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Network analysis of ESM data has become popular in clinical psychology. In this approach, discrete-
time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used
to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-
time (CT) models have been suggested as an alternative but require a conceptual shift, implying that
DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT
network approach using CT-VAR models. We define a new network representation and develop centrality
measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.

Keywords: dynamical network analysis, continuous-timemodeling, centrality, intensive longitudinal data,
experience sampling methodology.

Dynamical networks are a popular approach for the analysis of experience sampling data in
psychology (Bringmann et al., 2013; Borsboom & Cramer, 2013). In this approach, researchers
typically make use of the discrete-time (DT) first-order vector auto-regressive (VAR) model, with
the estimated lagged parameters of this model treated as edges directly connecting nodes in the
network. In clinical psychology in particular, dynamical network analyses have been promoted
as an aid in developing personalized treatments for psychopathology. To facilitate this, central-
ity measures based on parameter estimates are used to identify which variable in the network
represents the most promising target for future interventions (Bringmann et al., 2013; Fisher &
Boswell, 2016; Kroeze et al., 2017; Epskamp et al., 2018; Rubel et al., 2018; Bak et al., 2016;
Bringmann et al., 2015; Bastiaansen et al., 2019; Fisher et al., 2017; Christian et al., 2019).

However, it is well known that the DT-VAR model suffers from the problem of time-interval
dependency (Gollob & Reichardt, 1987), which entails that the estimated lagged parameters are
a function of the amount of time that elapses between repeated measurements. This problem
can be resolved by modeling psychological processes as unfolding continuously over time using
continuous-time (CT) models that explicitly account for the time-interval dependency of lagged
parameters (e.g., Boker, 2002; Oud & Delsing, 2010; van Montfort et al., 2018; Ryan et al., 2018;
Voelkle et al., 2012). Suchmodels can easily deal with unequal intervals, and can be used to derive
how lagged parameters are expected to evolve over a whole range of time-interval values. Yet,
taking a CT perspective also entails a conceptual shift, in that lagged regression parameters at any
interval should be interpreted as total rather than direct relationships (Aalen et al., 2012; Aalen et
al., 2016; Deboeck&Preacher, 2016).While the general consequences of this have been discussed
elsewhere, the consequences for the network approach have yet to be elucidated. This leaves a
number of open questions, most notably: what are the implications of the CT perspective for
current centrality measures? How can CT models be used to yield novel insights into a dynamical
network? And how can we use CT models to choose intervention targets?
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The aim of the current paper is to answer these questions. This paper is organized as follows.
In the first section, we provide an overview of the DT-VAR model and how path-specific effects
and centrality measures are used to identify intervention targets in practice. Moreover, we discuss
the time-interval problem that is associated with this approach. In the second section, we present
the CT-VAR model as an alternative approach to dynamical network analysis, and explore the
consequences of this. In the third section, we introduce new fit-for-purpose centrality measures
that both reflect the CT nature of the underlying process and have a clear and direct conceptual
link to interventions and the choice of optimal intervention targets. Finally, we demonstrate the
application of CT network analysis using empirical data. For simplicity, the developments in
this paper focus on single-subject models, though the critiques and measures developed here
generalize in a straightforward way to within-subjects parameters of multilevel models.

1. Current Practice: DT-VAR Networks

Researchers who adopt a network perspective on psychological phenomena often use the
parameters of (single-subject or multilevel) first-order discrete-time vector auto-regressive (DT-
VAR) models to suggest intervention targets (Bringmann et al., 2013; Pe et al., 2015; Fisher &
Boswell, 2016; Kroeze et al., 2017; Rubel et al., 2018; Bak et al., 2016). In this section, we
describe this practice. We present the model itself and describe two ways in which researchers
have used this model to find intervention targets, that is, through considering path-specific effects
and through computing centrality measures. We will show how these two practices are connected,
as this insight will prove useful later when considering how CT models could be used in an
analogous way. Furthermore, we elaborate on the time-interval problem, and discuss how this
issue casts doubt on the appropriateness of current practice, which motivates the developments
presented in the remainder of this paper.

1.1. The DT-VAR Model

TheDT-VARmodel is a single-subject time-seriesmodel that describes dynamic relationships
between variables measured repeatedly over time. Lagged regression parameters encode the effect
of a variable on itself (an auto-regressive effect) or another variable (a cross-lagged effect) at the
next measurement occasion (i.e., at a lag of one). This model can be written as

Y τ = c+ �Y τ−1 + ετ (1)

where given p variables, the p× 1 vector of random variables Y at occasion τ is regressed on the
p × 1 vector of those same variables at the previous occasion, Y τ−1. The p × p matrix of lagged
regression parameters is denoted �, while the p × 1 vectors c and ετ denote the intercepts and
random shocks, respectively, the latter being normally distributed with mean zero and variance-
covariance matrix � (Hamilton, 1994). The multivariate mean of the DT-VAR model μ can be
expressed as a function of the intercepts and lagged parameters (μ = (I − �)−1c) and can be
thought of as the equilibrium or attractor of the dynamical system. If we assume the data are
centered, the intercept term can be omitted (c = 0), a convention we will adopt throughout the
remainder of the paper.

In qualitative terms, themodel describes a systemwhere the randomshocks ετ push the system
away from its equilibrium, and the lagged parameters� determine how the variables react to these
shocks, eventually returning them to equilibrium over time (for more details, see, among others,
Ryan et al., 2018; Strogatz, 2015; Haslbeck et al., in press). A distinction can be made between
DT-VAR models which exhibit “positive” and “negative” auto-regression: in the former case, the
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(a)

(b)

Figure 1.
Path model (left-hand side) and network (right-hand side) representations of two four-variable DT-VAR models. In the
path models, the presence of an arrow linking two variables denotes some nonzero dependency between them, conditional
on all variables at the previous wave. For the networks, the arrows represent auto-regressive and cross-lagged regression
parameters in a first-orderDT-VARmodel. Solid red arrows denote parameterswhile dashed blue arrows represent negative
parameters.

system returns to equilibrium in an exponential fashion over time; In the latter, variables switch
their sign (from positive to negative and vice versa) at each subsequent occasion. In the univariate
case, this is determined by the sign of the auto-regressive parameter φ, but in the multivariate
case by the sign of the eigenvalues of �. Positive auto-regression systems are found in many
psychological time-series applications (e.g., Bringmann et al., 2013; Koval & Kuppens, 2012;
Oravecz & Tuerlinckx, 2011). In this paper, we will assume that our system of interest exhibits
positive auto-regression. Two crucial assumptions of the DT-VAR model in general are that the
same amount of time (denoted �t) elapses between two subsequent measurement occasions, and
that the underlying process is stationary, which entails that the means, variance and covariances,
and lagged regression parameters remain the same over time.1

The DT-VAR model can be represented as either a path model, as shown in the left-hand
panel of Fig. 1a, or as a dynamical network structure, as shown in the right-hand panel, where the
nodes represent the random variables, and the edges represent the values of the lagged parameters
� (Bringmann et al., 2013; Epskamp et al., 2018). The lagged parameters in � are typically
interpreted as direct effects of these variables on each other over time. As an example, take it
that the four variables in Fig. 1a represent (repeated measurements of) Stress (Y1), Anxiety (Y2),
Self-Consciousness (Y3) and feelings of Physical Discomfort (Y4). We will refer throughout to
the dynamical system composed of these four time-varying processes as the Stress-Discomfort
system. We can see from the parameter values in the dynamical network that all variables share

1In order for a process to be stationary, the � matrix eigenvalues must lie within the unit circle (Hamilton, 1994).
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reciprocal cross-lagged relationships with all other variables, resulting in a completely connected
network. Typically, a cross-lagged parameter such asφ41 = 0.05would be interpreted as the direct
effect of current Stress (Y1,τ ) on Physical Discomfort at the next measurement occasion (Y4,τ+1),
conditional on (i.e., controlling for) current feelings of Anxiety, Self-Consciousness and Physical
Discomfort (Y2,τ ,Y3,τ ,Y4,τ ). This parameter is weakly positive, leading to the interpretation that
a high level of current Stress has a small positive direct effect on feelings of Physical Discomfort
at the next occasion.

1.2. Intervention Targets from DT-VAR Models

To identify which variables should be considered targets for an intervention based on a DT-
VAR model, psychology researchers have mainly used two approaches: (a) path-specific effects,
which are inspired by the SEM literature (Bollen, 1987); and (b) centrality measures, which come
from the network analysis literature (Freeman, 1978; Opsahl et al., 2010).

Path-specific effects have been used to describe the total, direct and indirect effects of one
variable on another, and can be calculated using the well-known path-tracing rules from the SEM
literature (Bollen, 1987). For instance, the total effect of Stress levels now (Y1,τ ) on Physical
Discomfort two measurement occasions later (Y4,τ+2) is the sum of the direct effect pathways
(i.e., Y1,τ → Y4,τ+1 → Y4,τ+2, and Y1,τ → Y1,τ+1 → Y4,τ+2), and the indirect effect pathways
through the mediating variables Anxiety and Self-Consciousness (i.e., Y1,τ → Y2,τ+1 → Y4,τ+2,
and Y1,τ → Y3,τ+1 → Y4,τ+2, respectively; Cole&Maxwell, 2003). If we interpret� parameters
as direct causal effects, we may suggest that interventions should target variables that have strong
direct or total effects on others. Alternatively, we could search for those mediators through which
the strongest indirect effects pass (Groen et al., 2020; Bernat et al., 2007; Bramsen et al., 2013).
For instance, based on the parameters in Fig. 1a, we might suggest Anxiety as an intervention
target due to the relatively strong lag-one direct effect on Physical Discomfort (φ42 = .08), or
because it is a mediator of the largest lag-two indirect effect, from Stress to Physical Discomfort
(Y1,τ → Y2,τ+1 → Y4,τ+2 = −.005).

An alternative approach to finding a target for intervention comes from the network approach
and is based on centrality measures (e.g., Bringmann et al., 2013; Fisher &Boswell, 2016; Kroeze
et al., 2017; Epskamp et al., 2018; Rubel et al., 2018; Bak et al., 2016; Bringmann et al., 2015;
Bastiaansen et al., 2019). Centrality measures are used to summarize the relations a particular
variable has with the network as a whole, typically summing over the individual relations that
variable has with all other variables in the network. While the precise connection between path-
specific effects and centrality measures for DT-VAR models has not yet been described in the
literature a close inspection of the computation and interpretation of many popular centrality
measures reveals that they are very similar to path-tracing effects: specifically, many centrality
measures are interpreted as capturing either total, direct or indirect effects, and in turn, these
measures are often closely related to summaries of the corresponding path-specific effects. Here,
we will mention three such measures; for the exact connection between these measures and
path-tracing effects, the reader is referred to Appendix A.

First, the Two-Step Expected Influence measure (EI(2)i ; Robinaugh et al., 2016; Kaiser &
Laireiter, 2018) is typically interpreted as a summary of total effects emanating from the variable
Yi . In path-tracing terms, it is the sum of lag-one direct effects and lag-two total effects. As
such, variables with a high Two-Step Expected Influence could be expected to exert a high overall
influence on the system,making it an attractive intervention target. Second, theOne-Step Expected
Influence (EI(1)i ; Robinaugh et al., 2016; Kaiser & Laireiter, 2018) and Out-Strength centrality
(Opsahl et al., 2010) measures are interpreted as summarizing direct effects. They are both sums
of lag-one direct effects, with the latter taking the absolute value (and so, wewill calculate only the
expected influence measure in the remainder). Third, Betweenness Centrality (BC) is interpreted
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Table 1.
Two-Step Expected Influence (EI(2)), One-Step Expected Influence (EI(1)) and Betweenness Centrality (BC) for each of
the four variables in the 1-h (�(�t = 1), Fig. 1a) and half-hour (�(�t = 0.5), Fig. 1b) networks.

