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Abstract

In [Gorodnik and Nevo, Counting lattice points, J. Reine Angew. Math. 663 (2012),
127–176] an effective solution of the lattice point counting problem in general domains
in semisimple S-algebraic groups and affine symmetric varieties was established. The
method relies on the mean ergodic theorem for the action of G on G/Γ, and implies
uniformity in counting over families of lattice subgroups admitting a uniform spectral
gap. In the present paper we extend some methods developed in [Nevo and Sarnak,
Prime and almost prime integral points on principal homogeneous spaces, Acta Math.
205 (2010), 361–402] and use them to establish several useful consequences of this
property, including:
(1) effective upper bounds on lifting for solutions of congruences in affine homogeneous

varieties;
(2) effective upper bounds on the number of integral points on general subvarieties of

semisimple group varieties;
(3) effective lower bounds on the number of almost prime points on symmetric

varieties;
(4) effective upper bounds on almost prime solutions of congruences in homogeneous

varieties.

1. Introduction and statement of results

Throughout the paper, F denotes a number field, and VF denotes the set of absolute values of
F extending the standard normalised absolute values of the rational numbers; Fv, v ∈ VF , will
denote the corresponding local fields.

We introduce local and global heights. For Archimedean v ∈ VF , and for x= (x1, . . . , xd) ∈
F dv , we set

Hv(x) = (|x1|2v + · · ·+ |xd|2v)1/2,

and for non-Archimedean v we set

Hv(x) = max{|x1|v, . . . , |xd|v}.
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For x= (x1, . . . , xd) ∈ F d, we set

H(x) =
∏
v∈VF

Hv(x).

1.1 Effective lifting of solutions of congruences
Let S be a finite subset of VF containing all Archimedean absolute values, and

OS = {x ∈ F : |x|v 6 1 for v /∈ S}

be the ring of S-integers in F . We consider a system X of polynomial equations with coefficients
in OS . Given an ideal a of OS , we denote by X(a) the system of polynomial equations over the
factor-ring OS/a obtained by reducing X modulo a. There is a natural reduction map

πa : X(OS)→ X(a)(OS/a).

The question of whether a solution in X(a)(OS/a) can be lifted to an integral solution in
X(OS) is of fundamental importance in number theory. It is closely related to the strong
approximation property for algebraic varieties (see [PR94, § 7.1]). For instance, if G is a connected
F -simple simply connected algebraic group which is isotropic over S, then G satisfies the strong
approximation property (see [PR94, § 7.4]) and, in particular, the map πa is surjective in this
case. For more general homogeneous varieties, the map πa need not be surjective, but the image
πa(X(OS)) can be described using the Brauer–Manin obstructions (see [BD09, CX09, Har08]).

In this paper, we consider the problem of whether a solution in X(a)(OS/a) can be lifted to an
integral solution in X(OS) effectively : given x̄ ∈ X(a)(OS/a), can one find x ∈ X(OS), with H(x)
bounded in terms of |OS/a|, such that πa(x) = x̄?

We give a positive answer to this question for affine homogeneous varieties of F -simple
algebraic groups. Let X be an affine variety defined over F and equipped with a transitive
action (defined over F ) of a connected simply connected F -simple algebraic group G⊂GLm.

Let S be a finite subset of VF , containing all Archimedean absolute values, such that both G
and X have models defined over OS (i.e., schemes G and X over OS with generic fibers isomorphic
to G and X respectively), the action of G on X extends to the models, and Lie(G) ∩Mm(OS) has
a basis over OS as an OS-module. We note that every sufficiently large subset S of VF satisfies
the above assumptions. Moreover, the last assumption on S is satisfied when OS is a principal
ideal domain. In particular, the last assumption always holds when the field F has class number
one. Here, and below, the notation G(OS) and X(OS) means G(OS) and X (OS) respectively.

Theorem 1.1. There exist q0 and σ > 0 such that for every ideal a of OS satisfying |OS/a|> q0

and every x̄ ∈ πa(X(OS)) there exists x ∈ X(OS) such that

πa(x) = x̄ and H(x) 6 |OS/a|σ. (1.1)

The parameter σ in (1.1) can be explicitly computed. For instance, for group varieties, an
explicit value of σ is given in Theorem 2.1 below. The parameter q0 is computable too (see
Remark 2.3 below).

Remark 1.2. The finiteness of the exponent σ for the case of S-integral points in the group variety
follows from the fact that each Cayley graph G(a)(OS/a) has a logarithmic diameter. The bound
provided by this approach depends on a choice of generating set of G(OS), and when measured
in terms of the height H it is of lesser quality than the estimate on σ which is developed below
explicitly in terms of geometric and representation-theoretic data for G. We thank Peter Sarnak
for this remark.

1696

https://doi.org/10.1112/S0010437X12000516 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000516


Lifting, restricting and sifting integral points

Let us now consider the case of a connected F -simple simply connected algebraic group
G⊂GLm which is isotropic over S. Then it is known to satisfy the strong approximation property,
and our method gives an asymptotic formula for the number of solutions of (1.1).

Theorem 1.3. For every σ > σ0 (as in (2.1) below), every ideal a in OS and every x̄ ∈
G(a)(OS/a),

|{x ∈ G(OS); πa(x) = x̄,H(x) 6 |OS/a|σ}|

=
1

|G(a)(OS/a)|
· |{x ∈ G(OS); H(x) 6 |OS/a|σ}|(1 +Oε(|OS/a|dim(G)(1−σ−1

0 σ)+ε))

for every ε > 0.

This result indicates that the properties πa(x) = x̄ and H(x) 6 |OS/a|σ are asymptotically
independent.

We illustrate our results on a classical example; the problem of representing a quadratic form
by another quadratic form (see, for instance, [O’Me00]).

Example 1.4. Let A be an integral non-degenerate symmetric (n× n)-matrix and B be an
integral non-degenerate symmetric (m×m)-matrix with n6m. The variety

X = {x ∈Mm×n(C) : txBx=A} (1.2)

parametrises all possible representations of the quadratic form corresponding to A by the
quadratic form corresponding to B. For simplicity, we assume that m− n> 3 and A is isotropic
over R. Then if the equation txBx=A has a solution over R and over Zp for every p, then
it has an integral solution, and the reduction map X(Z)→ X(Z/q) is surjective for every q > 1
(see [O’Me00, ch. X]). Our results implies that under the same assumptions, for every q > 1 and
x̄ ∈Mm×n(Z/q) satisfying

tx̄Bx̄=A mod q,

there exists x ∈Mm×n(Z) such that
txBx=A, x= x̄ mod q, H∞(x)� qσ, (1.3)

where σ > 0 is a computable constant. For instance, when B has the signature (bm/2c, m−
bm/2c), this estimate holds for

σ > σm =


4m(m2 −m+ 1)ne

m− 1
when m is odd,

4(m− 1)(m2 −m+ 1)ne
m+ 2

when m is even,

(1.4)

where ne denotes the least even integer greater than or equal to bm/2c. We will provide details
of this computation in § 2.

