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This paper focuses on turbulence structure in a fully developed rough-wall channel
flow and its role in subgrid-scale (SGS) energy transfer. Our previous work has shown
that eddies of scale comparable to the roughness elements are generated near the
wall, and are lifted up rapidly by large-scale coherent structures to flood the flow
field well above the roughness sublayer. Utilizing high-resolution and time-resolved
particle-image-velocimetry datasets obtained in an optically index-matched facility, we
decompose the turbulence into large (>λ), intermediate (3–6k), roughness (1–3k) and
small (<k) scales, where k and λ(λ/k = 6.8) are roughness height and wavelength,
respectively. With decreasing distance from the wall, there is a marked increase in
the ‘non-local’ SGS energy flux directly from large to small scales and in the fraction
of turbulence dissipated by roughness-scale eddies. Conditional averaging is used to
show that a small fraction of the flow volume (e.g. 5 %), which contains the most
intense SGS energy transfer events, is responsible for a substantial fraction (50 %)
of the energy flux from resolved to subgrid scales. In streamwise wall-normal (x–y)
planes, the averaged flow structure conditioned on high SGS energy flux exhibits
a large inclined shear layer containing negative vorticity, bounded by an ejection
below and a sweep above. Near the wall the sweep is dominant, while in the outer
layer the ejection is stronger. The peaks of SGS flux and kinetic energy within
the inclined layer are spatially displaced from the region of high resolved turbulent
kinetic energy. Accordingly, some of the highest correlations occur between spatially
displaced resolved velocity gradients and SGS stresses. In wall-parallel x–z planes,
the conditional flow field exhibits two pairs of counter-rotating vortices that induce a
contracting flow at the peak of SGS flux. Instantaneous realizations in the roughness
sublayer show the presence of the counter-rotating vortex pairs at the intersection of
two vortex trains, each containing multiple λ-spaced vortices of the same sign. In the
outer layer, the SGS flux peaks within isolated vortex trains that retain the roughness
signature, and the distinct pattern of two counter-rotating vortex pairs disappears.
To explain the planar signatures, we propose a flow consisting of U-shaped quasi-
streamwise vortices that develop as spanwise vorticity is stretched in regions of high
streamwise velocity between roughness elements. Flow induced by adjacent legs of
the U-shaped structures causes powerful ejections, which lift these vortices away from

† Email address for correspondence: katz@jhu.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

40
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:katz@jhu.edu
https://doi.org/10.1017/jfm.2012.403


Coherent structures and associated subgrid-scale energy transfer 93

the wall. As a sweep is transported downstream, its interaction with the roughness
generates a series of such events, leading to the formation of inclined vortex trains.

Key words: boundary layer structure, channel flow, turbulent boundary layer

1. Introduction
Turbulence is commonly described in terms of interactions among flow structures

of a hierarchy of length scales that exchange kinetic energy in a cascading process.
In wall-bounded flows, these structures are strongly affected and constrained by
boundary conditions. In smooth-wall boundary layer and channel flows, the most
relevant characteristic length scales are the viscous wall unit, δυ , which represents
the effect of wall stress, and the integral scale, i.e. the boundary layer thickness,
δ, or half-channel height, h (Pope 2000). In rough-wall boundary layers, there are
also characteristic scales associated with the topography of the rough surface, e.g.
the height of individual roughness elements, k, their surface density, etc. (Jiménez
2004). Typically, these roughness scales fall between the wall unit and integral length
scale. The roughness embeds its signature through interactions with the turbulence
and dominates the near-wall flow structure. To resolve rough-wall turbulence using
direct numerical simulation (DNS), the computational grid has to be of the order of
δυ , and should resolve the flow around individual roughness elements. In addition,
to capture the large-scale structures in the flow requires a computational domain of
the order of δ or h. Consequently, the present DNS cannot be applied under high
Reynolds number and fully rough flow conditions. To cope with this limitation, large
eddy simulation (LES) resolves only the large-scale structures, but still has to model
the subgrid-scale (SGS) physics, including near-wall flow phenomena associated with
turbulence–roughness interactions (Piomelli 2008). Due to the diversity of roughness
configurations, one of the key issues in modelling rough-wall turbulence is to define
proper roughness scales based on the surface geometry, and to quantify their influence
on the turbulence in a general manner.

Substantial work has focused on specifying the boundary conditions to parametrize
the effect of roughness as an additional momentum flux (drag force). A common
approach utilizes the Monin–Obukhov similarity theory (Monin & Obukhov 1959),
which leads to a law-of-the-wall above the roughness in neutral turbulent flows. This
method requires a specified roughness scale and displacement height to represent
the aggregate effects of unresolved surface details, mostly the form drag induced by
the roughness. Numerous studies (e.g. Avissar & Pielke 1989; Bou-Zeid, Meneveau
& Parlange 2004; Chamecki, Meneveau & Parlange 2009; Anderson & Meneveau
2010) have applied and extended this approach to achieve reasonable prediction of
the drag and mean velocity profile on various rough surfaces. Nevertheless, due to
lack of information on the relationship between the instantaneous wall stress (form
drag) and resolved flows, these predictions inevitably involve ad hoc assumptions,
which limit their accuracy and robustness. Another issue is related to the challenges
of SGS stress modelling near the roughness, where LES inherently under-resolves the
energy-containing motions at the first few grid cells, therefore producing localized
error in resolved velocity (Juneja & Brasseur 1999). Such errors would be of minor
consequence if their influence were confined to the near-wall region. However, since
they affect the mean momentum flux and the region of peak energy production,
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their effects propagate throughout the entire flow. Furthermore, under more general
conditions, such as in buoyancy-affected boundary layers, Khanna & Brasseur (1998)
show that these errors can be carried upward by buoyancy-driven vertical fluxes. Our
recent publication (Hong, Katz & Schultz 2011) also shows that in a channel flow,
the roughness-scale eddies are lifted up rapidly by the outer-layer structures, flooding
the entire boundary layer with small-scale energy. Accounting for the excess kinetic
energy associated with these structures imposes a challenge to the modelling of SGS
dynamics. To develop fresh modelling strategies, we need to understand how small-
scale structures are generated and transported away from the wall, how they interact
with resolved-scale eddies, and how they impact the SGS energy fluxes.

Constrained by experimental techniques and computational capacity, only a few
studies have focused on the flow structure and turbulence in the inner part of rough-
wall boundary layers, commonly referred to as the roughness sublayer. Recently, DNS
of a turbulent channel flow over two-dimensional ribs by Ikeda & Durbin (2007) has
revealed that disruption of three-dimensional vortical streaks in the roughness sublayer
is responsible for high energy production just above the roughness. For a similar rough
surface configuration, Lee & Sung (2007) report a significant effect of roughness
on the redistribution of turbulent kinetic energy (TKE) near the wall. A subsequent
DNS by Lee, Sung & Krogstad (2011) compares the near-wall structures over two-
dimensional and three-dimensional roughness with those of smooth walls, showing that
in the presence of roughness, the streamwise structures are shorter and ejections are
more vigorous. The particle-image-velocimetry (PIV) measurements of Djenidi et al.
(2008) reveal that roughness-scale spanwise vortices originating at the trailing edge
of the roughness elements are convected downstream and strongly interact with the
overlying turbulent flow. Our PIV measurements (Hong et al. 2011) show that in the
roughness sublayer the mean flow, Reynolds stresses, and TKE budget terms display
significant spatial variability, and that the production rate peaks above the frontal face
of roughness elements.

