Let $V_n = \{a, b, ...\}$ denote a vector space of dimension n over F with a symmetric bilinear form (x,y). If (a,a) = 0, the vector a is called isotropic.

If p = 2 and $n \ge 2$, V_n will contain two linearly independent vectors b and c. We may assume they are non-isotropic. The equation $\xi^2 = (b,b)/(c,c)$ has a solution $\xi \in F$. It follows that $(b + \xi c, b + \xi c) = (b,b) + 2\xi$. $(b,c) + \xi^2 \cdot (c,c) =$ $(b,b) + \xi^2 \cdot (c,c) = 0$.

From now on let p > 2, $n \ge 3$. For every vector a let M_a denote the set of the norms $(\lambda a, \lambda a) = \lambda^2(a, a)$ with $\lambda \ne 0$. Thus either a is isotropic or $M_a = G$ or $M_a = \overline{G}$.

We choose any three mutually orthogonal vectors $\neq 0$. if none of them is isotropic, two of them, say b and c satisfy $M_b = M_c$. We may assume (b,b) = (c,c). Thus

$$(b + \xi c, b + \xi c) = (b, b) + 2 \xi. (b, c) + \xi^{2}. (c, c)$$

= $(b, b) + 2 \xi. 0 + \xi^{2}. (b, b) = (1 + \xi^{2})(b, b).$

Case (i): $-1 \in G$. Then let ξ be a solution of $1 + \xi^2 = 0$. The vector $\mathbf{b} + \xi$ c will be isotropic.

Case (ii): $-1 \in \overline{G}$. By (1) there is a ξ such that $1 + \xi^2 \in \overline{G}$. Thus there is a vector d such that $M_b \neq M_d$.

Since $n \ge 3$, there is a vector $e \ne 0$ such that (e,b) = (e,d) = 0. O. Since M_e must be distinct from either M_b or M_d , we have found two vectors, say e and f such that (e,f) = 0, $M_e \ne M_f$. We may assume $l \in M_e$, $-l \in M_f$ and hence (e,e) = 1, (f,f) = -1. This yields (e + f, e + f) = (e,e) + (f,f) = 0.

NOTES

ON THE DISCRIMINANTS OF A BILINEAR FORM

Jonathan Wild, Prince Albert, Sask.

Let E denote a vector space of dimension n over a field of characteristic $\neq 2$. In E a symmetric bilinear form f(x, y) is given. Define E_f^* as the subspace of those vectors x for which f(x, y) = 0 for all $y \in E$. Thus rank $f = n - \dim E_f^*$. Furthermore, define ind f = maximum dimension of a subspace in which f vanishes identically (cf. Jonathan Wild, Can. Math. Bull. 1(1958), 180). As every such subspace contains E_f^* , we have ind f \geqslant dim E_f^* .

In the following let x_0 be fixed; $f(x_0, x_0) \neq 0$. Let V denote the subspace of all x such that $f(x, x_0) = 0$. Thus $x_0 \notin V$ and dim V = n - 1. Through

 $x \rightarrow z = f(x_0, x_0) \cdot x - f(x_0, x) \cdot x_0$

E is mapped linearly onto V (The vector $z/f(x_0, x_0)$ is the projection of x into V parallel to x_0). The <u>discriminant</u> at x_0 of f is the symmetric form

(1)
$$g(x, y) = f(x_0, x_0) \cdot f(x, y) - f(x_0, x) \cdot f(x_0, y)$$

= $f(f(x_0, x_0) \cdot x - f(x_0, x) \cdot x_0, y) = f(z, y)$

It has recently been studied over the real field by Schwerdtfeger and Scherk (same J., 175-179 and 181-182). We wish to comment on its rank and index.

By (1), g(x,y) = 0 for given x and all y if and only if $z \in E_f^*$, i.e. if x lies in the space spanned by E_f^* and x_0 . Thus

$$E_g^* = E_f^* + x_o$$
.

In particular rank g = rank f - 1.

Obviously

(2) $g(x_0, y) = 0$ for every y

and

(3)
$$g(x,y) = f(x_0,x_0) \cdot f(x,y)$$
 if $x \in V$.

Let W denote a subspace of maximal dimension in which f vanishes identically. By (3), g will vanish in WAV. Hence, by (2), g will vanish identically in the subspace spanned by x_0 and WAV. This implies

- (4) ind $g \ge ind f$ always,
- (5) ind $g \ge ind f + 1$ if there is a WCV.

Conversely, let U be a subspace of maximal dimension in which g vanishes identically. By (2), g will also vanish in $U + x_0$. As U was to be maximal, we have $U = U + x_0$ or $x_0 \in U$. Hence $U \notin V$. By (3), f vanishes in $U \cap V$. Hence

ind $f \ge \dim(U \cap V) = \dim U - 1 = \operatorname{ind} g - 1$

and (5) implies

(i) ind g = ind f + 1 if there is a $W \subset V$.

If there is no subspace $W \subset V$, then $U \cap V$ cannot be a subspace W of maximal dimension in which f vanishes. This maximal dimension must therefore be greater than dim $(U \cap V)$. Thus ind f > ind g - 1 or ind f > ind g. Hence by (4)

(ii) ind g = ind f if there is no $W \subset V$.