Let $V_{n}=\{a, b, \ldots\}$ denote a vector space of dimension n over F with a symmetric bilinear form (x, y). If $(\mathrm{a}, \mathrm{a})=0$, the vector a is called isotropic.

If $p=2$ and $n \geqslant 2, V_{n}$ will contain two linearly independent vectors b and c. We may assume they are non-isotropic. The equation $\xi^{2}=(b, b) /(c, c)$ has a solution $\xi \in F$. It follows that $(b+\xi c, b+\xi c)=(b, b)+2 \xi \cdot(b, c)+\xi^{2} \cdot(c, c)=$ $(b, b)+\xi^{2} \cdot(c, c)=0$.

From now on let $p>2, n \geqslant 3$. For every vector a let M_{a} denote the set of the norms $(\lambda a, \lambda a)=\lambda^{2}(a, a)$ with $\lambda \neq 0$. Thus either a is isotropic or $M_{a}=G$ or $M_{a}=\bar{G}$.

We choose any three mutually orthogonal vectors $\neq 0$. if none of them is isotropic, two of them, say b and c satisfy $M_{b}=M_{c}$. We may assume $(b, b)=(c, c)$. Thus

$$
\begin{gathered}
(b+\xi c, b+\xi c)=(b, b)+2 \xi \cdot(b, c)+\xi^{2} \cdot(c, c) \\
=(b, b)+2 \xi \cdot 0+\xi^{2} \cdot(b, b)=\left(1+\xi^{2}\right)(b, b)
\end{gathered}
$$

Case (i): $-1 \in G$. Then let ξ be a solution of $1+\xi^{2}=0$. The vector $b+\xi c$ will be isotropic.

Case (ii): $-1 \in \overline{\mathrm{G}}$. By (1) there is a ξ such that $1+\xi^{2} \in \overline{\mathrm{G}}$. Thus there is a vector d such that $M_{b} \neq M_{d}$.

Since $n \geqslant 3$, there is a vector $e \neq 0$ such that $(e, b)=(e, d)=$ 0 . Since M_{e} must be distinct from either M_{b} or M_{d}, we have found two vectors, say e and f such that $(e, f)=0, M_{e} \neq M_{f}$. We may assume $1 \in M_{e},-1 \in M_{f}$ and hence $(e, e)=1,(f, f)=-1$. This yields $(e+f, e+f)=(e, e)+(f, f)=0$ 。

NOTES

ON THE DISCRIMINANTS OF A BILINEAR FORM

> Jonathan Wild, Prince Albert, Sask.

Let E denote a vector space of dimension n over a field of characteristic $\neq 2$. In E a symmetric bilinear form $f(x, y)$ is given. Define E_{f}^{*} as the subspace of those vectors x for which $f(x, y)=0$ for all $y \in E$. Thus rank $f=n-\operatorname{dim}$ Ef. Furthermore, define ind $f=$ maximum dimension of a subspace in which
f vanishes identically (cf. Jonathan Wild, Can. Math. Bull. 1(1958), 180). As every such subspace contains E_{f}^{*}, we have ind $f \geqslant \operatorname{dim} E_{f}^{*}$.

In the following let x_{0} be fixed; $f\left(x_{0}, x_{0}\right) \neq 0$. Let V denote the subspace of all x such that $f\left(x, x_{0}\right)=0$. Thus $x_{0} \notin V$ and $\operatorname{dim} V=n-1$. Through

$$
x \rightarrow z=f\left(x_{0}, x_{0}\right) \cdot x-f\left(x_{0}, x\right) \cdot x_{0}
$$

E is mapped linearly onto V (The vector $z / f\left(x_{0}, x_{0}\right)$ is the projection of x into V parallel to $\left.x_{0}\right)$. The discriminant at x_{o} of f is the symmetric form

$$
\begin{align*}
g(x, y) & =f\left(x_{0}, x_{0}\right) \cdot f(x, y)-f\left(x_{0}, x\right) \cdot f\left(x_{0}, y\right) \tag{1}\\
& =f\left(f\left(x_{0}, x_{0}\right) \cdot x-f\left(x_{0}, x\right) \cdot x_{0}, y\right)=f(z, y) .
\end{align*}
$$

It has recently been studied over the real field by Schwerdtfeger and Scherk (same J., 175-179 and 181-182). We wish to comment on its rank and index.

By (1), $g(x, y)=0$ for given x and all y if and only if
$z \in E_{f}^{*}$, i.e. if x lies in the space spanned by E_{f}^{*} and x_{o}. Thus

$$
E_{g}^{*}=E_{f}^{*}+x_{o}
$$

In particular rank $g=\operatorname{rank} f-1$.
Obviously

$$
\begin{equation*}
g\left(x_{0}, y\right)=0 \quad \text { for every } y \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x, y)=f\left(x_{0}, x_{0}\right) \cdot f(x, y) \quad \text { if } x \in V \tag{3}
\end{equation*}
$$

Let W denote a subspace of maximal dimension in which f vanishes identically. By (3), g will vanish in $W \cap V$. Hence, by (2), g will vanish identically in the subspace spanned by x_{0} and $W \cap V$. This implies
(4) \quad ind $g \geqslant$ ind f always,
ind $g \geqslant$ ind $f+1$ if there is a WCV.

Conversely, let U be a subspace of maximal dimension in which g vanishes identically. By (2), g will also vanish in $U \dot{f} x_{0}$. As U was to be maximal, we have $U=U+x_{0}$ or $x_{0} \in U$. Hence $U \not \subset V$. By (3), f vanishes in $U \cap V$. Hence
ind $f \geqslant \operatorname{dim}(U \cap V)=\operatorname{dim} U-1=$ ind $g-1$
and (5) implies
(i) ind $g=$ ind $f+1$ if there is a $W \subset V$.

If there is no subspace $W \subset V$, then $U \cap V$ cannot be a subspace W of maximal dimension in which f vanishes. This maximal dimension must therefore be greater than $\operatorname{dim}(U \cap V)$. Thus ind $f>$ ind $g-1$ or ind $f \geqslant$ ind g. Hence by (4)
(ii) ind $g=$ ind $f \quad$ if there is no $W \subset V$.