For high Reynolds number flows above the roughness sublayer, Raupach, Antonia &
Rajagopalan (1991) extend Townsend’s (1976) similarity hypothesis by proposing that
turbulent motions normalized by friction velocity are independent of wall roughness.
Numerous studies, too many to summarize here, have examined the validity of this
hypothesis. For example, strong support has been provided by Bandyopadhyay &
Watson (1988) and Schultz & Flack (2003). Conversely, some other studies, e.g.
Krogstad, Antonia & Browne (1992), Krogstad & Antonia (1999), Tachie, Bergstrom
& Balachandar (2000, 2003) and Keirsbulck et al. (2002), have observed significant
roughness-dependent changes to the Reynolds stresses that extend well into the outer
layer. A detailed review by Jiménez (2004) points out that the conflicting evidence is
related to the differences in scale separation, i.e. δ/k and k+ = kUτ/ν, where Uτ is
the friction velocity and ν is the kinematic viscosity. To obtain a ‘well-characterized’
rough-wall turbulent boundary layer for examining the similarity hypothesis, both k+

and δ/k must exceed threshold values, typically k+ > 50–100 and δ/k > 40, and their
product, i.e. δ+, should be at least 4000. Following this guidance, recent experiments
(e.g. Flack, Schultz & Shapiro 2005; Kunkel & Marusic 2006; Schultz & Flack
2007; Wu & Christensen 2007, 2010) have shown strong support for similarity in the
outer layer. With a few exceptions, most of the rough-wall studies have inferred the
characteristics of turbulence structures through statistics, such as Reynolds stresses and
higher-order moments. However, a number of recent studies have attempted to examine
the scale and alignment of coherent structures in the outer layer, through two-point
correlations, proper orthogonal decomposition (POD), and conditional averaging using
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linear stochastic estimation (LSE), for example. For two-point correlations of both
streamwise and wall-normal velocity components as well as quadrant analysis results,
excellent agreement with smooth wall data has been found by Wu & Christensen
(2007). Applying POD, their subsequent study (Wu & Christensen 2010) indicates that
large-scale fields are sensitive and small scales are insensitive to roughness effects.
Volino, Schultz & Flack (2007) also demonstrate a close agreement with smooth-wall
turbulence in energy spectra, the probability density function of swirling strength
and two-point correlations. Moreover, their two-dimensional PIV data display vortical
patterns with features similar to those described by the popular hairpin packet model
for smooth walls (Adrian, Meinhart & Tomkins 2000). However, spatial energy spectra
presented in our recent work (figure 1, Hong et al. 2011) and in Hackett et al.
(2011) show that the turbulence contains an excessive amount of energy at scales
corresponding to k well above the roughness sublayer. Although they do not have a
significant effect on the Reynolds stresses, they influence the dissipation rate in the
outer layer.

The present paper focuses on the role of coherent structures in SGS energy
transfer, a topic investigated in several prior studies by applying conditional averaging.
Using DNS data for low Reynolds number (Reτ = 180) smooth-wall channel flow,
Piomelli, Yu & Adrian (1996) showed that the near-wall, inter-scale energy transfer
is strongly correlated with the presence of coherent structures. They found that
strong positive (forward scatter) and negative (backward scatter) SGS energy fluxes
are induced by the same quasi-streamwise or hairpin vortices. In a field experiment
using sonic anemometry, Carper & Porté-Agel (2004) revealed vortical structures that
are conceptually consistent with the hairpin model, which generate both forward
and backward scatter in different parts of the same structure. Recently, combining
conditional averaging and observation of instantaneous realizations for PIV data in a
smooth-wall boundary layer, Natrajan & Christensen (2006) have shown that strong
SGS energy transfer is associated with organized hairpin packets. They observe that
strong forward scatter events exist between consecutive hairpin heads while strong
backward scatter occurs at the trailing edge of the vortex packets.

To further investigate this subject and elucidate the interactions between coherent
structures over rough walls, in the present work we apply spatial filters to decompose
the flow into relevant scale ranges and measure the associated inter-scale energy fluxes.
Subsequently, conditional averaging, combined with observations in the time-resolved
data, is used to identify flow structures that dominate the energy fluxes. We find
that specific coherent structures play a key role, and that a fraction, e.g. 5 %, of
the flow produces more than 50 % of the positive energy flux. The configuration and
mechanisms involved in the generation of these structures, along with implications for
SGS modelling in LES, are discussed subsequently.

2. Experimental set-up and methodology
2.1. Facility and measurements

The experiments were performed in the bypass channel of the Johns Hopkins
University optically index-matched test facility. The entire facility was filled with
a 62 % by weight solution of sodium iodide (NaI) in water, with refractive
index matching that of the acrylic rough walls. This enabled us to conduct PIV
measurements very near the surface, including the space between the roughness
elements. A brief description of this facility is provided here for clarity, and further
details are available in Hong et al. (2011). The transparent acrylic channel is 3.3 m
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FIGURE 1. (a) E12(k1) scaled by the local shear stress at y/k = 0.28, 1.1, 3.4, 5.6, 10.9 and
19.5. (b) Compensated E11(k1) at the same elevations. The horizontal dashed line shows the
values for inertial-range isotropic turbulence. The vertical dashed lines in (a) and inclined
lines in (b) mark the wavenumbers corresponding to length scales of k, 3k and λ.

long and has a 20 cm× 5 cm rectangular cross-section, which facilitates optical access
to any internal site from various viewing angles. The channel contains two pairs of
1.25 m long removable acrylic inserts, allowing easy adjustment of the wall properties.
The present experiment is installed with a pair of smooth inserts in the upstream
half of the channel, and a pair of rough ones downstream. The measurements are
carried out at 35h from the leading edge of downstream inserts (figure 2a), where
the turbulence is fully developed and the transition effect from smooth to rough
inserts becomes negligible. The surface roughness consists of closely packed, square
pyramidal elements with height of k = 0.46 mm and wavelength of λ = 3.2 mm
(λ/k = 6.8), as illustrated in figure 2(b,c). For this geometry, the equivalent sand
roughness height ks is about 1.5k (Schultz & Flack 2009). Based on the friction
velocity (Uτ−uv, see table 1) measured by extending the total shear stress to the wall,
our flow yields h/k > 50 and k+s > 80, satisfying the well-characterized condition
proposed by Jiménez (2004). The mean velocity profile has a logarithmic shape at
2k < y< 0.2h, and clearly deviates from it below y= 2k (Hong et al. 2011).

The data used in the current paper mainly come from the high-resolution PIV
measurements and recently performed time-resolved measurements. The sample areas
are indicated in figure 2(b,c), and relevant parameters such as centreline velocity
Uc and resolution are summarized in table 1. The high-resolution data described
in Hong et al. (2011) are recorded using a 4864 × 3248 pixel CCD camera. The
interrogation window size is 32× 32 pixels, which with 50 % overlap provides a vector
spacing of 63 µm, i.e. ∼0.14k. The time-resolved PIV measurements use a high-speed
CMOS camera, PCO Dimax, with a maximum sensor area of 2048× 2048 pixels when
running at 1 kHz. In order to achieve both sufficient time and spatial resolution for
resolving the evolution of turbulence structures, the active sensor area in the x–y plane
measurement is reduced to 1344 × 704 pixels to increase the camera speed to 5 kHz.
The field of view is about 4λ in the streamwise direction, and extends from below the
crest of the pyramids to 12k above (figure 1c). Data have been obtained in two x–y
planes, the same as in the high-resolution measurement, one aligned with crest lines of
the pyramids and the other plane between them.
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FIGURE 2. (a) The rough insert plate showing the measurement region marked with a
rectangle. (b) The x–z sample areas of time-resolved (dashed rectangle) measurements along
with the location of x–y measurement planes. (c) The x–y sample areas of high resolution
(solid rectangle) and time-resolved (dashed rectangle) measurements.