�t = 1 �t = 0.5

EI(2) EI(1) BC EI(2) EI(1) BC

Stress 0.245 0.274 0 −0.025 −0.029 1
Anxiety −0.071 −0.109 3 0.035 0.038 1
Self-Consciousness 0.125 0.152 0 −0.024 −0.027 0
Physical discomfort 0.555 0.557 0 0.008 −0.002 1

In each column, the largest centrality values are highlighted in bold.

as indicating the degree to which a variable funnels information flow, similar to how mediating
variables funnel indirect effects (e.g., Bringmann et al., 2013; Opsahl et al., 2010; Freeman,
1977). This measure is conceptually similar to determining which variables are strong mediators,
although paths are calculated by summing, rather than multiplying parameters, as in path-tracing
rules. The first column of Table 1 contains the value of these three centrality metrics for each node
in the Stress-Discomfort network shown in Fig. 1a.

1.3. The Time-Interval Problem and its Consequences

From this review, it is clear that network analysis based on the DT-VAR model relies crit-
ically on the interpretation of a cross-lagged regression parameter as the direct effect of one
process on another over time (for similar interpretations of DT-VARmodels in the time series and
panel data literature, see Cole & Maxwell, 2003; Hamaker et al., 2015; Bulteel et al., 2016). Of
course, the interpretation of any model parameter estimated from observational data as a causal
effect or as informative about hypothetical interventions should be approached with due caution.
Developments in the causal inference literature have shown that such interpretations are highly
dependent on the validity of assumptions regarding, among others, the ignorability of unobserved
confounding variables, our ability to intervene on the system of interest in a modular way (i.e.,
without altering the rest of the causal system), and of course, the correct specification of the sta-
tistical model itself (Pearl, 2009; Robins, 2003; Eichler & Didelez, 2010 VanderWeele, 2015). As
such we can understand the use of path-tracing and centrality measures as a first approximation
to a possible underlying causal effect, an approximation which is seemingly valid under highly
idealized conditions.

However, a well-known critique of DT-VAR models casts doubt on the veracity of such an
interpretation even in such ideal conditions. This critique focuses on the property that lagged
regression parameters exhibit time-interval dependency, hereby referred to as the time-interval
problem (Gollob & Reichardt, 1987; Oud & Jansen, 2000; Reichardt, 2011; Voelkle et al., 2012;
Deboeck & Preacher, 2016; Kuiper & Ryan, 2018).2 Gollob and Reichardt (1987) offer a classic
example of this problem regarding the effect of taking aspirin on headache levels. This effect is
negligible 2min after ingestion, moderate after 30 min, strong after two hours and zero 24 hour
later.

The phenomenon of time-interval dependency is a straightforward implication of assuming
an underlying DT-VARmodel, as can be shownwith a simple example. Take it that the parameters

2This is also sometimes referred to as the lag problem, both by Gollob and Reichardt (1987) and other authors (e.g.,
Hamaker & Wichers, 2017). However, the lag of a model is often used to refer to the order of a lagged regression model:
lag-one relations are between current variables and variables at the exactly preceding measurement occasion, and lag-two
relations between current variables and variables two measurement occasions previously, etc.
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that are introduced in Fig. 1a represent the lagged relationships of the Stress-Discomfort system
based on measurements taken at one-hour intervals; we denote these parameters as �(�t = 1).
In theory, we could also have observed all variables in the Stress-Discomfort system at twice that
rate, that is, at half-hour intervals. The path model for this is depicted in the left panel of Fig. 1b,
where the half-hour measurements that could have been observed are depicted as latent variables
(i.e., Y(t = 11

2 ) and Y(t = 21
2 )). The effects matrix relating the half-hour realizations of the

process is denoted �(�t = 1
2 ). From the time-series literature, it is known that the parameters of

these two models are related by the expression

[� (1/2)]2 = �(1) (2)

that is, by squaring the matrix of parameters at the shorter interval, we obtain the parameters
at twice that interval (Hamilton, 1994).3 It is important to note here that squaring a matrix is
not equivalent to squaring the parameters of that matrix: instead, any given parameter in �(1)
is a function of multiple parameters in �( 12 ). For instance, the cross-lagged parameter which
regresses Y4,τ+1 on Y1,τ can be re-written in terms of the shorter-interval parameters as φ42(1) =
φ22(1/2)φ42(1/2) + φ42(1/2)φ44(1/2) + φ12(1/2)φ41(1/2) + φ32(1/2)φ43(1/2).

When we compare the dynamical network based on the one-hour and half-hour parame-
ters (i.e., Fig. 1a, b, respectively), three consequences of the time-interval problem for network
researchers become apparent. A first consequence is that networks based on different time-
intervals can lead to seemingly contradictory conclusions regarding the sign, size and relative
ordering of effects. For example, in the one-hour network, Stress and Anxiety both have positive
lagged effects on Physical Discomfort, with the effect of Anxiety being slightly larger; yet, in the
half-hour network, the corresponding lagged relations are both strongly negative, with the effect
of Stress being larger (cf. Kuiper & Ryan, 2018). Since centrality measures are mere summaries
of lagged parameters, this implies that different time-intervals between the observations are likely
to lead to different centrality measures and, as a result, to different suggestions for intervention
targets.

A second consequence of the time-interval problem is that, if data were obtainedwith unequal
intervals and this is not accounted for, then the estimated parameters are a blend of the lagged
relationships at different intervals present in the data. Although inserting missing observations
can somewhat correct for unequal intervals (such as implemented in the DSEMmodule in Mplus;
Asparouhov et al., 2018), the results of these techniques can at best only approximate the lagged
parameters for a single target time-interval (De Haan-Rietdijk et al., 2017).

A third consequence of the time-interval problem is that the interpretation of any lagged
parameter as adirect effect becomes questionable. Specifically, based on the relationship inEq. (2),
the lagged parameters of the one-hour network �(1) should be interpreted as total rather than
direct effects (Deboeck & Preacher, 2016; Aalen et al., 2016).4 Take for example in the one-hour
path model the cross-lagged relation from current Anxiety (Y2,τ ) to Physical Discomfort an hour
later (Y4,τ+1), controlling for current values of all other variables. This parameter (φ42(1) = 0.077)
has a seemingly intuitive interpretation as a direct effect when we consider only observed values
of the Stress-Discomfort system. However, when we examine how these variables are related to
one another at half-hour intervals, we see that this relationship is in fact made up of a number

3While the forward operation from shorter to longer time-interval matrix is always possible, one can only uniquely
“solve” for the shorter time-interval relationships when the longer time-interval matrix has only real-valued eigenvalues.
If the matrix has complex eigenvalues (i.e., oscillating behavior), we run into the so-called aliasing problem—we cannot
distinguish between structures with higher-frequency oscillations (for details, see Bergstrom, 1984; Hamerle et al., 1991).

4In fact, taking the power of a matrix of direct effects, as in Eq. (2), is suggested by Bollen (1987) as a method
of calculating total effects in the SEM literature, an equivalence which can be seen immediately from the derivation of
φ41(1) in terms of �( 12 ) parameters given above and by inspecting the path-model representations in Fig. 1a, b.
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of different pathways through latent values of our processes in between measurement occasions.
These include direct paths (Y2,τ → Y2(11

2 ) → Y4,τ+1 and Y2,τ → Y4(11
2 ) → Y4,τ+1) as well as

indirect paths through latent values of Stress (Y2,τ → Y1(11
2 ) → Y4,τ+1) and Self-Consciousness

(Y2,τ → Y3(11
2 ) → Y4,τ+1).

Taken together, this shows current practice in dynamical network analysis—using summaries
of DT-VAR parameters to find intervention targets—is flawed due to the time-interval problem.
However, our presentation here also highlighted one potential solution to the time-interval prob-
lem: decomposing lagged relationships between observations into truly direct and indirect effects
operating over a shorter time-interval. This decomposition opens up a new perspective on how
lagged relationships should be interpreted, a perspective whichwe can use to explore time-interval
dependency, and avoid coming to misleading or contradictory choices regarding intervention tar-
gets.

2. A Continuous-Time Approach to Dynamical Network Analysis

In this section, we will present a Continuous-Time (CT) approach to dynamical network
analysis, and discuss how it helps to overcome the time-interval problem and its consequences
identified in the previous section.Wewill begin by introducing the basic notion behind CTmodels
in terms of stochastic differential equations, and discuss how the parameters of that model can
be interpreted as encoding moment-to-moment direct effects. Second, we introduce a new type
of network representation to the psychological literature, encoding the sign and strength of these
moment-to-moment relations, known as a weighted local dependence graph. Third, we describe
how this CTmodel can equivalently be expressed as theCT-VARmodel, which establishes the link
between the DT-VAR model parameters and an underlying CT process. Finally, we describe the
novel insights that are gained by using the CT network approach, and reflect on the implications
of this approach for current practice in dynamical network analysis.

2.1. Continuous-Time Processes and Differential Equations

In the previous section, we have shown how a single latent measurement wave between
consecutive observations changes the way we should interpret DT-VAR parameters. Taking this
approach one step further, it can be argued that for many psychological processes there can be
infinitely many latent waves in-between two measurement occasions, and that such processes
should be characterized as evolving continuously over time rather than in discrete “jumps” (cf.
Boker, 2002; Coleman, 1968; Deboeck & Preacher, 2016; Driver et al., 2017; van Montfort et al.,
2018; Ou et al., 2019; Oud & Jansen, 2000; Oravecz et al., 2011; Ryan et al., 2018; Voelkle et
al., 2012). For example, it is reasonable to think that processes like stress and anxiety continue
to vary in-between measurement occasions, and that, if those processes influence one another,
they also do so in a continuous manner over time (for an extended discussion see Boker, 2002).
Popular methods like experience sampling, which are based on measuring individuals at random
points in time, seem to adhere to this notion that we are dealing with CT processes (at least while
the participant is awake). Hence, it seems reasonable to suggest that many of the target processes
being studied by dynamical network researchers in psychology, can be conceptualized as CT
processes (e.g., Bringmann et al., 2013; Groen et al., 2020; Pe et al., 2015; Fisher & Boswell,
2016; Rubel et al., 2018; Bak et al., 2016).

InSEMterms,we can represent aCTprocess as a pathmodel inwhich there are infinitelymany
latent variable values in-between any twomeasurement occasions, spaced an infinitesimally small
time-interval apart, as depicted in the left-hand panel of Fig. 2 (see also Singer, 2012; Deboeck
& Preacher, 2016). Modeling CT processes is based on breaking down the relations between
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observed measurement waves into their fundamental building blocks, to obtain the truly direct
lagged relationships operating over an infinitesimally small time-interval, which we will refer to
as moment-to-moment effects. These continuous moment-to-moment dynamics are captured by
differential equation models.

