Moduli of Space Sheaves with Hilbert Polynomial $4 m+1$

Mario Maican

Abstract. We investigate the moduli space of sheaves supported on space curves of degree 4 and having Euler characteristic 1. We give an elementary proof of the fact that this moduli space consists of three irreducible components.

1 Introduction and Preliminaries

Let $\mathrm{M}_{\mathbb{P}^{n}}(r m+\chi)$ be the moduli space of Gieseker semi-stable sheaves on the complex projective space \mathbb{P}^{n} having Hilbert polynomial $P(m)=r m+\chi$. Le Potier [11] showed that $\mathrm{M}_{\mathbb{P}^{2}}(r m+\chi)$ is irreducible and, if r and χ are coprime, smooth. For low multiplicity, the homology of $\mathrm{M}_{\mathbb{P}^{2}}(r m+\chi)$ has been studied in [3,4] using the wallcrossing method and in $[6,13,14]$ using the Białynicki-Birula method. When $n>2$, the moduli space is no longer irreducible. Thus, according to [8], $\mathrm{M}_{\mathbb{P}^{3}}(3 m+1)$ has two irreducible components meeting transversally. The focus of this paper is the moduli space $\mathbf{M}=\mathbf{M}_{\mathbb{P}^{3}}(4 m+1)$ of stable sheaves on \mathbb{P}^{3} with Hilbert polynomial $4 m+1$. This was investigated in [5] using wall-crossing, by relating \mathbf{M} to $\operatorname{Hilb}_{\mathbb{P}^{3}}(4 m+1)$. The main result of [5] states that \mathbf{M} consists of three irreducible components, denoted $\overline{\mathbf{R}}, \overline{\mathbf{E}}, \mathbf{P}$, of dimensions 16,17 , and 20, respectively. The generic sheaves in $\overline{\mathbf{R}}$ are structure sheaves of rational quartic curves. The generic sheaves in $\overline{\mathbf{E}}$ are of the form $\mathcal{O}_{E}(P)$, where E is an elliptic quartic curve and P is a point on E. The third irreducible component parametrizes the planar sheaves.

The purpose of this paper is to reprove the decomposition of \mathbf{M} into irreducible components without using the wall-crossing method; see Theorem 4.3. We achieve this as follows. Using the decomposition of $\operatorname{Hilb}_{\mathbb{P}^{3}}(4 m+1)$ into irreducible components, found in [2], we show that the subset of \mathbf{M} of sheaves generated by a global section is irreducible; see Proposition 2.4. This provides our first irreducible component. We then describe the sheaves whose support is an elliptic quartic curve; see Section 3. To show that the set of such sheaves \mathcal{F} is irreducible we use results from [17] regarding the geometry of $\operatorname{Hilb}_{\mathbb{P}^{3}}(4 m)$. Given \mathcal{F}, we construct at Proposition 4.2 a variety \mathbf{W} together with a map $\sigma: \mathbf{W} \rightarrow \Gamma$, the support map, where $\Gamma \subset \operatorname{Hilb}_{\mathbb{P}^{3}}(4 m)$ is an irreducible quasi-projective curve, such that $\mathcal{F} \in \sigma^{-1}(x)$ for a point $x \in \Gamma$ and such that $\Gamma \backslash\{x\}$ consists only of smooth curves. Moreover, the fibers of σ are irreducible, hence \mathbf{W} is irreducible, and hence \mathcal{F} is contained in the closure of the set of sheaves with support smooth elliptic curves. Thus, we obtain the second irreducible

[^0]component. The set \mathbf{P} of planar sheaves is irreducible because it is a bundle over the Grassmannian of planes in \mathbb{P}^{3} with fiber $\mathrm{M}_{\mathbb{P}^{2}}(4 m+1)$, which is, as mentioned above, irreducible.

We also rely on the cohomological classification of sheaves in \mathbf{M} found at [5, Theorem 6.1], which does not use the wall-crossing method (it uses the Beilinson spectral sequence). We fix a 4 -dimensional vector space V over \mathbb{C} and we identify \mathbb{P}^{3} with $\mathbb{P}(V)$. We fix a basis $\{X, Y, Z, W\}$ of V^{*}.

Theorem 1.1 ([5, Theorem 6.1]) Let \mathcal{F} give a point in $\mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$. Then \mathcal{F} satisfies one of the following cohomological conditions:
(i) $\mathrm{h}^{0}\left(\mathcal{F} \otimes \Omega^{2}(2)\right)=0, \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)=0, \mathrm{~h}^{0}(\mathcal{F})=1 ;$
(ii) $\mathrm{h}^{0}\left(\mathcal{F} \otimes \Omega^{2}(2)\right)=0, \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)=1, \mathrm{~h}^{0}(\mathcal{F})=1$;
(iii) $\mathrm{h}^{0}\left(\mathcal{F} \otimes \Omega^{2}(2)\right)=1, \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)=3, \mathrm{~h}^{0}(\mathcal{F})=2$.

Let $\mathbf{M}_{0}, \mathbf{M}_{1}, \mathbf{M}_{2} \subset \mathbf{M}$ be the subsets of sheaves satisfying conditions (i), (ii), and (iii), respectively. We will call them strata. Clearly, \mathbf{M}_{0} is open, \mathbf{M}_{1} is locally closed, and \mathbf{M}_{2} is closed. We also quote the classification of the sheaves in each stratum in terms of locally free resolutions, which was carried out at [5, Theorem 6.1]. The sheaves in \mathbf{M}_{0} are precisely the sheaves having a resolution of the form

$$
\begin{align*}
0 \longrightarrow 3 \mathcal{O}(-3) & \xrightarrow{\psi} 5 \mathcal{O}(-2) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus \mathcal{O} \longrightarrow \mathcal{F} \longrightarrow 0 \tag{1.1}\\
\varphi & =\left[\begin{array}{ccccc}
X & Y & Z & W & 0 \\
q_{1} & q_{2} & q_{3} & q_{4} & q_{5}
\end{array}\right]
\end{align*}
$$

or a resolution of the form

$$
\begin{align*}
0 \longrightarrow 3 \mathcal{O}(-3) & \xrightarrow{\psi} 5 \mathcal{O}(-2) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus \mathcal{O} \longrightarrow \mathcal{F} \longrightarrow 0 \tag{1.2}\\
\varphi & =\left[\begin{array}{ccccc}
l_{1} & l_{2} & l_{3} & 0 & 0 \\
q_{1} & q_{2} & q_{3} & q_{4} & q_{5}
\end{array}\right]
\end{align*}
$$

where l_{1}, l_{2}, l_{3} are linearly independent. Let $\mathbf{R}, \mathbf{E} \subset \mathbf{M}_{0}$ be the subsets of sheaves having resolution (1.1) (resp. (1.2)). Clearly, \mathbf{R} is an open subset of \mathbf{M} and consists of structure sheaves of rational quartic curves. The set \mathbf{E} contains all extensions of \mathbb{C}_{P} by \mathcal{O}_{E}, where E is an elliptic quartic curve and P is a point on E. The sheaves in \mathbf{M}_{1} are precisely the sheaves having a resolution of the form

$$
\begin{equation*}
0 \longrightarrow 3 \mathcal{O}(-3) \xrightarrow{\psi} 5 \mathcal{O}(-2) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} 2 \mathcal{O}(-1) \oplus \mathcal{O} \longrightarrow \mathcal{F} \longrightarrow 0 \tag{1.3}
\end{equation*}
$$

where $\varphi_{12}=0$ and $\varphi_{11}: 5 \mathcal{O}(-2) \rightarrow 2 \mathcal{O}(-1)$ is not equivalent to a morphism represented by a matrix of the form

$$
\left[\begin{array}{lllll}
\star & \star & 0 & 0 & 0 \\
\star & \star & \star & \star & \star
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{lllll}
\star & \star & \star & \star & 0 \\
\star & \star & \star & \star & 0
\end{array}\right] .
$$

The sheaves in \mathbf{M}_{2} are precisely the sheaves of the form $\mathcal{O}_{C}(-P)(1)$, where $\mathcal{O}_{C}(-P)$ in \mathcal{O}_{C} denotes the ideal sheaf of a closed point P in a planar quartic curve C.

Assume now that \mathcal{F} has resolution (1.1). Let $S \subset \mathbb{P}^{3}$ be the quadric surface given by the equation $q_{5}=0$. From the snake lemma we get the resolution

$$
0 \longrightarrow 3 \mathcal{O}(-3) \longrightarrow \Omega^{1}(-1) \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{F} \longrightarrow 0
$$

We consider first the case when S is smooth. The semi-stable sheaves on a smooth quadric surface with Hilbert polynomial $4 m+1$ have been investigated in [1]. We cite below the main result of [1]:

Proposition 1.2 Let \mathcal{F} be a coherent sheaf on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ that is semi-stable relative to the polarization $\mathcal{O}(1,1)$ and such that $P_{\mathcal{F}}(m)=4 m+1$. Then precisely one of the following is true:
(i) \mathcal{F} is the structure sheaf of a curve of type (1,3);
(ii) \mathcal{F} is the structure sheaf of a curve of type $(3,1)$;
(iii) \mathcal{F} is a non-split extension $0 \rightarrow \mathcal{O}_{E} \rightarrow \mathcal{F} \rightarrow \mathbb{C}_{P} \rightarrow 0$ for a curve E in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of type $(2,2)$ and a point $P \in E$. Such an extension is unique up to isomorphism and satisfies the condition $\mathrm{H}^{1}(\mathcal{F})=0$.
Thus, $\mathrm{M}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(4 m+1)$ has three connected components. Two of these, $\mathbb{P}\left(\mathrm{H}^{0}(\mathcal{O}(1,3))\right)$ and $\mathbb{P}\left(\mathrm{H}^{0}(\mathcal{O}(3,1))\right)$, are isomorphic to \mathbb{P}^{7}. The third one is smooth, has dimension 9 , and is isomorphic to the universal elliptic curve in $\mathbb{P}\left(\mathrm{H}^{0}(\mathcal{O}(2,2))\right) \times\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. The sheaves at (iii) are precisely the sheaves having a resolution of the form

$$
0 \longrightarrow \mathcal{O}(-2,-1) \oplus \mathcal{O}(-1,-2) \xrightarrow{\varphi} \mathcal{O}(-1,-1) \oplus \mathcal{O} \longrightarrow \mathcal{F} \longrightarrow 0
$$

with $\varphi_{11} \neq 0, \varphi_{12} \neq 0$.
The following well-known lemma provides one of our main technical tools.
Lemma 1.3 Let X be a projective scheme and let Y be a subscheme. Let \mathcal{F} be a coherent \mathcal{O}_{X}-module and let \mathcal{G} be a coherent \mathcal{O}_{Y}-module. Then there is an exact sequence of vector spaces

$$
\begin{align*}
0 \longrightarrow \operatorname{Ext}_{\mathcal{O}_{Y}}^{1}\left(\mathcal{F}_{\mid Y}, \mathcal{G}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\mathcal{F}, \mathcal{G}) & \longrightarrow \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\mathcal{T} o r_{1}^{\mathcal{O}_{X}}\left(\mathcal{F}, \mathcal{O}_{Y}\right), \mathcal{G}\right) \tag{1.4}\\
& \operatorname{Ext}_{{\mathcal{O}_{Y}}^{2}\left(\mathcal{F}_{\mid Y}, \mathcal{G}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{X}}^{2}(\mathcal{F}, \mathcal{G}) .} .
\end{align*}
$$