Using a pulsed laser generating pairs of exposures with in-pair delay of 80 µs
at 2.5 kHz, and frame straddling to record each exposure on a different frame, we
obtain a 2.5 kHz time series of velocity distributions. With 50 % overlap between
interrogation windows, the vector spacing is 147 µm (∼0.3k) for this dataset. The
measurements in two x–z planes located at y= k and 11k are performed using a lower
time resolution, i.e. 800 µs (1.25 kHz), in order to cover a larger field of view. The
location and size of this sample area is marked in figure 2(b). This time resolution
still enables us to observe and follow the development of flow structures in the sample
area at this plane over several frames. To track large structures over longer periods, we
also record x–y plane data at 1.25 kHz with a field of view that extends to ∼17.1λ
horizontally and covers the entire bottom half of the channel with a vector spacing of
437 µm. Each dataset in both x–y and x–z planes contains at least 100 time sequences
with 60 continuous vector maps in each sequence. The delay between sequences is
long enough to make them statistically independent.

2.2. Data analysis methodology
2.2.1. Selection of filter scales

Two-dimensional top-hat filtering is applied to spatially filter the original velocity
field using the filter sizes indicated in table 1. The filter sizes are selected based on the
characteristics of the spatial shear and compensated energy spectra taken from Hong
et al. (2011) and shown in figure 1. Each of these spectra is calculated by applying
fast Fourier transforms to instantaneous data obtained along streamwise lines and
then averaging them for all 5000 realizations. The spatial shear spectra in figure 1(a)
are scaled by the spatially averaged Reynolds stress at the corresponding elevation,
while keeping both horizontal and vertical axes dimensional. This scaling emphasizes
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subtle variations in shape with increasing distance from the wall. The compensated
energy spectra of streamwise velocity components, i.e. E11(k1)ε

−2/3k5/3
1 (E11 is the

streamwise component of TKE, k1 is the streamwise wavenumber, and ε is the
dissipation rate), shown in figure 1(b), are plotted against k1η, where η = (ν3/ε(y))1/4

is the Kolmogorov scale specified in the legend of figure 1(b). The dissipation rate is
calculated directly from the in-plane velocity gradients. As discussed in Hong et al.
(2011), the magnitude of dissipation rate is underestimated by ∼50 % due to the
spatial resolution limit caused by the thickness (∼0.5 mm) of the laser sheet and/or
depth of field of the imaging system (∼0.28 mm). This underestimate would cause a
17 % overestimate of the Kolmogorov scale. We do not correct the values of η because
the specific value does not play a role in the present analysis. Since ε decays with
increasing elevation, η increases, and, correspondingly, so do the values of 2πη/λ and
2πη/k.

To justify our selection of filter scales, it is worth reviewing some of the observed
spectral features. First, the spectral peak at k1 = 2π/λ very near the wall is generated
by the periodic spatial variations in the flow within the roughness sublayer. Second, at
low wavenumbers, the spectral slope in figure 1(a) steepens with increasing distance
from the wall, demonstrating a growing contribution of large-scale turbulence and a
decreasing role of small-scale energy. Third, in the outer layer, referred to as the
region above 10k in the following discussion, the shear spectra at low wavenumbers
show a tendency towards a −7/3 slope, which is the expected value for the inertial-
range shear spectrum. Finally, a clear flattening, i.e. a decrease in slope magnitude
with increasing distance from the wall, occurs at wavelengths in the 1–3k range. This
phenomenon is most pronounced in the presented shear spectra, but is also evident
from the distinct bumps in the high wavenumber range of the compensated energy
spectra (figure 1b). It indicates persistence of excessive roughness-scale (1–3k) energy
at all elevations, including well above the roughness sublayer. Similar observations are
made in oceanic PIV data, with the bumps appearing at a scale corresponding to the
bottom ripple height (Hackett et al. 2011).

Another peak forms at low wavenumbers of the compensated E11(k1) spectra in
the vicinity of k1η ∼ 0.04, i.e. at scales that are slightly larger than the roughness
wavelength. With increasing distance from the rough wall, the magnitude of this
peak tends towards that of inertial-range isotropic turbulence, which is marked by
a horizontal dashed line in figure 2(b). The same trend applies to the spectra of
the wall-normal velocity component (Hong et al. 2011), indicating that turbulence at
scales larger than λ tends towards inertial-range behaviour. Thus, it is reasonable to
assume that the low wavenumber compensated peak corresponds to the inertial-range
structures, while the high wavenumber peak is associated with roughness-scale eddies
generated near and amid the roughness elements. Outside of the roughness sublayer,
there are clear troughs between the peaks in the compensated spectra that seem to fall
approximately at a wavenumber corresponding to 3k. Based on these observations, we
choose three length scales of size ∆ = k, 3k, 6k to filter the original velocity fields.
The corresponding lowest resolved frequencies are one half the values marked by the
vertical and inclined dashed lines in figure 1(a,b), respectively. For example, for a
filter with size k, the Nyquist frequency is π/k. They divide the flow field into flow
structures in four scale ranges: large (>6k ∼ λ), intermediate (3–6k), roughness (1–3k)
and small (<k) scales. In addition, two filters of size ∆ = λ and 2λ are applied to the
low resolution x–y plane data.
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2.2.2. Calculation of SGS turbulence statistics and conditional sampling
As a preliminary step, we examine trends of SGS stresses and energy fluxes. LES

decomposes the flow variables into resolved and unresolved (subgrid-scale) parts by
applying a spatial filtering operation (Rogallo & Moin 1984; Lesieur & Metais
1996; Piomelli 1999; Meneveau & Katz 2000). The filtered variable is given by
f̃ = ∫D f (x′, t)G∆(x, x′) dx′, where D is the computational domain and G∆ is the
filtering kernel with characteristic scale ∆. The filtered velocity satisfies the filtered
momentum equation

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
=− ∂

∂xj

[
p̃

ρ
δij + τij

]
+ ν ∂

2ũi

∂x2
j

, (2.1)

where τij = ũiuj − ũiũj is the SGS stress. Analysis of the energy budget shows that the
energy flux between resolved and unresolved scales, i.e. SGS energy flux, is

Π∆ =−τijS̃ij, (2.2)

where S̃ij = 1/2(∂ ũi/∂xj + ∂ ũj/∂xi) is the filtered strain rate tensor. The SGS flux when
positive appears as a sink term in the kinetic energy equation of filtered velocity and
a source in the evolution equation of subgrid kinetic energy. The SGS stress has to
be modelled to close the filtered momentum equation. Among the numerous models
proposed for the SGS stresses using resolved flow variables, we start by examining
two popular models, namely the static Smagorinsky eddy viscosity introduced by
Smagorinsky (1963), and the traditional dynamic model (Germano et al. 1991; Lilly
1992). Both of them are based on the eddy-viscosity and mixing length assumptions

τ d
ij =−2νT S̃ij, νT = (CS∆)

2 |S̃|, (2.3)

where τ d
ij = τij − 1/3τkkδij is the deviatoric part of the SGS stress tensor, νT is the SGS

eddy viscosity, |S̃| = (2S̃ijS̃ij)
1/2

, and Cs is the Smagorinsky coefficient. In the static
(or dissipation-based) model, Cs is calculated by matching the real and modelled SGS
energy fluxes on an average basis, i.e.

