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THE LONGITUDINAL STRESS AND STRAIN-RATE
GRADIENTS IN ICE MASSES

Ly W. F. Bunp

[Antarctic Division, Department of Supply, 568 St Kilda Road, Melbourne. Victoria 3004,
Australia)

ApsTrRacT. The fundamental cquation for the longitudinal stress and strain-rate gradient for ice masses
with small slope (Budd, 1968) has been derived exactly for any slope by Nye (1969) who shows that by using
a variable longitudinal axis inclination, parallel to the surface, this equation takes on its simplest form.
However for the integration of this equation along the ice mass to obtain stress and strain-rates it is necessary
to use a fixed axis direction. Here the equation is derived generally for a longitudinal axis of arbitrary
inclination, from which the relation between the expressions for the fundamental equation with respect to any
longitudinal axis inclination such as parallel to the surface, parallel to the base or horizontal, is readily
discerned.

An expression for the longitudinal strain-rate is derived to obtain the flow law from longitudinal stress
and strain-rate measurements. A single “generalized viscosity function” is introduced to avoid the complica-
tion of both the power flow-law parameters varying with stress,

Resumt. The French résumé will be found on p. 27.

ZUSAMMENFASSUNG.  Die Gradienten der Lingsspannung und der Deformationsgeschwindigkeit in Eismassen. Die
Fundamentalgleichung fir den Gradienten der Lingsspannung und der Deformationsgeschwindigkeit von
Eismassen mit geringer Oberflichenneigung (Budd, 1968) wurde von Nye (1969) exakt fir jede Neigung
abgeleitet. Nye zeigt, dass bei Verwendung einer verinderlichen Inklination der Lingsachse, parallel zur
Oberflache, diese Gleichung ihre einfachste Form annimmt. Dennoch ist es notwendig, bei der Integration
dieser Gleichung entlang der Eismasse zur Ermittlung der Spannung und Deformationsgeschwindigkeit eine
feste Achsrichtung einzufithren, Hier wird die Gleichung generell fiir cine Lingsachse von beliebiger
Inklination aufgestellt, woraus die Bezichung zwischen den Ausdriicken fiir die Fundamentalgleichung mit
Riicksicht auf irgendeine Achsneigung, wic etwa parallel zur Oberfliche, parallel zum Untergrund oder
horizontal, leicht hergeleitet werden kann.

Ein Ausdruck fiir die Langsdeformationsgeschwindigkeit wird abgeleitet, um die aus dem Fliessgesetz
folgende Bezichung aus Messungen der Lingsspannung und der Deformationsgeschwindigkeit zu erhalten.
Eine einzelne “‘generalisierte Viskositatsfunktion™ wird eingefithrt, um der Komplikation der beiden Para-
meter des exponentiellen Fliessgesetzes, die sich mit der Spannung dndern, zu begegnen.

1. INTRODUCTION

Equations for the longitudinal stress and strain-rate in ice masses have been discussed by
many authors including Shumskiy (1961, 1963, 1967), Lliboutry (1964-65, Tom. 2. p. 631 -40),
Robin (1967), Budd (1968, 1969), Collins (1968), and Nye (196g). Robin | 1967) showed that
from measured ice thickness and accumulation profiles and an assumed flow Jawy ofice, steady
state longitudinal strain-rates, stresses and surface slopes can be calculated which are in
agreement with the measured surface-slope variations. Budd (1968) showed how measure-
ments of surface strain-rate and ice surface and bedrock profiles may be used to determine the
ice flow-law parameters. Furthermore it was shown that the longitudinal strain-rate gradient
varied with deviations of the local surface slope. Collins (1968) used a system with horizontal
and vertical axes to derive an exact cquation for the longitudinal stress deviator to examine the
conditions under which Robin’s result applied.

