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Moduli of Space Sheaves with Hilbert
Polynomial 4m + 1

Mario Maican

Abstract. We investigate the moduli space of sheaves supported on space curves of degree 4 and
having Euler characteristic 1. We give an elementary proof of the fact that this moduli space consists
of three irreducible components.

1 Introduction and Preliminaries

Let MPn(rm + χ) be the moduli space of Gieseker semi-stable sheaves on the com-
plex projective space Pn having Hilbert polynomial P(m) = rm + χ. Le Potier [11]
showed that MP2(rm + χ) is irreducible and, if r and χ are coprime, smooth. For low
multiplicity, the homology ofMP2(rm + χ) has been studied in [3,4] using the wall-
crossing method and in [6, 13, 14] using the Białynicki–Birula method. When n > 2,
themoduli space is no longer irreducible. _us, according to [8],MP3(3m+1) has two
irreducible components meeting transversally. _e focus of this paper is the moduli
spaceM = MP3(4m + 1) of stable sheaves on P3 with Hilbert polynomial 4m + 1. _is
was investigated in [5] usingwall-crossing, by relatingM toHilbP3(4m+1). _emain
result of [5] states thatM consists of three irreducible components, denotedR, E, P, of
dimensions 16, 17, and 20, respectively. _e generic sheaves inR are structure sheaves
of rational quartic curves. _e generic sheaves in E are of the form OE(P), where E
is an elliptic quartic curve and P is a point on E. _e third irreducible component
parametrizes the planar sheaves.

_e purpose of this paper is to reprove the decomposition of M into irreducible
components without using the wall-crossing method; see _eorem 4.3. We achieve
this as follows. Using the decomposition of HilbP3(4m + 1) into irreducible compo-
nents, found in [2], we show that the subset of M of sheaves generated by a global
section is irreducible; see Proposition 2.4. _is provides our ûrst irreducible com-
ponent. We then describe the sheaves whose support is an elliptic quartic curve; see
Section 3. To show that the set of such sheaves F is irreducible we use results from
[17] regarding the geometry ofHilbP3(4m). Given F, we construct at Proposition 4.2
a varietyW together with amap σ ∶W → Γ, the support map, where Γ ⊂ HilbP3(4m)

is an irreducible quasi-projective curve, such that F ∈ σ−1(x) for a point x ∈ Γ and
such that Γ ∖ {x} consists only of smooth curves. Moreover, the ûbers of σ are irre-
ducible, henceW is irreducible, and hence F is contained in the closure of the set of
sheaves with support smooth elliptic curves. _us, we obtain the second irreducible
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component. _e set P of planar sheaves is irreducible because it is a bundle over the
Grassmannian of planes in P3 with ûber MP2(4m + 1), which is, as mentioned above,
irreducible.

We also rely on the cohomological classiûcation of sheaves inM found at [5,_eo-
rem 6.1], which does not use the wall-crossing method (it uses the Beilinson spectral
sequence). We ûx a 4-dimensional vector space V over C and we identify P3 with
P(V). We ûx a basis {X ,Y , Z ,W} of V∗.

_eorem 1.1 ([5,_eorem 6.1]) Let F give a point in MP3(4m + 1). _en F satisûes
one of the following cohomological conditions:
(i) h0

(F ⊗Ω2(2)) = 0, h0
(F ⊗Ω1(1)) = 0, h0

(F) = 1;
(ii) h0

(F ⊗Ω2(2)) = 0, h0
(F ⊗Ω1(1)) = 1, h0

(F) = 1;
(iii) h0

(F ⊗Ω2(2)) = 1, h0
(F ⊗Ω1(1)) = 3, h0

(F) = 2.

Let M0, M1, M2 ⊂ M be the subsets of sheaves satisfying conditions (i), (ii), and
(iii), respectively. We will call them strata. Clearly, M0 is open, M1 is locally closed,
and M2 is closed. We also quote the classiûcation of the sheaves in each stratum
in terms of locally free resolutions, which was carried out at [5, _eorem 6.1]. _e
sheaves in M0 are precisely the sheaves having a resolution of the form

0Ð→ 3O(−3)
ψ
Ð→ 5O(−2)

φ
Ð→ O(−1)⊕OÐ→ F Ð→ 0(1.1)

φ = [
X Y Z W 0
q1 q2 q3 q4 q5

]

or a resolution of the form

0Ð→ 3O(−3)
ψ
Ð→ 5O(−2)

φ
Ð→ O(−1)⊕OÐ→ F Ð→ 0(1.2)

φ = [
l1 l2 l3 0 0
q1 q2 q3 q4 q5

] ,

where l1, l2, l3 are linearly independent. Let R,E ⊂ M0 be the subsets of sheaves
having resolution (1.1) (resp. (1.2)). Clearly, R is an open subset ofM and consists of
structure sheaves of rational quartic curves. _e set E contains all extensions of CP
by OE , where E is an elliptic quartic curve and P is a point on E. _e sheaves in M1
are precisely the sheaves having a resolution of the form

(1.3) 0Ð→ 3O(−3)
ψ
Ð→ 5O(−2)⊕O(−1)

φ
Ð→ 2O(−1)⊕OÐ→ F Ð→ 0,

where φ12 = 0 and φ11∶ 5O(−2)→ 2O(−1) isnot equivalent to amorphism represented
by amatrix of the form

[
⋆ ⋆ 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆

] or [
⋆ ⋆ ⋆ ⋆ 0
⋆ ⋆ ⋆ ⋆ 0] .

_e sheaves in M2 are precisely the sheaves of the form OC(−P)(1), where OC(−P)
in OC denotes the ideal sheaf of a closed point P in a planar quartic curve C.
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Assume now that F has resolution (1.1). Let S ⊂ P3 be the quadric surface given by
the equation q5 = 0. From the snake lemma we get the resolution

0Ð→ 3O(−3)Ð→ Ω1
(−1)Ð→ OS Ð→ F Ð→ 0.

