′ 6 n− 2, which is a contradiction.

The verification that µ ∈ B′(k, n/2−k, s) yields a subset I with λ1(I) ∈ B and λ2(I) ∈ B>n−1

follows easily by tracing back the arguments. 2

Proof of Proposition 3.6. We have

〈SλW ,p2k,r(V )⊗E〉 = 〈SλW ⊗ p2k,r(W ) , E〉 (2.13),(2.9)
=

∑
I∈([n]2k)

sgn(σ(I))〈Sλ(r,I)W ,E〉.

Using the notation (2.7) and (3.17), we get that for r � 0,

〈Sλ(r,I)W ,E〉 =

{
1 if λ1(I) ∈ B and λ2(I) ∈ B>n−1,

0 otherwise.

It follows that

lim
r→∞

p2k,r(V )⊗E =
∑

λ∈Zndom, I∈(
[n]
2k)

λ1(I)∈B, λ2(I)∈B>n−1

sgn(σ(I)) ·SλW
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Lemmas 3.8–3.10
=

m∑
s=m−k

( ∑
λ∈B(s,n)

µ∈B′(k,n/2−k,s)

(−1)|µ|SλW

)

|µ| even
=

m∑
s=m−k

( ∑
λ∈B(s,n)

|B′(k, n/2− k, s)| ·SλW
)
.

If n = 2m + 1 is odd, then |B′(k, n/2 − k, s)| = |B(k, n/2 − k, s)| =
(

s
m−k

)
, and the desired

equality follows. Similarly, when n = 2m is even, we get

|B′(k, n/2−k, s)|=
s∑

s′=m−k
|B(k, n/2−k, s′)|=

s∑
s′=m−k

(
s′ − 1

m− 1− k

)
=

(
s

m− k

)
. 2

4. Equivariant D-modules on symmetric matrices

In this section, we compute the characters of the GL-equivariant D-modules on the vector space
M symm of symmetric n× n matrices. We let W denote a complex vector space of dimension n,
V = W ∗, and we identify Sym2W with M symm, where squares w2 correspond to matrices of rank
one. If we write GL = GL(W ) and let M symm

s denote the subvariety of matrices of rank at most
s, then the main result of this section is the following theorem.

Theorem 4.1. There exist 2n + 1 simple GL-equivariant holonomic D-modules on M symm,
namely

Cjs =

{
L(M symm

n−s ,M symm) if j ≡ s (mod 2)

L(M symm
n−s ,M symm; 1/2) if j ≡ s+ 1 (mod 2)

for s = 0, . . . , n− 1, j = 1, 2,

and C1
n = C2

n = L({0},M symm). For all s, j, the character of Cjs is Cjs (as defined in (3.2)).

The remaining assertion of the theorem on equivariant D-modules on symmetric matrices
described in the Introduction is the identification C1

s = Fs+1/Fs−1 for s = 0, . . . , n: its proof
follows closely the proof of Theorem 1.1 in the next section, so we leave the details to the
interested reader. The classification of GL-equivariant holonomic simple D-modules is explained
in Theorem 2.9, so we only need to check that Cjs is the character of Cjs . For k = 1, . . . , n, we
consider the situation of § 2.4, with X = Xk = G(k, V ) andR,Q as in (2.17). We let U = Sym2 V ,
η = Sym2Q. If we write Y = Yk, π = πk, then (2.23) becomes

Yk = TotXk(Sym2Q∗) � � //

πk
**

Sym2W ×G(k, V )

��
Sym2W

(4.1)

Locally on Xk, Q∗ trivializes to a vector space of dimension k, and Yk gets identified with
the space of k × k symmetric matrices. We take L = (detQ)⊗ 2, consider its GL-equivariant
inclusion L ⊂ Symkη, and note that L is locally generated by the symmetric determinant. If we
let Y 0

k ⊂ Yk be the open set defined locally by the non-vanishing of the determinant,M0
k = OY 0

k

is a DYk -module. Note that Y 0
k maps isomorphically via πk to the orbit of symmetric matrices

of rank k. As a GL-equivariant quasi-coherent sheaf on Xk,

M0
k =

⊕
λ∈Zkdom,λieven

SλQ = lim−→
r≡k+1 (mod 2)