In the current paper, we will limit ourselves to considering a very simple type of differential
equation model, known as a first-order stochastic differential equation, which can be thought of
as the CT counterpart of a DT-VAR model which exhibits positive auto-regression.5 It can be
written as

dY(t)

dt
= AY(t) + W(t) (3)

where dY(t)
dt on the left is the first derivative or the rate of change of the variables Y at time t

(denoted Y(t)). We can think of this derivative as being equivalent to a (scaled) change score
Y(t + s)−Y(t) over the shortest possible time-interval (lim s → 0). This derivative is dependent
on the current value of the variables Y(t), and the p × p matrix of regression parameters which
relates these two is called the drift matrix, denoted A. TheW(t) term represents aWiener process,
a special kind ofmean-zerowhite noise residual term (described in greater detail by, among others,
Oud & Jansen, 2000; Voelkle et al., 2012; Voelkle & Oud, 2013).

Like the DT-VAR model, the stochastic differential equation has an equilibrium value, here
defined by its mean of zero. While the Wiener process pushes the system away from this equi-
librium, the drift parameters A determine how the variables react to these shocks, eventually
returning the system back to equilibrium over time (Strogatz, 2015; Ryan et al., 2018). The key
difference between the two models is in how this behavior is encoded. The DT-VAR describes
this behavior in terms of discrete jumps, current process values determining future process values
some fixed time-interval later. The stochastic differential equation describes the same behavior in
terms of moment-to-moment changes, current process values determining the instantaneous rate
of change of each process, over the smallest imaginable interval.

2.2. CT Networks and Interpretation

As the critical effects matrix in the differential equation model, we can interpret the drift
parameters as representing truly direct moment-to-moment dependencies between our processes
of interest. This interpretation of the drift matrix parameters makes them a natural choice to use
as edges in a network-representation of the CT system. This type of network is known as a local
dependence graph (Schweder, 1970; Aalen et al., 1980; Didelez, 2008) with local here referring
to the idea that these relationships are locally spaced in time. As such, if there is a direct moment-
to-moment relationship from Yi to dY j/dt (a ji �= 0) we say that Y j is locally dependent on Yi
and draw an arrow Yi → Y j ; if there is no such relationship (a ji = 0) we say that Y j is locally
independent of Yi and omit that arrow. By assigning a weight to these local dependencies based on
the value of the drift parameters, we create a weighted local dependence graph, hereafter referred
to as a CT network. The drift matrix parameters of the Stress-Discomfort system are plotted as
a CT network on the right-hand side of Fig. 2, using hexagonal nodes to distinguish these from
DT-VAR networks.

The interpretation of individual drift matrix parameters is similar to that of a change-score
model from the time-series literature. For researchers familiar with DT-VAR models, however,
some care should be taken when interpreting the diagonal parameters aii , known as auto-effects,
which encode the relationship a variable has with its own rate of change. These auto-effects

5More complex CT models are required to produce patterns of DT negative auto-regression (Fisher, 2001).
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Figure 2.
CT-VAR path model (left-hand side) and CT network in the form of a weighted local independence graph representing
A (right-hand side). In the path model, the latent variables and ellipses represent an infinite number of latent unobserved
process values in-between measurement occasions, spaced an infinitesimally small time-interval apart; the presence of
an arrow linking two variables in the path model denotes some nonzero dependency between them, conditional on all
variables at the previous “wave,” that is, a local dependency. For the networks, the arrows represent auto- and cross-effect
parameters of the drift matrix in a CT-VAR model. Solid red arrows denote positive parameters and dashed blue arrows
represent negative parameters (Color figure online).

are typically negative, which ensures the system tends to move back toward its equilibrium as
positive deviations are followed by negative changes, and negative deviations are followed by
positive changes. Moreover, the auto-effects are not bounded, and can thus run from −∞ (i.e.,
auto-regression close to 0), to 0 (i.e., auto-regression close to 1). In our example, we see a larger
negative auto-effect for Stress (a11 = −6) than for Anxiety (a22 = −2.5), meaning Anxiety
moves back toward equilibrium less quickly than Stress after a perturbation (for more details, see
for example Oravecz et al., 2011; Ryan et al., 2018).

From a network perspective, what is likely to be of primary interest for applied researchers
is the interpretation of the off-diagonal elements of the drift matrix (a ji , j �= i). These are the
parameters we think of as direct moment-to-moment relationships between different processes.
These off-diagonal parameters are also referred to as cross-effects, and have a very similar inter-
pretation to cross-lagged parameters from a DT-VAR model: the negative cross-effect of Anxiety
on the rate of change of Physical Discomfort (a42 = −7.3) means that an increase in the value
of Anxiety will produce a decrease in the rate of change, and thus, the value of Physical Dis-
comfort a moment later. The equivalence of these two statements can be seen by re-arranging
the differential equation as an auto-regressive model over an infinitely small time-interval, as
shown in Appendix B. As is the case for cross-lagged parameters, the higher the absolute value
of the parameter, the greater the magnitude of the effect (for more details on the interpretation
of these parameters, see also Oravecz et al., 2011; Ryan et al., 2018; Voelkle et al., 2012). When
comparing this CT network to the DT networks presented in Fig. 1, we can see that there are
many fewer direct dependencies. For instance, Stress has no direct moment-to-moment effect on
Physical Discomfort (a41 = 0). Furthermore, the nonzero connections are all positive, apart from
the strong negative effect of Anxiety on Physical Discomfort (a42 = −7.3). Hence, this raises the
question where such differences between the two networks stem from.

2.3. The Integral form: CT-VAR

The key to establishing a link between the CT and DT approaches is that the first-order
stochastic differential equation defined above can also be expressed in its integral form. The latter
is known as the CT-VAR or Ornstein–Uhlenbeck process (Oud & Jansen, 2000; Oravecz et al.,
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2009; Voelkle et al., 2012), and can be written as

Y(tτ ) = eA�tτ Y(tτ−1) + ε(�tτ ) (4)

where variables at the current measurement occasion Y(tτ ) are regressed on variables at the
previousmeasurement occasionY(tτ−1). Note that τ refers to themeasurement occasion, whereas
t refers to the actual time when this measurement took place. Hence, �tτ = tτ − tτ−1 indicates
the time-interval between two consecutive measurement occasions, which may differ across pairs
of observations.

The above expression of the CT-VAR model is very similar to the DT-VAR model that was
presented in Eq. (1). The variables are centered, and so an intercept term is again omitted, while
the vector ε(�tτ ) contains the residuals, which are normally distributed with mean zero and
variance-covariance matrix that is also a function of the time-interval (for more details, see Oud
& Jansen, 2000; Voelkle et al., 2012; Voelkle & Oud, 2013). In place of the � matrix in Eq. (1),
these lagged variables are related by the matrix exponential of the drift matrix multiplied by the
time-interval eA�tτ . It follows from this that the key effects matrices from the CT- and DT-VAR
model are related to each other by the expression

eA�t = (eA)�t = �(�t) (5)

which shows that the lagged parameters for any particular time-interval �(�t) can be found by
taking the matrix exponential of the moment-to-moment drift matrix A to the power of the length
of that time-interval �t (cf. Oud & Jansen, 2000; Voelkle et al., 2012). Recall that to relate the
half-hour and one-hour parameter matrices in Eq. (2), we also took the matrix associated with the
half-hour interval and raised it to the power two to get the matrix for a one-hour interval, a very
similar operation to that defined here.

2.4. Consequences of the CT-VAR for Dynamical Network Analysis

The connection that the CT-VAR model establishes between the DT-VAR and differential
equation parameters has a number of important implications. First, if we know the drift matrix
A we can use the above relationship to derive how the DT lagged parameters are expected to
evolve as a function of the time-interval. Figure 3 depicts the lagged relationships of the Stress-
Discomfort system over a range of zero to two hours. It shows that the lagged parameters change
continuously and smoothly. It also shows that the parameters reach their peak value at different
time-intervals �t , and that some parameters even change sign (positive/negative) over �t . For
instance, from Fig. 3b we can see that the effect of Anxiety on Physical Discomfort (φ42(�t))
is strongly negative at very short intervals (around �t = 0.2) before becoming weakly positive
at longer intervals (from �t = 0.6 to 1.2). In comparison, the peak effect of Anxiety on Stress
(φ12(�t)) occurs both at a longer time-interval and with a smaller magnitude. This information
yields novel insights into the underlying dynamics which cannot be obtained by inspecting a
single set of DT-VAR parameters, nor can it be easily read off from the local dependencies in the
CT network.

Second, the time-interval dependency of the lagged parameters shown above also implies that
the network will change as we consider different time-intervals (see the Online Supplementary
Materials 1 for an animation of this). As a result, the centrality measures—which are based on the
network—also change as a function of the time-interval. This is shown in Fig. 4, where we see
that rather different conclusions regarding intervention targets are liable to be made depending
on the time-interval under consideration.
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(a)

(b)

(c)

Figure 3.
Lagged regression parameters as a function of the time-interval for the Stress-Discomfort system. Black dotted lines
indicate the parameter values of the half-hour and one-hour networks in Fig. 1a, b.
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(a)

(b)

(c)

Figure 4.
Centrality measures as a function of the time-interval for the Stress-Discomfort system. Black dotted lines indicate the
centrality values of the half-hour and one-hour networks in Fig. 1a, b.
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Third, it becomes clear that the lagged regression parameters at any time-interval�t should be
interpreted as total rather than direct effects (Deboeck & Preacher, 2016). When the drift matrix
contains the truly direct relationships, then the matrix exponent, as in both Eqs. (2) and (5),
should be understood as a path-tracing operation (see Appendix B for an elaboration on how the
matrix exponential relationship can be derived by re-arranging thefirst-order stochastic differential
equation, and applying a path-tracing operation through lim n → ∞ latent measurement waves).
This interpretation also explains the greater density of the DT-VAR networks in comparison to
the CT networks, as the former is a sum of the direct and indirect effects defined by the latter over
a particular time-interval. Yet, it is impossible to tell to what extent these are direct or indirect
effects without knowledge or an estimate of the underlying drift matrix parameters.

2.5. Conclusion

To summarize, the CT network approach outlined above has three major strengths, that is: (a)
it allows for an elegant treatment of unequal time-intervals between observations in experience
sampling data; (b) it introduces a new way to conceptualize a network of direct dynamic relation-
ships between processes; and (c) it allows us to gain important new insights into the underlying
process by exploring how lagged relationships are expected to vary and evolve as a function of
the time-interval.

Deboeck and Preacher (2016) andAalen et al. (2016) have already provided path-tracing rules
for CT models with three variables and a lower-triangular drift matrix. We extend these rules to
the general multivariate case without those constraints on the drift matrix in Appendix C, with
accompanying R functions in Online Supplementary Materials 2 and in an R package ctnet avail-
able to download from the github page of the first author.6 This makes it possible for researchers
to calculate any direct, indirect or total effect of interest from a CT model. However, as we have
established, a core interest of dynamical network researchers is to use their estimated models to
inform intervention targets. In the following section, we address some ways in which this could
be done, primarily through the development of new centrality measures for CT networks.

3. Interventions and Centrality for CT Networks

The use of generic centrality measures to identify intervention targets has been frequently
critiqued in the network literature, most notably because the connection between centrality mea-
sures and interventions in any particular system is typically unclear (Borgatti, 2005; van Elteren
& Quax, 2019; Dablander & Hinne, 2019). Clearly, to be able to choose an optimal intervention
target we need to know what type of intervention we can apply and what type of effect we want
to see in a particular type of system. For centrality measures to be useful for this purpose, they
must be clearly defined in those terms.