The following example demonstrates that the polynomial bound established in Theorem 1.1
does not hold for other homogeneous varieties.

Example 1.5. Let F be a number field of degree d with an infinite group of units and {ξ1, . . . , ξd}
be a basis of the ring O of integers of F . We consider the integral polynomial

f(x1, . . . , xd) =NK/Q(x1ξ1 + · · ·+ xdξd)
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and the variety X = {f = 1}. Note that the set of integral points on X is exactly the group U of
units in the number field F . We note that

|{x ∈ X(Z) : H∞(x) 6 T}| � (log T )r+s−1 (1.5)

where r and s denote the number of real and complex absolute values of F respectively. This
claim can be checked by representing the group of units as a lattice in Rr+s−1, similarly to the
proof of Dirichlet’s theorem.

We also note that there are infinitely many primes p in the ring of integers O of F such that

(O/p)× = U mod p. (1.6)

It was proved in [CW75] that the set of such primes has positive density if one assumes the
generalised Riemann hypothesis, and in [Nar88] that in most cases (for instance, when [F : Q]> 3)
there are infinitely many such primes unconditionally. Now it follows from (1.6) that

|πp(X(Z))|> p− 1 (1.7)

for infinitely many prime numbers p. Comparing (1.5) and (1.7), we conclude that the polynomial
bound as in Corollary 1.1 is impossible in this case.

1.2 Integral points on subvarieties
We now turn to consider the problem of bounding the number of integral points on algebraic
varieties. This has been an active field of research in recent years, and we refer the reader to the
survey [Hea06] and the book [Bro09] for overviews of results and conjectures concerning upper
estimates on the number of integral points. We will concentrate on homogeneous varieties, and
our methods and results are motivated by those developed in [NS10, § 4.3].

Given affine varieties Y ⊂ X defined over a number field F , we fix models for Y ⊂ X defined
over a ring OS of S-integers in F , and set

NT (Y(OS)) = |{y ∈ Y(OS) : H(y) 6 T}|.

The problem we will focus on is establishing an upper estimate on NT (Y(OS)) for arbitrary
proper affine subvariety Y of X. We will prove a non-concentration phenomenon for the collection
of proper subvarieties of a semisimple group variety G, namely that the number of S-integral
points on Y has strictly lower rate of growth than G. We remark that this important property
does not hold for general irreducible varieties X. Indeed a bound of the form

NT (Y(OS))�X,deg(Y) NT (X(OS))1−σY

with σY > 0, where we write deg(Y) for the degree of the projective closure of Y, is false in general.
This can be demonstrated by the variety x3

1 + x3
2 + x3

3 + x3
4 = 0, where most of the rational points

lie on lines (see [Hea97]). However, in the case of group varieties we have the following theorem.

Theorem 1.6. Let G be a connected F -simple simply connected algebraic group and Y an
absolutely irreducible proper affine subvariety of G defined over a number field F . Let S ⊂ VF be
a finite subset containing all Archimedean absolute values such that G is isotropic over S, and
Y ⊂ G have models defined over OS . Then there exists σ = σ(G, S, dim(Y)) ∈ (0, 1) such that

NT (Y(OS))�G,deg(Y) NT (G(OS))1−σ.

An explicit formula for the exponent σ is given in Theorem 3.1 below, demonstrating that σ
depends only on dim Y, and increases monotonically with the codimension of Y.
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To demonstrate Theorem 3.1 let us consider the case of integral points on subvarieties of the
special linear group SLn, n> 2.

Example 1.7. For every absolutely irreducible proper affine subvariety Y of SLn defined over Z,
we have

NT (Y(Z))�n,deg(Y),ε T
n2−n−((n2−1−dim(Y))/(n2+n)2ne)+ε, ε > 0, (1.8)

as T →∞, where ne is the least even integer greater than or equal to n− 1. This improves the
trivial estimate NT (Y(Z))� Tn

2−n. Details of this computation will be given in § 3.

We note that the assumption of absolute irreducibility is not crucial for the conclusion of
Theorem 1.6. Another version of Theorem 1.6 which can be proved using the argument of [NS10,
Lemma 4.2] is as follows.

Theorem 1.8. With notation as in Theorem 1.6, for every proper affine subvariety Y of G, we
have

NT (Y(OS))�G,Y NT (G(OS))1−σ.

Let now Yi, 1 6 i6 k, be a collection of k hypersurfaces in G. Since the number of lattice
points in each hypersurface has a lower rate of growth than the number of lattice points in G,
the same holds for their union. Thus, the rate of growth of the number of lattice points in the
complement of these hypersurfaces is the same as the rate of growth of all lattice points. This
observation gives rise to a host of results asserting that the set of integral points which are
generic (i.e. avoid the union of the hypersurfaces) has the maximal possible rate of growth. Let
us illustrate this principle concretely by the following example.

Example 1.9. Denote by NT the number of unimodular integral (n× n)-matrices (n> 3) with
norm bounded by T , and by N ′T the number of such matrices satisfying the following.

• All the matrix entries are non-zero.

• All the principal minors do not vanish.

• All the eigenvalues are distinct.

• All the singular values (eigenvalues of AtA) are distinct.

Then

N ′T =NT · (1 +Oε(T−(1/2nen(n+1))+ε)), ε > 0,

where ne is the least even integer greater than or equal to n− 1.

1.3 Almost prime points on varieties and orbits
We now turn to the question of how often a polynomial map f : Zn→ Z admits prime (or,
more realistically, almost prime) values. This problem has long been studied using sieve
methods (see, for instance, [HR74]). Recently, substantial progress has been achieved in the
papers [BGS10, LS10, NS10], establishing results on the abundance of almost prime values for
polynomials defined on homogeneous varieties and orbits of linear groups. The goal of this section
is to generalise one of the main results of [NS10] to the setting of symmetric varieties.

Let G be a connected Q-simple simply connected algebraic group isotropic over Q and
G→GLn a representation of G which is also defined over Q. Fix v ∈ Zn. We assume that X = Gv
is Zariski closed, and L = StabG(v) is connected and has no non-trivial characters. Then the
coordinate ring C[X] is a unique factorisation domain (see Lemma 4.3 below). Let f be a regular
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function on X defined over Q such that it has a decomposition into irreducible factors f = f1 · · · ft
where all the fi are distinct and defined over Q. Let O = Γv be the orbit of Γ = G(Z), defined
with respect to an integral model of G. We assume that f takes integral values on O and is
weakly primitive (that is, gcd(f(x) : x ∈ O) = 1). The saturation number r0(O, f) of the pair
(O, f) is the least r such that the set of x ∈ O for which f(x) has at most r prime factors is
Zariski dense in X, which is the Zariski closure of O by the Borel density theorem. It is natural
to ask whether the saturation number r0(O, f) is finite and to establish quantitative estimates
on the set {x ∈ O : f(x) has at most r prime factors}.