(Cs)
2 = 〈Π∆〉/〈2∆2|S̃|S̃ijS̃ij〉, (2.4)

where 〈〉 indicates ensemble-averaging. This coefficient guarantees the correct mean
depletion of energy from the resolved velocity field. For homogeneous isotropic
turbulence, Cs is about 0.16 (Lilly 1967). It should be noted that, limited by the
two-dimensional planar data, we cannot calculate the real τ d

ii in the estimate of
the Smagorinsky coefficients. Instead, we use τii. For incompressible flow (S̃ii = 0),
〈τ d

ij S̃ij〉 = 〈τijS̃ij〉, i.e. subtraction of the trace does not affect the overall SGS energy
flux. In addition, if the turbulence is isotropic, the subtraction does not even change
the average term-wise dissipation, e.g. 〈τ d

11S̃11〉 = 〈τ11S̃11〉, since 〈τiiS̃11〉 = 0, as shown
in Meneveau (1994). When the flow is anisotropic at the filtering scale, some
deviations from the isotropic estimate may be expected, although it is not possible
to ascertain the effects of anisotropy on the energy flux with our available two-
dimensional data.

In the dynamic model, the coefficients are calculated dynamically during the LES
(which has a resolution of ∆) by filtering the simulated data at a scale α∆, and
determining Cs from

(C∆,DM
S )

2 = 〈LijMij〉/〈MijMij〉, (2.5)
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Lij = ũiũj − ¯̃ui
¯̃uj, (2.6)

Mij =−2∆2(α2| ¯̃S| ¯̃Sij − |S̃|S̃ij), (2.7)

where the overbar indicates spatial filtering at a scale α∆ and Lij is the so-called
Leonard term.

A number of studies, e.g. Liu, Meneveau & Katz (1994), Chen, Katz & Meneveau
(2005), have been carried out to evaluate the performance of SGS models based on
two-dimensional PIV data. Following these studies, a two-dimensional top-hat filter
is employed to spatially filter the velocity field. The spatial derivatives are obtained
using the second-order finite differencing on a coarse grid of the filter size to mimic
numerical evaluation in LES with grid-spacing of ∆. Since we do not have three-
dimensional data to calculate all the required tensor components, the contractions are
approximated by their two-dimensional surrogates, namely

Π∆
xy =−(τ11S̃11 + τ22S̃22 + 2τ12S̃12), Π∆

xz =−(τ11S̃11 + τ33S̃33 + 2τ13S̃13), (2.8)

|S̃2D,xy|2 = 2(S̃11S̃11 + S̃22S̃22 + 2S̃12S̃12), |S̃2D,xz|2 = 2(S̃11S̃11 + S̃33S̃33 + 2S̃13S̃13). (2.9)

All the variables introduced in (2.2)–(2.7) are calculated using the planar components.
In the current analysis, the mean SGS energy fluxes and Smagorinsky coefficients are
obtained based on ensemble-averaging of 5000 realizations and then spatial averaging
along horizontal lines, which consist of 100 data points and span about 2λ. This
process achieves better statistical convergence but eliminates the spatial variability
occurring in the roughness sublayer.

Conditional sampling/averaging is implemented primarily in the current analysis to
identify flow structures associated with significant SGS energy flux or high resolved
strain rate. This approach has already been used extensively to obtain phase- or
ensemble-averaged information associated with organized structures (Antonia 1981).
To perform the sampling, the instantaneous realizations are scanned for regions
satisfying a certain condition, e.g. an SGS energy flux exceeding a specified threshold.
In x–y plane data, the scanning is performed only along a streamwise line located
at a prescribed elevation, whereas in x–z planes the entire field of view is scanned.
Subsequently, the points satisfying the condition along with the surrounding flow
field are shifted to the same position, i.e. to (0, 0) in the x–z plane, and to (0,
prescribed y) in the x–y plane. The results are then averaged to obtain the conditionally
sampled flow field, denoted by [[]]. The averaging procedure substantially increases the
number of samples available for each prescribed condition, which greatly improves the
statistical convergence of measured trends. Note that this procedure also uses unequal
amounts of data in regions located at different distances from the point satisfying the
prescribed condition, which is accounted for during the averaging. Comparisons of
the statistics show that this averaging procedure yields trends that are similar to (but
clearer than) those obtained from sampling at a fixed point. During the analysis, we
compare the resulting flow structure to instantaneous realizations to determine to what
extent the conditional averaging generates artifacts, as it does in some cases.

3. Results
3.1. Mean SGS turbulence quantities

In this section, the mean SGS turbulence quantities including production and
dissipation rate for the x–y plane are obtained as defined in § 2.2.2. Figure 3 illustrates
the mean SGS fluxes for ∆ = k, 3k, 6k, λ and 2λ, along with mean shear production
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10–2

10–3

10–4

0 10 20 30 40 50

FIGURE 3. Mean two-dimensional surrogates of the SGS energy flux for filter scales of k
(�), 3k (•), 6k (N), λ (4) and 2λ (O), along with the in-plane contributions to the spatially
averaged TKE production rate (�).

rate calculated using

[〈Pxy〉](y)=−
[〈u′v′〉∂〈u〉/∂y

]
, (3.1)

where [ ] indicates spatial averaging over all points at the same elevation. This term
represents most of the total TKE production rate, especially after spatial averaging.
As noted before, unlike the results of ∆ = k, 3k and 6k, the SGS energy fluxes at
∆ = λ and 2λ are calculated using the low-resolution dataset. We have also computed
the flux for ∆ = λ using both the original and sub-sampled (one of every 7 vectors)
high-resolution data. Since the results agree well with those obtained using the low-
resolution data filtered at the same scale, they are not shown. For the smallest filtering
scales, the filtering contains 7 × 7 vectors. Larger scales involve more vectors. As
shown in figure 3, all the mean SGS energy fluxes follow a similar trend to the
production. Namely, they increase rapidly as the wall is approached. For the same
elevation, the flux increases with increasing filter scale (note that the vertical axis is
the logarithmic scale), and the differences increase as the wall is approached. This
trend indicates an increasing contribution to the flux from eddies with sizes falling
between the filter scales and the dissipation scale. As discussed later, almost all of
the energy dissipation occurs at scales smaller than λ. However, very near the wall,
turbulence production occurs over a broad range of scales due to the roughness-related
spatial non-uniformities in the mean flow. As this effect diminishes away from the
wall, the shear term becomes the primary contributor to the TKE production rate.
Although scales smaller than ∆ contribute to the TKE shear production rate, this
contribution also diminishes with increasing y. For ∆ = λ (for example) and y > 2λ,
the contribution of subgrid scales to the mean production rate is negligible, as verified
using the present data (not shown). Consequently, [〈Πλ〉] should be close in magnitude
to [〈Pxy〉]. In figure 3, [〈Πλ〉]/[〈Pxy〉] ∼ 0.5 for y > 2λ, consistent with the expected
[〈Πλ

xy〉]/[〈Πλ〉] = 7/15 for homogeneous isotropic turbulence (Van Hout et al. 2007),
although the turbulence in this region is not fully isotropic.
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FIGURE 4. (a) A schematic showing turbulent energy fluxes into, out of and bypassing the
scale range [∆1, ∆2], along with the production and dissipation rates in this scale range. The
horizontal axis has two scales: the top axis is the wavenumber, k1, and the bottom axis is ∆/k,
which decreases with increasing wavenumber. In the present study, the two dashed vertical
bars from left to right correspond to k, 3k, respectively. (b) The measured x–y plane turbulent
energy flux into (�), out of (4) and bypassing (O) the scale range [k, 3k], as well as flux into
(�), out of (N) and bypassing (H) the scale range [3k, 6k].