In particular, if \mathcal{F} is an \mathcal{O}_{Y}-module, then the above exact sequence takes the form

$$
\begin{align*}
0 \longrightarrow \operatorname{Ext}_{\mathcal{O}_{Y}}^{1}(\mathcal{F}, \mathcal{G}) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\mathcal{F}, \mathcal{G}) \longrightarrow & \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{J}_{Y}, \mathcal{G}\right) \tag{1.5}\\
& \longrightarrow \operatorname{Ext}_{\mathcal{O}_{Y}}^{2}(\mathcal{F}, \mathcal{G}) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{X}}^{2}(\mathcal{F}, \mathcal{G})
\end{align*}
$$

2 Sheaves Supported on Rational Quartic Curves

Let $\mathbf{R}_{0} \subset \mathbf{R}$ be the set of isomorphism classes of structure sheaves \mathcal{O}_{R} of curves $R \subset S$ of type $(1,3)$ or $(3,1)$ on smooth quadrics $S \subset \mathbb{P}^{3}$. A curve of type $(1,3)$ on S can be deformed inside \mathbb{P}^{3} to a curve of type (3,1), hence \mathbf{R}_{0} is irreducible of dimension 16. Let $\mathbf{E}_{0} \subset \mathbf{E}$ be the set of isomorphism classes of non-split extensions of \mathbb{C}_{P} by \mathcal{O}_{E} for $E \subset S$ a curve of type $(2,2)$ on a smooth quadric $S \subset \mathbb{P}^{3}$ and P a closed point on E.

From (1.5) and Proposition 1.2(iii) we have the exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{\mathcal{O}_{S}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{E}\right) \simeq \mathbb{C} \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{E}\right) \longrightarrow \operatorname{Hom}_{\mathcal{O}_{s}}\left(\mathbb{C}_{P}, \mathcal{O}_{E}\right)=0
$$

We denote by $\mathcal{O}_{E}(P)$ the unique non-split extension of \mathbb{C}_{P} by \mathcal{O}_{E}. Clearly, \mathbf{E}_{0} is irreducible of dimension 17. Let $\mathbf{E}_{\text {free }} \subset \mathbf{E}_{0}$ denote the open subset of sheaves that are locally free on their schematic support, which is equivalent to saying that $P \in \operatorname{reg}(E)$. Let $\mathbf{P} \subset M_{\mathbb{P}^{3}}(4 m+1)$ be the closed set of planar sheaves. It has dimension 20. Let $\mathbf{P}_{\text {free }} \subset \mathbf{P}$ be the open subset of sheaves that are locally free on their support. According to [10], $\mathbf{P} \backslash \mathbf{P}_{\text {free }}$ has codimension 2 in \mathbf{P}.

Proposition 2.1 The closed sets $\overline{\mathbf{R}}_{0}, \overline{\mathbf{E}}_{0}$, and \mathbf{P} are irreducible components of $\mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$. Moreover, $\mathbf{R}_{0}, \mathbf{E}_{\text {free }}$ and $\mathbf{P}_{\text {free }}$ are smooth open subsets of the moduli space.

Proof Let $\mathcal{F}=\mathcal{O}_{R}$ give a point in \mathbf{R}_{0}, where $R \subset S$ is a curve of, say, type (1,3). From Serre duality we have

$$
\operatorname{Ext}_{\mathcal{O}_{s}}^{2}(\mathcal{F}, \mathcal{F}) \simeq \operatorname{Hom}_{\mathcal{O}_{s}}(\mathcal{F}, \mathcal{F}(-2,-2))^{*}=0
$$

From the exact sequence (1.5) we get the relation

$$
\operatorname{ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}(\mathcal{F}, \mathcal{F})=\operatorname{ext}_{\mathcal{O}_{s}}^{1}(\mathcal{F}, \mathcal{F})+\operatorname{hom}_{\mathcal{O}_{s}}(\mathcal{F}(-2), \mathcal{F})=7+\mathrm{h}^{0}\left(\mathcal{O}_{R}(2,2)\right)=16
$$

This shows that $\overline{\mathbf{R}}_{0}$ is an irreducible component of \mathbf{M} and that \mathbf{R}_{0} is smooth.
Next, consider $\mathcal{F}=\mathcal{O}_{E}(P)$ giving a point in \mathbf{E}_{0}. As above, we have the relation

$$
\operatorname{ext}_{\mathcal{O}_{\mathbb{P}}}^{1}(\mathcal{F}, \mathcal{F})=\operatorname{ext}_{\mathcal{O}_{s}}^{1}(\mathcal{F}, \mathcal{F})+\operatorname{hom}_{\mathcal{O}_{s}}(\mathcal{F}(-2), \mathcal{F})=9+\operatorname{hom}_{\mathcal{O}_{s}}(\mathcal{F}, \mathcal{F}(2,2))
$$

Assume, in addition, that \mathcal{F} is locally free on E. Its rank must be 1 , because E is a curve of multiplicity 4. Thus,

$$
\operatorname{Hom}_{\mathcal{O}_{s}}(\mathcal{F}, \mathcal{F}(2,2)) \simeq \mathrm{H}^{0}\left(\mathcal{O}_{E}(2,2)\right) \simeq \mathbb{C}^{8}
$$

hence $\operatorname{ext}_{\mathcal{O}_{\mathbb{R}}}^{1}(\mathcal{F}, \mathcal{F})=17$. This shows that $\overline{\mathbf{E}}_{0}$ is an irreducible component of \mathbf{M} and that $\mathbf{E}_{\text {free }}$ is smooth.

Assume now that \mathcal{F} is supported on a planar quartic curve $C \subset H$. Using Serre duality and (1.5) we get the relation

$$
\operatorname{ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}(\mathcal{F}, \mathcal{F})=\operatorname{ext}_{\mathcal{O}_{H}}^{1}(\mathcal{F}, \mathcal{F})+\operatorname{hom}_{\mathcal{O}_{H}}(\mathcal{F}(-1), \mathcal{F})=17+\operatorname{hom}_{\mathcal{O}_{H}}(\mathcal{F}, \mathcal{F}(1))
$$

Assume, in addition, that \mathcal{F} is locally free on C, so a line bundle. Thus,

$$
\operatorname{Hom}_{\mathcal{O}_{H}}(\mathcal{F}, \mathcal{F}(1)) \simeq \mathrm{H}^{0}\left(\mathcal{O}_{C}(1)\right) \simeq \mathbb{C}^{3},
$$

hence $\operatorname{ext}_{\mathcal{O}_{\mathbb{P}}}^{1}(\mathcal{F}, \mathcal{F})=20$. This shows that \mathbf{P} is an irreducible component of \mathbf{M} and that $\mathbf{P}_{\text {free }}$ is smooth.

Remark 2.2 Let \mathcal{F} be a one-dimensional sheaf on \mathbb{P}^{3} without zero-dimensional torsion. Let \mathcal{F}^{\prime} be a planar subsheaf such that $\mathcal{F} / \mathcal{F}^{\prime}$ has dimension zero. Then \mathcal{F} is planar. Indeed, say that \mathcal{F}^{\prime} is an \mathcal{O}_{H}-module for a plane $H \subset \mathbb{P}^{3}$. From (1.4) we have the exact sequence
$0 \rightarrow \operatorname{Ext}_{\mathcal{O}_{H}}^{1}\left(\left(\mathcal{F} / \mathcal{F}^{\prime}\right)_{\mid H}, \mathcal{F}^{\prime}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathcal{F} / \mathcal{F}^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}_{H}}\left(\mathcal{T}^{\left(\mathcal{O}_{1}{ }^{3}\right.}\left(\mathcal{F} / \mathcal{F}^{\prime}, \mathcal{O}_{H}\right), \mathcal{F}^{\prime}\right)$.

The group on the right vanishes, because $\mathcal{T o r}_{1}^{\mathcal{O}_{\mathbb{P}^{3}}\left(\mathcal{F} / \mathcal{F}^{\prime}, \mathcal{O}_{H}\right) \text { is supported on finitely }}$ many points, yet \mathcal{F}^{\prime} has no zero-dimensional torsion. Thus, $\mathcal{F} \in \operatorname{Ext}_{\mathcal{O}_{H}}^{1}\left(\left(\mathcal{F} / \mathcal{F}^{\prime}\right)_{\mid H}, \mathcal{F}^{\prime}\right)$, so \mathcal{F} is an \mathcal{O}_{H}-module.

Proposition 2.3 The non-planar sheaves in $\mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$ having resolution (1.3) are precisely the non-split extensions of the form

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{C} \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{L} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

where C is a planar cubic curve and L is a line meeting C with multiplicity 1 . For such a sheaf, $\mathrm{H}^{0}(\mathcal{F})$ generates \mathcal{O}_{C}. The set \mathbf{R} consists precisely of the sheaves generated by a global section. The set \mathbf{E} consists precisely of the sheaves \mathcal{F} such that $\mathrm{H}^{0}(\mathcal{F})$ generates a subsheaf with Hilbert polynomial $4 m$.