(detQ)⊗ r ⊗det(Sym2Q∗)⊗Sym (Sym2Q∗), (4.2)
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so condition (2.24) is satisfied in our context. The Euler characteristic of the D-module
pushforward

∫
πk
M0

k is now easily computed as a consequence of Proposition 2.10 and of
Remark 2.11:

χ

(∫
πk

M0
k

)
= (−1)k · (n−k) ·

(
lim
r→∞

r≡k+1 (mod 2)

pk,r(V )⊗det(Sym2W )⊗Sym(Sym2W )

)
, (4.3)

which is evaluated explicitly in Proposition 3.1.
We next explain whyM0

k⊗det(Q) also has the structure of a DYk -module. Consider the étale

double cover Y
1/2
k of Y 0

k defined locally by the square root of the symmetric determinant. The
structure sheaf O

Y
1/2
k

is naturally a DY 0
k

-module [CL01] and hence also a DYk -module. It contains

M0
k, so we can define M1

k as the cokernel of the inclusion M0
k ⊂ OY 1/2

k

. As a GL-equivariant

quasi-coherent sheaf on Xk, M1
k is given by

M1
k =

⊕
λ∈Zkdom,λi odd

SλQ = OY 0
k
⊗det(Q). (4.4)

It follows thatM1
k satisfies the setting of Proposition 2.10 with L′ = det(Q), so we can compute

the Euler characteristic of its direct image via πk as

χ

(∫
πk

M1
k

)
= (−1)k · (n−k) ·

(
lim
r→∞

r≡k (mod 2)

pk,r(V )⊗det(Sym2W )⊗Sym(Sym2W )

)
, (4.5)

which is evaluated in Proposition 3.1. We are now ready to prove the main result of this section.

Proof of Theorem 4.1. The classification of simple D-modules follows from Theorem 2.9, so it
remains to check that in Γ(W ) we have the equalities Cjs = Cjs for s = 0, . . . , n and j = 1, 2. The
equalities (4.3)–(4.5) together with Proposition 3.1 yield for s = 1, . . . , n and j = 1, 2,

Cjn−s = Cjn−s +
n∑

i=n−s+1

(asi ·C1
i + bsi ·C2

i ) for some integers asi , b
s
i .

Since Cjn = det(Sym2W )⊗Sym(Sym2W ) has character Cjn (by Cauchy’s formula [Wey03,
Proposition 2.3.8]), the equation above is also satisfied for s = 0. The Fourier transform F
permutes the modules Cjs , and it takes the form

F(C1
s) = C1

n−s for s = 0, . . . , n and F(C2
s) = C2

n−s−1 for s = 0, . . . , n− 1.

We can then apply Lemma 2.14 to the poset P = {(s, j) : s = 0, . . . , n−1, j = 1, 2}∪{(n, 1)} with
the lexicographic ordering given by (s, j) < (s′, j′) if and only if s < s′, or s = s′ and j < j′. We
let v(s,j) = Cjs and v(s,j) = Cjs , and conclude using Lemma 2.14 that Cjs = Cjs for all s = 0, . . . , n
and j = 1, 2. 2

5. Equivariant D-modules on m× n matrices

In this section, we compute the characters of the GL-equivariant D-modules on the vector space
M of m×n matrices, for m > n. We consider W1,W2 vector spaces of dimensions dim(W1) = m,
dim(W2) = n, let Vi = W ∗i , and identify W = W1⊗W2 with M , where tensor products w1⊗w2

correspond to matrices of rank one. If we write GL = GL(W1) × GL(W2), let Ms denote the
subvariety of matrices of rank at most s, and recall the notation (3.13) for the characters As,
then the main result of this section is the following theorem.
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Theorem on equivariant D-modules on general matrices. The simple GL-equivariant
holonomic D-modules on M are As = L(Mn−s,M), s = 0, . . . , n, and, for each s, the character
of As is As. When m = n, As is as described in Theorem 1.1, while for m > n it can be expressed
in terms of local cohomology:

As = H1+s · (m−n)
Mn−1

(M,OM ) = Hcodim(Mn−s)
Mn−s

(M,OM ). (5.1)

We only need to show that As is the character of As, and to prove Theorem 1.1. The

classification of GL-equivariant holonomic simple D-modules is explained in Theorem 2.9, while

(5.1) follows by comparing As with the characters of local cohomology modules from [RWW14,

Theorem 4.5] and [RW14, Theorem 6.1].

Proof of Theorem 1.1. Let us assume for now that As is the character of As, and write

W1 = W2 = Cn. Using Cauchy’s formula [Wey03, Corollary 2.3.3], we get an equality of

GL-representations

Sdet =
⊕

λ∈Zndom

SλW1⊗SλW2 =
n⊕
i=0

Ai.

As in Example 1.2, this shows that A0, . . . , An are the D-module composition factors of Sdet, each

appearing with multiplicity one. It remains to check that As = Fs/Fs−1, where Fs = 〈det−s〉D.

We prove by induction on s that the D-module composition factors of Fs are A0, . . . , As,

which is clearly true for s = 0. Assume that s > 0 and that the induction hypothesis is valid for

Fs−1, so that Sdet/Fs−1 =
⊕n

i=sAi as GL-representations. We must then have for some i > s

an inclusion of D-modules Ai ⊂ Sdet/Fs−1. Using the character description, Ai must contain the

class of det−i inside the quotient Sdet/Fs−1, and therefore it must also contain the classes of

det−i+1, det−i+2, . . .. If i > s, this contradicts the formula for the character of Ai. We conclude

that i = s and that we have an inclusion As ⊂ Sdet/Fs−1. Since As is simple, it is generated by

the class of det−s, so the image of As is Fs/Fs−1. 2

We note that just as in Remark 1.4, the strict inclusions Fs−1 ( Fs in Theorem 1.1, combined

with Cayley’s identity, show that the b-function of the generic determinant is bdet(s) = (s + 1)

(s+ 2) · · · (s+ n).

We conclude by showing that As is the character of As. For k = 1, . . . , n, we consider the

situation of § 2.4, with X = Xk = G(k, V1) × G(k, V2) and R1,Q1,R2,Q2 as in (2.17). We let

U = V1⊗V2, η = Q1⊗Q2, and write Y = Yk, π = πk in (2.23). We note that locally on Xk,

Q∗1,Q∗2 trivialize to vector spaces of dimension k, and Yk gets identified with the space of k × k
matrices. We take the line bundle L = detQ1⊗detQ2, consider its GL-equivariant inclusion

L ⊂ Symkη, and note that L is locally generated by the function that assigns to a matrix its

determinant. If we let Y 0
k ⊂ Yk be the open set defined locally by the non-vanishing of the

determinant, then as a GL-equivariant quasi-coherent sheaf on Xk, OY 0
k

is given by

OY 0
k

=
⊕

λ∈Zkdom

SλQ1⊗SλQ2 = lim−→
r

L⊗ r ⊗det
(
Q∗1⊗Q∗2

)
⊗Sym

(
Q∗1⊗Q∗2

)
,

so condition (2.24) is satisfied in our context. The Euler characteristic of the D-module
pushforward

∫
πk
OY 0

k
is now easily computed as a consequence of Propositions 2.10 and 3.5,
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and of Remark 2.11:

χ

(∫
πk

OY 0
k

)
= (−1)k · (m−n) · lim

r→∞
pk,r(V1)⊗ pk,r(V2)⊗det(W )⊗Sym(W )

=
n∑

s=n−k
(−1)(m−n) · (n−k−s) ·

(
s

s− n+ k

)
·As.