Considering two filters of size ∆1 and ∆2 (∆2 >∆1), the energy transfer, production
and dissipation associated with scale range [∆1,∆2] are illustrated in figure 4(a). The
energy flux across ∆2, i.e. Π∆2 , can be decomposed into two components:

Π
[∆1,∆2]
in =−Lij

¯̃Sij, (3.2)

Π
[∆1,∆2]
bp =−τ̄ij

¯̃Sij, (3.3)

where ∼ and the overbar represent filtering at ∆1 and ∆2, respectively (∆2 is
equivalent to α∆1 in (2.5)–(2.7)). Following Liu et al. (1994), Lij is the stress
associated with motions with scales falling between ∆1 and ∆2. Accordingly, Π [∆1,∆2]

in
is termed the ‘local’ energy flux from turbulence at scales larger than ∆2 to the [∆1,
∆2] range. Since Π

[∆1,∆2]
bp is equal to the difference between Π∆2 and Π

[∆1,∆2]
in , it

represents the energy transfer from turbulence with scales larger than ∆2 to those that
are smaller than ∆1. Thus, it is referred to as ‘not-so-local’ flux in Liu et al. (1994) or
‘non-local’ flux in the present paper. In the same spirit, Π [∆1,∆2]

out , which is the energy
cascading down from the [∆1, ∆2] to adjacent smaller scales, is also a ‘local’ energy
flux. It is calculated using

Π
[∆1,∆2]
out =Π∆1 −Π [∆1,∆2]

bp (3.4)

(see sketch in figure 4a). For the [∆1, ∆2] range, the balance of energy flux terms is

Π
[∆1,∆2]
in + P[∆1,∆2] =Π [∆1,∆2]

out + ε[∆1,∆2], (3.5)

where P[∆1,∆2] accounts for the energy production due to mean flow strain in the
[∆1, ∆2] range, and ε[∆1,∆2] is the local energy dissipation within [∆1, ∆2]. This
expression follows from the energy balance if one neglects spatial fluxes and assumes
statistically steady flow. Moreover, for our targeted scale ranges [k, 3k], [3k, 6k] and
[λ, 2λ], we assume that the local energy production is negligible compared with
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FIGURE 5. (a) In-plane contributions to dissipation rate calculated using the non-filtered
velocity field (�), and tophat-filtered velocity at length scale of k (•), 3k (N), 6k (H), λ (�),
and 2λ (O). (b) Dissipation efficiency within scale ranges [k, 3k] (�), [3k, 6k] (4) and [λ, 2λ]
(O). The insert shows the dissipation efficiency re-scaled by the span of each scale range.

dissipation. Therefore, the difference between energy fluxes into and out of these scale
ranges is assumed to be equal to the amount of energy being dissipated by molecular
viscosity within that range. Accordingly, we introduce dissipation efficiency

ξ = ([〈Π [∆1,∆2]
in 〉] − [〈Π [∆1,∆2]

out 〉])/[〈Π [∆1,∆2]
in 〉], (3.6)

which quantifies how dissipative the turbulence in the [∆1, ∆2] range is. As an
illustration, figure 4(b) shows mean energy fluxes into, out of and bypassing the
[k, 3k] and [3k, 6k] ranges. Trends of fluxes associated with the two ranges are
substantially different for y > ∆2, i.e. at elevations where the Leonard term does
not disappear. Specifically, [〈Π [k,3k]

bp 〉] grows significantly faster than [〈Π [k,3k]
out 〉] with

decreasing distance from the wall, but they converge in the outer layer. This trend
indicates that the ‘non-local’ flux is the dominant contributor to the near-wall increase
of [〈Π k

xy〉] (Π k
xy = Π [k,3k]

bp + Π [k,3k]
out ) shown in figure 3. Conversely, [〈Π [3k,6k]

bp 〉] is
significantly smaller than [〈Π [3k,6k]

out 〉] over all the present elevations, indicating that
the typical cascading process of turbulence is prominent for this range. Note that
when the energy fluxes are scaled with the local production rate (results not shown),
both [〈Π [k,3k]

out 〉]/[〈Pxy〉] and [〈Π [3k,6k]
out 〉]/[〈Pxy〉] remain almost constant with varying

elevations, while the scaled non-local fluxes still increase near the wall. These
observations are a statistical manifestation of two key phenomena. First, in the
roughness sublayer, the interaction of large-scale flow structures with the roughness
itself enhances the direct energy transfer from large to small scales, bypassing
the typical cascading process. Presumably, this interaction bears a resemblance to
phenomena occurring in canopy turbulent flows discussed by Finnigan (2000). He
proposed an energy bypass scheme in which the aerodynamic drag on the foliage
causes a ‘spectral short cut’, which moves energy directly from large to fine scales.
Second, when the filter scale falls above that of the roughness-scale eddies, the non-
local effects diminish relative to the local ones, demonstrating the significant role of
these eddies in the turbulence dissipation.

In order to further illustrate the impact of the roughness-scale eddies, figure 5(a)
shows the mean ‘two-dimensional dissipation’ calculated based on the in-plane
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velocity gradient (Doron et al. 2001) of the filtered velocity fields

[〈ε∆xy〉](y)= υ
[

3

〈(
∂ ũ′

∂x

)2
〉
+
〈(

∂ ũ′

∂y

)2
〉
+
〈(

∂ṽ′

∂x

)2
〉

+ 3

〈(
∂ṽ′

∂y

)2
〉
+ 2

〈
∂ ũ′

∂x

∂ṽ′

∂y

〉
+ 2

〈
∂ ũ′

∂y

∂ṽ′

∂x

〉]
. (3.7)

In fully resolved isotropic turbulence, this expression would represent 8/15 of the total
dissipation rate. Since filtering reduces the spatial resolution and thus the magnitude
of spatial derivatives, ε∆xy is an estimate of the contribution of scales larger than that
of the filter size to the total molecular dissipation rate. As expected, figure 5(a) shows
that the mean molecular dissipation rate of the filtered field decreases significantly
with increasing filter size. Filtering the data with ∆ = k causes a ∼50 % drop. When
∆ > 3k, [〈ε∆xy〉] is attenuated to less than 5 % of the value for the unfiltered field.
Note also that dissipation rates calculated from two different datasets, with close filter
size, i.e. 6k and λ, display consistent trend and magnitude. The dissipation efficiency
plot (figure 5b) shows that the turbulence in the [k, 3k] range is substantially more
dissipative than that in the [3k, 6k] range. Both efficiency curves rise rapidly near
the wall, where the roughness-scale eddies dissipate more than 70 % of the energy
influx. Notably, the dissipative efficiency of these eddies remains more than 50 % even
well above the roughness sublayer, reaffirming the excess impact of roughness eddies
in the outer layer. Since (3.6) does not account for the difference in the range of
scales involved, the dissipation efficiency at large scales ([λ, 2λ]) appears higher than
that in the [3k, 6k] range. To take this difference into account, dissipation efficiency
multiplied by k/(∆2–∆1) is plotted as an insert in figure 5(b). It indicates that this
pre-multiplied dissipation efficiency increases with deceasing filter size, as expected,
with substantially higher values in the [k, 3k] range.