Proof Let φ be a morphism as at (1.3). Denote $\mathcal{G}=\operatorname{Coker}\left(\varphi_{11}\right)$ and let $H \subset \mathbb{P}^{3}$ be the plane given by the equation $\varphi_{22}=0$. From the snake lemma we have the exact sequence

$$
\mathcal{O}_{H} \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0
$$

We examine first the case when

$$
\varphi_{11} \nsim\left[\begin{array}{ccccc}
0 & 0 & \star & \star & \star \\
\star & \star & \star & \star & \star
\end{array}\right] .
$$

Thus, we can write

$$
\varphi_{11}=\left[\begin{array}{ccccc}
X & Y & Z & W & 0 \\
0 & l_{1} & l_{2} & l_{3} & l_{4}
\end{array}\right]
$$

If l_{4} is a multiple of X, then $P_{\mathcal{G}}=3$ (see the proof of [5, Theorem 6.1(iii)]); hence, by Remark 2.2, \mathcal{F} is planar. Assume now that l_{4} is not a multiple of X and let $L \subset \mathbb{P}^{3}$ be the line given by the equations $X=0, l_{4}=0$. Then \mathcal{G} is a proper quotient sheaf of $\mathcal{O}_{L}(-1)$, hence it has support of dimension zero, and hence, by Remark 2.2, \mathcal{F} is planar. It remains to examine the case when

$$
\varphi_{11}=\left[\begin{array}{ccccc}
u_{1} & u_{2} & u_{3} & 0 & 0 \\
0 & v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right] .
$$

Let P be the point given by the ideal $\left(u_{1}, u_{2}, u_{3}\right)$ and let L be the line given by the equations $v_{3}=0, v_{4}=0$. We have an exact sequence

$$
\mathcal{O}_{L}(-1) \longrightarrow \mathcal{G} \longrightarrow \mathbb{C}_{P} \longrightarrow 0
$$

If the first morphism is not injective, then \mathcal{G} has dimension zero, hence \mathcal{F} is planar. If \mathcal{G} is an extension of \mathbb{C}_{P} by $\mathcal{O}_{L}(-1)$, then this extension does not split; otherwise, $\mathcal{O}_{L}(-1)$ would be a destabilizing quotient sheaf of \mathcal{F}. Thus, $\mathcal{G} \simeq \mathcal{O}_{L}$, and we have an exact sequence

$$
0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{L} \longrightarrow 0
$$

where \mathcal{E} gives a point in $\mathrm{M}_{H}(3 m)$ and is generated by a global section. Thus, \mathcal{E} is the structure sheaf of a cubic curve $C \subset H$. If $L \subset H$, then from (1.5) we would have the exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{\mathcal{O}_{H}}^{1}\left(\mathcal{O}_{L}, \mathcal{O}_{C}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathcal{O}_{L}, \mathcal{O}_{C}\right) \longrightarrow \operatorname{Hom}_{\mathcal{O}_{H}}\left(\mathcal{O}_{L}(-1), \mathcal{O}_{C}\right)
$$

The group on the right vanishes, because \mathcal{O}_{C} is stable. We deduce that \mathcal{F} lies in $\operatorname{Ext}_{\mathcal{O}_{H}}^{1}\left(\mathcal{O}_{L}, \mathcal{O}_{C}\right)$, hence \mathcal{F} is planar.

Thus far we have shown that if \mathcal{F} is non-planar and has resolution (1.3), then \mathcal{F} is an extension as in the proposition. Conversely, given a non-split extension (2.1), \mathcal{F} is semi-stable, because \mathcal{O}_{C} and \mathcal{O}_{L} are stable. In view of Theorem 1.1, since \mathcal{F} is non-planar, we have $h^{0}(\mathcal{F})=1$. Thus, $\mathrm{H}^{0}(\mathcal{F})$ generates \mathcal{O}_{C}. It follows that \mathcal{F} cannot have resolutions (1.1) or (1.2); otherwise, $\mathrm{H}^{0}(\mathcal{F})$ would generate \mathcal{F} or would generate a subsheaf with Hilbert polynomial $4 m$. We conclude that \mathcal{F} has resolution (1.3).

The rest of the proposition follows from Theorem 1.1 and from the fact, proved in [7], that for a planar sheaf \mathcal{F} having resolution (1.3), the space of global sections generates a subsheaf with Hilbert polynomial $4 m-2$ or it generates the structure sheaf of a cubic curve.

Proposition 2.4 The set \mathbf{R} of sheaves in $\mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$ generated by a global section is irreducible.

Proof Let $^{\operatorname{Hilb}} \mathbb{P}_{\mathbb{P}^{3}}(4 m+1)^{s} \subset \operatorname{Hilb}_{\mathbb{P}^{3}}(4 m+1)$ be the open subset of semi-stable quotients. The image of the canonical map $\operatorname{Hilb}_{\mathbb{P}^{3}}(4 m+1)^{s} \rightarrow \mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$ is \mathbf{R}. According to [2, Theorem 4.9], $\operatorname{Hilb}_{\mathbb{P}^{3}}(4 m+1)$ has four irreducible components, denoted $H_{1}, H_{2}, H_{3}, H_{4}$. The generic point in H_{1} is a rational quartic curve. The generic curve in H_{2} is the disjoint union of a planar cubic and a line. The generic member of H_{3} is the disjoint union of a point and an elliptic quartic curve. The generic member of H_{4} is the disjoint union of a planar quartic curve and three distinct points. Thus, $H_{2} \cup H_{3} \cup H_{4}$ lies in the closed subset

$$
H=\left\{[\mathcal{O} \rightarrow \mathcal{S}] \mid \mathrm{h}^{0}(\mathcal{S}) \geq 2\right\} \subset \operatorname{Hilb}_{\mathbb{P}^{3}}(4 m+1)
$$

According to Theorem 1.1, $H^{\mathrm{s}}=\varnothing$. Indeed, any sheaf in \mathbf{M}_{2} cannot be generated by a single global section. Thus, $\operatorname{Hilb}_{\mathbb{P}^{3}}(4 m+1)^{s}$ is an open subset of H_{1}, hence it is irreducible, and hence \mathbf{R} is irreducible.

3 Sheaves Supported on Elliptic Quartic Curves

We will next examine the sheaves \mathcal{F} having resolution (1.2). Let P be the point given by the ideal $\left(l_{1}, l_{2}, l_{3}\right)$. Notice that the subsheaf of \mathcal{F} generated by $\mathrm{H}^{0}(\mathcal{F})$ is the kernel of the canonical map $\mathcal{F} \rightarrow \mathbb{C}_{P}$. This shows that \mathcal{F} is non-planar, because, according to [7], the global sections of a sheaf in $M_{\mathbb{P}^{2}}(4 m+1)$ whose first cohomology vanishes generate a subsheaf with Hilbert polynomial $4 m-2$ or the structure sheaf of a planar cubic curve, which is not the case here. We consider first the case when q_{4} and q_{5} have no common factor, so they define a curve E. Applying the snake lemma to the diagram in Figure 1 we see that \mathcal{F} is an extension of \mathbb{C}_{P} by \mathcal{O}_{E}. From Serre duality, we have

$$
\operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{E}\right) \simeq \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{2}\left(\mathcal{O}_{E}, \mathbb{C}_{P}\right)^{*} \simeq \mathbb{C} .
$$

The group in the middle can be determined by applying $\operatorname{Hom}\left(\cdot, \mathbb{C}_{P}\right)$ to the first row of the diagram. We may write $\mathcal{F}=\mathcal{O}_{E}(P)$.

Figure 1

Proposition 3.1 The sheaf $\mathcal{O}_{E}(P)$ is stable.
Proof We will show that \mathcal{O}_{E} is stable, forcing $\mathcal{O}_{E}(P)$ to be stable. To prove that \mathcal{O}_{E} is stable, we must show that it does not contain a stable subsheaf \mathcal{E} having one of the following Hilbert polynomials: $m, m+1$ (i.e., the structure sheaf of a line), $2 m$, $2 m+1$ (i.e., the structure sheaf of a conic curve), $3 m, 3 m+1$. The structure sheaf of a line contains subsheaves having Hilbert polynomial m and the structure sheaf of a conic curve contains subsheaves having Hilbert polynomial $2 m$. Thus, it is enough to consider only the Hilbert polynomials $m, 2 m, 3 m+1,3 m$. In the first case, we have a commutative diagram

in which $\alpha \neq 0$. It follows that $\mathcal{O}(-3) \simeq \mathcal{K} \operatorname{er}(\gamma) \simeq \mathcal{K} \operatorname{er}(\beta)$, which is absurd. In the second case, we get a commutative diagram

in which $\alpha \neq 0$, hence $\mathcal{K} \operatorname{er}(\alpha) \simeq \mathcal{O}(-1)$ or $\mathcal{O}(-2)$. From the exact sequence

$$
0 \longrightarrow 2 \mathcal{O}(-3) \simeq \mathcal{K} \operatorname{er}(\gamma) \longrightarrow \mathcal{K e r}(\beta) \longrightarrow \mathcal{K} \operatorname{er}(\alpha) \longrightarrow \operatorname{Coker}(\gamma) \simeq \mathcal{O}(-4),
$$

we see that $\mathcal{K e r}(\beta) \simeq 3 \mathcal{O}(-2)$, and we get the exact sequence

$$
0 \longrightarrow 2 \mathcal{O}(-3) \longrightarrow 3 \mathcal{O}(-2) \longrightarrow \mathcal{K} e r(\alpha) \longrightarrow 0
$$

Such an exact sequence cannot exist. In the third case, we use the resolution of \mathcal{E} given at [8, Theorem 1.1]. We obtain a commutative diagram

in which α is non-zero on global sections, hence $\mathcal{K} \operatorname{er}(\alpha) \simeq \mathcal{O}(-1)$. We obtain a contradiction from the exact sequence

$$
0 \longrightarrow 2 \mathcal{O}(-3) \simeq \mathcal{K} \operatorname{er}(\gamma) \longrightarrow \mathcal{K} \operatorname{er}\left(\beta_{11}\right) \oplus \mathcal{O}(-1) \longrightarrow \mathcal{K} \operatorname{er}(\alpha) \longrightarrow 0
$$

Assume, finally, that \mathcal{E} gives a stable point in $\mathrm{M}_{\mathbb{P}^{3}}(3 m)$. If $\mathrm{H}^{0}(\mathcal{E}) \neq 0$, then it is easy to see that \mathcal{E} is the structure sheaf of a planar cubic curve, hence we get a commutative diagram

in which α is injective. We get a contradiction from the fact that $\mathcal{O}(-1)$ is a subsheaf of $\mathcal{K} \operatorname{er}(\beta) \simeq \mathcal{K} \operatorname{er}(\gamma)$. If $\mathrm{H}^{0}(\mathcal{E})=0$, then we get a commutative diagram of the form