Since OY 0
k

maps isomorphically via πk to the orbit of rank-k matrices in M , the conclusion that
As is the character of As follows as in the proof of Theorem 4.1 by the linear algebra trick in
§ 2.6.

6. Equivariant D-modules on skew-symmetric matrices

In this section, we compute the characters of the GL-equivariant D-modules on the vector space
of skew-symmetric n × n matrices. We let W denote a complex vector space of dimension n,
V = W ∗, and we identify

∧2W with the vector space M skew of n× n skew-symmetric matrices,
where exterior products w1 ∧ w2 correspond to matrices of rank two. If we write GL = GL(W ),
m = bn/2c, let M skew

s denote the subvariety of matrices of rank at most 2s, and recall the
notation (3.16) for the characters Bs, then we have the following result.

Theorem on equivariant D-modules on skew-symmetric matrices. The simple GL-
equivariant holonomic D-modules on M skew are Bs = L(M skew

m−s ,M
skew), s = 0, . . . ,m, and,

for each s, the character of Bs is Bs. If n = 2m + 1 is odd, then, for s = 1, . . . ,m, Bs can be
described in terms of local cohomology:

Bs = H2s+1
Mskew
m−1

(M skew,OMskew) = Hcodim(Mskew
m−s)

Mskew
m−s

(M skew,OMskew). (6.1)

If n = 2m is even, we let Pf be an equation defining the hypersurface M skew
m−1 . We let S denote the

coordinate ring of M skew, and consider Fs = 〈Pf−2s〉D, the D-submodule of the localization SPf

generated by Pf−2s for s = 0, . . . ,m (and F−1 = 0). We have that Bs = Fs/Fs−1 for s = 0, . . . ,m.

The classification of GL-equivariant holonomic simpleD-modules is explained in Theorem 2.9,
while the equality (6.1) follows from [RWW14, Theorem 5.5] and [RW15, (1.4)]. When n = 2m,
we get that Bs = Fs/Fs−1 just as in the proof of Theorem 1.1. Note that Cayley’s identity shows
that bPf(s) divides

∏m
i=1(s + 2 · i − 1), which in turn implies that 〈Pf−2i〉D = 〈Pf−2i+1〉D. The

strict inclusions Fi−1 ( Fi then force 2 · i − 1 to be a root of bPf(s) for i = 1, . . . ,m, so in fact
bPf(s) =

∏m
i=1(s+ 2 · i− 1).

To prove the theorem, it remains to check that Bs is the character of Bs. For k = 1, . . . ,m, we
consider the situation of § 2.4, with X = Xk = G(2k, V ) and R,Q as in (2.17). We let U =

∧2 V ,
η =

∧2Q, and write Y = Yk, π = πk in (2.23). Locally on Xk, Q∗ trivializes to a vector space
of dimension 2k, and Yk gets identified with the space of 2k × 2k skew-symmetric matrices. We
take the line bundle L = detQ to be the Plücker line bundle on X, consider its GL-equivariant
inclusion L ⊂ Symkη, and note that L is locally generated by the function that assigns to
a skew-symmetric matrix its Pfaffian. If we let Y 0

k ⊂ Yk be the open set defined locally by the
non-vanishing of the Pfaffian, then we get using Cauchy’s formula [Wey03, Proposition 2.3.8] that
condition (2.24) is satisfied. As a consequence of Propositions 2.10 and 3.6, and of Remark 2.11,
we obtain

χ

(∫
πk

OY 0
k

)
= lim

r→∞
p2k,r(V )⊗det

( 2∧
W
)
⊗Sym

( 2∧
W
)

=
m∑

s=m−k

(
s

m− k

)
·Bs. (6.2)

1962

https://doi.org/10.1112/S0010437X16007521 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007521


Characters of equivariant D-modules on spaces of matrices

Since OY 0
k

maps isomorphically via πk to the orbit of rank-2k matrices in M skew, we conclude
as in the proof of Theorem 4.1 that Bs is the character of Bs for all s.