We consider ûrst the case when S is smooth. _e semi-stable sheaves on a smooth
quadric surface with Hilbert polynomial 4m+ 1 have been investigated in [1]. We cite
below themain result of [1]:

Proposition 1.2 Let F be a coherent sheaf on P1 ×P1 that is semi-stable relative to the
polarization O(1, 1) and such that PF(m) = 4m + 1. _en precisely one of the following
is true:
(i) F is the structure sheaf of a curve of type (1, 3);
(ii) F is the structure sheaf of a curve of type (3, 1);
(iii) F is a non-split extension 0 → OE → F → CP → 0 for a curve E in P1 × P1 of

type (2, 2) and a point P ∈ E. Such an extension is unique up to isomorphism and
satisûes the condition H1(F) = 0.

_us,MP1×P1(4m + 1) has three connected components. Two of these, P(H0(O(1, 3)))
and P(H0(O(3, 1))), are isomorphic to P7. _e third one is smooth, has dimension 9,
and is isomorphic to the universal elliptic curve in P(H0(O(2, 2))) × (P1 × P1). _e
sheaves at (iii) are precisely the sheaves having a resolution of the form

0Ð→ O(−2,−1)⊕O(−1,−2)
φ
Ð→ O(−1,−1)⊕OÐ→ F Ð→ 0

with φ11 /= 0, φ12 /= 0.

_e following well-known lemma provides one of our main technical tools.

Lemma 1.3 Let X be a projective scheme and letY be a subscheme. LetF be a coherent
OX-module and letG be a coherentOY -module. _en there is an exact sequence of vector
spaces

(1.4) 0Ð→ Ext1OY (F∣Y ,G)Ð→ Ext1OX(F,G)Ð→ HomOY (TorOX
1 (F,OY),G)

Ð→ Ext2OY (F∣Y ,G)Ð→ Ext2OX(F,G).

In particular, if F is an OY -module, then the above exact sequence takes the form

(1.5) 0Ð→ Ext1OY (F,G)Ð→ Ext1OX(F,G)Ð→ HomOY (F ⊗OX IY ,G)

Ð→ Ext2OY (F,G)Ð→ Ext2OX(F,G).

2 Sheaves Supported on Rational Quartic Curves

Let R0 ⊂ R be the set of isomorphism classes of structure sheaves OR of curves R ⊂ S
of type (1, 3) or (3, 1) on smooth quadrics S ⊂ P3. A curve of type (1, 3) on S can be
deformed inside P3 to a curve of type (3, 1), hence R0 is irreducible of dimension 16.
Let E0 ⊂ E be the set of isomorphism classes of non-split extensions of CP by OE for
E ⊂ S a curve of type (2, 2) on a smooth quadric S ⊂ P3 and P a closed point on E.
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From (1.5) and Proposition 1.2(iii) we have the exact sequence

0Ð→ Ext1OS
(CP ,OE) ≃ CÐ→ Ext1OP3

(CP ,OE)Ð→ HomOS
(CP ,OE) = 0.

We denote by OE(P) the unique non-split extension of CP by OE . Clearly, E0 is ir-
reducible of dimension 17. Let Efree ⊂ E0 denote the open subset of sheaves that are
locally free on their schematic support, which is equivalent to saying that P ∈ reg(E).
Let P ⊂ MP3(4m + 1) be the closed set of planar sheaves. It has dimension 20. Let
Pfree ⊂ P be the open subset of sheaves that are locally free on their support. Accord-
ing to [10], P ∖ Pfree has codimension 2 in P.

Proposition 2.1 _e closed sets R0, E0, and P are irreducible components of
MP3(4m + 1). Moreover, R0, Efree and Pfree are smooth open subsets of the moduli
space.

Proof LetF = OR give a point inR0,where R ⊂ S is a curve of, say, type (1, 3). From
Serre duality we have

Ext2OS
(F,F) ≃ HomOS

(F,F(−2,−2))∗ = 0.

From the exact sequence (1.5) we get the relation

ext1OP3
(F,F) = ext1OS

(F,F) + homOS
(F(−2),F) = 7 + h0

(OR(2, 2)) = 16.

_is shows that R0 is an irreducible component ofM and that R0 is smooth.
Next, consider F = OE(P) giving a point in E0. As above, we have the relation

ext1OP3
(F,F) = ext1OS

(F,F) + homOS
(F(−2),F) = 9 + homOS

(F,F(2, 2)) .

Assume, in addition, thatF is locally free on E. Its rankmust be 1, because E is a curve
ofmultiplicity 4. _us,

HomOS
(F,F(2, 2)) ≃ H0

(OE(2, 2)) ≃ C8 ,

hence ext1OP3
(F,F) = 17. _is shows that E0 is an irreducible component of M and

that Efree is smooth.
Assume now that F is supported on a planar quartic curve C ⊂ H. Using Serre

duality and (1.5) we get the relation

ext1OP3
(F,F) = ext1OH(F,F) + homOH

(F(−1),F) = 17 + homOH
(F,F(1)) .

Assume, in addition, that F is locally free on C, so a line bundle. _us,

HomOH(F,F(1)) ≃ H0
(OC(1)) ≃ C3 ,

hence ext1OP3
(F,F) = 20. _is shows that P is an irreducible component of M and

that Pfree is smooth.

Remark 2.2 Let F be a one-dimensional sheaf on P3 without zero-dimensional
torsion. Let F′ be a planar subsheaf such that F/F′ has dimension zero. _en F is
planar. Indeed, say that F′ is an OH-module for a plane H ⊂ P3. From (1.4) we have
the exact sequence

0→ Ext1OH
((F/F′)∣H ,F′) → Ext1OP3

(F/F′ ,F′)→ HomOH(TorOP3
1 (F/F′ ,OH),F′).
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_e group on the right vanishes, because TorOP3
1 (F/F′ ,OH) is supported on ûnitely

manypoints, yetF′ hasno zero-dimensional torsion. _us,F ∈ Ext1OH
((F/F′)∣H ,F′),

so F is an OH-module.

Proposition 2.3 _e non-planar sheaves in MP3(4m + 1) having resolution (1.3) are
precisely the non-split extensions of the form

(2.1) 0Ð→ OC Ð→ F Ð→ OL Ð→ 0,

where C is a planar cubic curve and L is a line meeting C with multiplicity 1. For such
a sheaf, H0(F) generates OC . _e set R consists precisely of the sheaves generated by a
global section. _e set E consists precisely of the sheaves F such that H0(F) generates a
subsheaf with Hilbert polynomial 4m.