It is easy to see that $\alpha(1)$ is injective on global sections, hence $\operatorname{Coker}(\alpha)$ is isomorphic to the structure sheaf of a point and $\operatorname{Coker}(\beta) \simeq \mathcal{O}(-2)$. We get a contradiction from the exact sequence

$$
\mathcal{O}(-4) \simeq \operatorname{Coker}(\gamma) \longrightarrow \operatorname{Coker}(\beta) \longrightarrow \operatorname{Coker}(\alpha)
$$

To finish the discussion about sheaves at Theorem 1.1(i), we need to examine the case when $q_{4}=u v_{1}$ and $q_{5}=u v_{2}$ with linearly independent $v_{1}, v_{2} \in V^{*}$. Let H be the plane given by the equation $u=0$ and let L be the line given by the equations $v_{1}=0$, $v_{2}=0$. We apply the snake lemma to the diagram in Figure 2. The kernel of the canonical map $\mathcal{G} \rightarrow \mathbb{C}_{P}$ is an \mathcal{O}_{H}-module. This shows that \mathcal{F} is not isomorphic to \mathcal{G}; otherwise, in view of Remark 2.2, \mathcal{F} would be planar. Thus, $\mathcal{O}_{L}(-1) \rightarrow \mathcal{F}$ is non-zero, hence it is injective. We get a non-split extension

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{L}(-1) \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

and it becomes clear that $P \in H$ and that \mathcal{G} gives a point in $\mathrm{M}_{\mathbb{P}^{3}}(3 m+1)$. From Remark 2.2 we see that \mathcal{G} gives a point in $\mathrm{M}_{H}(3 m+1)$. Thus, \mathcal{G} is the unique non-split

Figure 2
extension of \mathbb{C}_{P} by \mathcal{O}_{C} for a cubic curve $C \subset H$ containing P. We write $\mathcal{G}=\mathcal{O}_{C}(P)$. Let $\mathbf{D} \subset \mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$ be the set of non-split extension sheaves as in (3.1) that are non-planar (we allow the possibility that $L \subset H$, in which case the support of \mathcal{F} is contained in the double plane 2 H).

We examine first the case when $L \nsubseteq H$; that is, L meets C with multiplicity 1 , at a point P^{\prime}. According to [8, Theorem 1.1] there is a resolution

$$
\begin{gathered}
0 \longrightarrow 2 \mathcal{O}(-3) \xrightarrow{\delta} 3 \mathcal{O}(-2) \oplus \mathcal{O}(-1) \xrightarrow{\gamma} \mathcal{O}(-1) \oplus \mathcal{O} \longrightarrow \mathcal{G} \longrightarrow 0 \\
\delta=\left[\begin{array}{rr}
u & 0 \\
0 & u \\
-u_{1} & -u_{2} \\
-g_{1} & -g_{2}
\end{array}\right], \quad \gamma=\left[\begin{array}{llll}
u_{1} & u_{2} & u & 0 \\
g_{1} & g_{2} & 0 & u
\end{array}\right],
\end{gathered}
$$

where $\operatorname{span}\left\{u_{1}, u_{2}, u\right\}=\operatorname{span}\left\{l_{1}, l_{2}, l_{3}\right\}$ and C has equation $u_{1} g_{2}-u_{2} g_{1}=0$ in H. Note that $\mathcal{G}_{\mid L} \simeq \mathbb{C}_{P^{\prime}}$ unless $\gamma\left(P^{\prime}\right)=0$, in which case $\mathcal{G}_{\mid L} \simeq \mathbb{C}_{P^{\prime}} \oplus \mathbb{C}_{P^{\prime}}$. But $\gamma\left(P^{\prime}\right)=0$ if and only if $P^{\prime}=P \in \operatorname{sing}(C)$. From (1.4) we have the exact sequence
$0 \rightarrow \operatorname{Ext}_{\mathcal{O}_{L}}^{1}\left(\mathcal{G}_{\mid L}, \mathcal{O}_{L}(-1)\right) \rightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}}}^{1}\left(\mathcal{G}, \mathcal{O}_{L}(-1)\right) \rightarrow \operatorname{Hom}_{\mathcal{O}_{L}}\left(\mathcal{T o r}_{1} \mathcal{O}_{\mathbb{P}^{3}}\left(\mathcal{G}, \mathcal{O}_{L}\right), \mathcal{O}_{L}(-1)\right)$.
The group on the right vanishes, because $\mathcal{O}_{L}(-1)$ has no zero-dimensional torsion. It follows that

$$
\operatorname{Ext}_{\mathcal{O}_{\mathbb{R}^{3}}^{1}}^{1}\left(\mathcal{G}, \mathcal{O}_{L}(-1)\right) \simeq \begin{cases}\mathbb{C} & \text { if } P \neq P^{\prime} \text { or if } P=P^{\prime} \in \operatorname{reg}(C), \\ \mathbb{C}^{2} & \text { if } P=P^{\prime} \in \operatorname{sing}(C) .\end{cases}
$$

Let $\mathbf{D}_{0} \subset \mathbf{D}$ be the open subset given by the conditions that $L \nsubseteq H$ and either $P \neq P^{\prime}$ or $P=P^{\prime} \in \operatorname{reg}(C)$. The map

$$
\mathbf{D}_{0} \longrightarrow \operatorname{Hilb}_{\mathbb{P}^{3}}(m+1) \times \mathrm{M}_{\mathbb{P}^{3}}(3 m+1), \quad[\mathcal{F}] \longmapsto(L,[\mathcal{G}])
$$

is injective and has irreducible image. We deduce that \mathbf{D}_{0} is irreducible and has dimension 16.

Let $\mathbf{D}^{\prime} \subset \mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$ be the subset of non-split extensions (2.1). Denote $P=L \cap C$. From (1.4) we have the exact sequence

$$
0 \rightarrow \mathbb{C} \simeq \operatorname{Ext}_{\mathcal{O}_{H}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{C}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathcal{O}_{L}, \mathcal{O}_{C}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}_{H}}\left(\mathcal{T}^{\circ} r_{1}^{\mathcal{O}_{\mathbb{P}}}\left(\mathcal{O}_{L}, \mathcal{O}_{H}\right), \mathcal{O}_{C}\right)=0
$$

We deduce that, given L and C, there is a unique non-split extension of \mathcal{O}_{L} by \mathcal{O}_{C}. The map

$$
\mathbf{D}^{\prime} \longrightarrow \operatorname{Hilb}_{\mathbb{P}^{3}}(m+1) \times \operatorname{Hilb}_{\mathbb{P}^{3}}(3 m)
$$

sending \mathcal{F} to (L, C) is injective and has irreducible image. We deduce that \mathbf{D}^{\prime} is irreducible and has dimension 15 . Tensoring (2.1) with \mathcal{O}_{H}, we get the exact sequence

$$
0=\mathcal{T o r}_{1} \mathcal{O}_{\mathbb{P}^{3}}\left(\mathcal{O}_{L}, \mathcal{O}_{H}\right) \longrightarrow \mathcal{O}_{C} \longrightarrow \mathcal{F}_{\mid H} \longrightarrow \mathbb{C}_{P} \longrightarrow 0
$$

from which we see that $\mathcal{F}_{\mid H} \simeq \mathcal{O}_{C}(P)$. We obtain the extension

$$
0 \longrightarrow \mathcal{O}_{L}(-1) \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{C}(P) \longrightarrow 0
$$

We deduce that $[\mathcal{F}] \in \mathbf{D}$. Thus, $\mathbf{D}^{\prime} \subset \mathbf{D}$. Moreover, $\mathbf{D}^{\prime} \cap \mathbf{D}_{0}$ is open and non-empty in \mathbf{D}^{\prime}, because it consists precisely of extensions as above for which $P \in \operatorname{reg}(C)$. Thus, $\mathbf{D}^{\prime} \subset \overline{\mathbf{D}}_{0}$.

Remark 3.2 Note that $\mathbf{D}_{0} \backslash \mathbf{D}^{\prime}$ is the open subset of \mathbf{D} given by the conditions $L \nsubseteq H$ and $P \neq P^{\prime}$. We claim that $\mathbf{D}_{0} \backslash \mathbf{D}^{\prime}$ is the set of sheaves of the form $\mathcal{O}_{D}(P)$, where $D=L \cup C$ is the union of a line and a planar cubic curve having intersection of multiplicity 1 and $P \in C \backslash L$. First we show that the notation $\mathcal{O}_{D}(P)$ is justified. From (1.4) we have the exact sequence

$$
\begin{aligned}
0 \longrightarrow \mathbb{C} \simeq \operatorname{Ext}_{\mathcal{O}_{L}}^{1}\left(\mathbb{C}_{P^{\prime}}, \mathcal{O}_{L}(-1)\right) \longrightarrow & \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathcal{O}_{C}, \mathcal{O}_{L}(-1)\right) \\
& \longrightarrow \operatorname{Hom}\left(\mathcal{T o r}_{1}^{\mathcal{O}^{3}}\left(\mathcal{O}_{C}, \mathcal{O}_{L}\right), \mathcal{O}_{L}(-1)\right)=0,
\end{aligned}
$$

which shows that \mathcal{O}_{D} is the unique non-split extension of \mathcal{O}_{C} by $\mathcal{O}_{L}(-1)$. The long exact sequence of groups

$$
\begin{aligned}
0=\operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{L}(-1)\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{D}\right) \longrightarrow & \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{C}\right) \simeq \mathbb{C} \\
& \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{2}\left(\mathbb{C}_{P}, \mathcal{O}_{L}(-1)\right)=0
\end{aligned}
$$

shows that there is a unique non-split extension of \mathbb{C}_{P} by \mathcal{O}_{D}, which we denote by $\mathcal{O}_{D}(P)$. Given $\mathcal{F} \in \mathbf{D}_{0} \backslash \mathbf{D}^{\prime}$, the pull-back of \mathcal{O}_{C} in \mathcal{F}, denoted \mathcal{F}^{\prime}, is a non-split extension of \mathcal{O}_{C} by $\mathcal{O}_{L}(-1)$. Indeed, if \mathcal{F}^{\prime} were a split extension, then $\mathcal{O}_{C} \subset \mathcal{F}$ and $\mathcal{F} / \mathcal{O}_{C} \simeq \mathcal{O}_{L}(-1) \oplus \mathbb{C}_{P}$, so $\mathcal{O}_{L}(-1)$ would be a destabilising quotient sheaf of \mathcal{F}. Thus, $\mathcal{F}^{\prime} \simeq \mathcal{O}_{D}$ and $\mathcal{F} \simeq \mathcal{O}_{D}(P)$. Conversely, $\mathcal{O}_{D}(P) / O_{L}(-1)$ is an extension of \mathbb{C}_{P} by \mathcal{O}_{C}, hence $\mathcal{O}_{D}(P) / O_{L}(-1) \simeq \mathcal{O}_{C}(P)$.