The measured SGS dissipation-based Smagorinsky coefficients are compared with
those obtained from the standard dynamic model in figure 6. The coefficients are
presented with the horizontal axis scaled by the corresponding filter size. For the
dynamic model, the filter size is taken to be α∆. As a result of this scaling, most
of the coefficients converge to values that increase at y/∆ < 2, and then plateau in
a band of 0.20–0.24, which is higher than the isotropic turbulence value of 0.16.
In general, the dynamic model coefficients are about 10 % higher than the static
values. The presently measured rise and plateau in coefficients is consistent with trends
of scale-dependent dynamic coefficients in LES of high Reynolds number boundary
layer flows by Porté-Agel, Meneveau & Parlange (2000). However, their coefficients
increase from 0.02 very near the wall to ∼0.13 in the outer layer. The reason for our
elevated values of Cs might be associated with using only x–y plane data to calculate
the coefficients. When we re-calculate Cs using x–z plane data (not shown since we
do not have the y-dependence available from these data), the coefficients at y = 11k
fall in the 0.08–0.14 range, closer to values obtained in Porté-Agel et al. (2000). The
discrepancy between the x–y and x–z plane results is caused by the differences in the
contributions of the shear terms, e.g. 〈τ13S̃13〉 is only about 40 % of 〈τ12S̃12〉 at y= 11k.

3.2. Conditionally averaged flow structure based on SGS energy flux
In this section, conditional averaging is applied to study the flow structures associated
with strong SGS energy transfer from large scales to roughness scales. Our primary
interest is in the role of roughness-scale eddies. As a result, most of the conditional
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FIGURE 6. Measured Smagorinsky model coefficients for filter scales of k (�), 3k (•), 6k
(N), λ (H), and 2λ (F), along with standard dynamic model coefficients for filter scale pairs
of [k, 2k] (4), [3k, 6k] (©) and [λ, 2λ] (O). The solid horizontal line, C∆

s = 0.16, corresponds
to the static Smagorinsky coefficient for homogeneous, isotropic turbulence.

analysis is based on a filter scale of 3k, unless stated otherwise. The procedures are
described in § 2.2.2, and a sampling threshold is selected to include events with the
highest 5 % of the SGS energy flux calculated using the two-dimensional surrogates
at corresponding planes (equation (2.8)). As shown by Natrajan & Christensen (2006),
these x–y plane two-dimensional surrogates approximate the true flux very well in
events associated with strong SGS energy flux. Before discussing the conditionally
averaged phenomena, figure 7 presents a sample instantaneous x–y plane realization to
demonstrate typical flow structures associated with strong SGS energy flux before
and after spatial filtering. A large inclined layer containing several clusters of
predominantly negative vorticity is clearly visible across the entire plane (∼6λ) of
the unfiltered flow (figure 7a). The space below this inclined layer is filled with
roughness-scale vortices of both signs, including many powerful positive ones. Above
the layer, the vorticity magnitude decreases abruptly. In the corresponding 3k-filtered
flow (figure 7b), the vortex clusters within the inclined layer are replaced by a series
of discrete vortices that are separated by ∼λ. This pattern clearly shows that the
surface signature persists outside the roughness sublayer. The contours of Π 3k

xy indicate
that the SGS flux maxima develop within the layer, between the vortices. A very
similar pattern of vortices with SGS flux peaks between them has been observed in
the outer part of smooth-wall boundary layers by Natrajan & Christensen (2006). This
pattern was attributed to the signature of hairpin packets in their study. The most
probable mechanisms that generate this structure near the rough wall in the present
study are discussed in § 3.3.

Figure 8 shows the conditionally averaged velocity vector field for a conditioning
point located at y = 11k, as marked with a solid dot at (0, 11k). This plot does
not extend to the wall since the lowest filtered flow elevation is constrained by the
filter size. Clearly, a large-scale inclined shear layer extends across the entire field
of view of 5λ in the streamwise direction. A strong ejection (u′ < 0, v′ > 0) occurs
downstream and below the conditioning point, and a weaker sweep (u′ > 0, v′ < 0)
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FIGURE 7. An instantaneous sample of (a) the original, (b) the corresponding 3k-filtered
velocity vectors and colour floods of spanwise vorticity along with black contour lines of
Π 3k

xy h/U2
τUc (available only in the region marked by the dashed box). For clarity, only one in

four vectors is plotted, in both directions.
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FIGURE 8. Conditionally averaged filtered vector map for the highest 5 % of Π 3k
xy at y = 11k.

The point where the condition is satisfied is shifted horizontally to x/λ= 0 (marked by a solid
dot). For clarity, only one in four vectors is plotted, in both directions. The inclined dashed
line marks the shear layer.
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FIGURE 9. Distributions of (conditionally averaged) (a) [[ω̃3k
z ]]h/Uc, (b) [[Π 3k

xy ]]h/U2
τUc,

(c) [[ũ′3k
ũ′

3k]]/U2
τ , (d) [[ṽ′3k

ṽ′
3k]]/U2

τ , (e) [[τ 3k
11 ]]/U2

τ and (f ) [[τ 3k
22 ]]/U2

τ for the highest 5 % of
Π 3k

xy at y= 11k.

covers the area upstream and above it. The corresponding vorticity field (figure 9a)
shows an inclined layer of negative vorticity bounded by substantially weaker positive
vorticity below and above. Within this layer, the negative vorticity peaks slightly
downstream of the sampling point. This trend is consistent with the typical position
of regions with high strain rate between vortices, and consequently the fact that
SGS energy flux peaks between vortices in instantaneous realizations (figure 7b). The
corresponding distribution of SGS energy flux [[Π 3k

xy ]] (figure 9b) peaks at (0, 11k),
by construction. A region of elevated SGS flux extends behind this point at a higher
inclination angle compared with that of the vorticity. The flux is low downstream and
below as well as upstream and above the conditioning point, but remains relatively
high at low elevations upstream of the peak. As will be discussed later, this pattern
is associated with the entrainment of near-wall flow structures from the roughness
sublayer. Figures 9(c) and 9(d) show the corresponding resolved TKE components,

i.e. [[ũ′3k
ũ′

3k]] and [[ṽ′3k
ṽ′

3k]], respectively. Their distributions vary, but the maxima of
both components are located downstream and below the SGS flux peak, well within
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of the data to the average values of SGS energy flux (�, 〈Π 3k

xy 〉) and SGS kinetic energy
components (©, 〈τ 3k

11 〉; 4, 〈τ 3k
22 〉). The top axis displays the corresponding threshold value in

units of the mean SGS energy flux.

the ejection region (figure 8). They also have minima centred upstream and above

the conditioning point. The resolved in-plane TKE, 1/2[[ũ′i
3k

ũ′i
3k]] (not shown), has a

similar pattern to the dominant contributor [[ũ′3k
ũ′

3k]]. The corresponding distributions
of normal SGS stress components, [[τ 3k

11 ]] and [[τ 3k
22 ]], are presented in figures 9(e) and

9(f ). Their spatial distributions are similar to that of the SGS energy flux, peaking
right at the conditioning point. Clearly, the SGS kinetic energy does not achieve a
maximum at the same location as that of the resolved TKE. However, one should keep
in mind that these observations do not represent a contradiction to similarity-based
or dynamic SGS stress models (Liu et al. 1994; Meneveau & Katz 2000), which
are based on the smallest of the resolved scales. In fact, using a filter with size 2∆
and calculating the modelled stresses (not shown) gives spatial distributions that are
consistent with those of figures 9(e) and 9(f ). The structures causing the shift in the
location of the resolved TKE are much larger than the filter scale.