7. The simple regular holonomic D-modules on rank stratifications

We let X denote any of the vector spaces of general, symmetric, or skew-symmetric matrices,
with the natural group action by row and column operations of the corresponding group G
as considered in the previous sections. We denote by Λ the union of conormal varieties to the
orbits of G, and consider the category C = modrhΛ (DX) of regular holonomic DX -modules whose
characteristic variety is contained in Λ. The goal of this section is to describe explicitly the
simple objects in C and obtain as a corollary a direct proof of Levasseur’s conjecture [Lev09,
Conjecture 5.17] in the case of general and skew-symmetric matrices.

Via the Riemann–Hilbert correspondence, the simple objects in C are classified by irreducible
local systems on the G-orbits. When the local systems are G-equivariant, the corresponding
DX -modules have been described in the previous sections. The only orbits with irreducible non-
equivariant local systems are the orbits O ⊂ X of rank-n matrices, when X is the vector space of
n× n general or symmetric matrices, or when X is the vector space of 2n× 2n skew-symmetric
matrices. In each of these cases, the complement of O in X is defined by a single polynomial f ,
which is the determinant of the generic (symmetric) n × n matrix in the first two cases, and it
is the Pfaffian of the generic 2n× 2n skew-symmetric matrix in the last case. The fundamental
group of O is equal to Z, so the monodromy of the corresponding local system is given by a
non-zero complex number λ = e2πiα with α ∈ C/Z. We let S denote the coordinate ring of X
and for α ∈ C we consider the DX -module Fα = Sf · fα (which depends only on the class of α
in C/Z).

Theorem 7.1. With notation as above, consider the irreducible local system Lα on O whose
monodromy is given by λ = e2πiα. If Lα is not G-equivariant, then the corresponding simple
object in modrhΛ (DX) is Fα.

Proof. The restriction of Fα to O is a rank-one integrable connection whose corresponding local
system has monodromy given by λ = e2πiα. It follows that in order to prove the theorem we
need to check that Fα is a simple DX -module. The condition that Lα is not G-equivariant is
equivalent to (see Theorems 2.7 and 2.9):

– α /∈ Z if X is the space of general or skew-symmetric matrices;
– α /∈ 1

2Z if X is the space of symmetric matrices.
From now on we assume that Lα is not G-equivariant. It follows from Cayley’s identity (and

its symmetric and skew-symmetric versions) that Fα is generated as a DX -module by fα (or by
f r+α for any r ∈ Z). In order to prove that Fα is simple, it is then sufficient to show that any
non-zero DX -submodule F ⊂ Fα contains f r+α for r � 0. Fix any such F .

We write g for the Lie algebra of G, and note that any DX -module is a g-representation.
In particular, this is true about F ⊂ Fα. Since Fα has a multiplicity-free decomposition into
irreducible g-representations of the form M · fα, where M ⊂ Sf is an irreducible integral
g-representation, we may assume that F contains one such M · fα. Replacing α by α− r and M
by M · f r for r ∈ Z, we may assume that M ⊂ S. Since M generates a non-zero ideal which is
invariant under the action of G, it defines set-theoretically a proper closed G-invariant subset of
X, which is necessarily contained in the zero locus of f (the complement of f is a dense orbit for
the G-action). We obtain that the ideal in S generated by M contains all large enough powers
of f , and therefore that F contains f r+α for r� 0, which concludes the proof of the theorem.2
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We end by remarking that Theorem 7.1 yields a proof of Levasseur’s conjecture in the case of
general and skew-symmetric matrices. We have already seen that the irreducible G-equivariant
local systems on the orbits of the group action give rise to simple DX -modules containing (and
hence generated by) non-zero sections invariant under the action of the derived subgroup G′. By
Theorem 7.1, the remaining simple objects of C are all of the form Fα = Sf · fα. Since f is a
G′-invariant, the same is true about fα, so Fα contains non-zero G′-invariant sections.
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