Proof Let φ be a morphism as at (1.3). Denote G = Coker(φ11) and let H ⊂ P3 be
the plane given by the equation φ22 = 0. From the snake lemma we have the exact
sequence

OH Ð→ F Ð→ GÐ→ 0.
We examine ûrst the case when

φ11 ≁ [
0 0 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆
] .

_us, we can write

φ11 = [
X Y Z W 0
0 l1 l2 l3 l4

] .

If l4 is amultiple of X, then PG = 3 (see the proof of [5,_eorem 6.1(iii)]); hence, by
Remark 2.2, F is planar. Assume now that l4 is not a multiple of X and let L ⊂ P3

be the line given by the equations X = 0, l4 = 0. _en G is a proper quotient sheaf
of OL(−1), hence it has support of dimension zero, and hence, by Remark 2.2, F is
planar. It remains to examine the case when

φ11 = [
u1 u2 u3 0 0
0 v1 v2 v3 v4

] .

Let P be the point given by the ideal (u1 , u2 , u3) and let L be the line given by the
equations v3 = 0, v4 = 0. We have an exact sequence

OL(−1)Ð→ GÐ→ CP Ð→ 0.

If the ûrst morphism is not injective, then G has dimension zero, hence F is planar.
If G is an extension of CP by OL(−1), then this extension does not split; otherwise,
OL(−1) would be a destabilizing quotient sheaf of F. _us, G ≃ OL , and we have an
exact sequence

0Ð→ EÐ→ F Ð→ OL Ð→ 0,
where E gives a point in MH(3m) and is generated by a global section. _us, E is the
structure sheaf of a cubic curve C ⊂ H. If L ⊂ H, then from (1.5) we would have the
exact sequence

0Ð→ Ext1OH(OL ,OC)Ð→ Ext1OP3
(OL ,OC)Ð→ HomOH(OL(−1),OC) .
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_e group on the right vanishes, because OC is stable. We deduce that F lies in
Ext1OH

(OL ,OC), hence F is planar.
_us far we have shown that if F is non-planar and has resolution (1.3), then F

is an extension as in the proposition. Conversely, given a non-split extension (2.1),
F is semi-stable, because OC and OL are stable. In view of _eorem 1.1, since F is
non-planar, we have h0

(F) = 1. _us, H0(F) generates OC . It follows that F cannot
have resolutions (1.1) or (1.2); otherwise,H0(F) would generate F or would generate
a subsheaf with Hilbert polynomial 4m. We conclude that F has resolution (1.3).

_e rest of the proposition follows from _eorem 1.1 and from the fact, proved
in [7], that for a planar sheaf F having resolution (1.3), the space of global sections
generates a subsheaf with Hilbert polynomial 4m − 2 or it generates the structure
sheaf of a cubic curve.

Proposition 2.4 _e set R of sheaves in MP3(4m + 1) generated by a global section is
irreducible.

Proof Let HilbP3(4m+ 1)s ⊂ HilbP3(4m+ 1) be the open subset of semi-stable quo-
tients. _e image of the canonical map HilbP3(4m+ 1)s →MP3(4m+ 1) is R. Accord-
ing to [2, _eorem 4.9], HilbP3(4m + 1) has four irreducible components, denoted
H1, H2, H3, H4. _e generic point in H1 is a rational quartic curve. _e generic curve
in H2 is the disjoint union of a planar cubic and a line. _e generic member of H3
is the disjoint union of a point and an elliptic quartic curve. _e generic member
of H4 is the disjoint union of a planar quartic curve and three distinct points. _us,
H2 ∪H3 ∪H4 lies in the closed subset

H = {[O↠ S] ∣ h0
(S) ≥ 2} ⊂ HilbP3(4m + 1).

According to _eorem 1.1, Hs = ∅. Indeed, any sheaf in M2 cannot be generated by
a single global section. _us, HilbP3(4m + 1)s is an open subset of H1, hence it is
irreducible, and hence R is irreducible.

3 Sheaves Supported on Elliptic Quartic Curves

We will next examine the sheaves F having resolution (1.2). Let P be the point given
by the ideal (l1 , l2 , l3). Notice that the subsheaf of F generated byH0(F) is the kernel
of the canonical map F → CP . _is shows that F is non-planar, because, according
to [7], the global sections of a sheaf in MP2(4m+ 1) whose ûrst cohomology vanishes
generate a subsheaf with Hilbert polynomial 4m − 2 or the structure sheaf of a planar
cubic curve, which is not the case here. We consider ûrst the case when q4 and q5
have no common factor, so they deûne a curve E. Applying the snake lemma to the
diagram in Figure 1 we see that F is an extension ofCP byOE . From Serre duality, we
have

Ext1OP3
(CP ,OE) ≃ Ext2OP3

(OE ,CP)
∗
≃ C.

_e group in themiddle can be determined by applying Hom( ⋅ ,CP) to the ûrst row
of the diagram. Wemay write F = OE(P).
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0

��

0

��
0 // O(−4)

[
q5
q4

]

// 2O(−2)
[−q4 q5] //

��

O //

��

OE // 0

0 // 3O(−3) // 5O(−2)
φ //

��

O(−1)⊕O //

��

F // 0

0 // K // 3O(−2)
[l1 l2 l3] //

��

O(−1) //

��

CP // 0

0 0

Figure 1

Proposition 3.1 _e sheaf OE(P) is stable.