In the following, we will take a first, highly simplified and idealized approach to the iden-
tification of intervention targets, assuming that our causal system is modular, that there are no
unobserved confounding variables, and that a CT-VAR model forms an appropriate model of the
system. Based on this, we will discuss two types of simple intervention that we could apply to
a dynamic system, inspired by the concept of variable interventions from the causal inference
literature (Pearl, 2009). Subsequently, we will show how CT path-specific effects can be concep-
tualized as describing the effects of these different types of interventions, and then use these to
define new centrality measures that have a clear interpretation in terms of interventions and the
change they produce. Finally, we will consider what other types of changes we might hope to
bring about in a dynamic system.

6https://github.com/ryanoisin/ctnet/.
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3.1. Pulse and Press Interventions

One of the fundamental conceptual building blocks of modern causal inference is the notion
of an intervention. In the framework of Pearl (2009), an intervention is defined as an operation by
which we manipulate the value of a variable in our causal system. This intervention is denoted
using the do-operator, with do(X = 1) denoting that we intervene to set the variable X to a
constant value of one. In this paper, we will consider two different basic types of do-operation,
reflecting two of the most basic types of intervention often discussed in relation to dynamical
systems (Bender et al., 1984).

A pulse intervention is an operation by which we change the value of a variable at one
particular point in time. Taking the Stress-Discomfort system as an example, we can imagine
that it is possible to induce a momentarily high experience of Anxiety in our participant (for
instance by making the participant view a unpleasant photograph, a manipulation which has been
shown to increase state anxiety in laboratory studies; Richards & Whittaker, 1990; Richards et
al., 1992). Using the do operator, we would denote such an intervention do(Y2(t) = 1) meaning
we intervene to set Anxiety to a value of 1 at time t . The effect of this pulse intervention on
the other processes in the system depends on the time since that impulse was applied; hence, we
can visualize the effect of this intervention by plotting the expected trajectories of the different
variables in our system.7 Figure 5a shows the effect that an initial intervention on Anxiety has on
our Stress-Discomfort system: the other three variables leave their equilibrium, and eventually,
the effect of the intervention fades and all variables return to their resting state.

A second type of intervention is the press intervention, which consists of changing the value
a variable over an interval of time. For example, we may produce a longer-lasting state of high-
anxiety by having participants prepare to give a public speech (e.g., Moscovitch et al., 2010;
Azevedo et al., 2017), or induce longer-lasting changes in stress levels by prompting participants
to engage in mindfulness meditation (e.g., Hoge et al., 2013). Using the do-operator, we denote
such an intervention for the time-interval �t as do(Y2(t + �t) = 1) (i.e., intervening to set
Anxiety to the value 1 starting from time t and lasting �t). The effect of this press intervention
is shown in Fig. 5b: we see that the other three variables leave their equilibrium, and that they
eventually settle to a new equilibrium. They will only return to their old equilibrium value if the
intervention is removed. Of course, the effect of this press intervention depends on the value the
manipulated variable is set to: if the intervened-on variable takes on its equilibrium value, no new
equilibrium will appear.

3.2. Path-Specific Effects and Interventions

We can show that CT path-specific effects, originally described by Deboeck and Preacher
(2016) and Aalen et al. (2016) and generalized in Appendix C, describe the effect on a target
variable of either a pulse intervention, or a combination of pulse and press interventions. The
effects themselves are expressed as a difference in expected value, with this difference contrasting
two sets of intervention values.8

First, a CT total effect simply describes the effect that applying a pulse intervention has on
some other variable in the system. In Fig. 5a, we already saw the effect of setting Anxiety to a
value of one, in that it pushed the other variables in the system away from their equilibrium. If

7In the time-series literature, the idea of setting a time-varying process to a particular value at a particular point in
time is referred to as applying an impulse to a process, and tools such as impulse response functions are often used to
visualize the effect of this impulse over time (Hamilton, 1994).

8Here, since we are dealing with a single-subject dynamic process, the expectation is defined with respect to the
stochastic input, that is, the normally distributed noise process, as is standard in time-series approaches (Hamilton, 1994).
We can interpret this as an expectation for an individual over a population of time points t . This is analogous to a causal
effect for that individual for an unspecified point in time t , assuming that the intervention does not change how the variables
in the system relate to one another.
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we instead set Anxiety to its equilibrium value, do(Y2(t) = 0), none of the variables would move
away from equilibrium. Let’s say we are primarily interested in the effect of pulses to Anxiety on
the expected value of Physical Discomfort some time �t later. We define this as the total effect

TE24(�t) = E
[
Y4(t + �t)

∣∣ do(Y2(t) = 1)
] − E

[
Y4(t + �t)

∣∣ do(Y2(t) = 0)
]
. (6)

To be able to actually compute the above expression, we need to plug in a model for the expected
values. Here, we use the CT-VAR model, which results in

TE24(�t) = eA�t
[42] (7)

where eA�t [42] denotes the parameter in the fourth row, second column of eA�t . This expression
for the total effect is actually identical to the path-tracing definition of a total effect given by
Deboeck and Preacher (2016) and Aalen et al. (2016) (for details, see Appendices C and D).

Second, CT direct effects simply described the consequence of a pair of interventions: a
pulse intervention to change the cause variable, just as we did for the total effect, and another
press intervention to keep fixed one or more mediating variables. Take for example the effect of
applying a pulse to increase Anxiety, while simultaneously applying a press intervention to keep
Stress and Self-Consciousness fixed at equilibrium. This is visualized by the trajectories in Fig. 5c.
As before, Anxiety starts at a high level—as it was set to 1—and dissipates back to equilibrium.
Because Stress and Self-Consciousness are kept fixed at all moments in time, Physical Discomfort
is pushed even further from equilibrium than before; by press-intervening on the mediators, we
no longer activate the compensating positive feedback loops that are present in the total effect
(see also Fig. 2). We can express this direct effect as the difference between two conditional
expectations

DE24·13(�t) = E
[
Y4(t + �t)

∣∣ do(Y2(t) = 1), do(Y1(t + �t),Y3(t + �t) = 0)
]

− E
[
Y4(t + �t)

∣
∣ do(Y2(t) = 0), do(Y1(t + �t),Y3(t + �t) = 0)

]
. (8)

By plugging in the CT-VAR parameters for each conditional expectation, we can express the effect
of this intervention as

DE24·13(�t) = eA
(D[−1,−3])�t

[42] (9)

where A(D[−1,−3]) denotes the drift matrix in which the indirect pathway parameters that link
Anxiety to Physical Discomfort are set to zero (that is, a12 = a32 = a43 = 0). Hence, in this
drift matrix only the direct links between Anxiety and Physical Discomfort are retained (see
Appendix D for a proof). Again, we can see that this expression is exactly equivalent to the
path-tracing definition of a direct effect described in Appendix C.

Finally, the indirect effect IE(�t) describes how the effect of applying a pulse to Yi (t)
changeswhen we also press-intervene to keep the mediator(s) Yk fixed. Suppose we are interested
in the mediating roles that both Stress and Self-Consciousness play in the effect of Anxiety on
Physical Discomfort. To quantify this, we would define the indirect effect of Anxiety on Physical
Discomfort (relative to Stress and Self-Consciousness) as

IE24·13(�t) = TE24(�t) − DE24·13(�t). (10)
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(a) (b)

(c) (d)

Figure 5.
Illustration of pulse (denoted by an empty diamond) and press (denoted by a filled diamond) interventions and their
relationship with total effects (TE), direct effects (DE) and indirect effects (IE). a Shows the effect of a pulse intervention
on Anxiety (Y2(t)) on the values of Stress (Y1(t)), Self-Consciousness (Y3(t)) and Physical Discomfort (Y4(t)). b Shows
a corresponding press intervention on Anxiety. c shows a combination of pulse intervention to Anxiety and press inter-
ventions to keep Stress and Self-Consciousness fixed at their equilibrium of zero. The consequence of this combination
of interventions d shows the total, direct and indirect effect of Anxiety on Physical Discomfort. The total effect (TE(�t))
is simply the trajectory of Physical Discomfort in (a). The direct effect (DE(�t)) is the trajectory of Physical Discomfort
in (c). The indirect effect (IE(�t)) is the difference between those two trajectories (TE(�t) − DE(�t)).

The indirect effect is thus the difference in value of Physical Discomfort at a particular time-
interval t in Fig. 5a (i.e., the total effect TE(�t)), and the value at the same time-interval in Fig. 5c
(i.e., the direct effect DE(�t)). Each of the total, direct and indirect effects are shown together
in Fig. 5d. If the indirect effect is positive, it means that TE > DE, that is, applying a press
intervention on the mediators decreases the effect of the pulse intervention. If the indirect effect
is negative (TE < DE) the press intervention increases the effect of the pulse intervention. Of
course, when giving any further substantive interpretation, careful attention should be paid to the
signs of the component direct and total effects. In this case, keeping Stress and Self-Consciousness
both fixed makes Physical Discomfort take on a stronger negative value at shorter intervals, and
the indirect effect quantifies that difference. As such, this indirect effect describes the mediating
role of the variables Stress and Self-Consciousness combined. We can express this indirect effect
using the expressions we found before for the total and the direct effects in terms of the CT-VAR
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parameters. This gives us

IE24·13(�t) = eA�t
[42] − eA

(D[−1,−3])�t
[42] (11)

It follows that the effect of this combination of interventions is equivalent to the path-tracing
definition of the indirect effect (see Appendix C).

3.3. Centrality Measures to Identify Intervention Targets

Having established the link between CT path-specific effects and highly idealized interven-
tions in the dynamic system, we here propose two new centrality measures for CT networks. Each
centrality measure is explicitly defined as a summary of a path-specific effect, and as such, as a
kind of network-wide summary of the consequences of a particular intervention. This means that
these centrality measures are functions of the time-interval and have a clear link to a particular
type of variable intervention: the first and second measure can be used to identify the optimal
target for a pulse and press, respectively.

3.3.1. CT Total Effect Centrality We define our first new centrality measure as the Total Effect
Centrality (TEC) of a variable, which can be calculated by summing the total effect of Yi (t) on
all other variables, at a particular time-interval

TECi (�t) =
p∑

j �=i

TEi j (�t). (12)

Hence, we sum over all the total effects of Yi on other variables in the network (excluding Yi
itself). The TEC thus summarizes the effect of an impulse intervention to change Yi (t), on the
system as a whole, that is, the cumulative effect on the network, some time-interval�t later. Since
we explicitly make this centrality measure a function of the time-interval, we can examine how
the cumulative effect of this intervention evolves following the pulse.

Figure 6a shows the TEC of each variable in the Stress-Discomfort system over a range of
intervals, from�t = 0 to�t = 1.5. From this, we can see that at short intervals, pulse intervention
to increase Physical Discomfort has the biggest cumulative effect on the network: overall, this
intervention on Physical Discomfort results in the other variables increasing in value over the
next half an hour or so, before eventually the effect of this intervention fades away. Notably, an
intervention to increase Anxiety has a weak net negative effect on the system at shorter intervals,
and a weak net positive effect at longer intervals: we would expect this based on our visualization
of that intervention in Fig. 5a, where a pulse to Anxiety resulted in Stress and Physical Discomfort
taking on negative values at short intervals.

The TEC measure allows us to see that, for this system, Physical Discomfort is the optimal
target for a pulse intervention, assuming that we can set Physical Discomfort to a low or negative
value (e.g., do(Y4(t)) = −1). Such an intervention would be expected to result in a short-lived
decrease in value of the other processes in the model. Note that, as a consequence of DT-VAR
parameters reflecting total effects from a CT perspective the TEC measure is actually equivalent
to calculating the first-order expected influence measure using �(�t) over a range of values for
�t (as depicted in Fig. 6b). Recall however that the latter is erroneously interpreted as a measure
of direct rather than total influence.
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(a)

(b)

Figure 6.
Illustration of the new total and indirect centrality measures for CT networks, applied to the Stress-Discomfort system.