Remark 3.3 If $L \cap C=\{P\}$ is a regular point of C, and $D=L \cup C$, then there are no semi-stable extensions of the form

$$
0 \longrightarrow \mathcal{O}_{D} \longrightarrow \mathcal{F} \longrightarrow \mathbb{C}_{P} \longrightarrow 0
$$

Indeed, if \mathcal{F} were such a semi-stable extension, then we would also have an extension

$$
0 \longrightarrow \mathcal{O}_{L}(-1) \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0,
$$

where \mathcal{G} is an extension of \mathbb{C}_{P} by \mathcal{O}_{C}. Note that \mathcal{G} is a non-split extension; otherwise, \mathcal{O}_{C} would be a destabilizing quotient sheaf of \mathcal{F}. Thus, \mathcal{F} is the unique non-split extension of $\mathcal{O}_{C}(P)$ by $\mathcal{O}_{L}(-1)$, so it is also the unique non-split extension of \mathcal{O}_{L} by \mathcal{O}_{C}. Thus, $\mathrm{H}^{0}(\mathcal{F})$ generates \mathcal{O}_{C}, hence \mathcal{O}_{D} is a subsheaf of \mathcal{O}_{C}, which is absurd.

Remark 3.4 The set $\mathbf{S} \subset \mathrm{M}_{\mathbb{P}^{2}}(3 m) \times \mathrm{M}_{\mathbb{P}^{2}}(3 m+1)$ of pairs $([\mathcal{E}],[\mathcal{G}])$ such that $\mathrm{H}^{0}(\mathcal{E})=0$ and \mathcal{E} is a subsheaf of \mathcal{G} is irreducible. By duality, this is equivalent to saying that the set $\mathbf{S}^{\mathrm{D}} \subset \mathrm{M}_{\mathbb{P}^{2}}(3 m-1) \times \mathrm{M}_{\mathbb{P}^{2}}(3 m)$ of pairs $([\mathcal{G}],[\mathcal{E}])$ such that $\mathrm{H}^{0}(\mathcal{E})=0$ and \mathcal{G} is a subsheaf of \mathcal{E} is irreducible. Given an exact sequence

$$
0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{E} \longrightarrow \mathbb{C}_{P^{\prime}} \longrightarrow 0
$$

we can combine the resolutions of sheaves on \mathbb{P}^{2}

$$
0 \longrightarrow \mathcal{O}(-3) \oplus \mathcal{O}(-2) \xrightarrow{\left[\begin{array}{ll}
q_{1} & u_{1} \\
q_{2} & u_{2}
\end{array}\right]} 2 \mathcal{O}(-1) \longrightarrow \mathcal{G} \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{O}(-3) \longrightarrow 2 \mathcal{O}(-2) \xrightarrow{\left[v_{1} v_{2}\right]} \mathcal{O}(-1) \longrightarrow \mathbb{C}_{P^{\prime}} \longrightarrow 0
$$

to form the resolution

$$
\begin{gathered}
0 \longrightarrow \mathcal{O}(-3) \xrightarrow{\psi} \mathcal{O}(-3) \oplus 3 \mathcal{O}(-2) \xrightarrow{\varphi} 3 \mathcal{O}(-1) \longrightarrow \mathcal{E} \longrightarrow 0 \\
\varphi=\left[\begin{array}{cccc}
q_{1} & u_{1} & l_{11} & l_{12} \\
q_{2} & u_{2} & l_{21} & l_{22} \\
0 & 0 & v_{1} & v_{2}
\end{array}\right] .
\end{gathered}
$$

We indicate by the index i the maximal minor of a matrix obtained by deleting column i. The condition $\mathrm{H}^{0}(\mathcal{E})=0$ is equivalent to the condition $\psi_{11} \neq 0$, which is equivalent to the following conditions: $\varphi_{1} \neq 0$ and φ_{1} divides $\varphi_{2}, \varphi_{3}, \varphi_{4}$. As φ_{1} divides both $\left(q_{1} u_{2}-u_{1} q_{2}\right) v_{1}$ and $\left(q_{1} u_{2}-u_{1} q_{2}\right) v_{2}$, we see that φ_{1} is a multiple of $q_{1} u_{2}-u_{1} q_{2}$. It follows that φ is equivalent to the matrix

$$
v=\left[\begin{array}{cccc}
l_{11} v_{2}-l_{12} v_{1} & u_{1} & l_{11} & l_{12} \\
l_{21} v_{2}-l_{22} v_{1} & u_{2} & l_{21} & l_{22} \\
0 & 0 & v_{1} & v_{2}
\end{array}\right] .
$$

Let $U \subset \operatorname{Hom}(\mathcal{O}(-3) \oplus 3 \mathcal{O}(-2), 3 \mathcal{O}(-1))$ be the set of morphisms represented by matrices v as above satisfying the following conditions: $v_{1} \neq 0, u_{1}$ and u_{2} are linearly independent, v_{1} and v_{2} are linearly independent. Clearly, U is irreducible. Let $v^{\prime} \in$ $\operatorname{Hom}(\mathcal{O}(-3) \oplus \mathcal{O}(-2), 2 \mathcal{O}(-1))$ be the morphism represented by the matrix

$$
\left[\begin{array}{ll}
l_{11} v_{2}-l_{12} v_{1} & u_{1} \\
l_{21} v_{2}-l_{22} v_{1} & u_{2}
\end{array}\right] .
$$

The above discussion shows that the map $\pi: U \rightarrow \mathbf{S}^{\mathrm{D}}, v \mapsto\left(\left[\operatorname{Coker}\left(v^{\prime}\right)\right],[\operatorname{Coker}(v)]\right)$ is surjective. Thus, $\mathbf{S}^{\text {D }}$ is irreducible. The open subset $\mathbf{S}_{\text {irr }} \subset \mathbf{S}$, given by the condition that the schematic support of \mathcal{G} be irreducible, is irreducible.

Let $\mathbf{D}_{1} \subset \mathbf{D}$ be the locally closed subset given by the conditions $L \nsubseteq H$ and $P=$ $P^{\prime} \in \operatorname{sing}(C)$. Since $\operatorname{dim} \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}}}^{1}\left(\mathcal{G}, \mathcal{O}_{L}(-1)\right)=2$, we see that $\operatorname{dim} \mathbf{D}_{1}=14$. The set of cubic curves in \mathbb{P}^{2} that are singular at a fixed point is irreducible. It follows that \mathbf{D}_{1} is irreducible as well.

Proposition 3.5 The set \mathbf{D}_{1} is contained in the closure of \mathbf{D}_{0}.
Proof Consider $[\mathcal{F}] \in \mathbf{D}_{0} \cup \mathbf{D}_{1}$. Consider extension (3.1) in which $\mathcal{G}=\mathcal{O}_{C}(P)$ and $L \cap H=\left\{P^{\prime}\right\}$. Dualizing, we get the extension

$$
0 \longrightarrow \mathcal{O}_{C}(-P) \longrightarrow \mathcal{F}^{\mathcal{D}} \longrightarrow \mathcal{O}_{L}(-1) \longrightarrow 0
$$

Tensoring with \mathcal{O}_{H}, we get the exact sequence

$$
0=\mathcal{T}^{\mathcal{O}_{1}}{ }_{\mathbb{P}^{3}}\left(\mathcal{O}_{L}(-1), \mathcal{O}_{H}\right) \longrightarrow \mathcal{O}_{C}(-P) \longrightarrow\left(\mathcal{F}^{\mathrm{D}}\right)_{\mid H} \longrightarrow \mathbb{C}_{P^{\prime}} \longrightarrow 0
$$

This short exact sequence does not split. Indeed, by [12], $\mathcal{F}^{\text {D }}$ is stable and has slope $-1 / 4$, hence $\mathcal{O}_{C}(-P)$, which has slope $-1 / 3$, cannot be a quotient sheaf of \mathcal{F}^{D}. Since $\mathcal{O}_{C}(-P)$ is stable, it is easy to see that $\left(\mathcal{F}^{\mathrm{D}}\right)_{\mid H}$ gives a sheaf in $\mathrm{M}_{H}(3 m)$ supported on C. The kernel of the map $\mathcal{F}^{\mathrm{D}} \rightarrow\left(\mathcal{F}^{\mathrm{D}}\right)_{\mid H}$ is supported on L and has no zero-dimensional torsion, hence it is isomorphic to $\mathcal{O}_{L}(-2)$. Denote $\mathcal{E}=\left(\left(\mathcal{F}^{\mathcal{D}}\right)_{\mid H}\right)^{\mathrm{D}}$. Dualizing the exact sequence

$$
0 \longrightarrow \mathcal{O}_{L}(-2) \longrightarrow \mathcal{F}^{\mathrm{D}} \longrightarrow\left(\mathcal{F}^{\mathrm{D}}\right)_{\mid H} \longrightarrow 0
$$

we obtain the extension

$$
0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{L} \longrightarrow 0
$$

Tensoring with \mathcal{O}_{H}, and taking into account the fact that $\mathcal{T o r}_{1}{ }^{\mathcal{P}^{3}}\left(\mathcal{O}_{L}, \mathcal{O}_{H}\right)=0$, we get the exact sequence

$$
0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_{C}(P) \longrightarrow \mathbb{C}_{P^{\prime}} \longrightarrow 0
$$

From (1.4) we have the exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{\mathcal{O}_{H}}^{1}\left(\mathbb{C}_{P^{\prime}}, \mathcal{E}\right) \xrightarrow{\epsilon} \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathcal{O}_{L}, \mathcal{E}\right) \longrightarrow \operatorname{Hom}\left(\mathcal{T o r}_{1}^{\mathcal{O}_{\mathbb{P}^{3}}}\left(\mathcal{O}_{L}, \mathcal{O}_{H}\right), \mathcal{E}\right)=0
$$