Although the conditionally averaged flow structure and distribution of stresses
depend quantitatively on the threshold level, the general flow pattern remains
consistent. Insensitivity of flow structure involved with high SGS flux to the threshold
level is also reported by Piomelli et al. (1996) and Natrajan & Christensen (2006) for
smooth-wall boundary layers. Figure 10 compares the fraction of points at elevation
y = 11k in which Π 3k

xy exceeds a certain threshold level to the contribution of these
points to the overall flux. Threshold levels corresponding to a number of fractions
have a nonlinear distribution, as indicated at the top horizontal axis. Evidently, Π 3k

xy
is positive in 54 % of the points and the average positive contribution (including
only positive contributions) is 154 % of the average flux. It is remarkable that a
small fraction of the flow field with high Π 3k

xy generates most of energy flux from
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FIGURE 11. Distributions (x–z plane) of (a) [[ω̃3k
y ]]h/Uc, (b) 1/2[[ũ′i

3k
ũ′i

3k]]/U2
τ and (c)

1/2[[τ 3k
ii ]]/U2

τ for the highest 5 % of −τ 3k
11 S̃3k

11 at y = 11k. Distributions (x–y plane) of (d)

1/2[[ũ′i
3k

ũ′i
3k]]/U2

τ for the highest 5 % of −τ 3k
11 S̃3k

11 at y= 11k.

resolved to subgrid scales (positive flux). For example, 5 % of the data with the
highest flux, corresponding to a threshold of Π 3k

xy > 7.2〈Π 3k
xy 〉 (the condition used

in figures 8 and 9), contributes about 50 % of the positive flux. Similarly, 9 % of
the points contribute 67 %, and 18 % of the points contribute 84 % of the positive
flux. The same trend applies to Π 3k

xy < 0, i.e. a small fraction of the flow field,
where the backscatter of energy is large, generates most of the negative flux. These
trends agree with DNS results reported by Piomelli et al. (1996) for smooth-wall
boundary layers at low Reynolds numbers. In contrast, except for extreme (positive or
negative) energy flux events, the contributions to SGS kinetic energy components, also
presented in figure 10, are not significantly different from the corresponding fraction
of realizations. For example, points satisfying the above-mentioned highest 5 % flux
condition contribute ∼15 % of the total SGS kinetic energy. A general conclusion of
these observations is that an overwhelming majority of SGS energy flux is caused by a
small fraction of flow structures. However, SGS kinetic energy and stresses are much
more broadly distributed.

To obtain an x–z plane view of the structure that generates the large SGS energy
flux, we repeat the conditional sampling using x–z plane data at the same elevation
(y = 11k) based on high −τ 3k

11 S̃3k
11, which is the only common term between Π 3k

xy and
Π 3k

xz . Two pairs of counter-rotating vortices with an in-pair spacing of ∼0.5λ appear
in the wall-normal vorticity distribution (figure 11a). The pair located downstream of
the sampling point creates a region with backflow between the vortices, whereas the
pair located upstream induces a forward flow between the vortices. Consequently, the
sampling point is subjected to strong streamwise (resolved-scale) contraction, which
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FIGURE 12. Distributions (x–z plane) of (a) [[ω̃3k
y ]]h/Uc, (b) 1/2[[ũ′i

3k
ũ′i

3k]]/U2
τ and (c)

1/2[[τ 3k
ii ]]/U2

τ for the highest 5 % of Π 3k
xz at y = 1k. Distributions (x–y plane) of (d)

1/2[[ũ′i
3k

ũ′i
3k]]/U2

τ for the highest 5 % of Π 3k
xy at y= 4.2k.

causes the maxima of SGS kinetic energy (figure 11c) and flux at this location,
along with spanwise expansion. These patterns are consistent with and complement
the observed ejection-sweep structure in the x–y plane (figure 8). Slicing the inclined
shear layer with a horizontal plane would position the ejection region downstream
of the conditioning point and the sweep region upstream of it. At y = 11k, the
downstream pair has higher magnitude of vorticity and induces stronger backflow
than the upstream pair. Accordingly, the resolved TKE (figure 11b) peaks downstream
of the sampling points. The peak location coincides with that of ejection in the
corresponding x–y plane results obtained by applying the same condition (figure 11d).
The observed flow structure raises the question of the effect of streamwise contraction
on the SGS energy flux in our conditionally averaged results. Although the shear term
plays a major role, the contribution of streamwise contraction is substantial. Based
on the x–y plane data, −[[τ 3k

11 S̃3k
11]] contributes 38 % of [[Π 3k

xy ]], comparable to the 44 %
contributed by the shear term at the sampling point. In the x–z plane 42 % of [[Π 3k

xz ]]
comes from the −[[τ 3k

11 S̃3k
11]] term at y= 11k.

Elevation effects on the conditionally averaged flow structure generating high SGS
flux events are examined by repeating the analysis using sampling points or planes
located closer to the wall. The x–z plane data analysis (figure 12a–c) is performed
within the roughness sublayer, at y = k. Here the highest 5 % condition is applied
only based on Π 3k

xz , but τ 3k
11 S̃3k

11-based analysis shows similar patterns. The conditionally
averaged, resolved vorticity distribution (figure 12a) exhibits two pairs of counter-
rotating vortices, which is qualitatively similar to that in the outer layer (figure 11a).
However, at this elevation, the upstream pair is stronger than the downstream one,
and accordingly, the resolved TKE (figure 12b) peaks upstream of the sampling
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FIGURE 13. Distributions of [[|ω̃3k
y |]]h/Uc at (a) y= 1k and (b) y= 11k for the highest 5 %

of Π 3k
xz .

point. Constrained by the filter size, we cannot perform the conditional averaging
at y = k in the x–y plane. Instead, the averaging is performed at y = 4.2k, a little
higher than the lowest elevation where the filtered strain rate is available for ∆ = 3k.
Figure 12(d) shows the x–y plane distribution of resolved kinetic energy, sampled
based on a threshold for Π 3k

xy . As is evident, the resolved TKE peak shifts to the
sweeping region above and upstream of the conditioning point, consistent with the
x–z plane results (figure 12b). In agreement with the present trends, Hong et al.
(2011) show that sweeping motions are the primary contributors to momentum flux
(Reynolds shear stress) in the roughness sublayer, whereas ejections are dominant in
the outer layer. Except for the displacement associated with conditioning location, the
x–y plane distributions of spanwise vorticity, SGS kinetic energy and flux (not shown)
are similar to results in the outer layer (figure 8). They indicate that the mismatch
between the location of resolved and SGS kinetic energy maxima persists near the
wall, with the latter peaking at the conditioning point (figure 12c). In both planes,
the anisotropy in (instantaneous) SGS stresses peaks at the conditioning point (not
shown), suggesting that energy transfer and anisotropy are coupled. Both of them also
decay with increasing distance from the wall. For example, for points satisfying the
high SGS energy flux condition, |[[τ 3k

11 /τ
3k
33 ]]| = 2.6 at y = 1k and 1.1 at y = 11k. Also,

|[[τ 3k
11 /τ

3k
22 ]]| = 4.1 at y= 4.2k and 1.9 at y= 11k.

In contrast to the similarity in vorticity distributions (figures 11a and 12a), the
distributions of the vorticity magnitude reveal significantly different features. Near
the wall, the region of high vorticity magnitude has a cross pattern (figure 13a),
suggesting (although not proving) the co-occurrence of two counter-rotating vortex
pairs (figure 12a). Conversely, in the outer layer, the cross pattern disappears and is
replaced by an oval peak centred at the sampling point (figure 13b). This distribution
implies that the two vortex pairs do not always appear at the same time, and that
the pattern in figure 11(a) is likely an artifact of averaging. The justification of this
statement is provided by examining instantaneous realizations in § 3.3.