Proof We will show that OE is stable, forcing OE(P) to be stable. To prove that OE
is stable, we must show that it does not contain a stable subsheaf E having one of
the following Hilbert polynomials: m, m + 1 (i.e., the structure sheaf of a line), 2m,
2m + 1 (i.e., the structure sheaf of a conic curve), 3m, 3m + 1. _e structure sheaf of
a line contains subsheaves having Hilbert polynomial m and the structure sheaf of a
conic curve contains subsheaves having Hilbert polynomial 2m. _us, it is enough to
consider only theHilbert polynomials m, 2m, 3m + 1, 3m. In the ûrst case, we have a
commutative diagram

0 // O(−3)

γ
��

// 2O(−2) //

β
��

O(−1) //

α
��

E //

��

0

0 // O(−4) // 2O(−2) // O // OE // 0

in which α /= 0. It follows that O(−3) ≃ Ker(γ) ≃ Ker(β), which is absurd. In the
second case, we get a commutative diagram

0 // 2O(−3)

γ
��

// 4O(−2) //

β
��

2O(−1) //

α
��

E //

��

0

0 // O(−4) // 2O(−2) // O // OE // 0

in which α /= 0, henceKer(α) ≃ O(−1) or O(−2). From the exact sequence

0Ð→ 2O(−3) ≃Ker(γ)Ð→ Ker(β)Ð→Ker(α)Ð→ Coker(γ) ≃ O(−4),
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we see that Ker(β) ≃ 3O(−2), and we get the exact sequence

0Ð→ 2O(−3)Ð→ 3O(−2)Ð→ Ker(α)Ð→ 0.

Such an exact sequence cannot exist. In the third case,we use the resolution ofE given
at [8,_eorem 1.1]. We obtain a commutative diagram

0 // 2O(−3)

γ
��

// 3O(−2)⊕O(−1) //

β
��

O(−1)⊕O //

α
��

E //

��

0

0 // O(−4) // 2O(−2) // O // OE // 0

in which α is non-zero on global sections, hence Ker(α) ≃ O(−1). We obtain a
contradiction from the exact sequence

0Ð→ 2O(−3) ≃Ker(γ)Ð→ Ker(β11)⊕O(−1)Ð→ Ker(α)Ð→ 0.

Assume, ûnally, that E gives a stable point inMP3(3m). IfH0(E) /= 0, then it is easy to
see that E is the structure sheaf of a planar cubic curve, hence we get a commutative
diagram

0 // O(−4)

γ
��

// O(−3)⊕O(−1) //

β
��

O //

α
��

E //

��

0

0 // O(−4) // 2O(−2) // O // OE // 0

in which α is injective. We get a contradiction from the fact that O(−1) is a subsheaf
ofKer(β) ≃Ker(γ). IfH0(E) = 0, then we get a commutative diagram of the form

0 // 3O(−3)

γ
��

// 6O(−2) //

β
��

3O(−1) //

α
��

E //

��

0

0 // O(−4) // 2O(−2) // O // OE // 0.

It is easy to see that α(1) is injective on global sections, hence Coker(α) is isomorphic
to the structure sheaf of a point and Coker(β) ≃ O(−2). We get a contradiction from
the exact sequence

O(−4) ≃ Coker(γ)Ð→ Coker(β)Ð→ Coker(α).

To ûnish the discussion about sheaves at _eorem 1.1(i), we need to examine the
case when q4 = uv1 and q5 = uv2 with linearly independent v1 , v2 ∈ V∗. Let H be the
plane given by the equation u = 0 and let L be the line given by the equations v1 = 0,
v2 = 0. We apply the snake lemma to the diagram in Figure 2. _e kernel of the
canonical map G → CP is an OH-module. _is shows that F is not isomorphic to G;
otherwise, in view of Remark 2.2, F would be planar. _us, OL(−1)→ F is non-zero,
hence it is injective. We get a non-split extension

(3.1) 0Ð→ OL(−1)Ð→ F Ð→ GÐ→ 0,

and it becomes clear that P ∈ H and that G gives a point in MP3(3m + 1). From
Remark 2.2we see that G gives a point inMH(3m+ 1). _us, G is the unique non-split
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0

��

0

��
0 // O(−3) // 2O(−2)

[v1 v2] //

��

O(−1) //

[
0
u ]

��

OL(−1) // 0

0 // 3O(−3) // 5O(−2)
φ //

��

O(−1)⊕O //

��

F // 0

0 // K // 3O(−2)
[
l1 l2 l3
⋆ ⋆ ⋆

]

//

��

O(−1)⊕OH //

��

G // 0

0 0

Figure 2

extension of CP by OC for a cubic curve C ⊂ H containing P. We write G = OC(P).
Let D ⊂ MP3(4m + 1) be the set of non-split extension sheaves as in (3.1) that are
non-planar (we allow the possibility that L ⊂ H, in which case the support of F is
contained in the double plane 2H).

We examine ûrst the case when L ⊈ H; that is, L meets C with multiplicity 1, at a
point P′. According to [8,_eorem 1.1] there is a resolution

0Ð→ 2O(−3)
δ
Ð→ 3O(−2)⊕O(−1)

γ
Ð→ O(−1)⊕OÐ→ GÐ→ 0

δ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u 0
0 u

−u1 −u2
−g1 −g2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, γ = [
u1 u2 u 0
g1 g2 0 u] ,

where span{u1 , u2 , u} = span{l1 , l2 , l3} and C has equation u1g2 − u2g1 = 0 in H.
Note that G∣L ≃ CP′ unless γ(P′) = 0, in which case G∣L ≃ CP′ ⊕CP′ . But γ(P′) = 0 if
and only if P′ = P ∈ sing(C). From (1.4) we have the exact sequence

0→ Ext1OL(G∣L ,OL(−1))→ Ext1OP3
(G,OL(−1))→ HomOL(TorOP3

1 (G,OL),OL(−1)).

_e group on the right vanishes, because OL(−1) has no zero-dimensional torsion. It
follows that

Ext1OP3
(G,OL(−1)) ≃

⎧⎪⎪
⎨
⎪⎪⎩

C if P /= P′ or if P = P′ ∈ reg(C),
C2 if P = P′ ∈ sing(C).

Let D0 ⊂ D be the open subset given by the conditions that L ⊈ H and either P /= P′
or P = P′ ∈ reg(C). _emap

D0 Ð→ HilbP3(m + 1) ×MP3(3m + 1), [F]z→ (L, [G])
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is injective and has irreducible image. We deduce that D0 is irreducible and has di-
mension 16.