The present study arises from a valuable discussion with Dr Nye who examined the
approximations used in the author’s original theory and showed (Nye, 196g) that an exact
formulation of the equation for the longitudinal stress deviator gradient is simplified by
referring the components to a longitudinal axis inclined parallel to the surface. However, since
the surface slope varies along the ice mass, several difficulties arise with such an expression.
To integrate this equation along the ice mass it is necessary, il curvilinear coordinates are to
be avoided, that a system with fixed axes be taken. It is also necessary to take the surface and
base coordinates variable along the ice mass. In some contexts it is required to know the
components of the stress deviator and strain-rate with respect to axes in other directions such
as parallel to the bed, or horizontal and vertical. Hence the following approach aims at
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deriving the equation for the longitudinal stress deviator gradient as generally as possible for
two dimensions with respect to orthogonal axes (x, z), fixed in space but with arbitrary
orientation.

2. DERIVATION OF LONGITUDINAL STRESS DEVIATOR GRADIENT WITH RESPECT TO A LONGITUDINAL
AXIS OF ARBITRARY INCLINATION
2.1. Integration of the equations of motion
Two-dimensional motion or “plane strain-rate’ only is considered.
We adopt a right-hand orthogonal system of axes, x, z such that the horizontal is inclined
at an arbitrary angle x to the positive x direction. All angles will be taken positive for an
anticlockwise rotation from the x-axis (see Fig. 1).

VERTICAL

0 W—) HORIZONTAL

Fig. 1. Coordinate system and definition of quantities.
14 ¥ 7/ g

Let — « be the surface slope of the ice mass at position x, —B be the basal slope of the ice
mass at position x, z: be the ordinate of the surface at position x, z be the ordinate of the
base at position x, write J = z;—z: for the ice thickness at x and —8 = —a .
—¢ — —B-+x. for the slopes of the surface and base with respect to the x-axis. The stress
components at (x, z) are denoted by (o4, T2z 0z). We consider an ice mass of constant density
p. Let g be the gravitational acceleration, and write gz = { gsin y, gz = —g 08 x for its
components in the directions of the axes.

The equations of equilibrium for slow steady motion may then be written as

0oy OTzz

cx

i \
=T pEx =0 (1)
3z U4 s

dos  OTis
i
cz X

+pgz = 0. (2

These equations are true everywhere in the ice mass for any such system of axes so defined.
We require an expression for the longitudinal stress deviator o5 = 4(o,—0:). Hence
we differentiate Equation (1) with respect to z and Equation (2) with respect to x and

subtract to yield
c*or—0z) ‘

\Ll.
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‘This equation also does not depend on the choice of the axis orientation. It is only when this
equation is integrated that it becomes necessary to specify the boundary conditions in terms
of the axis direction.

We integrate Equation (3) with respect to z from 2, to 2

f(oz—0yz) FO‘Z) ‘o Fru) erss [ Taz 4
= eae— = e —— 1 = B (4)
X cx J 2, ox ) €z Ja, cz cx? 4
I'rom Equation (1) we note at the surface that
FO’.r) F'T.rz)
= e = —PSx 5
L / & (04 21
Henee, using this, Equation (4) may be written
oz—02z) & 0Tz O Ty ’
—_— = g — 1T % (l.:. (6)
ox dx e 02 cx?

Now integrating again with respect to z, this time from z; to z:, noting the first two terms
on the right are constant with z and also . = 2, — 2., gives

;-F{U..*U) .2 _fa ; e .
J ——dz — p_af»r/\*(rh—: —Trzt Tz, ff X dzdz ()

X

"T'his equation is exact and expresses the mean longitudinal stress deviator gradient in terms
of the boundary conditions at the surface and base of a column of ice. We shall shortly
examine the surface and base boundary conditions in detail. But first it is often required to
integrate this equation with respect to x. To do this we note that the left-hand side may
be written

? I (O'J-—(Tz) di

tloz—az) | i ‘ 022 21 g
= dz = = (6r—02)za5—TF(02—0z) 2, = (8)
ox @ & £

™)

2.2, Boundary condilions

At the surface we make the assumption that the shear siress parallel to the surface is zero,
and that the normal stress is the atmospheric pressure p.