3.3.2. CT Indirect Effect Centrality The second centrality measure we propose quantifies
the role a particular variable plays as a mediator of other relationships between variables in
the network. To define this measure, we use the indirect effect measure described in Eq. (10).
Recall that the CT indirect effect captures the change in the effect of pulses to Y j (t) on the
value of Yk(t + �t), if we press-intervene to keep the mediator Yi fixed at every moment in time
(TECjk(�t)−DECjk·i (�t)). Hence, we define the Indirect Effect Centrality (IEC) of amediator
variable Yi as

IECi (�t) =
∑

( j,k): j �=k �=i

IE jk·i (�t) (13)

that is, it represents the sum of all possible indirect effects between different pairs of variables
Y j (t) and Yk(t+�t), in which Yi serves as the onlymediator. Note here that the notation is chosen
to reflect that the IEC is a property of a mediator, instead of a property of one particular cause-
effect relationship. The summation denotes that we omit auto-regressive relationships ( j �= k)
and pairs of variables where the mediator is either the cause or effect variable ( j �= i and k �= i).
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The IEC quantifies how a press intervention on Yi changes the effects that other variables
have on each other. This may be a very useful concept in clinical practice. For instance, suppose
that in our Stress-Discomfort systemwewant to avoid a high value on all four variables as much as
possible. The current measure can be used to determine which of these variables is most important
in terms of mediating the effects of one variable on another in the system, such that by intervening
on this variable, these indirect paths become blocked and the flow of activation from one variable
to another is (partly) interrupted.

Figure 6c shows the IEC of each variable over a range of intervals. It shows that Physical
Discomfort has the strongest indirect effect centrality in absolute terms. A strong negative value
of IEC means that keeping Physical Discomfort fixed at an equilibrium value actually increases
the effects of pulses to other variables on each other, since the component direct effects are greater
than the corresponding total effects. This happens because Physical Discomfort plays a key role
in the only negative feedback loop in the network: since an increase in Anxiety actually decreases
Physical Discomfort (a42 = −7.3), the total effect of Anxiety on Stress is less strong than its
direct effect. If, however, we intervene to keep Physical Discomfort fixed, then this negative
compensating effect is not activated, meaning an increase to Anxiety in fact has a greater effect
on the network as a whole. Stress has the largest positive IEC, meaning that keeping Stress fixed
decreases the effects of other variables on one another.

From this, wewould conclude that we should choose Stress as a target for a press intervention,
as it decreases the short-term impact of other variables in the network on each other. Moreover, we
should avoid applying a press intervention on Physical Discomfort: such an intervention would
in fact increase the strength of positive relationships between the other variables.

3.4. Other Ways of Identifying Intervention Targets

We have presented a selection of measures for CT models that have a clear conceptual link
with path-tracing and centrality measures as well as hypothetical variable interventions. The
centrality measures we introduce summarize both total and indirect effects in a CT network, but
we did not develop a centrality metric based on the direct effects: such a measure would require
us to add different direct effects such that each requires a different set of variables to be held
constant, and so, are not directly informative about any particular variable intervention.9

The total and indirect measures introduced here allow us, respectively, to choose a target for
a pulse intervention which will result in the largest “shock” to the system, and choose a target
for a press intervention which will result in the largest change in how other variables activate
one another. As is typical for psychological network analyses, we have chosen variables such
that positive values have a negative connotation: we want to avoid high values of Stress, Anxiety,
Self-Consciousness and Physical Discomfort, so we want to apply negative-valued pulses, and
in general, press interventions that lower the degree to which variables activate one another.
We believe that our approach of visualizing the effects of these interventions, and how they
change depending on the time-interval, is the most informative approach for researchers, but
these measures can also be summarized (for example, by averaging or taking the “area under the
curve” over a particular time-interval).

Of course, in addition to the centrality measures described above, researchers may wish to
apply interventions in order to affect different types of change in the system. For example, wemay
wish to find a press intervention such that the equilibriumvalues of the other variables in the system
change in a particular way, as we saw in Fig. 5b. We provide R code in Online Supplementary

9For instance, to determine the direct effect of Anxiety on Physical Discomfort, we need to keep Stress and Self-
Consciousness at a fixed value (e.g., zero); but to determine the direct of Anxiety on Stress, we need to keep Physical
Discomfort and Self-Consciousness at a fixed value. Thus, each component direct effect requires different variables to be
kept fixed while others can vary.
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Materials 2 (and accompanying R package ctnet) which can be used to simulate the effect of
different press interventions on the equilibrium positions and the stability of a system (see also
Appendix D.3). Of course, many different types of interventions in a system are also possible:
Driver and Voelkle (2018b) focus on different interventions than the ones considered here, and
show how these can be simulated from CTmodels. However, from a causal modeling perspective,
we believe that, while any operation on a model’s parameters can be defined in principle, typically
if we want to learn about the effects of those interventions, or understand how we might bring
about those changes in the system, we will likely need to define those manipulations in terms of
interventions on variables in our causal model, as we have done in the current paper.

4. Empirical Example

In this section, we illustrate the application of CT network analysis, as developed in the pre-
vious sections, to an empirical ESM dataset. Throughout, we compare the estimated CT network
structure and centrality measures to their commonly used DT equivalents, based on estimating a
DT-VAR model. The latter ignores the unequal time-intervals between observations, and results
in total rather than direct effects; it is therefore expected to lead to different conclusions than the
CT-VARmodel. All models here were estimated using a maximum-likelihood approach based on
stan (Gelman et al., 2015) functionality in the ctsem package (Driver et al., 2017). The R code to
reproduce all analyses shown here is provided in Online Supplementary Materials 2.

4.1. Data

To illustrate the CT network approach, we use a single-subject open-source ESM dataset.10

A subset of this dataset was originally the subject of a DT-VAR network analysis by Wichers
et al. (2016) and is described in full in Kossakowski et al. (2017). For illustrative purposes, we
chose to fit a CT-VAR model using four ESM items measured on a 7-point Likert scale from low
to high agreement: Self-Doubt (S; “I doubt myself”), Fatigue (F; “I am tired”), Irritated (I; “I feel
irritated”) and Restless (R; “I feel restless”). Prior to analysis the variables were standardized. A
subset of the full time series is used, consisting of 1476 measurements taken over 239 consecutive
days (reflecting a period preceding a blinded medication reduction). The randomized sampling
scheme results in time-intervals between consecutive measurements ranging from 13.5min to
42.1h with a median of 2.04h. Figure 7 displays the distribution of time-intervals up to the 97.5
percentile. Inferences made from the CT model beyond the time-intervals used in data collection
represent a form of model extrapolation and should be approached with caution, so we will focus
our analysis in the following on the observed time-interval range (�t = 0 to �t = 5).

4.2. Estimated Networks

As a first step, we can inspect and interpret the estimated drift matrix parameters Â. These
are displayed as a CT network in Fig. 8a, with accompanying confidence intervals for these
parameters given in Appendix E. From this, we can see that, for instance, Irritated and Restless
have the highest auto-effects, implying that, given a shock to the system, these processes would
be expected to return to baseline quicker than feelings of Self-Doubt or Fatigue. Furthermore, the
strongest cross-effects in the network are the positive reinforcing relationships between Irritated
and Restless: Feeling Irritated is likely to increase your feelings of Restlessness a moment later,
and vice versa.

The estimated DT-VAR model displayed in Fig. 8b shows a somewhat similar pattern of
relationships between processes, but there are some key differences. Most notably, the signs of

10Available from https://osf.io/c6xt4.
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Figure 7.
Histogram showing the distribution of time-intervals between subsequent measurement occasions in the empirical dataset.

(a) (b)

Figure 8.
Estimated networks based on the CT-VAR and DT-VAR analysis of empirical data, respectively. S (Self-Doubt); F
(Fatigue); I (Irritated) and R (Restless). a Shows a weighted local dependence graph based on Âwhile b shows a DT-VAR
network based on �̂. In the latter case, time-interval information was ignored in estimation.

several cross-lagged relationships are different from the corresponding drift matrix estimates:
there are positive cross-lagged effects from Self-Doubt to Irritated, from Restless to Fatigue and
from Fatigue to Self-Doubt. Furthermore, the relative ordering of cross-lagged parameters is
different than that of the drift matrix parameters.

4.3. Exploring Time-Interval Dependency

To see how the system evolves over time, we can use the drift matrix to derive how we would
expect the lagged regression parameters to change as a function of the time-interval (that is, we
use Â to derive �̂(�t)). This is shown in Fig. 9.

First, we can see that the auto-regressive relationships in Fig. 9a are quite similar over a range
of intervals. Second, from Fig. 9b, c we can see that most cross-lagged relationships are expected
to reach their peak between a half hour (�t = 0.5) and one and a half hours (�t = 1.5). Third,
we can see that the ordering of some effects changes depending on the interval: for instance, panel
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(a)

(b)

(c)

Figure 9.
Expected lagged regression parameter values as a function of the time-interval, derived from drift matrix estimated from
empirical data. Here, the subscripts S (Self-Doubt), F (Fatigue), I (Irritated) and R (Restless) refer to the first, second,
third and fourth dimension of the drift matrix, respectively.

https://doi.org/10.1007/s11336-021-09767-0 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-021-09767-0


236 PSYCHOMETRIKA

(c) shows that at short intervals the effect of Irritated on Restless (φRI (�t)) is larger than that of
Self-Doubt on Restless (φRS(�t)), but at longer intervals (�t > 1.5) this is reversed. Fourth, we
can see from Fig. 9c that the cross-lagged effect from Self-Doubt to Irritated (φ̂I S(�t)) changes
sign over �t : it is negative at very short time-intervals, and becomes positive at longer intervals
(around �t = 1). This pattern results from the direct negative moment-to-moment dependency
(âI S = −0.47) which is dominant at shorter intervals, while the effect at longer intervals is mostly
driven by positive indirect relations through Restless.

4.4. Centrality Analysis

The values of the estimated CT centrality metrics are shown in Fig. 10. For comparison,
we also include the corresponding centrality measures one would compute based on the DT-
VAR results. Figure 10a shows that Restless has the highest total effect centrality value over the
entire range of intervals from zero to five hours. This implies that (making the same idealizing
assumptions outlined in previous sections) it is the optimal target for a pulse intervention:wewould
expect such an intervention to have a large impact on the network as a whole, peaking around
�t = 0.75 after the impulse. Since this centrality measure is positive in this interval range, we
would recommend applying a negative impulse to Restless, which will lead to a decrease (rather
than increase) of the other variables in the network.

From Fig. 10b, we see that Restless alone has a high positive indirect effect centrality value,
indicating that applying a press intervention to Restless is expected to decrease the degree to
which positive impulses in one part of the network results in positive activation in other parts
of the network. Furthermore, we can see that a press intervention on Irritation is expected to
actually increase activation levels at short intervals (i.e.,make the other variablesmore-connected),
and decrease them at longer intervals (i.e., making them less-connected). From this, we would
conclude that Restless appears to be the most attractive target for a press intervention, and that
press interventions on Tired and Self-Doubt should be avoided.