LetD′ ⊂ MP3(4m+1) be the subset of non-split extensions (2.1). Denote P = L∩C.
From (1.4) we have the exact sequence

0→ C ≃ Ext1OH(CP ,OC)→ Ext1OP3
(OL ,OC)→ HomOH(TorOP3

1 (OL ,OH),OC) = 0.

We deduce that, given L and C, there is a unique non-split extension of OL by OC .
_emap

D′
Ð→ HilbP3(m + 1) ×HilbP3(3m)

sending F to (L,C) is injective and has irreducible image. We deduce that D′ is irre-
ducible and has dimension 15. Tensoring (2.1) with OH , we get the exact sequence

0 = TorOP3
1 (OL ,OH)Ð→ OC Ð→ F∣H Ð→ CP Ð→ 0

from which we see that F∣H ≃ OC(P). We obtain the extension

0Ð→ OL(−1)Ð→ F Ð→ OC(P)Ð→ 0.

We deduce that [F] ∈ D. _us, D′ ⊂ D. Moreover, D′ ∩D0 is open and non-empty
inD′, because it consists precisely of extensions as above forwhich P ∈ reg(C). _us,
D′ ⊂ D0.

Remark 3.2 Note that D0 ∖ D′ is the open subset of D given by the conditions
L ⊈ H and P /= P′. We claim that D0 ∖ D′ is the set of sheaves of the form OD(P),
where D = L∪C is the union of a line and a planar cubic curve having intersection of
multiplicity 1 and P ∈ C ∖ L. First we show that the notationOD(P) is justiûed. From
(1.4) we have the exact sequence

0Ð→ C ≃ Ext1OL
(CP′ ,OL(−1)) Ð→ Ext1OP3

(OC ,OL(−1))

Ð→ Hom(TorOP3
1 (OC ,OL),OL(−1)) = 0,

which shows that OD is the unique non-split extension of OC by OL(−1). _e long
exact sequence of groups

0 = Ext1OP3
(CP ,OL(−1)) Ð→ Ext1OP3

(CP ,OD)Ð→ Ext1OP3
(CP ,OC) ≃ C

Ð→ Ext2OP3
(CP ,OL(−1)) = 0

shows that there is a unique non-split extension of CP by OD , which we denote by
OD(P). Given F ∈ D0 ∖ D′, the pull-back of OC in F, denoted F′, is a non-split
extension of OC by OL(−1). Indeed, if F′ were a split extension, then OC ⊂ F and
F/OC ≃ OL(−1)⊕CP , so OL(−1) would be a destabilising quotient sheaf of F. _us,
F′ ≃ OD and F ≃ OD(P). Conversely, OD(P)/OL(−1) is an extension of CP by OC ,
hence OD(P)/OL(−1) ≃ OC(P).

Remark 3.3 If L ∩ C = {P} is a regular point of C, and D = L ∪ C, then there are
no semi-stable extensions of the form

0Ð→ OD Ð→ F Ð→ CP Ð→ 0.
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Indeed, if F were such a semi-stable extension, then we would also have an extension

0Ð→ OL(−1)Ð→ F Ð→ GÐ→ 0,

where G is an extension of CP by OC . Note that G is a non-split extension; otherwise,
OC would be a destabilizing quotient sheaf of F. _us, F is the unique non-split ex-
tension ofOC(P) byOL(−1), so it is also the unique non-split extension ofOL byOC .
_us,H0(F) generates OC , hence OD is a subsheaf of OC , which is absurd.

Remark 3.4 _e set S ⊂ MP2(3m) × MP2(3m + 1) of pairs ([E], [G]) such that
H0(E) = 0 andE is a subsheaf ofG is irreducible. Byduality, this is equivalent to saying
that the set SD ⊂ MP2(3m− 1)×MP2(3m) of pairs ([G], [E]) such that H0(E) = 0 and
G is a subsheaf of E is irreducible. Given an exact sequence

0Ð→ GÐ→ EÐ→ CP′ Ð→ 0,

we can combine the resolutions of sheaves on P2

0Ð→ O(−3)⊕O(−2)
[
q1 u1
q2 u2

]

ÐÐÐÐ→ 2O(−1)Ð→ GÐ→ 0

and

0Ð→ O(−3)Ð→ 2O(−2)
[ v1 v2 ]
ÐÐÐÐ→ O(−1)Ð→ CP′ Ð→ 0

to form the resolution

0Ð→ O(−3)
ψ
Ð→ O(−3)⊕ 3O(−2)

φ
Ð→ 3O(−1)Ð→ EÐ→ 0,

φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

q1 u1 l11 l12
q2 u2 l21 l22
0 0 v1 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

We indicate by the index i themaximalminor of amatrix obtained bydeleting column
i. _e condition H0(E) = 0 is equivalent to the condition ψ11 /= 0, which is equivalent
to the following conditions: φ1 /= 0 and φ1 divides φ2, φ3, φ4. As φ1 divides both
(q1u2 − u1q2)v1 and (q1u2 − u1q2)v2, we see that φ1 is a multiple of q1u2 − u1q2. It
follows that φ is equivalent to thematrix

υ =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

l11v2 − l12v1 u1 l11 l12
l21v2 − l22v1 u2 l21 l22

0 0 v1 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Let U ⊂ Hom(O(−3) ⊕ 3O(−2), 3O(−1)) be the set of morphisms represented by
matrices υ as above satisfying the following conditions: υ1 /= 0, u1 and u2 are linearly
independent, v1 and v2 are linearly independent. Clearly, U is irreducible. Let υ′ ∈
Hom(O(−3)⊕O(−2), 2O(−1)) be themorphism represented by thematrix

[
l11v2 − l12v1 u1
l21v2 − l22v1 u2

] .

_e above discussion shows that themap π∶U → SD, υ ↦ ([Coker(υ′)], [Coker(υ)])
is surjective. _us, SD is irreducible. _e open subset Sirr ⊂ S, given by the condition
that the schematic support of G be irreducible, is irreducible.
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Let D1 ⊂ D be the locally closed subset given by the conditions L ⊈ H and P =

P′ ∈ sing(C). Since dimExt1OP3
(G,OL(−1)) = 2, we see that dimD1 = 14. _e set of

cubic curves in P2 that are singular at a ûxed point is irreducible. It follows that D1 is
irreducible as well.