It is clear now that the isomorphism class of \mathcal{F} corresponds to the isomorphism class of $\mathcal{O}_{C}(P)$ under the bijective map ϵ. Let $\mathbf{D}^{\prime \prime} \subset\left(\mathbf{D}_{0} \cup \mathbf{D}_{1}\right) \backslash \mathbf{D}^{\prime}$ be the subset given by the condition that C be irreducible. Note that $\mathbf{D}^{\prime \prime}$ is an open subset of \mathbf{D} and contains an open subset of \mathbf{D}_{1}. We will prove below that $\mathbf{D}^{\prime \prime}$ is irreducible. Since \mathbf{D}_{1} is irreducible, we arrive at the conclusion of the proposition

$$
\mathbf{D}_{1} \subset \overline{\mathbf{D}}^{\prime \prime} \cap \mathbf{D}_{1} \subset \overline{\mathbf{D}}^{\prime \prime}=\overline{\mathbf{D}}^{\prime \prime} \cap \mathbf{D}_{0} \subset \overline{\mathbf{D}}_{0} .
$$

Consider the subset

$$
\mathbf{S}^{\prime \prime} \subset \operatorname{Hilb}_{\mathbb{P}^{3}}(m+1) \times \mathrm{M}_{\mathbb{P}^{3}}(3 m) \times \mathrm{M}_{\mathbb{P}^{3}}(3 m+1)
$$

of triples $(L,[\mathcal{E}],[\mathcal{G}])$ satisfying the following conditions: \mathcal{E} and \mathcal{G} are supported on a planar irreducible cubic curve $C, \mathrm{H}^{0}(\mathcal{E})=0, \mathcal{E}$ is a subsheaf of \mathcal{G}, and $L \cap C=\left\{P^{\prime}\right\}$, where $\mathbb{C}_{P^{\prime}} \simeq \mathcal{G} / \mathcal{E}$. Note that the projection $\mathbf{S}^{\prime \prime} \rightarrow \mathrm{M}_{\mathbb{P}^{3}}(3 m) \times \mathrm{M}_{\mathbb{P}^{3}}(3 m+1)$ has fibers
affine planes and has image the irreducible variety $\boldsymbol{S}_{\text {irr }}$ from Remark 3.4. It follows that $\mathbf{S}^{\prime \prime}$ is irreducible. To prove that $\mathbf{D}^{\prime \prime}$ is irreducible, we will show that the morphism

$$
\eta: \mathbf{D}^{\prime \prime} \longrightarrow \mathbf{S}^{\prime \prime}, \quad \eta([\mathcal{F}])=\left(L,\left[\left(\left(\mathcal{F}^{\mathrm{D}}\right)_{\mid H}\right)^{\mathrm{D}}\right],\left[\mathcal{F}_{\mid H}\right]\right)
$$

is bijective. We first verify surjectivity. Given an extension

$$
0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{G} \longrightarrow \mathbb{C}_{P^{\prime}} \longrightarrow 0
$$

we let $\mathcal{F} \in \operatorname{Ext}_{\mathcal{O}_{\mathbb{R}^{3}}}^{1}\left(\mathcal{O}_{L}, \mathcal{E}\right)$ be the image of \mathcal{G} under ϵ. Since \mathcal{G} does not split, neither does \mathcal{F}. By hypothesis \mathcal{E} has irreducible support, hence \mathcal{E} is stable, and, a fortiori, \mathcal{F} is stable. Applying the snake lemma to the diagram

we get the extension

$$
0 \longrightarrow \mathcal{O}_{L}(-1) \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0
$$

Thus, $[\mathcal{F}] \in \mathbf{D}_{0} \cup \mathbf{D}_{1}$ and $\mathcal{F}_{\mid H} \simeq \mathcal{G}$, where H is the plane containing C. Dualizing the first row of the above diagram we see that $\left(\mathcal{F}^{\mathrm{D}}\right)_{\mid H} \simeq \mathcal{E}^{\mathrm{D}}$. By hypothesis \mathcal{E} is not isomorphic to \mathcal{O}_{C}, hence $[\mathcal{F}] \notin \mathbf{D}^{\prime}$. Thus, $[\mathcal{F}] \in \mathbf{D}^{\prime \prime}$ and $\eta([\mathcal{F}])=(L,[\mathcal{E}],[\mathcal{G}])$. This proves that η is surjective. Since $[\mathcal{F}]=\epsilon([\mathcal{G}])$, we see that η is also injective.

We will next examine the sheaves in \mathbf{D} for which $L \subset H$. From (1.5) we have the exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Ext}_{\mathcal{O}_{H}}^{1}(\left.\mathcal{O}_{C}(P), \mathcal{O}_{L}(-1)\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}^{1}}^{1}\left(\mathcal{O}_{C}(P), \mathcal{O}_{L}(-1)\right) \\
& \longrightarrow \operatorname{Hom}\left(\mathcal{O}_{C}(P)(-1), \mathcal{O}_{L}(-1)\right) \\
& \longrightarrow \operatorname{Ext}_{\mathcal{O}_{H}}^{2}\left(\mathcal{O}_{C}(P), \mathcal{O}_{L}(-1)\right) \simeq \operatorname{Hom}_{\mathcal{O}_{H}}\left(\mathcal{O}_{L}(-1), \mathcal{O}_{C}(P)(-3)\right)^{*}=0 .
\end{aligned}
$$

Thus, we have non-planar sheaves precisely if $\operatorname{Hom}\left(\mathcal{O}_{C}(P), \mathcal{O}_{L}\right) \neq 0$. Any non-zero morphism $\alpha: \mathcal{O}_{C}(P) \rightarrow \mathcal{O}_{L}$ fits into a commutative diagram

with $\beta \neq 0$. Note that $c \neq 0$; otherwise, $\operatorname{Coker}(\beta)$ would be the structure sheaf of a line, and we would have the relation $\left(v u_{1}, v u_{2}\right)=\left(l v_{1}, l v_{2}\right)$. Thus, v_{1} and v_{2} would be linearly independent, hence $\operatorname{Coker}(\gamma)$ would be zero-dimensional, and hence $\operatorname{Coker}(\beta)$ would be zero-dimensional, which is absurd. Replacing, possibly, v with an equivalent matrix, we can assume that g_{1} and g_{2} are divisible by l. Conversely, if $\mathcal{O}_{C}(P)$ is
the cokernel of the morphism

$$
v=\left[\begin{array}{ll}
u_{1} & u_{2} \\
l v_{1} & l v_{2}
\end{array}\right], \quad \text { then, denoting } \quad v^{\prime}=\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right],
$$

we can apply the snake lemma to the commutative diagram

to get a surjective map $\mathcal{O}_{C}(P) \rightarrow \mathcal{O}_{L}$. This discussion shows that $\operatorname{Hom}\left(\mathcal{O}_{C}(P), \mathcal{O}_{L}\right)$ does not vanish precisely if $C=L \cup C^{\prime}$ for a conic curve $C^{\prime} \subset H$ and for $P \in C^{\prime}$. In this case we have a commutative diagram

Here $\delta(\mathcal{F})$ is the pull-back of \mathcal{O}_{C} in \mathcal{F}. If $P \notin L$, then δ is an isomorphism. If $P \in L$, then we have an exact sequence

$$
0 \longrightarrow \mathbb{C} \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{R}^{3}}}^{1}\left(\mathcal{O}_{C}(P), \mathcal{O}_{L}(-1)\right) \xrightarrow{\delta} \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}^{1}}^{1}\left(\mathcal{O}_{C}, \mathcal{O}_{L}(-1)\right) \longrightarrow \mathbb{C} \longrightarrow 0
$$

If \mathcal{F} is non-planar, then $\delta(\mathcal{F})$ is generated by a global section. Indeed, in view of Proposition 2.3, \mathcal{F} cannot have resolution (1.3), so it has resolution (1.1) or (1.2). Also, \mathcal{F} is not generated by a global section, because $\mathcal{O}_{C}(P)$ is not generated by a global section. It follows that $P_{\mathcal{F}^{\prime}}(m)=4 m$, where $\mathcal{F}^{\prime} \subset \mathcal{F}$ is the subsheaf generated by $\mathrm{H}^{0}(\mathcal{F})$. But \mathcal{F}^{\prime} maps to \mathcal{O}_{C}, hence $\delta(\mathcal{F}) \subset \mathcal{F}^{\prime}$. These two sheaves have the same Hilbert polynomial, so they coincide. We conclude that $\delta(\mathcal{F})$ is the structure sheaf \mathcal{O}_{D} of a quartic curve D. If $P \notin L$, then $\mathcal{F} \simeq \mathcal{O}_{D}(P)$.

Assume now that $P \in L$. The preimage of $\left[\mathcal{O}_{D}\right]$ under the induced map

$$
\mathbb{P}\left(\operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathcal{O}_{C}(P), \mathcal{O}_{L}(-1)\right)\right) \backslash \mathbb{P}(\mathbb{C}) \longrightarrow \mathbb{P}\left(\operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathcal{O}_{C}, \mathcal{O}_{L}(-1)\right)\right)
$$

is an affine line that maps to a curve in $\mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$. The exact sequence

$$
\begin{aligned}
0=\operatorname{Hom}\left(\mathbb{C}_{P}, \mathcal{O}_{C}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{L}(-1)\right) \simeq \mathbb{C} \longrightarrow & \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{D}\right) \\
& \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^{3}}^{1}}\left(\mathbb{C}_{P}, \mathcal{O}_{C}\right) \simeq \mathbb{C}
\end{aligned}
$$

shows that $\operatorname{Ext}_{\mathcal{O}_{\mathbb{P}}}^{1}\left(\mathbb{C}_{P}, \mathcal{O}_{D}\right)$ has dimension 2. Indeed, if this vector space had dimension 1, then its image in $\mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$ would be a point. This, as we saw above, is not the case.

Let $\mathbf{D}_{2} \subset \mathbf{D}$ be the closed subset given by the condition $L \subset H$. Equivalently, \mathbf{D}_{2} is given by the condition $C=L \cup C^{\prime}$ and $P \in C^{\prime}$ for a conic curve C^{\prime}. According to [5, Proposition 4.10], the set \mathbf{D}_{2} is irreducible of dimension 14. Indeed, let

$$
\mathbf{S} \subset \operatorname{Hilb}_{\mathbb{P}^{2}}(m+1) \times \mathrm{M}_{\mathbb{P}^{2}}(3 m+1)
$$

be the locally closed subset of pairs $\left(L,\left[\mathcal{O}_{C}(P)\right]\right)$ for which $C=L \cup C^{\prime}$ and $P \in C^{\prime}$, for a conic curve $C^{\prime} \subset \mathbb{P}^{2}$. According to [5, Lemma 4.9], \mathbf{S} is irreducible. The canonical $\operatorname{map} \mathbf{D}_{2} \rightarrow \mathbf{S}$ is surjective and its fibers are irreducible of dimension 3.