We fix a norm on Rn and set O(T ) = {w ∈ O : ‖w‖6 T}. It was shown in [NS10] that when
X' G is a group variety, the saturation number is finite and there exists explicit r > 1 such that

|{x ∈ O(T ) : f(x) has at most r prime factors}| � |O(T )|
(log T )t(f)

(1.9)

as T →∞. As remarked in [BGS10, NS10], the assumption that X' G is not crucial if only
finiteness of the saturation number is concerned, and r0(O, f) is finite for general orbits. However,
the effective lower estimate (1.9) is much more demanding, and so far it has only been established
for two-dimensional quadratic surfaces [LS10] and for group varieties [NS10]. Our goal here is to
prove (1.9) for general symmetric varieties.

Theorem 1.10. LetO and f be as above and assume in addition that L = StabG(v) is symmetric
(that is, L is the set of fixed points of an involution of G). Then there exists r > 1 such that

|{x ∈ O(T ) : f(x) has at most r prime factors}| � |O(T )|
(log T )t(f)

as T →∞.

An explicit value of the number r is given in Theorem 4.2 below.
We illustrate Theorem 1.10 by three examples.

Example 1.11. Let Q be a non-degenerate integral quadratic form in n variables, which is
indefinite over R. Let v ∈ Zn, Γ = Spin(Q)(Z), and O = Γv. If we assume that Q(v) 6= 0, then
the stabiliser of v in Spin(Q) is a symmetric subgroup of Spin(Q). Moreover, we assume that
n> 4, which implies that this stabiliser is connected and has no non-trivial characters. Then
Theorem 1.10 applies and (1.9) holds. An explicit estimate for the number r of prime factors is
as follows. If Q has signature (1, n− 1) over R, then (1.9) holds with r the least integer satisfying

r >
9(n2 − n+ 2)(3n2 − 3n+ 2)

2n− 4
· ne · t(f) deg(f),

where ne is the least even integer greater than or equal to 9(n− 1)/7. On the other hand, if Q
has signature (bn/2c, n− bn/2c) over R, then (1.9) holds with r as above where ne is the least
even integer greater than or equal to bn/2c. We will explain these computations in § 4.

Example 1.12. Let A be a non-degenerate integral symmetric matrix of dimension n. We say that
another matrix B is integrally equivalent of A if there exists γ ∈ SLn(Z) such that B = tγAγ,
and write B ∼Z A. Let

O = {B ∈Mn(Z) :B ∼Z A}.
If n> 3, then Theorem 1.10 implies estimate (1.9) with

r >
36n(3n2 − 2)

n− 1
· ne · t(f) deg(f),
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where ne is the least even integer greater than or equal to n− 1. This will be explained in
detail in § 4.

1.4 Almost prime solutions of congruences on varieties and orbits
Our next aim is to discuss an analogue of the Linnik theorem [Lin44a, Lin44b] on the least prime
in an arithmetic progression, which states that there exists c, σ > 0 such that for every coprime
b, q ∈ N one can find a prime number p such that

p= b mod q and p6 cqσ. (1.10)

It is a very challenging goal to establish such a result in the setting of the previous section, so to
keep things more realistic we settle for the existence of solutions of polynomially bounded size
which are almost primes.

Let G⊂GLn be a connected Q-simple simply connected algebraic group defined over Q. We
fix v ∈ Zn and consider the orbit O = Γv of Γ = G(Z), defined with respect an integral model
of G. Let f :O→ Z be a polynomial map. We assume that f is weakly primitive, and the regular
function f̃ : G→ C defined by f̃(g) = f(gv) decomposes as a product of t irreducible factors which
are distinct and defined over Q.

Theorem 1.13. There exist q0, r and σ > 0 (as in Theorem 5.1 below) such that, for every
coprime b, q ∈ N satisfying q > q0 and b ∈ f(O) mod q, one can find x ∈ O satisfying:

(i) f(x) is a product of at most r prime factors;

(ii) f(x) = bmod q and ‖x‖6 qσ.

The explicit values of r and σ are given in Theorem 5.1 below, and q0 could be computed, in
principle, as well.

Coming back to Example 1.11, we conclude that for a polynomial function f on Mm×n(C)
satisfying the above conditions, the system of equations,

txBx=A, f(x) = b mod q, H∞(x)� qσ,

has a solution x ∈Mm×n(Z) such that f(x) is a product of at most r prime factors, provided
that

txBx=A, f(x) = b

has a solution modulo q, and q is sufficiently large. For instance, when B has the signature
(bm/2c, m− bm/2c), this holds for σ > σm as in (1.4), and

r >
9αm σ

αm σ −m(m− 1)/2
· σm · t(f) deg(f),

where αm = (m− 1)2/4 for odd m and αm =m(m+ 2)/4 for even m.
We remark that in Theorem 1.13 we do not assume that the stabiliser of v in G is symmetric.

Under this assumption, our method implies a result on the number of solutions.

Theorem 1.14. Under the additional assumption that StabG(v) is symmetric, for every σ > σ0

(as in (4.7)), r (as in (5.12)), and coprime b, q ∈ N satisfying b ∈ f(O) mod q,∣∣∣∣{x ∈ O(qσ) :
f(x) has at most r prime factors,
f(x) = bmod q

}∣∣∣∣�σ
1

|f(O) mod q|
· |O(qσ)|

(log q)t(f)

for sufficiently large q.
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1.5 The fundamental lattice point counting result

We now state the uniform solution given in [GN12, Theorem 5.1] to the lattice point counting
problem, which underlies the results in the present paper. Let G be a connected F -simple simply
connected algebraic group defined over a number field F , S a finite subset of VF , and OS the
ring of S-integers. We fix a model of G defined over OS . Let G=

∏
v∈S G(Fv), Γ = G(OS), and

Γ(a) = {γ ∈ Γ : γ = I mod a} for an ideal a of OS .

We shall use the following notation throughout the paper:

pS = the least number such that the representations of G on L2
0(G/Γ(a))

are Lp
+
S -integrable for all ideals a (see [GN10, Definition 5.2]),

ne(p) = the least even integer greater than or equal to p/2, if p > 2, and 1, if p= 2,
dS =

∑
v∈V∞ dim G(Fv),

BT = {g ∈G : H(g) 6 T},
aS = the Hölder exponent of the family of sets Bet (see [GN10, Definition 3.12]).

We note that the finiteness of the integrability exponent pS is a manifestation of property (τ),
established in full generality by Clozel [Clo03] (see [Clo03, Theorem 3.1]). We note that [Clo03,
Theorem 3.1] is stated in terms of the isolation of representations of G(Fv), v ∈ S, appearing
in L2

0(G/Γ(a)) from the trivial representation, but this implies that all these representations
are integrable, and, in fact, the argument in [Clo03] gives an explicit estimate on pS . We refer
to [Sar05] for a comprehensive discussion of property (τ). Hölder-admissibility of the sets Bet
was established in [GN10, Theorem 7.19] and [BO07]. In many cases, one can take aS = 1
(see [GN10, ch. 7]). For instance, this is the case when F = Q and S = {∞}.

We can now state the following theorem.