Proposition 3.5 _e set D1 is contained in the closure of D0.

Proof Consider [F] ∈ D0 ∪D1. Consider extension (3.1) in which G = OC(P) and
L ∩H = {P′}. Dualizing, we get the extension

0Ð→ OC(−P)Ð→ FD
Ð→ OL(−1)Ð→ 0.

Tensoring with OH , we get the exact sequence

0 = TorOP3
1 (OL(−1),OH)Ð→ OC(−P)Ð→ (FD

)∣H Ð→ CP′ Ð→ 0.

_is short exact sequence does not split. Indeed, by [12], FD is stable and has slope
−1/4, hence OC(−P), which has slope −1/3, cannot be a quotient sheaf of FD. Since
OC(−P) is stable, it is easy to see that (FD)∣H gives a sheaf inMH(3m) supported onC.
_e kernel of themap FD → (FD)∣H is supported on L and has no zero-dimensional
torsion, hence it is isomorphic to OL(−2). Denote E = ((FD)∣H)D. Dualizing the
exact sequence

0Ð→ OL(−2)Ð→ FD
Ð→ (FD

)∣H Ð→ 0,

we obtain the extension

0Ð→ EÐ→ F Ð→ OL Ð→ 0.

TensoringwithOH , and taking into account the fact that TorOP3
1 (OL ,OH) = 0,we get

the exact sequence

0Ð→ EÐ→ OC(P)Ð→ CP′ Ð→ 0.

From (1.4) we have the exact sequence

0Ð→ Ext1OH(CP′ ,E)
є
Ð→ Ext1OP3

(OL ,E)Ð→ Hom(TorOP3
1 (OL ,OH),E) = 0.

It is clear now that the isomorphism class of F corresponds to the isomorphism class
ofOC(P) under the bijectivemap є. LetD′′ ⊂ (D0∪D1)∖D′ be the subset given by the
condition that C be irreducible. Note that D′′ is an open subset ofD and contains an
open subset ofD1. Wewill prove below thatD′′ is irreducible. SinceD1 is irreducible,
we arrive at the conclusion of the proposition

D1 ⊂ D′′ ∩D1 ⊂ D′′
= D′′ ∩D0 ⊂ D0 .

Consider the subset

S′′ ⊂ HilbP3(m + 1) ×MP3(3m) ×MP3(3m + 1)

of triples (L, [E], [G]) satisfying the following conditions: E and G are supported on
a planar irreducible cubic curve C,H0(E) = 0, E is a subsheaf of G, and L∩C = {P′},
where CP′ ≃ G/E. Note that the projection S′′ →MP3(3m) ×MP3(3m + 1) has ûbers
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aõne planes andhas image the irreducible variety Sirr fromRemark 3.4. It follows that
S′′ is irreducible. To prove that D′′ is irreducible, we will show that themorphism

η∶D′′
Ð→ S′′ , η([F]) = (L, [((FD

)∣H)
D
], [F∣H])

is bijective. We ûrst verify surjectivity. Given an extension

0Ð→ EÐ→ GÐ→ CP′ Ð→ 0

we let F ∈ Ext1OP3
(OL ,E) be the image of G under є. Since G does not split, neither

does F. By hypothesis E has irreducible support, hence E is stable, and, a fortiori, F
is stable. Applying the snake lemma to the diagram

0 // E // F //

��

OL

��

// 0

0 // E // G // CP′ // 0,

we get the extension

0Ð→ OL(−1)Ð→ F Ð→ GÐ→ 0.

_us, [F] ∈ D0 ∪ D1 and F∣H ≃ G, where H is the plane containing C. Dualizing
the ûrst row of the above diagram we see that (FD)∣H ≃ ED. By hypothesis E is not
isomorphic to OC , hence [F] ∉ D′. _us, [F] ∈ D′′ and η([F]) = (L, [E], [G]). _is
proves that η is surjective. Since [F] = є([G]), we see that η is also injective.

We will next examine the sheaves inD for which L ⊂ H. From (1.5) we have the exact
sequence

0Ð→ Ext1OH(OC(P),OL(−1))Ð→ Ext1OP3
(OC(P),OL(−1))

Ð→ Hom(OC(P)(−1),OL(−1))

Ð→ Ext2OH(OC(P),OL(−1)) ≃ HomOH(OL(−1),OC(P)(−3))∗ = 0.

_us, we have non-planar sheaves precisely if Hom(OC(P),OL) /= 0. Any non-zero
morphism α∶OC(P)→ OL ûts into a commutative diagram

0 // 2OH(−2) υ //

γ
��

OH(−1)⊕OH

β
��

// OC(P) //

α
��

0

0 // OH(−1) l // OH // OL // 0

β = [v c] , γ = [v1 v2] , υ = [
u1 u2
g1 g2

]

with β /= 0. Note that c /= 0; otherwise,Coker(β)would be the structure sheaf of a line,
and we would have the relation (vu1 , vu2) = (lv1 , lv2). _us, v1 and v2 would be lin-
early independent, henceCoker(γ)would be zero-dimensional, and henceCoker(β)
would be zero-dimensional, which is absurd. Replacing, possibly, υ with an equiva-
lent matrix, we can assume that g1 and g2 are divisible by l . Conversely, if OC(P) is
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the cokernel of themorphism

υ = [
u1 u2
lv1 lv2

] , then, denoting υ′ = [
u1 u2
v1 v2

] ,

we can apply the snake lemma to the commutative diagram

2OH(−2)

υ′

��

2OH(−2)

υ
��

0 // 2OH(−1) 1⊕l // OH(−1)⊕OH // OL // 0

to get a surjective map OC(P) → OL . _is discussion shows that Hom(OC(P),OL)
does not vanish precisely if C = L ∪ C′ for a conic curve C′ ⊂ H and for P ∈ C′. In
this case we have a commutative diagram

Hom(OC ,OL(−1)) = 0

��
Ext1OH

(CP ,OL(−1))

��

Hom(CP ,OL) = 0

��
Ext1OH

(OC(P),OL(−1))
� � //

��

Ext1OP3
(OC(P),OL(−1)) // //

δ
��

Hom(OC(P),OL)

≃

��
Ext1OH

(OC ,OL(−1))
� � //

��

Ext1OP3
(OC ,OL(−1)) // // Hom(OC ,OL) ≃ C

Ext2OH
(CP ,OL(−1))

≃ //

��

HomOH
(OL ,CP)

∗

Ext2OH
(OC(P),OL(−1)) = 0

Here δ(F) is the pull-back of OC in F. If P ∉ L, then δ is an isomorphism. If P ∈ L,
then we have an exact sequence

0Ð→ CÐ→ Ext1OP3
(OC(P),OL(−1))

δ
Ð→ Ext1OP3

(OC ,OL(−1))Ð→ CÐ→ 0.