I # is the angle between the x-axis and the surface, then using the standard formula
for the rotation of axes, the normal and shear stresses are related to the components in the
. = directions at the surface by (cf. e.g. Jaeger (1962))

—p = opsin? 0—27,;sin O cos 0+ 0. cos® 8, (9)
0 = (gz—0z)sin O cos 074, (sin? 6 —cos? 0). (10)

I‘'or Equation (8) we require only Equation (10) in the form (dividing by cos: )
(62—02)z tan 8 = 745, (1—tan? 6). Gk

Similarly at the base, if — 7, is the basal shear stress parallel to the bed, where —4 is the
angle between the base and the x-axis, then

Th — — (Gp—02) Sin ¢ cosp+ 7,2 (cOS? p—sin® )
and therefore
; . . Th
—(0z—0;)z, tan ¢ = —7gz,(1—tan? &) g (12)
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5 022 0z 5 = £ . == . ; {
Since 5 — tan ¢ and — = tan 6, using Equations (11), (12) and (8) in Equation (7) and
x ox

1

writing — Z(6,—¢;) for J (ox—o,) dz,

2

F{,(&x_éz) FF‘J'z Th ( 561
— — T tAN p— 7y, tan? B+ _
= Pg.r€+€ P‘x)z. Txz, lan SA Tzrz, lan \COS:‘;{)“FJ‘J\ 7

Trz
dzdz. (13

(s x2

i

" fo, 2 i 2 - .
I'he term 7) is zero for points where the surface is parallel to the x-axis. For other
ox /[,

slopes however this term depends on the longitudinal stress and stress-gradients and the
curvature of the surface. We now evaluate this term in full to show under what conditions
it may be approximated by pg. tan 6.

If s denotes the distance along the curved surface,

foy oy 0o, 1 .
- = ——tan 4+— —. (14)
0% 0z es cos B
Using Equation (2) this may be written
o 0T xz o, I
— — | pg,tan 6+ tan 0 —
ox Pg Ox cs cos O
Similarly expanding 7.,/ and using Equation (1) gives
‘o cr 07z, sinfl o I
Z xz Tz - Z
-— = + tan @ —— tan? 04— N —
ox Pz A oz 2s cos*@ ' Ps cos 0
5 & y A
0o 4 Otz sinfl o, 1
= tan 60— tan? f ztan? §—+ b I5
S 2 ~ =T ~ ~ % 4
Pg ox PEx ds cos* @' 05 cosf {13,

Now at the surface if ¢y, o are the normal and longitudinal stresses and of — dop—oy)

r -
Trz = o18in 20 and o, = oy cos? B-4-gsin? 6,
FT;J:Z F'U’l 4 ’ ¢

Hence — = — sin 260 |0 2cos 20 —

os s s
oo, . .00 doy . . ol
and — = —op2cosfsin  —+——sin2 0 | gy 2 sin 6 cos § —,
o ds  os os

Substituting in Equation (15) and taking surface values

- ~ ~ ’
(o 2} 00z oay .
- ) = pg.tan 8 —— ) tan* @ —pg, tan® 0 —— 2 sin @ tan § -
ox Joz ox [ 5, fay
p cf . cl oy . . cl .
+ o012 cos 20 tan 0 = — oy, sin 260 — -+ — sin f tan 0 | oy sin 26 —. (16)
cx ds ' 8x ‘x

Hence to take as the first approximation

dos

) X pg;lan f
Zr

£x

it is necessary (and sufficient provided the longitudinal stress and stress gradients are not
1 o6 I Efcr|

e op— X — —
8ds ™ o o5

or less. Since the longitudinal stresses vary with the surface slope this is usually the case.