Theorem 1.15 [GN12, Theorem 5.1]. For every γ0 ∈ Γ and all ideals a of OS ,

|γ0Γ(a) ∩BT |=
vol(BT )
[Γ : Γ(a)]

+Oε(vol(BT )1−(2ne(pS))−1aS/(aS+dS)+ε), ε > 0,

where the Haar measure on G is normalised so that vol(G/Γ) = 1.

We set

αS(G) = lim sup
T→∞

log |{γ ∈ Γ : H(γ) 6 T}|
log T

= lim sup
T→∞

log vol(BT )
log T

. (1.11)

We note that αS(G)> 0 provided that G is isotropic over S (see [GW07, § 7], [Mau07],
[GOS09, § 6]).

We will also have occasion below to consider the volume growth in a homogeneous space
G/H, in which case we will denote the exponent by α(G/H).

Although the asymptotic formula for |{γ ∈ Γ : H(γ) 6 T}| is also known, it will not be needed
in our argument.

2. Effective lifting of solutions of congruences

We first establish a version of Theorem 1.1 in the case of group varieties, and Theorem 1.1 will
be deduced from the following result.
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Theorem 2.1. Let G⊂GLm be a connected simply connected F -simple algebraic group, and let
S be a finite subset of VF , containing all Archimedean absolute values, such that G is isotropic
over S and has a model defined over OS , and Lie(G) ∩Mm(OS) has a basis over OS as an
OS-module. Let

σ > σ0 := αS(G)−1 dim(G)
aS + dS
aS

2ne(pS). (2.1)

Then there exists q0 > 0 such that for every ideal a of OS satisfying |OS/a|> q0 and every
x̄ ∈ G(a)(OS/a) there exists x ∈ G(OS) such that

πa(x) = x̄ and H(x) 6 |OS/a|σ. (2.2)

We note that the exponent σ can be further improved, for instance, by considering a smooth
density on the sets {H 6 T}, and when pS = 2, this leads to essentially optimal bound on σ.
However, we do not pursue this direction in the present paper and rely only on the counting
estimate of Theorem 1.15.

Proof. Since G is isotropic over S, it satisfies the strong approximation property with respect
to S (see [PR94, § 7.4]). Then it follows that the map πa is surjective, and there exists γ0 ∈ Γ
such that x̄= πa(γ0) for some γ0 ∈ Γ. Moreover, we have x̄= πa(γ0Γ(a)).

By Theorem 1.15, for every δ < δ0 = (2ne(pS))−1aS/(aS + dS) and cδ > 0, we have∣∣∣∣|γ0Γ(a) ∩BT | −
vol(BT )
|Γ : Γ(a)|

∣∣∣∣6 cδ vol(BT )1−δ. (2.3)

It is important to emphasise here that this estimate is uniform over all γ0 ∈ Γ and all ideals a of
OS . It follows from (2.3) that for T satisfying

vol(BT )> (cδ |Γ : Γ(a)|)1/δ (2.4)

there exists x ∈ γ0Γ(a) ∩BT . Then we have πa(x) = x̄ and H(x) 6 T .

Now it remains to analyse for which values of T inequality (2.4) holds. By Lemma 2.2 below,

|Γ : Γ(a)| � |OS/a|dim(G). (2.5)

By (1.11), for every α < αS and T > T (α),

vol(BT ) > Tα. (2.6)

Therefore, we conclude that (2.4) holds for T = |OS/a|σ with σ > dim(G)/(αδ) and sufficiently
large |OS/a|. Since this is the case for every α < αS(G) and δ < δ0, this concludes the proof. 2

To complete the proof of Theorem 2.1, we therefore only have to establish the following
lemma.

Lemma 2.2. Let G⊂GLn be a connected algebraic group, and let S be a finite subset of VF ,
containing all Archimedean absolute values, such that G has a model defined over OS , and
Lie(G) ∩Mm(OS) has a basis over OS . Then

|Γ : Γ(a)| � |OS/a|dim(G)

uniformly over ideals a of OS .
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Proof. Let Ov denote the local ring with the prime ideal pv corresponding to non-Archimedean
v ∈ VF . It follows from the formulas for local Tamagawa measures (see, for instance, [Vos98, 14.2
and 14.3]) and the Lang–Weil estimates [LW54] that, for all valuations v outside S and all n> 0,

|G(pnv )(Ov/pnv )| � |Ov/pv|n dim(G) = |Ov/pnv |dim(G),

and it follows from the Chinese reminder theorem that, for every ideal a of OS ,

|G(a)(OS/a)| � |OS/a|dim(G).

Since the kernel of the reduction map πa : Γ→ G(a)(OS/a) is equal to Γ(a), this implies the claim
of the lemma. 2

Remark 2.3. The constant q0 in our results can be computed in principle. It depends on the
implicit constant in Theorem 1.15, which is given explicitly in [GN12], and on T (α) in (2.6). An
explicit value of T (α) can derived from the asymptotic formula for vol(BT ) (see [GN10, ch. 7]).

Proof of Theorem 1.1. By the Borel–Harish-Chandra theorem [BH62], the set X(OS) is a union of
finitely many orbits of Γ = G(OS). Hence, it suffices to prove the claim for every x̄ ∈ X(a)(OS/a)
that lifts to a point x ∈ X(OS) contained in a Γ-orbit Γx0 for some fixed x0 ∈ X(OS). If G is
anisotropic over every v ∈ S, then Γ is finite, and the claim is trivial. Hence, we may assume
that G is isotropic for some v ∈ S. Then Theorem 2.1 applies. We have

x̄= πa(γ · x0) = πa(γ) · πa(x0)

for some γ ∈ Γ. By Theorem 2.1, there exists γ′ ∈ Γ such that

πa(γ′) = πa(γ) and H(γ′) 6 |OS/a|σ

where σ is as in Theorem 2.1. Since x̄= πa(γ′) · πa(x0) = πa(γ′ · x0), it remains to observe that

H(γ′ · x0)�H(γ′)N (2.7)

for some uniform N > 0 determined by the action. 2

Proof of Theorem 1.3. Let γ0 ∈ Γ be such that πa(γ0) = x̄. By Theorem 1.15,

|γ0Γ(a) ∩BT |=
vol(BT )
|Γ : Γ(a)|

(
1 +Oδ

(
|Γ : Γ(a)|
vol(BT )δ

))
for every δ < δ0 = (2ne(pS))−1aS/(aS + dS). Hence, it follows from (2.5) and (2.6) that, for every
α < αS(G) and T > T (α), we have

|γ0Γ(a) ∩BT |=
vol(BT )
|Γ : Γ(a)|

(1 +Oδ(|OS/a|dim(G)T−αδ)).