If F is non-planar, then δ(F) is generated by a global section. Indeed, in view of
Proposition 2.3, F cannot have resolution (1.3), so it has resolution (1.1) or (1.2). Also,
F is not generated by a global section, because OC(P) is not generated by a global
section. It follows that PF′(m) = 4m, where F′ ⊂ F is the subsheaf generated by
H0(F). But F′ maps to OC , hence δ(F) ⊂ F′. _ese two sheaves have the same
Hilbert polynomial, so they coincide. We conclude that δ(F) is the structure sheaf
OD of a quartic curve D. If P ∉ L, then F ≃ OD(P).
Assume now that P ∈ L. _e preimage of [OD] under the inducedmap

P( Ext1OP3
(OC(P),OL(−1))) ∖ P(C)Ð→ P( Ext1OP3

(OC ,OL(−1)))
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is an aõne line that maps to a curve in MP3(4m + 1). _e exact sequence

0 = Hom(CP ,OC)Ð→ Ext1OP3
(CP ,OL(−1)) ≃ CÐ→ Ext1OP3

(CP ,OD)

Ð→ Ext1OP3
(CP ,OC) ≃ C

shows that Ext1OP3
(CP ,OD) has dimension 2. Indeed, if this vector space had dimen-

sion 1, then its image in MP3(4m + 1) would be a point. _is, as we saw above, is not
the case.

Let D2 ⊂ D be the closed subset given by the condition L ⊂ H. Equivalently, D2
is given by the condition C = L ∪ C′ and P ∈ C′ for a conic curve C′. According to
[5, Proposition 4.10], the set D2 is irreducible of dimension 14. Indeed, let

S ⊂ HilbP2(m + 1) ×MP2(3m + 1)

be the locally closed subset of pairs (L, [OC(P)]) forwhich C = L∪C′ and P ∈ C′, for
a conic curve C′ ⊂ P2. According to [5, Lemma 4.9], S is irreducible. _e canonical
map D2 → S is surjective and its ûbers are irreducible of dimension 3.

4 The Irreducible Components

Let
W0 ⊂ Hom(3O(−3), 5O(−2)) ×Hom(5O(−2),O(−1)⊕O)

be the subset of pairs ofmorphisms equivalent to pairs (ψ, φ) occurring in resolutions
(1.1) and (1.2). We claim thatW0 is locally closed. To see this, consider ûrst the locally
closed subset W given by the following conditions: ψ is injective, φ is generically
surjective, φ ○ ψ = 0. We have the universal sequence

3OW×P3(−3)
Ψ
Ð→ 5OW×P3(−2)

Φ
Ð→ OW×P3(−1)⊕OW×P3 .

Denote F̃ = Coker(Φ). Corresponding to the polynomial P(m) = 4m + 1 we have
the locally closed subset

WP = {x ∈W, PF̃x
= P} ⊂W

constructed when we �atten F̃, see [9, _eorem 2.1.5]. Now W0 ⊂ WP is the subset
given by the condition that F̃x be semi-stable, which is an open condition, because
F̃∣WP×P3 is �at overWP . We endowW0 with the induced reduced structure. Consider
themap

ρ0∶W0 Ð→M0 , (ψ, φ)z→ [Coker(φ)].

On W0 we have the canonical action of the linear algebraic group

G0 = ( Aut(3O(−3)) ×Aut(5O(−2)) ×Aut(O(−1)⊕O))/C∗

where C∗ is identiûed with the subgroup {(t ⋅ id, t ⋅ id, t ⋅ id), t ∈ C∗}. It is easy to
check that the ûbers of ρ0 are precisely the G0-orbits. Let

W1 ⊂ Hom(3O(−3), 5O(−2)⊕O(−1)) ×Hom(5O(−2)⊕O(−1), 2O(−1)⊕O)
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be the locally closed subset of pairs ofmorphisms equivalent to pairs (ψ, φ) occurring
in resolution (1.3) and let

W2 ⊂ Hom(O(−4)⊕O(−2),O(−3)⊕ 3O(−1)) ×Hom(O(−3)⊕ 3O(−1), 2O)

be the set of pairs given at [5, _eorem 6.1(iii)]. _e groups G1, G2 are deûned by
analogy with the deûnition of G0. As before, for i = 1, 2, the ûbers of the canonical
quotient map ρ i ∶Wi →Mi are precisely the Gi-orbits.

Proposition 4.1 For i = 0, 1, Mi is the categorical quotient ofWi modulo Gi . _e
subvariety M2 is the geometric quotient ofW2 modulo G2.

Proof _e argument at [7,_eorem 3.1.6] shows that ρ0, ρ1, ρ2 are categorical quo-
tient maps. Since M2 is normal (being smooth), we can apply [15, _eorem 4.2] to
conclude that ρ2 is a geometric quotient map.

Consider the closed subset Well = ρ−1
0 (E) ⊂ W0. Consider the restriction to the

second direct summand of themap

OWell×P3(−1)⊕OWell×P3 Ð→ F̃∣Well×P3

and denote its image by F̃′. _e quotient [OWell×P3 ↠ F̃′] induces amorphism

σ ∶Well Ð→ HilbP3(4m).

According to [2, Examples 2.8 and 4.8],HilbP3(4m) has two irreducible components,
denoted H1, H2. _e generic member of H1 is a smooth elliptic quartic curve. _e
genericmember of H2 is the disjoint union of a planar quartic curve and two isolated
points. Note that H2 lies in the closed subset

H = {[O↠ S] ∣ h0
(S) ≥ 3} ⊂ HilbP3(4m).

