
/ . Austral. Math. Soc. 21 (Series B) (1980), 293-296

SOLUTION OF HOMOGENEOUS LINEAR
DIFFERENCE EQUATIONS

J. D. LOVE

(Received 31 May 1978)

(Revised 8 March 1979)

Abstract

When the first two elements of a sequence satisfying a second order difference
equation are prescribed, the remaining elements are evaluated from a
continued fraction and a simple product.

1. Introduction

The sequence un satisfies the second order, linear difference equation

un_1 = 0, w=l ,2 , . . . , (1.1)

where the F(n), G(n) and H(n) are arbitrary functions of n. We seek the solution
for all n when «0 and u± are prescribed.

If one of the complementary solutions of (1.1) can be found by inspection, or if
it is prescribed, Brand [1] shows how the second complementary solution is
obtained. Let vn be the known solution, then the second solution wn is generated
by setting un = vnwn in (1.1). The procedure is analogous to finding the second
solution of a differential equation when one solution is known. A linear
combination of vn and wn is then used to satisfy the prescribed values of u0 and uv

The solution given by Brand was established earlier by Funk [3], but the
reference is not so readily available. Funk also solves (1.1) when w0 = 0 and
WJV+1 = 0, so that only N equations are involved. His solution for ut is expressed as
the ratio of two tridiagonal determinants, according to Cramer's rule, and he
goes on to show that each tridiagonal determinant is expressible as a continued
fraction containing the F(n), G(n) and H(n).
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An even earlier solution of (1.1) is given by Perron [4] in terms of a tridiagonal
determinant for the case u0 = 0, MX = 1 and H(ri) = — 1 for all n. He gives

M = C™, «=1,2 , . . . , (1.2)

where Cf is defined by (1.4). Perron then points out, like Funk, that Cf is equivalent
to a continued fraction.

More recently, Brown [2j has given the general solution to (i.i) as a linear
combination of «0 and ux according to

"n+i = (-)n{M0^0)Q + M1C51} /f[H(r) n=2,3,..., (1.3)
/ r=l

where C\ and C% are tridiagonal determinants of orders n and n— 1 defined by

G(m) Him) 0 ... 0

Fim + 1) G(m + l) H(m + \) ... 0

0 F(m + 2) Gim+2) ... H(n-3) 0

0 F(m+3) ... G(n-2) H(n-2) 0

... Fin~\) G{n-\) H(n-l)

0 F{n) G{n)

This result is the generalization of Perron's solution, and clearly reduces to (1.2)
when his conditions are satisfied.

Our motivation is to propose an alternative solution to (1.1), which is as general
as Brown's results, but which is simpler and avoids the evaluation of two
determinants.

2. Method of solution

The first step in our method of solution is to reduce (1.1) to a first-order equation
by the following rearrangement

Fin)
Gin), Hin) ___ Q ^

• (1-4)

This is now a nonlinear, first order difference equation for the ratio un+jun,
which is solved by repeated iteration. The solution is expressed as

"n+l = />„, (2.2)
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where pn is defined by the continued fraction

Gin) Fin)
Pn H(n) H(n)

Gjn-l) Fjn-l)
~Hin-l) Hin-l)

Gjn-2)
Hin-2)

Fjl)
HV (2.3)
" l

When n = 0, we have pQ = ujuo. Thus each pn as evaluated from (2.3) determines
the ratio of successive un, that is un+1 = pn un.

The second step is to use an identity to express un+1 as a product of ratios of
successive un

^J^« {2A)
n + 1 0

Un "n-1 "0
Substituting from (2.2), the general solution for un+1 is given by

n
(2-5)

r=0

The evaluation of the product is simplified if we observe from (2.2) and (2.3) that
successive pn satisfy

Gin) Fin) 1p—w)K^- ' ( }

The solution given by (2.5) is formally identical to (1.3), as may be verified, but
has the advantage that only one set of calculations is required to evaluate the pn,
whereas two sets of calculations must be employed to determine Cj1 and Cg in
(1.3).

3. Solutions when u0 or u1 vanish

If both u0 and ux are non-zero, un+1 is given by (2.5), and if both w0 and wx

vanish, there is only the trivial solution un = 0 for all n. The two cases of interest
occur when either u0 or ux vanishes. When u0 = 0, the identity (2.4) is contracted
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by removing the dependence on w0. Consequently, (2.5) is replaced by

« = 1,2,.... (3.1)
r=l

Similarly, when ux = 0, the identity (2.4) is contracted by removing the dependence

on both w0 and uv Hence

u , = «„ FT n n = 2 3 (7,T\
r=2

and M2 is expressed in terms of u0 via (1.1)

M2 = ~-^7r;Mo- (3-3)

Putting (3.3) into (3.2)

n = 2 ,3 , . . . . (3.4)
>

r=2
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