4 The Irreducible Components

Let

$$
\mathbf{W}_{0} \subset \operatorname{Hom}(3 \mathcal{O}(-3), 5 \mathcal{O}(-2)) \times \operatorname{Hom}(5 \mathcal{O}(-2), \mathcal{O}(-1) \oplus \mathcal{O})
$$

be the subset of pairs of morphisms equivalent to pairs (ψ, φ) occurring in resolutions (1.1) and (1.2). We claim that \mathbf{W}_{0} is locally closed. To see this, consider first the locally closed subset \mathbb{W} given by the following conditions: ψ is injective, φ is generically surjective, $\varphi \circ \psi=0$. We have the universal sequence

$$
3 \mathcal{O}_{\mathbb{W} \times \mathbb{P}^{3}}(-3) \xrightarrow{\Psi} 5 \mathcal{O}_{\mathbb{W} \times \mathbb{P}^{3}}(-2) \xrightarrow{\Phi} \mathcal{O}_{\mathbb{W} \times \mathbb{P}^{3}}(-1) \oplus \mathcal{O}_{\mathbb{W} \times \mathbb{P}^{3}} .
$$

Denote $\widetilde{\mathcal{F}}=\operatorname{Coker}(\Phi)$. Corresponding to the polynomial $P(m)=4 m+1$ we have the locally closed subset

$$
\mathbb{W}_{P}=\left\{x \in \mathbb{W}, P_{\widetilde{\mathcal{F}}_{x}}=P\right\} \subset \mathbb{W}
$$

constructed when we flatten $\widetilde{\mathcal{F}}$, see $\left[9\right.$, Theorem 2.1.5]. Now $\mathbf{W}_{0} \subset \mathbb{W}_{P}$ is the subset given by the condition that $\widetilde{\mathcal{F}}_{x}$ be semi-stable, which is an open condition, because $\widetilde{\mathcal{F}}_{\mid \mathbb{W}_{P} \times \mathbb{P}^{3}}$ is flat over \mathbb{W}_{P}. We endow \mathbf{W}_{0} with the induced reduced structure. Consider the map

$$
\rho_{0}: \mathbf{W}_{0} \longrightarrow \mathbf{M}_{0}, \quad(\psi, \varphi) \longmapsto[\operatorname{Coker}(\varphi)] .
$$

On \mathbf{W}_{0} we have the canonical action of the linear algebraic group

$$
\mathbf{G}_{0}=(\operatorname{Aut}(3 \mathcal{O}(-3)) \times \operatorname{Aut}(5 \mathcal{O}(-2)) \times \operatorname{Aut}(\mathcal{O}(-1) \oplus \mathcal{O})) / \mathbb{C}^{*}
$$

where \mathbb{C}^{*} is identified with the subgroup $\left\{(t \cdot \mathrm{id}, t \cdot \mathrm{id}, t \cdot \mathrm{id}), t \in \mathbb{C}^{*}\right\}$. It is easy to check that the fibers of ρ_{0} are precisely the \mathbf{G}_{0}-orbits. Let

$$
\mathbf{W}_{1} \subset \operatorname{Hom}(3 \mathcal{O}(-3), 5 \mathcal{O}(-2) \oplus \mathcal{O}(-1)) \times \operatorname{Hom}(5 \mathcal{O}(-2) \oplus \mathcal{O}(-1), 2 \mathcal{O}(-1) \oplus \mathcal{O})
$$

be the locally closed subset of pairs of morphisms equivalent to pairs (ψ, φ) occurring in resolution (1.3) and let

$$
\mathbf{W}_{2} \subset \operatorname{Hom}(\mathcal{O}(-4) \oplus \mathcal{O}(-2), \mathcal{O}(-3) \oplus 3 \mathcal{O}(-1)) \times \operatorname{Hom}(\mathcal{O}(-3) \oplus 3 \mathcal{O}(-1), 2 \mathcal{O})
$$

be the set of pairs given at [5, Theorem 6.1(iii)]. The groups $\mathbf{G}_{1}, \mathbf{G}_{2}$ are defined by analogy with the definition of \mathbf{G}_{0}. As before, for $i=1,2$, the fibers of the canonical quotient map $\rho_{i}: \mathbf{W}_{i} \rightarrow \mathbf{M}_{i}$ are precisely the \mathbf{G}_{i}-orbits.

Proposition 4.1 For $i=0,1, \mathbf{M}_{i}$ is the categorical quotient of \mathbf{W}_{i} modulo \mathbf{G}_{i}. The subvariety \mathbf{M}_{2} is the geometric quotient of \mathbf{W}_{2} modulo \mathbf{G}_{2}.

Proof The argument at [7, Theorem 3.1.6] shows that $\rho_{0}, \rho_{1}, \rho_{2}$ are categorical quotient maps. Since \mathbf{M}_{2} is normal (being smooth), we can apply [15, Theorem 4.2] to conclude that ρ_{2} is a geometric quotient map.

Consider the closed subset $\mathbf{W}_{\text {ell }}=\rho_{0}^{-1}(\mathbf{E}) \subset \mathbf{W}_{0}$. Consider the restriction to the second direct summand of the map

$$
\mathcal{O}_{\mathrm{W}_{\mathrm{ell}} \times \mathbb{P}^{3}}(-1) \oplus \mathcal{O}_{\mathbf{W}_{\text {ell }} \times \mathbb{P}^{3}} \longrightarrow \widetilde{\mathcal{F}}_{\mid \mathbf{W}_{\mathrm{ell}} \times \mathbb{P}^{3}}
$$

and denote its image by $\widetilde{\mathscr{F}}^{\prime}$. The quotient $\left[\mathcal{O}_{\mathbf{W}_{\text {ell }} \times \mathbb{P}^{3}} \rightarrow \widetilde{\mathcal{F}}^{\prime}\right]$ induces a morphism

$$
\sigma: \mathbf{W}_{\mathrm{ell}} \longrightarrow \operatorname{Hilb}_{\mathbb{P}^{3}}(4 m)
$$

According to [2, Examples 2.8 and 4.8], $\operatorname{Hilb}_{\mathbb{P}^{3}}(4 m)$ has two irreducible components, denoted H_{1}, H_{2}. The generic member of H_{1} is a smooth elliptic quartic curve. The generic member of H_{2} is the disjoint union of a planar quartic curve and two isolated points. Note that H_{2} lies in the closed subset

$$
H=\left\{[\mathcal{O} \rightarrow \mathcal{S}] \mid \mathrm{h}^{0}(\mathcal{S}) \geq 3\right\} \subset \operatorname{Hilb}_{\mathbb{P}^{3}}(4 m)
$$

Since σ factors through the complement of H, we deduce that σ factors through H_{1}. By an abuse of notation, we denote the corestriction by $\sigma: \mathbf{W}_{\text {ell }} \rightarrow H_{1}$.

Proposition 4.2 The sets $\mathbf{D}_{0}, \mathbf{D}_{1}, \mathbf{D}_{2}, \mathbf{D}$, and \mathbf{E} are contained in the closure of \mathbf{E}_{0}. The set \mathbf{D} is irreducible and \mathbf{D}_{0} is dense in \mathbf{D}. Moreover,

$$
\overline{\mathbf{E}} \backslash \mathbf{P}=\mathbf{E} \cup \mathbf{D}=\mathbf{E} \cup \mathbf{D}^{\prime}, \quad \overline{\mathbf{R}} \backslash(\overline{\mathbf{E}} \cup \mathbf{P})=\mathbf{R} .
$$

Proof Let $\mathbf{E}_{\mathrm{reg}} \subset \mathbf{E}_{0}$ be the open subset of sheaves with smooth support. Let $H_{10} \subset H_{1}$ be the open subset consisting of smooth elliptic quartic curves. For any $x \in H_{1} \backslash H_{10}$ there is an irreducible quasi-projective curve $\Gamma \subset H_{1}$ such that $x \in \Gamma$ and $\Gamma \backslash\{x\} \subset H_{10}$. To produce Γ proceed as follows. Embed H_{1} into a projective space. Intersect with a suitable linear subspace passing through x to obtain a subscheme of dimension 1 all of whose irreducible components meet H_{10}. Retain one of these irreducible components and remove the points, other than x, that lie outside H_{10}.

Notice that if $y=\left[\mathcal{O} \rightarrow \mathcal{O}_{E}\right]$ is a point in H_{10}, then $\sigma^{-1}\{y\}$ is irreducible of dimension $1+\operatorname{dim} \mathbf{G}_{0}$. Indeed,

$$
\sigma^{-1}\{y\}=\rho_{0}^{-1}\left\{\left[\mathcal{O}_{E}(P)\right], P \in E\right\}
$$

Assume now that $x=\left[\mathcal{O} \rightarrow \mathcal{O}_{E}\right]$ where E is the schematic support of a sheaf in $\mathbf{E} \backslash \mathbf{D}$. We denote its irreducible components by Z_{0}, \ldots, Z_{m}. Denote by $(\mathbf{E} \backslash \mathbf{D})^{0}$ the open subset of sheaves of the form $\mathcal{O}_{E^{\prime}}\left(P^{\prime}\right)$ with P^{\prime} lying outside $Z_{1} \cup \ldots \cup Z_{m}$ and let \mathbf{W}^{0} be its preimage under ρ_{0}. Denote by σ_{0} the restriction of σ to \mathbf{W}^{0}. Clearly, $\sigma_{0}^{-1}\{y\}$ is irreducible of dimension $1+\operatorname{dim} \mathbf{G}_{0}$, and the same is true for $\sigma_{0}^{-1}\{x\}$. Thus, the fibers of the map $\sigma_{0}^{-1}(\Gamma) \rightarrow \Gamma$ are all irreducible of the same dimension. By [16, Theorem 8, p. 77] we deduce that $\sigma_{0}^{-1}(\Gamma)$ is irreducible. Thus, $\rho_{0}\left(\sigma^{-1}(\Gamma)\right)$ is irreducible, hence any sheaf of the form $\mathcal{O}_{E}(P), P \in Z_{0} \backslash\left(Z_{1} \cup \cdots \cup Z_{m}\right)$, is the limit of sheaves in $\mathbf{E}_{\mathrm{reg}}$. The same argument applies to $\mathcal{O}_{E}(P)$ for P belonging to exactly one of the components of E. A fortiori, $\mathcal{O}_{E}(P)$ lies in the Zariski closure of $\mathbf{E}_{\mathrm{reg}}$ for all $P \in E$. We conclude that $\mathbf{E} \backslash \mathbf{D} \subset \overline{\mathbf{E}}_{0}$.