In the right-hand side of Fig. 10a, b, we show the related DT centrality measures based on the
estimated DT-VAR parameters. In Fig. 10a, we see that Restless has the highest two-step expected
influence scores, closely followed by Irritated and Self-Doubt. In Fig. 10b,we see that Restless and
Irritated have the joint highest Betweenness scores. In this case, applying current practice, wemay
very well have concluded that Restless and Irritated are candidate intervention targets. However,
only with the CT approach developed here could we make specific recommendations regarding
the type of intervention to apply, understand the effect such an intervention is expected to have
and describe the subtle differences in intervention effects across short and longer time-intervals
we would expect to see.

5. Discussion

In this paper, we have introduced a new method for dynamical network analysis based on
the use of CT models. We have shown that, from a CT perspective, the use of DT-VAR models
for network analysis is potentially highly problematic: DT-VAR parameters are time-interval
dependent, should not be interpreted as direct effects, and yield centrality measures which may
lead to the selection of sub-optimal intervention targets. In contrast, the CT approach has several
advantages: CT-VAR models aim to estimate truly direct moment-to-moment dependencies, and
adequately handle unequal time-intervals between observations. The developments in this paper
allow researchers to utilize CT models in a network setting: we have showed how to represent
CT parameters as a dynamical network, explore time-interval dependency, and use the newly
developed CT centrality measures to choose where to apply a pulse or press intervention under
highly idealized conditions.
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(a)

(b)

Figure 10.
Total, Direct and Indirect centrality metrics for S(t) (Self-Doubt), F(t) (Fatigue), I(t) (Irritated) and R(t) (Restless) based
on the CT Network (left-hand side) and DT-VAR Network (right-hand side), respectively.

5.1. Limitations

While we have tried to build a case for CT modeling, of course it should not be considered a
panacea. CT models do not solve the problem of unobserved confounding, a substantial threat to
the causal interpretation of models and identification of intervention effects from observational
data in all psychological settings. In particular, we suspect that the effects of press interventions
may prove difficult to identify from observational data, since the calculation of their effect relies
heavily on correct specification of the CT model. However, by defining our targets of inference
in terms of variable interventions, we can in principle connect these measures with the modern
causal inference literature, much of which is concerned with deriving the conditions under which
such interventions are identifiable (Pearl, 2009). Of course, this task is far from trivial, and much
more research is needed to derive these conditions (for examples of work in this direction, see
Eichler & Didelez, 2010; Didelez, 2015, 2019; Sokol, 2013; Gische et al., 2020). Drawing causal
conclusions from statistical models should always be approached with great caution. We consider
the developments presented in the current paper only as a first step in the right direction, providing
clarity aboutwhat (CT-)VARmodels can tell us about variable interventions in a best-case scenario.
Ultimately, any approach to deriving intervention targets from statisticalmodelsmust be evaluated

https://doi.org/10.1007/s11336-021-09767-0 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-021-09767-0


238 PSYCHOMETRIKA

in terms of its success in predicting the effect of actual interventions, necessitating the collection
of the relevant experimental data.

From a theoretical standpoint, one may question the validity of treating psychological pro-
cesses as evolving continuously over time. For instance, while we can measure variables like
stress throughout waking life, this leaves open the question of how to treat periods of sleep: does
the process continue to change continuously during these episodes, do the variables stay fixed, do
they temporarily cease to exist (representing a discontinuity) and/or do they simply “reset” after
sleep? While this is a valid concern, in the current case we believe that the practical implications
of periods of sleep, at least, are not severe. Since the CT model used here treats periods of sleep
as unusually long time-intervals between measurements, relative to the within-day intervals, the
carry-over from the last measurement before sleep on the first measurement the next day will
be practically zero, �(�t) becoming a zero matrix when �t is large enough. As a result, the
best prediction for the first observation of the day will be (approximately) equal to the system’s
equilibrium, and hence, this lagged relation will essentially not contribute anything to the esti-
mation of the parameters in A. An alternative approach would be treat observations as nested
within-days, however, de Haan-Rietdijk et al. (2016) found, in two similar empirical experience
sampling datasets, that such an approach did not yield better fitting models than the approach of
treating observations as drawn from a single ongoing process.

Ultimately, whether any psychological process is truly evolving continuously over time, is
a difficult question to even begin answering, although many researchers have advocated such a
viewpoint (e.g., Boker & Nesselroade, 2002). Either way, it is our view that CT models such as
considered in this paper could form a more appropriate to the underlying dynamic system than
the DT models that are currently in use.

5.2. Future Directions

While the current paper focuses on stationary single-subject models, the approach outlined
here could be extended in much the same ways as DT-VAR models have been extended in the
psychological literature. For example, CT-VAR models with time-varying parameters could be
developed, however, these would suffer from the same limitations as their DT counterparts, such
as a need for large sample sizes (Haslbeck et al., 2017). Multilevel CT models that allow for
individual differences in means, drift matrices and residual variances can be estimated with exist-
ing software packages (Driver & Voelkle, 2018a; Oravecz et al., 2011). In multilevel DT-VAR
model applications, there tends to be a primary interest in the individual within-person parameter
estimates and/or, for instance, the average of these in different groups (Bringmann et al., 2013;
Schuurman, et al., 2016; Asparouhov et al., 2018; Suls et al., 1998; Lodewyckx et al., 2011; Liu et
al., 2019). However, psychological network researchers also often construct additional networks
based on the inverse covariance matrix of the residuals (sometimes referred to as the “contempo-
raneous network”) (Epskamp et al., 2018). From a CT perspective however, the residual variances
and covariances are also a nonlinear function of the time-interval and the drift matrix (cf. Voelkle
et al., 2012; Driver & Voelkle, 2018a), and so exploring their time-interval dependency may also
yield valuable insights.

For didactic purposes, we focused mainly on the interpretation of point estimates in the
empirical example, ignoring the quantification of uncertainty around these parameters, andbroader
issues around model selection and inference in general. In practice it is possible to obtain credible
or confidence intervals for the drift matrix parameters (as well as �̂(�t) and centrality measures)
using posterior sampling in a fully Bayesian approach or by re-sampling from the likelihood using
a frequentist approach (as implemented in ctsem Driver & Voelkle, 2018a). The R package that
accompanies this paper (ctnet) includes functions which automate this for users.
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Finally, the general framework of CT modeling has much more to offer than presented
here. Differential equation models are highly flexible, allowing for systems that exhibit more
substantively interesting dynamic behaviors, such as the presence of multiple attractors (Strogatz,
2015; Haslbeck & Ryan, in press). Depending on the model, there may be a variety of different
effects that a researcher could aim to bring about using interventions, such as shifting the system
into a second attractor basin, or changing the attractor landscape to make unhealthy states less
likely. To learn about those interventions however, requires more complexmodels which allow for
those qualitative patterns (Haslbeck&Ryan, in press;Haslbeck et al., in press). A number of recent
papers have called for an increased focus on theoretical and computational models in psychology
(Smaldino, 2017; Navarro, 2020; Guest &Martin, 2020; Borsboom et al., 2020; Robinaugh et al.,
2021) with some using differential equations as a framework to build these models (Robinaugh
et al., 2019; Haslbeck et al., in press). We welcome these developments, and believe that the
ideas outlined in this paper, such as the interpretation of simple continuous-time processes, the
notion of pulse and press interventions, and the connections between differential equationmodels,
networks and path models, can serve as a stepping stone between current empirical practice and
more substantively interesting dynamic systems models.
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A. Centrality Measures as Summaries of Path-Specific Effects

In this appendix, we show how path-specific effects in DT-VAR models are related to three
popular centrality measures calculated from DT-VAR networks. For the measures typically inter-
preted as quantifying the total and direct influence of a variable (i.e., both Expected Influence
measures), this relationship is quite straightforward, while for the popular indirect influence
measure Betweenness Centrality, the relationship with path-tracing quantities is much farther
removed.

InTable 2,we provide the formula and description of the three centralitymeasureswe consider
in themain text. These are expressed in terms of lagged regression parametersφ j i , which represent
the lagged effect from process i to process j (i.e., it is the element on the j th row and i th column
of the matrix �). The right-hand column of Table 2 describes how these calculations relate
to path-tracing quantities from the SEM literature. Note that the Expected Influence measures
were originally developed for undirected networks (Robinaugh et al., 2016), and so, despite the
active applications of those measures for directed networks (e.g., Kaiser & Laireiter, 2018) their
precise definition for direct networks is left somewhat ambiguous. For instance, the popular
packages qgraph (Epskamp et al., 2012) and networktools (Jones, 2018) differ slightly in how
One-Step Expected Influence is calculated, with the former excluding diagonal elements (i.e.,
auto-regressive effects) as is common for DT-VAR centrality measures, while the latter includes
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Table 2.
Relationship between different network metrics and path-tracing quantities, in the context of a VAR(1) model with p
variables, regression coefficient matrix �, and corresponding dynamical network with weights matrix �T .

Network Measure Formula Description

EI(1)i One-Step
Expected
Influence

∑p
j �=i φ j i Sum of lag 1 direct

effects
Yi,τ → Y j,τ+1
∀ j �= i

EI(2)i Two-Step
Expected
Influence

∑p
j φ j i

∑p
k �=i φk j + EI1i Sum of total effects at lag

2 Yi,τ → Y j,τ+1 →
Yk,τ+2 ∀k �= i plus
direct effects at lag 1

BCi Betweenness
Centrality

M jk(i) = 1 iff Yi ∈ d( jk)
∑ ∑p

k �= j �=i M jk(i)
where d( jk) is
max{|φh j | + .... + |φkh |}

Counts how often Yi is a
mediator on the shortest
network-path Y j,τ →
. . . Yi,· · · · → Yk,τ+q

those elements. The definitions we give here to the One-Step and Two-step Expected Influence
measures (EI(1)i and EI(2)i ) omit relationships a variable has with itself either one or two occasions
later, respectively.Webelieve this is in keepingwith the spirit of how thesemeasures are defined for
undirected networks, and allows us to maintain the standard interpretation of centrality measures
as reflecting a type of relationship the target variable shares with all other variables in the model.

From Table 2, we can see that EI(1)i , which is typically interpreted as a summary of direct
effects, is in fact the sum of lag-one direct effects of Yi,τ on all other variables at the next occasion
(that is, excluding the auto-regressive direct effect of Yi on itself at the next occasion). The EI

(2)
i

measure, which is typically interpreted as reflecting the total influence of a variable, comprises
two separate parts. The first part is the sum of lag-two total effects, following standard path-tracing
rules, and excluding the total effect of a variable on itself two occasions later. The second part is
the EI(1)i measure for that variable. As such, EI(2)i measure is a mix of total and direct effects at
both lags.

Finally, the Betweenness Centrality measure BCi , typically interpreted in terms of indirect
effects, is only tenuously related to path-tracing quantities. In SEM approaches, researchers are
typically interested in mediators of indirect effects, where the size of an indirect effects is defined
by the product of the component pathways (i.e., path-tracing rules). If we have many indirect
pathways, and many potential mediators, we may wish to know which specific indirect effect is
strongest, and in turn, how often a specific variable acts as a mediator of these strongest indirect
effects. It seems that this is how psychological researchers using the BCi measure typically
interpret it (e.g., Bringmann et al., 2013, 2015; David et al., 2018). However, the actual calculation
of this measure differs greatly from the mediator-based metric described above. Specifically,
instead of identifying the largest indirect effect, Betweenness is based on the identification of
the shortest network-path between two variables (d( jk)). The length of this network-path is
based on the inverse of the sum rather than the product of the individual pathways: while large
SEM paths are those where multiplying each individual part leads to a large number, we say that
short network-paths are those where the sum of each individual part leads to a small number.
Similar to standard path-tracing nomenclature, these network-paths can be either direct (e.g.,
Y j,τ → Yk,τ+1 = φk j ) or indirect (e.g., Y j,τ → Yi,τ+1 → Yk,τ+2 = φi j + φki ) and each path

https://doi.org/10.1007/s11336-021-09767-0 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-021-09767-0


OISÍN RYAN AND ELLEN L. HAMAKER 241

may span a different number of measurement occasions. The Betweenness Centrality of Yi is
found by first calculating all the shortest paths between all pairs of variables, and then counting
how often Yi lies on that shortest path. It is clear then that, despite how this measure is interpreted
the relationship of Betweenness Centrality with path-specific effects is much less direct than for
the other measures considered above.