Since σ factors through the complement of H, we deduce that σ factors through H1.
By an abuse of notation, we denote the corestriction by σ ∶Well → H1.

Proposition 4.2 _e setsD0,D1,D2,D, and E are contained in the closure of E0. _e
set D is irreducible and D0 is dense in D. Moreover,

E ∖ P = E ∪D = E ∪D′ , R ∖ (E ∪ P) = R.

Proof Let Ereg ⊂ E0 be the open subset of sheaves with smooth support. Let
H10 ⊂ H1 be the open subset consisting of smooth elliptic quartic curves. For any
x ∈ H1 ∖ H10 there is an irreducible quasi-projective curve Γ ⊂ H1 such that x ∈ Γ
and Γ ∖ {x} ⊂ H10. To produce Γ proceed as follows. Embed H1 into a projective
space. Intersect with a suitable linear subspace passing through x to obtain a sub-
scheme of dimension 1 all of whose irreducible components meet H10. Retain one of
these irreducible components and remove the points, other than x, that lie outside
H10.

Notice that if y = [O ↠ OE] is a point in H10, then σ−1{y} is irreducible of di-
mension 1 + dimG0. Indeed,

σ−1
{y} = ρ−1

0 {[OE(P)], P ∈ E} .
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Assume now that x = [O↠ OE]where E is the schematic support of a sheaf in E∖D.
We denote its irreducible components by Z0 , . . . , Zm . Denote by (E ∖D)0 the open
subset of sheaves of the form OE′(P′) with P′ lying outside Z1 ∪ . . . ∪ Zm and let W0

be its preimage under ρ0. Denote by σ0 the restriction of σ to W0. Clearly, σ−1
0 {y} is

irreducible of dimension 1+dimG0, and the same is true for σ−1
0 {x}. _us, the ûbers

of themap σ−1
0 (Γ)→ Γ are all irreducible of the same dimension. By [16,_eorem 8,

p. 77]we deduce that σ−1
0 (Γ) is irreducible. _us, ρ0(σ−1(Γ)) is irreducible, hence any

sheaf of the form OE(P), P ∈ Z0 ∖ (Z1 ∪ ⋅ ⋅ ⋅ ∪ Zm), is the limit of sheaves in Ereg. _e
same argument applies toOE(P) for P belonging to exactly one of the components of
E. A fortiori, OE(P) lies in the Zariski closure of Ereg for all P ∈ E. We conclude that
E ∖D ⊂ E0.

Let D be the union of a line L and a planar irreducible cubic curve C, where L and
C meet precisely at a regular point of C. Take x = [O↠ OD]. _en

σ−1
{x} = ρ−1

0 {[OD(P)], P ∈ C ∖ L}

is irreducible of dimension 1+dimG0. We deduce as above that any sheaf of the form
OD(P), P ∈ C∖L, is the limit of sheaves in Ereg. _e set of sheaves of the formOD(P)
is dense in D0. We conclude that D0 ⊂ E0.

Let Do ⊂ D ∩ E = D ∖ D′ be the open subset given by the condition that P ∉ L.
Let σ o ∶Do → H1 denote the restriction of σ . According to [17, _eorem 5.2 (4)],
there is an irreducible closed subset B̂ ⊂ H1 whose generic member is the union of
a planar cubic curve and an incident line. Let D be the schematic support of a sheaf
in D2. According to [17, _eorem 5.2 (5)], the point x = [O ↠ OD] belongs to B̂.
By the same argument as above, there is an irreducible quasi-projective curve Γ ⊂ B̂
containing x such that the points y ∈ Γ ∖ {x} are of the form [O↠ OL∪C], where C
is a planar irreducible cubic curve and L is an incident line. Notice that

(σ o
)
−1
{y} = ρ−1

0 {[OL∪C(P)], P ∈ C ∖ L}

is irreducible of dimension 1+dimG0. Assume, in addition, that D is the union of an
irreducible plane conic curve C′ and a double line supported on L′. _en

(σ o
)
−1
{x} = ρ−1

0 {[OD(P)], P ∈ C′ ∖ L′}

is irreducible of dimension 1 + dimG0. We deduce, as above, that (σ o)−1(Γ) is irre-
ducible, hence ρ0((σ o)−1(Γ)) is irreducible, and hence any sheaf of the formOD(P),
P ∈ C′∖L′, is the limit of sheaves inD0. ButD2 is irreducible, hence the set of sheaves
OD(P) as above is dense in D2. We deduce that D2 ⊂ D0. _us,D2 ⊂ E0.

Recall from Proposition 3.5 that D1 ⊂ D0. Since D = D0 ∪ D1 ∪ D2, we see that
D ⊂ D0 ⊂ E0.

_e inclusion E∖P ⊂ E∪D′ follows from_eorem 1.1 and Proposition 2.3. Indeed,
E is closed in M0. _e reverse inclusion was proved above. Finally,

R ∖ (E ∪ P) = R ∖ (E ∪D′
∪ P) ⊂ M ∖ (E ∪D′

∪ P) = M0 ∖ E = R.

_e reverse inclusion is obvious because by deûnition R is disjoint from E,D′, P.

FromProposition 4.2we obtain the decomposition ofMP3(4m+1) into irreducible
components.
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_eorem 4.3 _emoduli spaceMP3(4m+ 1) consists of three irreducible components
R, E, and P.

_e intersections R ∩ P, E ∩ P, R ∩ E were described generically in [5]. _ey are
irreducible and have dimension 14, 16, and 15, respectively. _e generic member of
R ∩ P has the form [OC(P1 + P2 + P3)], where C is a planar quartic curve and P1, P2,
P3 are three distinct nodes. _e generic point in E∩P has the form [OC(P1+P2+P)],
where C is a planar quartic curve, P1 and P2 are distinct nodes, and P is a third point
on C. _e generic sheaves in R∩E have the formOE(P), where E is a singular (2, 2)-
curve on a smooth quadric surface and P ∈ sing(E).
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