Let D be the union of a line L and a planar irreducible cubic curve C, where L and C meet precisely at a regular point of C. Take $x=\left[\mathcal{O} \rightarrow \mathcal{O}_{D}\right]$. Then

$$
\sigma^{-1}\{x\}=\rho_{0}^{-1}\left\{\left[\mathcal{O}_{D}(P)\right], P \in C \backslash L\right\}
$$

is irreducible of dimension $1+\operatorname{dim} \mathbf{G}_{0}$. We deduce as above that any sheaf of the form $\mathcal{O}_{D}(P), P \in C \backslash L$, is the limit of sheaves in $\mathbf{E}_{\text {reg }}$. The set of sheaves of the form $\mathcal{O}_{D}(P)$ is dense in \mathbf{D}_{0}. We conclude that $\mathbf{D}_{0} \subset \overline{\mathbf{E}}_{0}$.

Let $\mathbf{D}^{o} \subset \mathbf{D} \cap \mathbf{E}=\mathbf{D} \backslash \mathbf{D}^{\prime}$ be the open subset given by the condition that $P \notin L$. Let $\sigma^{o}: \mathbf{D}^{o} \rightarrow H_{1}$ denote the restriction of σ. According to [17, Theorem 5.2 (4)], there is an irreducible closed subset $\widehat{\mathbf{B}} \subset H_{1}$ whose generic member is the union of a planar cubic curve and an incident line. Let D be the schematic support of a sheaf in \mathbf{D}_{2}. According to [17, Theorem 5.2 (5)], the point $x=\left[\mathcal{O} \rightarrow \mathcal{O}_{D}\right]$ belongs to $\widehat{\mathbf{B}}$. By the same argument as above, there is an irreducible quasi-projective curve $\Gamma \subset \widehat{\mathbf{B}}$ containing x such that the points $y \in \Gamma \backslash\{x\}$ are of the form $\left[\mathcal{O} \rightarrow \mathcal{O}_{L \cup C}\right]$, where C is a planar irreducible cubic curve and L is an incident line. Notice that

$$
\left(\sigma^{o}\right)^{-1}\{y\}=\rho_{0}^{-1}\left\{\left[\mathcal{O}_{L \cup C}(P)\right], P \in C \backslash L\right\}
$$

is irreducible of dimension $1+\operatorname{dim} \mathbf{G}_{0}$. Assume, in addition, that D is the union of an irreducible plane conic curve C^{\prime} and a double line supported on L^{\prime}. Then

$$
\left(\sigma^{o}\right)^{-1}\{x\}=\rho_{0}^{-1}\left\{\left[\mathcal{O}_{D}(P)\right], P \in C^{\prime} \backslash L^{\prime}\right\}
$$

is irreducible of dimension $1+\operatorname{dim} \mathbf{G}_{0}$. We deduce, as above, that $\left(\sigma^{o}\right)^{-1}(\Gamma)$ is irreducible, hence $\rho_{0}\left(\left(\sigma^{o}\right)^{-1}(\Gamma)\right)$ is irreducible, and hence any sheaf of the form $\mathcal{O}_{D}(P)$, $P \in C^{\prime} \backslash L^{\prime}$, is the limit of sheaves in \mathbf{D}_{0}. But \mathbf{D}_{2} is irreducible, hence the set of sheaves $\mathcal{O}_{D}(P)$ as above is dense in \mathbf{D}_{2}. We deduce that $\mathbf{D}_{2} \subset \overline{\mathbf{D}}_{0}$. Thus, $\mathbf{D}_{2} \subset \overline{\mathbf{E}}_{0}$.

Recall from Proposition 3.5 that $\mathbf{D}_{1} \subset \overline{\mathbf{D}}_{0}$. Since $\mathbf{D}=\mathbf{D}_{0} \cup \mathbf{D}_{1} \cup \mathbf{D}_{2}$, we see that $\mathbf{D} \subset \overline{\mathbf{D}}_{0} \subset \overline{\mathbf{E}}_{0}$.

The inclusion $\overline{\mathbf{E}} \backslash \mathbf{P} \subset \mathbf{E} \cup \mathbf{D}^{\prime}$ follows from Theorem 1.1 and Proposition 2.3. Indeed, \mathbf{E} is closed in \mathbf{M}_{0}. The reverse inclusion was proved above. Finally,

$$
\overline{\mathbf{R}} \backslash(\overline{\mathbf{E}} \cup \mathbf{P})=\overline{\mathbf{R}} \backslash\left(\mathbf{E} \cup \mathbf{D}^{\prime} \cup \mathbf{P}\right) \subset \mathbf{M} \backslash\left(\mathbf{E} \cup \mathbf{D}^{\prime} \cup \mathbf{P}\right)=\mathbf{M}_{0} \backslash \mathbf{E}=\mathbf{R} .
$$

The reverse inclusion is obvious because by definition \mathbf{R} is disjoint from $\mathbf{E}, \mathbf{D}^{\prime}, \mathbf{P}$.
From Proposition 4.2 we obtain the decomposition of $M_{\mathbb{P}^{3}}(4 m+1)$ into irreducible components.

Theorem 4.3 The moduli space $\mathrm{M}_{\mathbb{P}^{3}}(4 m+1)$ consists of three irreducible components $\overline{\mathbf{R}}, \overline{\mathbf{E}}$, and \mathbf{P}.

The intersections $\overline{\mathbf{R}} \cap \mathbf{P}, \overline{\mathbf{E}} \cap \mathbf{P}, \overline{\mathbf{R}} \cap \overline{\mathbf{E}}$ were described generically in [5]. They are irreducible and have dimension 14, 16, and 15 , respectively. The generic member of $\overline{\mathbf{R}} \cap \mathbf{P}$ has the form $\left[\mathcal{O}_{C}\left(P_{1}+P_{2}+P_{3}\right)\right]$, where C is a planar quartic curve and P_{1}, P_{2}, P_{3} are three distinct nodes. The generic point in $\overline{\mathbf{E}} \cap \mathbf{P}$ has the form $\left[\mathcal{O}_{C}\left(P_{1}+P_{2}+P\right)\right]$, where C is a planar quartic curve, P_{1} and P_{2} are distinct nodes, and P is a third point on C. The generic sheaves in $\overline{\mathbf{R}} \cap \overline{\mathbf{E}}$ have the form $\mathcal{O}_{E}(P)$, where E is a singular (2,2)curve on a smooth quadric surface and $P \in \operatorname{sing}(E)$.

References

[1] E. Ballico and S. Huh, Stable sheaves on a smooth quadric surface with linear Hilbert bipolynomials. The Scientific World Journal (2014), Article ID 346126.
[2] D. Chen and S. Nollet, Detaching embedded points. Algebra Number Theory 6(2012), 731-756. http://dx.doi.org/10.2140/ant.2012.6.731
[3] J. Choi and K. Chung, The geometry of the moduli space of one-dimensional sheaves. Sci. China Math. 58(2015), 487-500. http://dx.doi.org/10.1007/s11425-014-4889-9
[4] _, Moduli spaces of α-stable pairs and wall-crossing on \mathbb{P}^{2}. J. Math. Soc. Japan 68(2016), 685-709. http://dx.doi.org/10.2969/jmsj/06820685
[5] J. Choi, K. Chung, and M. Maican, Moduli of sheaves supported on quartic space curves. Michigan Math. J. 65(2016), 637-671. http://dx.doi.org/10.1307/mmj/1472066152
[6] J. Choi and M. Maican, Torus action on the moduli spaces of torsion plane sheaves of multiplicity four. J. Geom. Phy. 83(2014), 18-35. http://dx.doi.org/10.1016/j.geomphys.2014.05.005
[7] J.-M. Drézet and M. Maican, On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics. Geom. Dedicata 152(2011), 17-49. http://dx.doi.org/10.1007/s10711-010-9544-1
[8] H.-G. Freiermuth and G. Trautmann, On the moduli scheme of stable sheaves supported on cubic space curves. Amer. J. Math. 126(2004), 363-393. http://dx.doi.org/10.1353/ajm.2004.0013
[9] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves. Aspects of Mathematics, E31, Vieweg, Braunschweig, 1997. http://dx.doi.org/10.1007/978-3-663-11624-0
[10] O. Iena, On the singular 1-dimensional planar sheaves supported on quartics. Rend. Istit. Mat. Univ. Trieste 48(2016), 565-586.
[11] J. Le Potier, Faisceaux semi-stables de dimension 1 sur le plan projectif. Rev. Roumaine Math. Pures Appl. 38(1993), 635-678.
[12] M. Maican, A duality result for moduli spaces of semistable sheaves supported on projective curves. Rend. Semin. Mat. Univ. Padova 123(2010), 55-68. http://dx.doi.org/10.4171/RSMUP/123-3
[13] , The homology groups of certain moduli spaces of plane sheaves. Internat. J. Math. 24(2013), Article ID 1350098. http://dx.doi.org/10.1142/S0129167X13500985
[14] , On the homology of the moduli space of plane sheaves with Hilbert polynomial $5 m+3$. Bull. Sci. Math. 139(2015), 1-32. http://dx.doi.org/10.1016/j.bulsci.2014.08.001
[15] V. Popov and E. Vinberg, Invariant theory. In: Algebraic Geometry IV, Encyclopedia of Mathematical Sciences, 55, Springer Verlag, Berlin, 1994. http://dx.doi.org/10.1007/978-3-662-03073-8
[16] I. Shafarevich, Basic algebraic geometry. I. Second ed., Springer-Verlag, Berlin, Heidelberg, 1994.
[17] I. Vainsencher and D. Avritzer, Compactifying the space of elliptic quartic curves. In: Complex projective geometry, (Trieste, 1989), London Math. Soc. Lecture Note Ser., 179, Cambridge University Press, Cambridge, 47-58.
Institute of Mathematics of the Romanian Academy, Calea Grivitei 21, Bucharest 010702, Romania
e-mail: maican@imar.ro

[^0]: Received by the editors February 22, 2017.
 Published electronically July 12, 2017.
 AMS subject classification: 14D20, 14D22.
 Keywords: moduli of sheaves, semi-stable sheaves.