Hence, if we pick T = |OS/a|σ with σ > σ0 as in (2.1) and sufficiently large |OS/a|, then

|γ0Γ(a) ∩BT | =
vol(BT )
|Γ : Γ(a)|

(1 +Oα,δ(|OS/a|dim(G)−σαδ))

=
vol(BT )
|Γ : Γ(a)|

(1 +Oε(|OS/a|dim(G)−dim(G)σ−1
0 σ+ε))

for every ε > 0, where we have used the fact that σ0 = dim(G)/(αSδ0). Finally, to complete the
proof, we note that

|Γ : Γ(a)|= |G(a)(OS/a)|
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and, by Theorem 1.15,

vol(BT ) = |{x ∈ G(OS); H(x) 6 |OS/a|σ}|(1 +Oα,δ(|OS/a|−σαδ)). 2

Coming back to Example 1.4, we note that the variety X defined in (1.2) is a homogeneous
space of the spinor group G = Spin(B). We have dim(G) =m(m− 1)/2. The Hölder exponent
is aS = 1 by [GN10, Proposition 7.3]. Now we assume that G has maximal R-rank (i.e., the
signature of B is (bm/2c, m− bm/2c)). Then the integrability exponent is pS =m− 1 for odd m
and pS =m for even m by [Li95, Oh02]. By [DRS93, EM93], the growth rate αS(G) of integral
points in G(Z) can be estimated in terms of volume growth of the norm balls which is computable
in terms of the root data of G (see [GOS09, Mau07]). This gives αS(G) = (m− 1)2/4 for odd m
and αS(G) =m(m+ 2)/4 for even m. Hence, Theorem 2.1 holds with

σ >


2m(m2 −m+ 1)ne

m− 1
when m is odd,

2(m− 1)(m2 −m+ 1)ne
m+ 2

when m is even,

where ne denotes the least even integer greater than or equal to bm/2c. We note that the action
of Spin(B) on X can be given by the standard Clifford algebra construction (see [Die63, ch. II,
§ 7]) which implies that (2.7) holds with N = 2. This explains (1.3).

3. Integral points on subvarieties

The following result is a precise version of Theorem 1.6. In the statement we use notation
introduced in Theorem 1.15.

Theorem 3.1. Let G be a connected F -simple simply connected algebraic group and Y an
absolutely irreducible proper affine subvariety of G defined over a number field F . Let S ⊂ VF be
a finite subset containing all Archimedean absolute values such that G is isotropic over S, and
Y ⊂ G have models defined over OS . Then

NT (Y(OS))�G,deg(X),ε NT (G(OS))1−(aS(dim(G)−dim(Y))/dim(G)(aS+dS)2ne(pS))+ε, ε > 0,

as T →∞.

Coming back to Example 1.7, we note that, in this case, dim(SLn(R)) = n2 − 1, and
so NT (SLn(Z))∼ cnTn

2−n with cn > 0. Furthermore pS = 2(n− 1) (see [DRS93]), and aS = 1
(see [GN10, Proposition 7.3]). Hence, the estimate (1.8) is a special case of Theorem 3.1.

Proof of Theorem 3.1. For non-Archimedean v ∈ VF , we denote by fv the corresponding residue
field and by pv the corresponding prime ideal.

We consider the reduction Y(v) of the variety Y modulo a valuation v. Then by Noether’s
theorem, Y(v) is absolutely irreducible for almost all v. Moreover, dim(Y(v)) = dim(Y) and
deg(Y(v)) = deg(Y) for almost all v (see [Odo79, § 1]). Therefore, by [GL02, Proposition 12.1],
we have the following estimate:

|Y(v)(fv)| �deg(Y) |fv|dim(Y), (3.1)

valid for almost all v. We observe that each fiber of the reduction map Y(OS)→ Y(v)(fv) is
contained in a coset of the subgroup Γv = {γ ∈ Γ : γ = I mod pv} of Γ = G(OS). Hence, it follows
that Y(OS) is contained in a union of at most Odeg(Y)

(
|fv|dim(Y)

)
cosets γΓv with γ ∈ Γ.
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The crucial ingredient of the proof is Theorem 1.15, which gives an estimate of the number
of points in the cosets γΓv uniformly over γ ∈ Γ. More precisely, by Theorem 1.15, for all v,

|γΓv ∩BT |=
vol(BT )
|Γ : Γv|

+Oε(vol(BT )1−(aS/(aS+dS)2ne(pS))+ε), ε > 0. (3.2)

For almost all v, the reduction G(v) is a smooth geometrically irreducible variety of dimension
dim G. Therefore, we have the Lang–Weil estimate (see [LW54]),

|G(v)(fv)|= |fv|dim(G) +OG(|fv|dim(G)−1/2).

Since G is simply connected F -simple and isotropic over S, it follows from the strong
approximation property (see [PR94, Theorem 7.12]) that the reduction map Γ→ G(v)(fv) is
surjective for all v /∈ S. This implies the estimate

|Γ : Γv|= |G(v)(fv)| � |fv|dim(G)

for almost all v.
Finally, we conclude from (3.1) and (3.2) that, for all v,

|Y(OS) ∩BT | �G,deg(Y),ε |fv|dim(Y)

(
vol(BT )
|fv|dim(G)

+ vol(BT )1−(aS/(aS+dS)2ne(pS))+ε

)
, ε > 0.

To optimise this estimate, we take v such that

vol(BT )aS/(aS+dS)2ne(pS) 6 |fv|dim(G) 6 2 vol(BT )aS/(aS+dS)2ne(pS).

For sufficiently large T , such v exists by the prime number theorem for the ring of integers O
in F . This gives the estimate

NT (Y(OS)) = |Y(OS) ∩BT |
�G,deg(Y),ε vol(BT )1−(aS(dim(G)−dim(Y))/dim(G)(aS+dS)2ne(pS))+ε, ε > 0,

as T →∞. Since NT (G(OS))∼ vol(BT ) by Theorem 1.15, this completes the proof. 2

4. Almost prime points on varieties and orbits

We now turn to the problem of establishing the existence of almost prime points on symmetric
varieties. We shall use the notation from § 1.3. In particular, G is a connected Q-simple simply
connected algebraic group defined over Q and L is a symmetric Q-subgroup. Let G= G(R)
and L= L(R). Then G is a connected semisimple Lie group with finite center and L is a closed
symmetric subgroup ofG. We shall use the structure theory of affine symmetric spaces (see [HS94,
Part II]). Fix a maximal compact subgroup K of G compatible with L and a Cartan subgroup
A for the pair (K, L). Then the Cartan decomposition

G= KA+L

holds, where A+ denotes a closed positive Weyl chamber in A. Let M denote the centraliser of
A in K ∩ L. We fix a bounded subset Ψ of M\L with non-empty interior which we assume to
be Lipschitz well-rounded (in the sense of [GN12, § 7]). We also denote by Ȧ+ the interior of the
Weyl chamber A+ and set

ST = {g ∈KȦ+Ψ : ‖gv‖6 T}.
We note that it was shown in [GN12, Proposition 8.4] that the sets Set are Hölder well-rounded
with exponent 1/3.
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Our main tool is the following result on counting of lattice points in ST for the congruence
subgroups Γ(q) = {γ ∈ Γ : γ = I mod q} of Γ = G(Z). We note that representations L2

0(G/Γ(q))
are all Lp+ with uniform p > 0 by [Clo03], so that the following theorem is a special case of [GN12,
Theorem 8.1].