B. The Matrix Exponential as Path-Tracing

In this appendix,we describe inmore detail the relationship between theCT-VARorOrnstein–
Uhlenbeck model, and the notion of path-tracing effects. The CT-VAR model is the integral form
of the first-order stochastic differential equation (SDE) model, defined as

dY(t)

dt
= AY(t) + W(t) (14)

where A is the drift matrix which regresses the derivative on the value of the process at that
moment in time, and W(t) represents the stochastic innovation part of the system, also referred
to as a Wiener process (which is often denoted G dW(t)

dt , cf. Oud & Jansen, 2000; Voelkle et al.,
2012; Voelkle&Oud, 2013). The elements of the drift matrix encode direct dependencies between
time-varying processes, with ai j representing the direct effect of Y j (t) on the rate of change of
Yi (t).

The first derivative dY(t)
dt is defined as the change in value of Y(t) over the time-interval t + s,

as the value of s approaches zero

dY(t)

dt
= lim

s→0

Y(t + s) − Y(t)

s

which means that the deterministic part of the first-order differential equation (i.e., ignoring the
stochastic innovation part) can be rewritten as

lim
s→0

Y(t + s) − Y(t)

s
= AY(t)

Re-arranging, we can come to an expression for the relationship between Y(t) and Y(t + s), as
s → 0

Y
(
t + lim

s→0
s

)
= lim

s→0
s × (AY(t)) + Y(t)

=
(
I + A lim

s→0
s

)
Y(t)

that, is, an expression of the differential equation model as an auto-regressive model of mea-
surements spaced very closely in time. Thus, the auto-regressive and cross-lagged relationships
between waves spaced an infinitesimally small time-interval apart (i.e., the moment-to-moment
lagged relationships) are given by I+ A lims→0 s. This also shows that the off-diagonal elements,
that is, cross-effects, of A can be interpreted the same way as cross-lagged effects defined on the
moment-to-moment time-interval, since the addition of the identitymatrix I in the auto-regressive
form affects only the diagonal auto-effects.
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Now take it that we are interested in finding an expression relating two observed waves of
variables Y(t) and Y(t + �t). We can think of s as a very small fraction of �t , that is,

s = �t

n

such that as n → ∞ we get s → 0. This means that we can re-express the relationship between
waves spaced an infinitely small time-interval apart as

Y
(
t + lim

n→∞
�t
n

)
=

(
I + A lim

n→∞
�t
n

)
Y(t).

Now, if we conceptualize the CT-VAR as a path model, as depicted in Fig. 2 in the main text, then
we can find an expression to relate Y(t) and Y(t + �t) by a simple application of path-tracing
rules (Bollen, 1987). That is, we can trace through the limn→∞ n latent waves in-between those
two occasion, by taking the appropriate power of the moment-to-moment lagged-effects matrix
I + limn→∞ A�t

n . This path-tracing operation gives us

Y(t + �t) = limn→∞
(
I + lim

n→∞ A�t
n

)n
Y(t)

= limn→∞
{(

I + 1
n A�t

)n}
Y(t).

By definition, the first term on the right-hand side is exactly the matrix exponential (cf. Abadir &
Magnus, 2005, p. 250)

eA�t = limn→∞
{(

I + 1
n A�t

)n}
, (15)

giving us

Y(t + �t) = eA�tY(t), (16)

which gives us the deterministic part of the CT-VAR(1) model.
This derivation shows that the CT-VARmodel can be seen as a path model, where the lagged

relationships are defined as total effects resulting from path-tracing through an n → ∞ latent
waves. Thus, any DT cross-lagged parameter matrix �(�t) = eA�t should be interpreted as
reflecting total effects relative to the CT-VAR model.

C. Path-Tracing in CT models

In this appendix we describe the calculation of path-specific effects for the CT-VAR model
based on path-tracing rules. Both Deboeck and Preacher (2016) and Aalen et al. (2016) describe
a method for calculating direct, indirect and total effects in a CT-VAR model, which follow the
path-tracing rules laid out by, among others, Bollen (1987). However, these authors only discuss
path-tracing with respect to a lower-triangular tri-variate drift matrix, that is, a drift matrix with
only three variables and without reciprocal lagged relationships. Here, we generalize these path-
tracing definitions to drift matrices of arbitrary structure and number, following path-tracing
principles. In large part, we follow the methods described by the original authors, except in the

https://doi.org/10.1007/s11336-021-09767-0 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-021-09767-0


OISÍN RYAN AND ELLEN L. HAMAKER 243

case of the indirect effect, where non-triangular drift matrices must be approached differently
than was done in the simpler scenario of a lower-triangular matrix.

To find the path-tracing total effect of Yi (t) on Y j (t + �t), which we will here denote
TEi j (�t), we simply take the element in the j th row, i th column of the matrix exponential of the
drift matrix:

TEi j (�t) = eA�t
[ j i]. (17)

This follows from the interpretation of the matrix exponential term eA�t as a path-tracing oper-
ation, relative to the moment-to-moment auto-regressive effects matrix (I + A limn→∞ �t

n )

(described in Appendix B). In Fig. 11a, we show a four-variable CT-VAR model with a full
A matrix in path-model form, with n → ∞ latent values of the processes in between mea-
surement occasions, spaced at intervals of s → 0. From this it is clear that tracing a path
from, for instance, Y1(t) to Y4(t + �t) includes paths through latent values of Y1 and Y4, (e.g.,
Y1(t) → Y1(t + 1s) → Y1(t + 2s) → Y4(t + 3s) → · · · → Y4(t +�t)) as well as paths through
latent values of Y2 andY3 (Y1(t) → Y2(t+1s) → Y3(t+2s) → Y4(t+3s) → · · · → Y4(t+�t)).
As such, we can interpret this total effect as constituted of all possible pathways linking Y1(t) and
Y4(t + �t), as is the standard interpretation of a total effect.

In order to find the path-tracing direct effect from Yi (t) to Y j (t + �t) relative to some
mediator variable(s) Yk , Deboeck and Preacher (2016) state that the drift matrix should first be
altered so that the parameters which make up the indirect pathways are omitted. We can alter the
drift matrix to achieve this by setting the kth row and column elements of A to zero, yielding a drift
matrix containing only direct relationships between Yi and Y j , which we will denote A(D[−k]).
The path-tracing direct effect is then found by applying the matrix exponential function to the
altered drift matrix.

DEi j ·k(�t) = eA
(D[−k])�t

[ j i]. (18)

For example, for a four-variable system, to define the path-tracing direct effect of Y1(t) to Y4(t +
�t) relative to the mediators Y2 and Y3 we would need to alter the drift matrix as follows

A =

⎛

⎜⎜
⎝

Y1 Y2 Y3 Y4
Y1 a11 a12 a13 a14
Y2 a21 a22 a23 a24
Y3 a31 a32 a33 a34
Y4 a41 a42 a43 a44

⎞

⎟⎟
⎠, A(D[−2,−3]) =

⎛

⎜⎜
⎝

Y1 Y2 Y3 Y4
Y1 a11 0 0 a14
Y2 0 0 0 0
Y3 0 0 0 0
Y4 a41 0 0 a44

⎞

⎟⎟
⎠.

This altered drift matrix defines a new path model, absent of any lagged relationships linking Y1 to
Y4 through themediators Y2 and Y3. This is displayed in Fig. 11b. Applying thematrix exponential
function to this new drift matrix, it is clear that we only trace through direct pathways linking
Y1(t) to Y4(t+�t) (e.g., Y1(t) → Y1(t+1s) → Y1(t+2s) → Y4(t+3s) → · · · → Y4(t+�t)).
This process is exactly equivalent to how Bollen (1987) describes the calculation of a direct effect
using matrix algebra.

To calculate the indirect effect for a lower-triangular drift matrix, both Deboeck and Preacher
(2016) and Aalen et al. (2016) describe an operation by which the direct links are omitted from
the drift matrix (in the four-variable example, this would be a14 and a41) before applying the
matrix exponential term. We will refer to this as the trace method of calculating an indirect effect.
Alternatively, following path-tracing rules in linear models, we could define the indirect effect
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(a)

(b)

Figure 11.
Path-model representation of the four-variable CT-VAR model with full drift matrix A. In the top panel, the red pathway
highlights a path which is included in the difference-method calculation of the indirect effect but omitted from the path-
method calculation. The bottom panel shows the pathways which make up the direct effect, with indirect paths (removed
from the altered drift matrix A(D[−k])) shaded in gray (Color figure online).

as the difference between the total and direct effect, which we will refer to as the difference
method. For a lower-triangular drift matrix, both methods yield the same indirect effect (Deboeck
& Preacher, 2016).

However, for non-triangular drift matrices, these definitionswill not be equivalent. The reason
again follows simple path-tracing rules. The difference method in this scenario quantifies all paths
from Yi (t) to Y j (t + �t) that pass through some latent value of Yk . In contrast, the trace method
quantifies fewer paths, that is, all paths that pass through Yk , but do not pass along any direct paths
linking Yi (t) to Y j (t + s). In Fig. 11a, we have highlighted in red a pathway which is included
as part of the difference-method indirect effect, but which is not included in the trace-method
indirect effect.

In order to maintain the property that the total and direct effects sum to one another, and to
allow an easier link to intervention-based definitions of indirect effects in Sect. 3.2 of the main
text, we recommend the use of the difference method of calculating indirect effects. As such, we
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define the path-based indirect effect as

IEPi j (�t) = eA�t
[ j i] − eA

(D[−k])�t
[ j i], (19)

which is equivalent to the difference between the path-tracing total effect and the path-tracing
direct effect described above.

D. Interventions and Path-Tracing in CT Models

In this appendix, we prove the equivalence between the intervention-based definitions of
total, direct and indirect effects, and the path-tracing definitions of these quantities (described
in Appendix C). In contrast to the typical approach taken in the causal inference literature, in
which strict identifiability assumptions are explicated in order to identify the effects of these
interventions from the observational distribution (cf. Pearl, 2009; Dawid, 2010) we here take
a highly simplified approach, for instance assuming throughout that intervening on the system
does not change how variables relate to one another (known as the modularity assumption), that
the system is fully observed (sufficiency) and that the CT-VAR model correctly describes the
dynamics of the underlying system. As such, the equivalence between intervention-based and
path-tracing definitions given below can be considered to hold under highly idealized conditions.