However abrupt changes of surface slope or stress (e.g. surface crevasses) will not be covered
by the approximate formula.

too large) that not only the slope # be small but also the slope gradient, i
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oo

Finally substituting Equation (16) in Equation (13) and writing the components of g in
full gives

f-'\7,( .r*ﬂ'z)

0%

W - _toy
= pggsin y —pgg cos y tan 60— — ) tanz f—
21

’

c

= _fay cd
—pgd sin y tan® -+ R 2 sin ¢ tan 0+ (n <2 cos 20 tan H——.{Crn sin 29——-
& s

S _cay . '
~ = sin O tan 0+, sin 29 777,2 tand | 7, tanz 0 (f) ff dzdz. (17)
fs cos?
This equation is exact, it has arbitrary orientation y for the x-axis, and applies everywhere
along the ice mass with the same rectilinear coordinates, and hence it may be directly integrated

with respect to x, without resorting to curvilinear coordinates. From this equation the
conditions required for various simplified forms may be determined.

Special cases of longiludinal axis inclination
(1) Small slopes.
For small slopes y, #, ¢ and slope gradients (i.e. neglecting second and higher orders).

all except the first two and last two terms on the right of Equation (17) are negligible so that
it reduces to the form given by Budd (1968)

S rertan— [ | G azed] 18)

where 6; = $(6,—62), )/ = mv/pgi, « = 8 —y. In this case only the surface slope is relevant
and it is therefore immaterial whether the axes are taken horizontal, parallel to the surface
or parallel to the base. The senses of the signs in Equation (18) are such that an increasing
tension in the direction of motion is required to balance either a smaller negative slope
(downwards in the direction of motion) or a greater basal stress against the direction of motion.

Other simplified forms of Equation (17) may be readily obtained by choosing the longi-
tudinal axis horizontal (y = o), parallel to the surface (6 = o, y = «), or parallel to the
base (¢ = 0, ¥ = B), at some particular position.

(2) For the longitudinal axis x parallel to the surface at some position we have y — «,
f — 0. 6 = =—f, and Equation (17) reduces to

s
C‘,Z(G-;—Gz) § Th & T.rz
— e Sin & — T2, tan® (—f3) - dzdz. (19)
ox pel e A+ cos? qS ;
An alternative form may be obtained directly from Equation (7)
dogz—o, — & Ty
f—.——)dz = pg smcx—q-_“:+ff v dzd-z. (20)
dx ox?

These results correspond to the form derived by Nye (1969) except that here .J is not
necessarily constant, and the no-slip condition at the base is not required (i.e. (o,—o0;) is
not necessarily zero, and 7y, is given in general by Equation (12)).

For small («—f) these results all reduce to Equation (18) above. However, since the
x-axis here is parallel to the surface, whose slope varies along the ice mass, this equation
cannot be readily integrated with respect to x without resort to curvilinear coordinates,

(3) For the x-axis parallel to the base, y = B, $ = 0, § = a—f. Equation (17) becomes,
for small (x—p),
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205Gy
(—?tf = pglsin B—pgl cos Btan (a—f) +pglsin Blan? (a—pf) +

1 Z

27

xe
——dzdz. (2t
oxz

+Z$) tan? (o0 —f) + 722, tan? (e—fB) + 7y
ox [z,

For both small («—f) and B this immediately reduces to the form of Equation (18). This

equation is also useful in the case of small (x—f) but moderate values of £ and if the x-axis
is chosen parallel to the average basal slope over the length, then it may be readily integrated
with respect to x.
(4) For the x-axis horizontal x = 0, § = «, ¢ = B. This form may be uscful for considering
a wedge-type profile say near a terminus, with small 8 and da/dx but moderate «. In this
case if the longitudinal surface stress and slope gradients arc not large Equation (17)
reduces to

£z
0? Tyz

2 876, ‘o i i
ok . 8 pad tan 8+<‘fr,—flsin 0 tan 04 74, tan 847y, |JJ ——dzdz. (23)
A ox

ox

Again even for moderate 6 this equation differs only slightly from Equation (18).

3- APPLICATION TO THE STUDY OF LONGITUDINAL STRAIN-RATES

3.1. Preliminary comments

The theory so far, for stresses, is exact and applies generally (for slow creep) whatever the
flow law. The application of this equation to the study of flow properties of ice masses from
elevation and bedrock profiles and surface strain-rates, requires some additional less sub-

stantiated assumptions.
Before examining the flow law, it is necessary to make a comment concerning the second

term on the right of Equation (18) viz.