Theorem 4.1 [GN12]. For every γ0 ∈ Γ and q > 1,

|γ0Γ(q) ∩ ST |=
vol(ST )
[Γ : Γ(q)]

+Oε(vol(ST )1−(2ne(p))−1(1+3 dimG)−1+ε), ε > 0,

where the Haar measure is normalised so that vol(G/Γ) = 1.

We note that by [DRS93, EM93]

|O(T )| ∼ vol(L/(L ∩ Γ))
vol(G/Γ)

· vol(ST v) as T →∞, (4.1)

where vol denote G-invariant measures on the corresponding spaces. It was shown in [GOS09,
§ 6] that

vol(ST v)∼ v0T
α(G/H)(log T )β as T →∞, (4.2)

for some v0 > 0, α(G/H) ∈Q+, and β ∈ Z+. Also, it is clear that

vol(ST ) = vol(ST v) · vol(Ψ). (4.3)

Now we prove the following theorem, which is a more explicit version of Theorem 1.10 stated
in § 1.3 (we refer there for the notation used below).

Theorem 4.2. With the notation above, let r be the least integer satisfying

r > 9α(G/H)−1 (1 + dim(G))(1 + 3 dim(G))2ne(p) · t(f) deg(f).

Then

|{x ∈ O(T ) : f(x) has at most r prime factors}| � |O(T )|
(log T )t(f)

as T →∞.

In the case of Example 1.11, we have dim(Spin(Q)) = n(n− 1)/2 and α(G/H) = n− 2. When
Q has signature (n, 1), one can take p= 9(n− 1)/7 (see [BS91]). For other signatures, the group
Spin(Q)(R) has R-rank at least 2 and we can utilise the estimates on integrability exponents
obtained in [Li95, Oh02]. In particular, when Q has signature (bn/2c, n− bn/2c) (i.e., when
Spin(Q) is split over R), we have p= n− 1 for odd n and p= n for even n.

In the case of Example 1.12, we have dim(SLn) = n2 − 1, α= (n2 − n)/2 (see [GOS09, § 2.3]),
and p= 2(n− 1) (see [DRS93]).

Before we start the proof of Theorem 4.2, we show that the decomposition f = f1 · · · ft into
irreducible factors is well defined.

Lemma 4.3. Let G be a connected semisimple simply connected algebraic group and L a closed
connected subgroup with no non-trivial characters. Then the coordinate ring C[G/L] is a unique
factorisation domain.

Proof. We refer to [FI73, KKV89, Pop74] for computation of Picard groups of homogeneous
spaces. There is an exact sequence

X (G)→X (L)→ Pic(G/L)→ Pic(G),
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where X (G) and X (L) denote the character groups. Since G is simply connected, Pic(G) = 1.
Hence, it follows from the exact sequence that Pic(G/L) = 1, and C[G/L] is a unique factorisation
domain by [Har77, Proposition 6.2]. 2

Proof of Theorem 4.2. Using the dominant map G→ X, every element f ∈ C[X] lifts to an
element f̃ ∈ C[G]. Since G is simply connected, the ring C[G] is a unique factorisation domain.
We claim that the decomposition of f̃ into irreducible factors in C[G] is of the form f̃ =
f̃1 · · · f̃t, where f = f1 · · · ft is the decomposition in C[X]. Indeed, suppose that f̃i = g1 · · · gs
for g1, . . . , gs ∈ C[G] is the decomposition into irreducibles. We consider the right action of L on
C[G]. Since f̃i is L-invariant and L is connected, it follows from uniqueness of the decomposition
that each gi is also L-invariant and descends to a function on C[X], which implies that this
decomposition must be trivial. Hence, the f̃i are irreducible.

Now we apply the argument of [NS10] to the polynomial function f̃ : Γ→ Z and the sets
Γ ∩ ST (instead of sets {γ ∈ Γ : ‖γ‖< T}). It follows from Theorem 4.1 that, for every q > 1 and
γ0 ∈ Γ,

|γ0Γ(q) ∩ ST |
vol(ST )

=
1

[Γ : Γ(q)]
+Oε(vol(ST )−(2ne(p))−1(1+3 dimG)−1+ε), ε > 0. (4.4)

Therefore, by (4.2) and (4.3),

|γ0Γ(q) ∩ ST |
vol(ST )

=
1

[Γ : Γ(q)]
+Oε(T−(θ/(1+3 dim(G)))+ε), ε > 0,

where θ = α(G/H)/2ne(p). This estimate is a substitute for [NS10, Theorem 3.2]. Given the
estimate above for a family of sets ST , the argument in [NS10] for norm balls can be carried out
without change, and we conclude that, for sufficiently large T ,∑

γ∈Γ∩ST :gcd(f̃(γ),Pz)=1

1� |Γ ∩ ST |
(log |Γ ∩ ST |)t(f)

, (4.5)

where

Pz =
∏
p6z

p, z = |Γ ∩ ST |κ, κ= (9t(f)(1 + dim(G))(1 + 3 dim(G))2ne(p))−1.

For every γ ∈ Γ ∩ ST , we have

|f̃(γ)|= |f(γv)| � T deg(f).

On the other hand, if gcd(f̃(γ), Pz) = 1, then every prime factor of f̃(γ) is at least z, and
z� Tα(G/H)κ by (4.2)–(4.4). Therefore, for every term in the sum (4.5), the number of prime
factors of f̃(γ) is bounded above by

deg(f)
α(G/H)κ

= 9α(G/H)−1(1 + dim(G))(1 + 3 dim(G))2ne(p)t(f) deg(f)

provided T is sufficiently large. We conclude that

|{γ ∈ Γ ∩ ST : f(γv) has at most r prime factors}| � |Γ ∩ ST |
(log |Γ ∩ ST |)t(f)

. (4.6)

To finish the proof, we consider the projection map

π : Γ ∩ ST →O(T ) : γ 7→ γv.
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It follows from the uniqueness properties of the Cartan decomposition (see [HS94, p. 108])
that if γ0, γ ∈ Γ ∩ ST satisfy γ0v = γv, then their KA+-components are equal modulo M , and
γ−1

0 γ ∈Ψ−1Ψ. Hence,

π−1(γ0v)⊂ γ0Ψ−1Ψ ∩ Γ,

and the cardinality of every fiber of π is bounded by |Ψ−1Ψ ∩ Γ|. It follows from (4.6) that

|{w ∈ O(T ) : f(w) has at most r prime factors}| � |Γ ∩ ST |
(log |Γ ∩ ST |)t(f)

as T →∞. Since |Γ ∩ ST | � vol(ST ), the claim of the theorem now follows from (4.1)–(4.3).

We also establish a quantitative version of Theorem 1.1 for lifting solutions of congruences
in O, which will be used to prove Theorem 1.14 in § 5.

Theorem 4.4. For every

σ > σ0 := α(G/H)−1 dim(G)(1 + 3 dim(G))2ne(p), (4.7)

sufficiently large q, and b ∈ O mod q,

|{x ∈ O(qσ); x= bmod q}| �σ |O(qσ)| · 1
|Omod q|

.