D.1. Total Effect

We define the total effect of Yi (t) on Y j (t+�t) as the expected change in value of Y j (t+�t)
given pulse intervention to set the value of Yi (t) from a constant, y∗

i to a new value yi . We denote
such a variable-setting operation using the do operator (Pearl, 2009), and so can express this total
effect as

TEi j (�t) = E
[
Y j (t + �t)

∣∣ do(Yi (t) = yi )
] − E

[
Y j (t + �t)

∣∣ do(Yi (t) = y∗
i )

]
. (20)

By assumption, we substitute the expected value of Y j (t + �t) following an intervention
do(Yi (t) = yi ) with the expected value given we observe Yi (t) = yi . This yields the expres-
sion

TEi j (�t) = E
[
Y j (t + �t)

∣∣ Yi (t) = yi
] − E

[
Y j (t + �t)

∣∣ Yi (t) = y∗
i

]
.

Now we plug in the CT-VAR model for those expected values. Take it that Y(t) represents a
column vector of variable values with i th element Yi (t) = yi . Using this, we can express the first
expected value as

E
[
Y j (t + �t)

∣∣ Yi (t) = yi
] = {eA�tY(t)}[ j]

that is, the j th element of the column vector obtained by multiplying the square matrix eA�t

with the column vector Y(t). To obtain the second expectation, we take it that Y∗(t) represents a
column vector of variable values with i th element Yi (t) = y∗

i but which is otherwise identical to
Y(t).

E
[
Y j (t + �t)

∣∣ Yi (t) = y∗
i

] = {eA�tY∗(t)}[ j].
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Taking the difference between these two expected values, we obtain

TEi j (�t) = {eA�tY(t)}[ j] − {eA�tY∗(t)}[ j]
= eA�t · (

Y(t) − Y∗(t)
)
[ j].

Since the vectors differ only with respect to their i th element, we obtain

TEi j (�t) = eA�t
[ j i] × (yi − y∗

i ) (21)

where eA�t
[ j i] is the element in the j th row and i th column of the matrix eA�t . If we define the

intervention as increasing the value of Yi (t) by one unit (yi − y∗
i = 1), this yields an expression

exactly equivalent to the path-tracing definition of a total effect given in Appendix C.

D.2. Direct Effect

Wedefine the direct effect of Yi (t) on Y j (t+�t) as the expected change in value of Y j (t+�t)
given an acute intervention to set the value ofYi (t) from y∗

i to a newvalue yi , while also intervening
to keep the value of the mediator(s) Yk fixed to a constant yk at every moment in time in that
interval. We denote this latter press intervention using the do operator over an interval of time as
do(Yk(t + �t) = yk , and so express the direct effect as

DEi j ·k(�t) = E
[
Y j (t + �t)

∣∣ do(Yi (t) = yi ), do(Yk(t + �t) = yk)
]

− E
[
Y j (t + �t)

∣
∣ do(Yi (t) = y∗

i ), do(Yk(t + �t) = yk)
]

(22)

for some mediator(s) k ∈ p. Intuitively, if we want to block the indirect effect that acts through
a mediator, we would need to ensure that either the mediator does not react to changes in the
cause variable, or that it does not transmit information to the effect variable, or both. If we wish
to achieve this by intervening on a variable, it is straightforward to see that we must do so by
intervening to set the value of the mediator to a constant at every point in time between t and
t + �t .

As with the total effect derived above, the next step consists of plugging in the CT-VAR
model for the expected values in this expression. However, note that due to the need to define the
press intervention on the mediator do(Yk(t + �t) = yk this proof is a little more involved than
that of the total effect above. To derive an expression for the direct effect, we first begin with the
expression for the expected value of Y(t + �t) given pulse intervention on the cause variable
Yi (t), that is,

E
[
Y(t + �t)

∣∣ Yi (t) = yi
] = eA�tY(t)

one of the components of the total effect given above. Recall from the derivation in Appendix B
that we can write the CT-VAR model as describing lagged relationships over an infinitesimally
small time-interval limn→∞ �t

n , hereby referred to as the moment-to-moment relationship. This
gives us

E
[
Y(t + lim

n→∞
�t
n )

] =
(
I + A lim

n→∞
�t
n

)
Y(t).
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From now, we will treat this expression as defining a moment-to-moment path model, as depicted
in Fig. 2 in the main text, and with a slight abuse of notation we will substitute limn→∞ �t

n for s,
which we will define as a “moment” in time. We can express the expected value two “moments”
after t as

E
[
Y(t + 2s)

] = (I + As)Y(t + s).

= (I + As)(I + As)Y(t)

= (I + As)2Y(t)

where the second and third line follow by substituting in the expression for E
[
Y(t + s)

]
given

above.
Now, to define the direct effect we need to express the expected value of Y(t +2s) given that

we have intervened to set the current value of the mediator (Yk(t + 2s)), the value of the mediator
one “moment” previously (Yk(t + s)), and the initial value of the mediator Yk(t) to some constant
value. In order to derive such an expression, we introduce two simplifications here. First, since
we are focusing on a linear model, and we are interested in the difference between two expected
values in which in both cases the mediator Yk is set to the same value yk , the specific value we
choose for yk is irrelevant. For ease of notation, we will therefore consider only an intervention
by which yk is equal to zero (i.e., the equilibrium position of Yk). Second, to aid in our derivation,
we will express the do operator in matrix algebraic terms. That is, we will represent the operation
do(Yk(t) = 0) using a transformation matrix D[−k], a p × p matrix with zeros as off-diagonal
elements, a zero on the kth diagonal element, and ones as the other diagonal elements. For instance,
a 3 × 3 matrix D[−2] would be given as

D[−2] =
⎡

⎣
1 0 0
0 0 0
0 0 1

⎤

⎦ .

Pre-multiplying a column vector by the matrix D[−k] reproduces the original column vector
but with a zero as the kth element. That means that D[−k]Y(t) denotes the acute intervention
do(Yk(t) = 0). Again, for ease of notation we will drop the [−k] notation and leave it implied,
that is, in the proof below, D = D[−k] unless otherwise specified.

Using this matrix representation of the do operator, we can express the expected value of
Y(t +2s) given that we have intervened to set the current value of the mediator (do(Yk(t +2s) =
0)), the value of the mediator one “moment” previously (do(Yk(t + s) = 0)), and the initial value
of the mediator (do(Yk(t) = 0)) to zero. Subsequently, since we repeat this acute intervention at
every “moment” in time in an interval, we can describe it as a press intervention do(Yk(t + s) = 0)
that is, an intervention that is present for all possible time points in an interval. The expected value
of Y(t + 2s) given this press intervention can be written as

E
[
Y(t + 2s)

∣
∣ do(Yk(t + s)) = 0

] = D(I + As)D(I + As)DY(t)

= (DI D + DADs)2Y(t).

Now, using the same substitutions as described in Appendix B, we can express the expected value
an arbitrary time-interval �t later, given that we intervene to set Yk to zero at each of the limn→∞
time points in that interval. This is given by

E
[
Y(t + �t)

∣∣ do(Yk(t + �t)) = 0
] = limn→∞

{
(DI D + DAD�t

n )n
}
Y(t).
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Noting that D is an idempotent matrix, and that DI D = DI = I D, we can simplify this
expression to

E
[
Y(t + �t)

∣
∣ do(Yk(t + �t)) = 0

] = limn→∞
{
(I + DAD�t

n )n
}
DY(t)

which, by the definition of the matrix exponential function simplifies to

E
[
Y(t + �t)

∣∣ do(Yk(t + �t)) = 0
] = eDAD�t DY(t) (23)

where DY(t) ensures that the initial value of Yk(t) is set to zero.
Pre- and post-multiplying A by D[−k] has the effect of setting the kth row and column of A

to zero. Hence, the expression eDAD�t is exactly equivalent to the path-tracing definition of the
direct effect given in Appendix C, that is, DAD = A(D[−k]). This implies that by plugging the
above expression in for the expected values in the direct effect definition, we obtain

DEi j ·k(�t) = eDAD�t
[ j i] × (yi − y∗

i )

= eA
(D[−k])�t

[ j i] × (yi − y∗
i ) (24)

which shows that the effect on Y j (t +�t) of an acute intervention to change Yi (t) combined with
a press intervention to keep the mediator Yk fixed is identical to the path-tracing direct effect.

It follows from the equivalence between path-tracing and intervention-based direct and total
effects that the indirect effect, defined as a contrast between those two, can be calculated by taking
the different in path-tracing definitions of each component effect, described in Appendix C.

D.3. General Pulse Interventions

Both from a conceptual standpoint, and from the derivation of the direct effect above, it is
clear that a press intervention destroys the paths from other variables to the intervened-on variable.
This is achieved by pre-multiplying the drift matrix by the transformation matrix (DA), which
denotes that, if a variable is forced to remain constant, it’s rate of change is now independent of
the other variables in the model. For the direct effect we consider press interventions which set
Yk to its equilibrium value of zero: if a variable is forced to stay at equilibrium it will not exert
any direct influence on the other variables in the system, and so, we can post-multiply by the
transformation matrix, yielding DAD in Eq. (23).

However, if the press variable is set to a non-equilibrium value, say c, then that variable does
exert an influence on all others in the system. To understand the effect of such a press intervention,
we first construct the transformation matrix D[−k], and then check the eigenvalues of the resulting
modified drift matrix DA. If the real parts of the eigenvalues of DA are positive, then this press
intervention has created an unstable system. If the real parts of the eigenvalues of DA are negative,
then the intervened-on system is still stable. In the latter case, we can simulate the effects of such
an intervention using the expression

E
[
Y(t + �t)

] = eDA�tY(t)

where Yk(t) = c. Plugging in a sufficiently large value of �t will yield the new equilibrium
positions of the intervened-on system (though what precisely that value is depends on the system
at hand). A function to compute the effects of the press intervention is given in the online supple-
mentary materials and accompanying R package, and an example of such a press intervention is
shown in the main text in Fig. 5b.
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Table 3.
Estimated drift matrix Â parameter estimates from the empirical example.

SD Ti Ir Rl

SD−0.984 (−1.322, −0.710) 0.036 (−0.124, 0.192) −0.675 (−1.356, 0.018) 0.791 (0.123, 1.503)
Ti −0.002 (−0.222, 0.229) −0.782 (−0.911, −0.649) 0.294 (−0.203, 0.807) −0.105 (−0.625, 0.382)
Ir −0.317 (−0.755, 0.082) 0.002 (−0.225, 0.226) −2.222 (−3.379, −1.309) 1.343 (0.338, 2.350)
Rl 0.444 (0.160, 0.761) −0.176 (−0.327, −0.019) 1.007 (0.304, 1.722) −1.605 (−2.438, −0.994)

Point estimates are given with lower and upper 95% confidence interval in ellipses.

Table 4.
Estimated DT-VAR lagged parameter matrix �̂ from the empirical example.

SD Ti Ir Rl

SD 0.341 (0.283, 0.400) −0.019 (−0.071, 0.033) −0.022 (−0.085, 0.046) 0.092 (0.025, 0.166)
Ti −0.022 (−0.085, 0.04) 0.298 (0.245, 0.347) 0.064 (0.000, 0.132) 0.021 (−0.046, 0.093)
Ir 0.067 (0.007, 0.130) −0.068 (−0.119, −0.010) 0.156 (0.088, 0.229) 0.124 (0.047, 0.200)
Rl 0.127 (0.064, 0.184) −0.078 (−0.128, −0.026) 0.098 (0.034, 0.165) 0.264 (0.195, 0.339)

Point estimates are given with lower and upper 95% confidence interval in ellipses.

E. Empirical Example Parameter Estimates

The parameter estimates for the CT and DTmodels estimated on empirical data, as discussed
in Section 4, are presented in Tables 3 and 4 respectively. Code to reproduce these analyses is
available in Online Supplementary Materials 2.
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