; “ 92__”’ dzdz.
cx?

This term will be discussed in a separate paper concerning ice [low over undulations
(Budd, 1970), but it has already been indicated (Budd, 1968, 1969) that 7 is important for
small wavelength undulations (A & 3.J). T is zero for y,, constant or increasing linearly
with x, but for flow over undulations it enhances the relative maximum extension on crests
and compression in troughs, such that Equation (18) may be written

elay

— Ypglkia

— 1 for long waves, «y is the local surface slope and 3

i K
where 6o = as—a, k 1474—17(5)
3 \A

is the mean slope over ¢. 10 to 20<.
The assumption of replacing 7y, by pg.la is largely empirical (cf. Budd, 1968) but it is a

good approximation provided & is calculated over such a distance that the longitudinal stress

is unimportant (x > ¢. 10{). Several earlier workers (Robin, 1967; Budd, 1968; Collins,

1968) have used a power law for flow, say

€o = (E)

and replaced o in Equation (18) by Bé /7. This is in many instances unsatisfactory since it
neglects the effect of the vertical shear. The question arises: is the longitudinal strain-rate
much higher in regions of high vertical shear for the same values of longitudinal stress deviator
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and ice temperatures? For Newtonian flow it would not be, but for a high power law for
low it would be.

The following analysis aims at devising a method to answer questions such as this by
determining the flow law from measurements of longitudinal stress and strain-rates in regions
with differing degrees of vertical shear.

3.2. Derwvation of the flow law of ice from the longitudinal siress and sirain-rale gradients

To convert the equation for longitudinal stress gradient to an equation in strain-rate
gradient it is necessary to re-examine the flow law of ice.

With a power law for flow it is only satisfactory to replace &5 by B /#if 7., € §(or—0)
or if n @ 1. In practice (McLaren, 1968) 7., is often much larger than &;. T'he major
problem then is to consider the relation between &; and €, when 7, is not necessarily small.

We abandon the power-law formulation of the stress strain-rate relation for ice

L
€ij = ~pu Ot (23)

)
where a5 is the stress deviator and + the octahedral shear stress, since n and B are both found

to vary with stress. Instead we adopt a single-parameter “‘generalized viscosity” relationship
of the form
. l p I, \
€ij = —0ij (24)
(/)

where #(7, #) is a function ol both stress and temperature.
For the octahedral shear values of stress 7, and strain-rate é, Equation (24) gives (cf.
Nye, 1953)

€ = T, [25)
)

T o i

Hence n=— (26)
€

This may be regarded as an alternative definition of . Equation (25) may be regarded as
the flow law of ice, and for cach constant temperature represents a single curve on the €
versus 7 diagram. It is these curves we wish to determine. The important result is that for a
given stress state the longitudinal stress and strain-rate have the same ratio as the octahedral
values.

So. substituting for the average longitudinal stress deviator through the ice column

Gy — néy in the equation for stress gradient (18)

Gy &2 (| rz,dzdz
— e = Pt e e (a5
Oy spglo [) g 22 > 27)

; ?ns_'_r 6 [[ rz2dzdz
we aobtain Lol S e e R 28)
e | = = tpgla—f)—4 o (28)
Lpgkda*  (asadefinitionofkda*, clisectiong.1)  (29)

- E3 .
or n€r | = bpok f Soc* dax. (30)
X

A

We now define a weighted mean flow parameter n* through a vertical column by
il
€
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Then by integrating Equation (30) (for fluctuations around a mean value, i.e. taking €, = o
for éa* — 0)

- pgk

€z, = 27}—* Sa* du (1)

5 1 - \
or i = =g Uz 132)
n*

where Gi = bpek f Soc* dx. 33)