Proof. Using Theorem 4.1 and arguing exactly as in the proof of Theorem 1.3, we get the estimate

|γΓ(q) ∩ ST | �σ
1

|Γ : Γ(q)|
· |Γ ∩ ST |,

for T = qσ with sufficiently large q and every γ ∈ Γ. This implies that

|{γ ∈ Γ ∩ ST ; γv = bmod q}|=
∑

γ∈Γ/Γ(q):γv=bmod q

|γΓ(q) ∩ ST |

�σ
|StabΓ(bmod q) : Γ(q)|

|Γ : Γ(q)|
· |Γ ∩ ST |=

1
|O mod q|

· |Γ ∩ ST |.

Recall from the previous proof that the cardinality of the fibers of the map

π : Γ ∩ ST →O(T ) : γ 7→ γv.

is uniformly bounded. Therefore,

|{x ∈ O(T ); x= bmod q}| � |{γ ∈ Γ ∩ ST ; γv = bmod q}|.

Since |Γ ∩ ST | � |O(T )| by (4.1), this completes the proof. 2

5. Almost prime solutions of congruences on varieties and orbits

We start by proving Theorem 1.13 for group varieties. Let G⊂GLn be a connected Q-simple
simply connected algebraic group defined over Q. We assume that G is isotropic over R, and
denote by α= α(G)> 0 the volume growth exponent of G(R), defined as in (1.11). Let f be
a regular function on G defined over Q that decomposes into a product of t= t(f) absolutely
irreducible factors defined over Q. We assume that f(G(Z))⊂ Z and f is weakly primitive.

1709

https://doi.org/10.1112/S0010437X12000516 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000516


A. Gorodnik and A. Nevo

Theorem 5.1. Let

σ > σ0 := α−1 dim(G)(1 + dim(G))2ne(p),

r >
9ασ

ασ − dim(G)
· σ0 · t(f) deg(f).

Then there exists q0 > 0 such that, for every coprime b, q ∈ N satisfying q > q0 and b ∈
f(G(Z)) mod q, one can find x ∈ G(Z) such that:

(i) f(x) is a product of at most r prime factors;

(ii) f(x) = bmod q and ‖x‖6 qσ.

Proof. We write f(x) = (1/N)g(x) where g(x) is a polynomial with integral coefficients and
N ∈ N. Since f is weakly primitive,

gcd(g(γ) : γ ∈ Γ) =N. (5.1)

Let N =N1N2, where N1 is the product of all prime factors of N with multiplicities which are
coprime to q. Then the condition f(γ) = bmod q is equivalent to g(γ) = bN mod qN . Moreover,
because of (5.1), it is equivalent to g(γ) = bN mod qN2.

According to our assumptions, there exists γ0 ∈ G(Z) such that f(γ0) = bmodq. We set

Γ = G(Z),
Γq = Γ(qN2) = {γ ∈ Γ : γ = id mod qN2},

Oq(T ) = {γ ∈ γ0Γq : ‖γ‖6 T}.

Note that every γ ∈ γ0Γq satisfies f(γ) = bmod q.
Let Pq,z be the set of prime numbers which are coprime to q and bounded by z. Our aim is to

estimate from below the cardinality of points γ ∈ Oq(T ) such that f(γ) is coprime to Pq,z, which
we denote by S(T, q, z). This will achieved by applying the combinatorial sieve as in [HR74,
Theorem 7.4] and [NS10, § 2]. Let

ak = |{γ ∈ Oq(T ) : f(γ) = k}| and X = |Oq(T )|=
∑
k>0

ak.

In order to apply the combinatorial sieve, we need to verify the following conditions.

(A0) For every square-free d in Pq,z,∑
k=0 mod d

ak =
ρ(d)
d
X +Rd, (5.2)

where ρ(d) is a non-negative multiplicative function such that, for primes p ∈ Pq,z, we have

ρ(p)
p

6 c1 (5.3)

for some c1 < 1.

(A1) Summing over square-free d in Pq,z,∑
d6Xτ

′
|Rd|6 c2X

1−ζ

for some c2, τ, ζ > 0.
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(A2) For every 2 6 w 6 z,

− l 6
∑

p∈Pq,z :w6p<z

ρ(p) log p
p

− t log
z

w
6 c3 (5.4)

for some c3, l, t > 0.

Assuming (A0)–(A2), [HR74, Theorem 7.4] (combined with the properties of the function ηκ
(see [HR74, § 7.4])) implies that, for z =Xτ/s with s > 9t, the following estimate holds:

S(T, q, z) >XW (z)
(
C1 − C2l

(log log 3X)3t+2

log X

)
, (5.5)

where

W (z) =
∏

p∈Pq,z :p6z

(
1− ρ(p)

p

)
,

and the constants C1, C2 > 0 are determined by c1, c2, c3, τ , ζ, t. The reader should be aware
that there is a typographical error in [HR74, (6.2)] and the inequality should be in the opposite
direction. We also note that an estimate of the form (5.5) could be, in principle, produced by
other lower-bound sieves (for instance, by the β-sieve treated in [FI10]).

We deduce (A0) and (A1) from the estimates on the cardinality of lattice points given
by Theorem 1.15. Let πdN1 : Γ→ Γ/Γ(dN1) denote the factor map. It follows from the strong
approximation property that the image of γ0Γq under πdN1 is the whole of Γ/Γ(dN1). We set
BT = {h ∈ G(R) : ‖h‖6 T}. By Theorem 1.15, for every d coprime to q and δ ∈ Γ/Γq(dN1), we
have Γq(dN1) = Γ(qdN) and

|δΓq(dN1) ∩BT | =
vol(BT )

[Γ : Γ(qdN)]
+Oε(vol(BT )1−(2ne(p))−1(1+dim(G))−1+ε)

=
vol(BT )

[Γ : Γ(dN1)] · [Γ : Γq]
+Oε(vol(BT )1−(2ne(p))−1(1+dim(G))−1+ε)

=
|γ0Γq ∩BT |
[Γ : Γ(dN1)]

+Oε(vol(BT )1−(2ne(p))−1(1+dim(G))−1+ε)

=
X

|G(Z/(dN1))|
+Oε(X1−(2ne(p))−1(1+dim(G))−1+ε)

for every ε > 0. We note that, for d coprime to q, we have f(γ) = 0 mod d if and only if
g(γ) = 0 mod dN1. Restricting the sums below to d coprime to q, we have∑

k=0 mod d

ak = |{γ ∈ γ0Γq ∩BT ; f(γ) = 0 mod d}|

=
∑

δ∈πdN1
(γ0Γq):g(δ)=0 mod dN1

|δΓq(dN1) ∩BT |

= |G(Z/(dN1)) ∩ {g = 0}| ·
(

X

|G(Z/(dN1))|
+Oε(X1−(2ne(p))−1(1+dim(G))−1+ε)

)
=
ρ(d)
d
X +Oε(|G(Z/(dN1)) ∩ {g = 0}|X1−(2ne(p))−1(1+dim(G))−1+ε),

where

ρ(d) =
d|G(Z/(dN1)) ∩ {g = 0}|

|G(Z/(dN1))|
.
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As in [NS10, § 4.1], we deduce that ρ is a multiplicative function, (5.3) holds, and

ρ(p) = t(f) +Of (p−1/2). (5.6)

Using the fact that

|G(Z/(dN1)) ∩ {g = 0}| � ddim(G)−1,

we obtain ∑
d6Xτ

′
|Rd| �ε

∑
d6Xτ

ddim(G)−1X1−(2ne(p))−1(1+dim(G))−1+ε

� (Xτ )dim(G)X1−(2ne(p))−1(1+dim(G))−1+ε�X1−ζ

for some ζ > 0, provided that τ < τ0 = (2ne(p))−1 dim(G)−1(1 + dim(G))−1. This concludes the
proof of (A0) and (A1).

To prove (A2), we observe that from (5.6) (see, for example, [MV07, Theorem 2.7(b)]) it
follows that ∑

z6p6w

ρ(p) log p
p

− t(f) log
z

w
6 c3

for some c3 > 0. This implies the upper estimate in (5.4). The lower estimate with l =O(log log q)
follows from Lemma 5.2 below.

Now it follows from (5.5) that

S(T, q, Xτ/s)� X

(log X)t(f)

(
C1 − C ′2(log log q)

(log log X)3t(f)+2

log X

)
. (5.7)

Here we used the fact that W (z)� (log z)−t(f), which follows from (5.6).
We apply (5.7) with T = qσ with σ > σ0 and sufficiently large q. Then by Theorem 1.3,

Lemma 2.2, and (2.6),

X = |γ0Γq ∩BT | �σ
vol(BT )
|Γ : Γq|

�α′ q
α′σ−dim(G) (5.8)

with α′ < α. Hence, for sufficiently large q,

S(T, q, Xτ/s)�σ,α′
X

(log X)t(f)
. (5.9)

We note that every point γ which is counted in S(T, q, Xτ/s) satisfies conclusion (ii) of the
theorem, and

|f(γ)| � T deg(f) = qσ deg(f),

and every prime p which is coprime to q and divides f(γ) must satisfy

p > Xτ/s�σ,α′ q
(α′σ−dim(G))τs−1

.

Hence, the number of such prime factors is bounded from above by

σ deg(f)
(α′σ − dim(G))τs−1

provided that q is sufficiently large. Moreover, since b and q are coprime, f(γ) is not divisible
by any prime which divides q. Hence, the number of prime factors of f(γ) (with multiplicities)
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is bounded by

r >
σ deg(f)

(ασ − dim(G))τ0(9t(f))−1
=

9ασ
ασ − dim(G)

· σ0 · t(f) deg(f).

Hence, every γ counted in S(T, q, Xτ/s) satisfies conclusion (i) of the theorem as well.
We have shown that every γ counted in S(T, q, Xτ/s) satisfies (i) and (ii). Since it follows

from (5.8) and (5.9) that S(T, q, Xτ/s) > 1 for sufficiently large q, this completes the proof. 2

In order to complete the proof Theorem 5.1, we need the following quite standard estimate.

Lemma 5.2. The following estimate holds:
∑

p|q log p/p=O(log log q).

Proof. It is sufficient to prove the claim for square-free q. Moreover, since the function p 7→
(log p)/p− c1 log(p+ c2), c1, c2 > 0, is decreasing for p> 3, it remains to verify the estimate
when q is the product of all consecutive primes less than z. In this case,∑

p|q

log p
p

=O(log z)

(see, for instance, [MV07, Theorem 2.7(b)]), and, by the prime number theorem,

log q =
∑
p6z

log p∼ z,

which implies the claim. 2

We note that the proof of Theorem 5.1 not only implies the existence of solutions for
congruences, but also gives the following quantitative estimate.

Theorem 5.3. With the notation of Theorem 5.1,∣∣∣∣{x ∈ G(Z) :
f(x) has at most r prime factors,
f(x) = bmod q and ‖x‖6 qσ

}∣∣∣∣�σ
1

|f(G(Z)) mod q|
· Nqσ(G(Z))

(log q)t(f)

for sufficiently large q.

Proof. Since by (5.8) and Theorem 1.15, for every γ0 ∈ Γq and sufficiently large q,

X = |γ0Γq ∩Bqσ | �σ
Nqσ(G(Z))
|Γ : Γq|

,

the claim of the theorem follows from (5.9) by summing over γ0 ∈ Γ/Γq such that f(γ) =
bmod q. 2

Proof of Theorem 1.13. If G is anisotropic over R, then Γ is finite. Hence, we may assume that
G is isotropic. We apply Theorem 5.1 with the function f̃ : G→ C given by f̃(g) = f(gv). Since
‖γv‖� ‖γ‖, the claim of Theorem 1.13 follows. 2

Proof of Theorem 1.14. We apply the argument of the proof of Theorem 5.1 with the sets
ST ⊂ G(R) introduced in § 4 (in place of the sets BT ) and the polynomial function f̃ on G
defined by f̃(x) = f(xv). Using the estimate on |δΓq(dN1) ∩ ST | provided by Theorem 4.1, this
argument can be carried out with no changes. Let T = qσ with σ as in Theorem 4.4. We conclude
from (4.2) that, for sufficiently large q,

X = |γ0Γq ∩ ST | �σ
vol(ST )
|Γ : Γq|

� qασ−dim(G), (5.10)
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where α is as in (4.2), and

S(T, q, Xτ/s)�σ
X

(log X)t(f)
, (5.11)

where τ < τ0 = (2ne(p))−1 dim(G)−1(1 + 3 dim(G))−1. As in the proof of Theorem 5.1, we
conclude that every γ counted in S(T, q, Xτ/s) is a product of at most r factors, where

r >
σ deg(f)

(ασ − dim(G))τ0(9t(f))−1

=
σ

ασ − dim(G)
9t(f) deg(f) dim(G)(1 + 3 dim(G))2ne(p). (5.12)

Now, using (5.10) and (5.11), for every γ0 ∈ Γ such that f(γ0v) = bmod q, we have the
estimate

|{γ ∈ γ0Γq ∩ ST : f(x) has at most r prime factors}|

�σ
X

(log X)t(f)
�σ

1
|Γ : Γq|

· |Γ ∩ ST |
(log q)t(f)

.

Since every γ ∈ γ0Γq satisfies f(γv) = bmod q, we conclude that∣∣∣∣{γ ∈ Γ ∩ ST :
f(γv) has at most r prime factors,
f(γv) = bmod q

}∣∣∣∣
�σ
|{γ ∈ Γ/Γq : f(γv) = bmod q}|

|Γ : Γq|
· |Γ ∩ ST |

(log q)t(f)

=
1

|f(O) mod q|
· |Γ ∩ ST |

(log q)t(f)
.

Since the cardinality of the fibers of the map π : Γ ∩ ST →O(T ) : γ 7→ γv is uniformly bounded,
we conclude that∣∣∣∣{x ∈ O(T ) :

f(x) has at most r prime factors,
f(x) = b mod a

}∣∣∣∣�σ
1

|f(O) mod q|
· |Γ ∩ ST |

(log q)t(f)
,

which implies the theorem because of (4.1) and (4.3). 2
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