Hence from the ratio of the longitudinal stress deviator &; to the longitudinal strain-rate €,
we obtain n* for that = and f. We now use these values of n* and = to determine the flow
law in terms of octahedral values.
Since in terms of the octahedral values * = #/¢é we can now obtain the flow law of ice by
calculating € from 5* and 7 for each value and illustrate this by then plotting € against +.
For two-dimensional flow the octahedral shear stress 7 is calculated from

*= (1 t0)? & (77,46 (34)
taking Frz = dpgal and Gy = spgk j do* dx. (35)

Here & is taken as the mean surface slope over a distance x about ten times the ice thickness.
The approximation in Equation (34) is expected to be close since 7, increases linearly with
depth and &, only varies slightly in the upper layers.

These values of stress are derived directly from the measured elevation and ice thickness
profiles. The surface strain rate é; can be measured, but to obtain the average strain-rate
through the column something must be known about the ratio é;/é; = A say.

This normally requires information on the velocity-depth profile. However if the ice
is not slipping at the base then we may expect the strain-rates to vary with depth in a similar
way to the velocity V, i.e.

€5 Vs -

=g =i )
For cold ice caps the velocity profile depends on the temperature profile and estimates can be
calculated (cf. Budd, 196q).

In the absence of a velocity profile the value of A can be assumed to lie between 3 (for
viscous flow with no slip) and 1 (for block sliding) being near go%, for typical ice cap tempera-
ture profiles. In terms of the measured surface strain-rates, then, we may write

gk G4
ég = 2P1’€*A f da* du or e = Y 37)
From the measured variations in surface strain rates €, and surface slope «, the generalized
viscosity n*(#, f) can be determined from Equation (37) and then using the values of mean
octahedral shear stress from Equations (94) and (g5), and for the mean temperature for the
column at that position, a point on the stress-strain-rate relationship €(#, #) can be estab-
lished by plotting

€ = AesT/6x 38)
versus 7.

Strictly *(#, ) is not a unique single-valued function of 7 and 8 because it depends not
only on the mean values but also on the vertical distributions of # and . However until
more is known about the vertical distribution of longitudinal strain-rate this method provides
a useful means of analysing measured surface longitudinal strain-rates in regions of different
mean temperature and stress,
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L'o obtain the complete set of curves for ¢(7, §), many values of é covering a wide range
of shear stress 7 and temperature § are required. For a typical cold ice cap the ice temperature
¢ and the shear stress # both generally increase from the inland towards the coast and hence
cach contribute to higher 1/9* values (i.e. €,/6; ratios) near the coast. For temperate ice
masses (at pressure melting point throughout) we may expect the variations in the ratio of the
longitudinal strain-rate to longitudinal stress to depend just on the variations in the magnitude
of the octahedral shear stress.
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RESUME.  La contrainte longitudinale et le gradient longitudinal de vitesse de deformation dans les agglomérations de glace.
I."¢quation fondamentale de la contrainte longitudinale et du gradient de vitesse de déformation pour des
inasses de glace & faible pente (Budd, 1968) a été dérivée exactement pour chaque pente par Nve (1969).
Ce dernier montre qu’en se servant d’un axe longitudinal d’inclinaison variable, paralléle a la surface, cette
¢quation prend sa plus simple expression. Cependant, pour I'intégration de cette équation le long de la
masse de glace pour obtenir les vitesses des contraintes et des déformations, il est nécessaire de se servir d’une
direction d’axe fixe. Ici I'équation est dérivée généralement pour un axe longitudinal d’inclinaison arbitraire.
de laquelle est réellement distinguée la relation entre les expressions de I"équation fondamentale en tenant
compte de toute inclinaison d’axe longitudinal telle que paralléle 4 la surface. paralléle 4 la base ou hori-
zontale. Une expression pour la vitesse de déformation longitudinale est dérivie pour obtenir la loi d’écou-
lement des mesures de la contrainte longitudinale et de la vitesse de déformation. Une simple fonction de
viscosité généralisée est introduite pour éviter la complication 2 la fois des paramétres de loi d’écoulement
et de sa puissance variant avec la contrainte.
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