The effect of the filter scale on the flow structure is investigated by comparing the
statistics for ∆ = λ to those obtained for ∆ = 3k at the same elevation (y = 11k) and
SGS energy flux threshold (the highest 5 %). The Πλ

xy-based analysis is performed
using the low-resolution x–y plane data (see table 1), and representative results are
provided in figure 14(a,b). The long inclined negative-vorticity layer bounded by
positive regions on both sides is evident in figure 14(a), in agreement with the results
obtained for a smaller filter. However, the negative vorticity peaks within the layer are
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FIGURE 14. Distributions of (a) [[ω̃λz ]]h/Uc and (b) 1/2[[ũ′i
λ

ũ′i
λ]]/U2

τ for the highest 5 % of
Πλ

xy at y= 11k.

pushed farther away, to a distance of approximately one filter size from the sampling
point. Similar to the results for ∆= 3k, the resolved TKE (figure 14b) is also minimal
at the peak of SGS kinetic energy, but its magnitude is balanced in the sweep and
ejection regions, unlike the ejection dominance observed with the smaller filter. This
discrepancy could be explained by the tendency of the sweep upstream to carry more
large-scale energy compared to the ejection downstream. Consequently, increasing the
filter size retains relatively more resolved TKE in the sweep region.

3.3. Flow structures associated with strong SGS energy flux
3.3.1. Observations on instantaneous realizations

In this section, we examine instantaneous realizations in order to clarify their
differences and similarities with flow structures revealed by conditionally averaged
results. An instantaneous sample of the original and filtered flow field at the x–y plane
involved with high Π 3k

xy has already been presented in figure 7. Figure 15 shows an
x–z plane view of a typical instantaneous flow pattern with high Π 3k

xz at y = k. The
unfiltered wall-normal vorticity field (figure 15a) is filled with roughness-scale (i.e.
scale of k) eddies with opposite signs. When a 3k filter is applied to this vorticity
map (figure 15b), it reveals two trains of counter-rotating vortices that intersect each
other. The spacing between adjacent vortices in each train is about λ. The distribution
of Π 3k

xz , marked by black contour lines, peaks at the intersection of the vortex trains.
The neighbouring vorticity resembles the pattern of the two counter-rotating vortex
pairs observed in the conditional average (figure 12a). Although the instantaneous
flow fields vary substantially, the peaking of SGS flux at the intersection of vortex
trains is a persistent phenomenon at this elevation. Another instantaneous sample of
filtered vorticity (figure 15c) provides clearer evidence for the existence of large-scale
structures. As shown in the figure, two trains of counter-rotating vortices extend
across the entire field of view, i.e. ∼6λ in the streamwise direction. These trains are
nearly parallel, with ∼λ/2 spacing between them upstream and downstream of their
intersection, where Π 3k

xz peaks.
Conversely, in the outer layer (at y = 11k), the intersecting pairs of counter-rotating

vortex trains are rare, as demonstrated by a typical instantaneous sample of filtered
vorticity (figure 15d). Instead, Π 3k

xz peaks inside the vortex train, with much lower
magnitude than that near the wall. This representative sample suggests that the co-
presence of two vortex pairs in the outer layer (figure 11a) is an artifact of the
averaging procedure. Accordingly, the conditionally averaged distribution of vorticity
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FIGURE 16. The p.d.f. of the minimum distance between two counter-rotating wall-normal
vortices in x–z plane located at y= 1k (�), y= 5.5k (©) and y= 11k (4).

magnitude (figure 13b) does not have a cross pattern at y = 11k. Nevertheless, the λ
spacing between vortices within a single train, as a roughness signature, is evident
both in the x–y plane (figure 7) and x–z plane views (figure 15d) of instantaneous
samples.

To further illustrate the persistence of roughness signature, we calculate the
probability density function (p.d.f.) of minimum distance between vortices of opposite
signs at different x–z planes. To eliminate the effect of filter size, these vortices are
identified based on the unfiltered swirling strength. Vortices with strength of less than
10 % of the averaged value and size of less than k (∼0.15λ) are not accounted for, in
order to reduce the uncertainty. The results are summarized in figure 16. At y= k, the
p.d.f. has a peak at 0.35λ, slightly lower than the spacing between two trains, which
varies between 0.5λ and λ in the instantaneous sample (figure 15b). With increasing
elevation, the p.d.f. broadens. At y = 11k, although counter-rotating vortex trains are
rarely observed, at least within our field of view (∼3λ in the spanwise direction), the
most probable vortex spacing is still ∼0.5λ. This signature coincides with the nearest
spanwise spacing between roughness elements, and is not related to the distance from
the wall, which is substantially larger than λ at this elevation. Like the spectral bumps
shown in figure 1, this preferred 0.5λ spacing well above the roughness sublayer is
another clear indication of the persistence of roughness signature.

The time-resolved PIV measurements provide us with the ability to observe the
evolution of turbulent structures near the wall. Figure 17(a) is an x–z plane sample

snapshot of the distribution of ũ′
3k

at y = k, showing a broad sweep impinging
on the rough surface. The high Π 3k

xz is produced due to the contraction at the
interface between the sweep and a narrow ejection region within the sweeping zone.
This pattern is strikingly similar to the corresponding conditionally averaged result
(figure 12b), indicating that the conditional averaging does capture the characteristic
features of the turbulent structure near the roughness. Figure 17(b) illustrates a process
involving abrupt lifting of near-wall vortices within an area surrounded by a sweeping
flow. The dashed red line marks the trajectory of a vortex, which rises from y ∼ 3k
to ∼8k over a streamwise span of 3λ under the influence of a local ejection that
develops below the sweep. These features agree with the near-wall conditionally
averaged results (figure 12d), where the resolved TKE peaks in a sweeping region
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FIGURE 17. (a) An instantaneous sample of 3k-filtered velocity fluctuations, colour floods of

ũ′
3k
/Uc, and black contour lines of Π 3k

xy h/U2
τUc at y = 1k showing a strong sweep impinging

on the roughness. For clarity, only one in two vectors is plotted, in both directions. (b) An
instantaneous sample of unfiltered velocity fluctuations, colour floods of unfiltered spanwise
vorticity ωzh/Uc at x–y plane showing a vortex lifting process near the wall. The dashed red
line indicates the trajectory of the rising vortex across the plane.

surrounding an SGS flux peak. The sweep brings high momentum/energy flow to
the vicinity of the wall, which interacts with the roughness elements, causing abrupt
ejections. A plausible mechanism that produces such an ejection is introduced in the
following section. Furthermore, the structures in figure 17 represent an earlier phase
of the inclined vortex train formation (figure 7). The time-resolved data show that the
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vortical structures in the inclined layer are ejected from a series of adjacent pyramids
aligned in the streamwise direction, and consequently, are spaced by λ. These vortices
typically have a negative spanwise vorticity and are generated at different times, with
the one at a higher elevation ejected earlier. Although the streamwise spacing between
vortices increases, presumably due to the increasing advection velocity with elevation,
the vortex blob at higher elevation still consists of a bundle of roughness-scale vortices
contributing to observed spectral bumps. The time-resolved data also indicate that
the positive spanwise vortices are often generated from the roughness due to flow
induced by negative ones transported above. Therefore, they are observed to form
inclined trains underneath the region of large-scale negative vorticity as part of the
same process that lifts the spanwise structures away from the wall (figure 7b).

3.3.2. Mechanism for generation and transport of the coherent structures
The existence of inclined large-scale structures with negative spanwise vorticity has

been reported in a number of studies of turbulent structures over smooth walls. The
formation mechanism of these structures has been attributed to the popular hairpin
packet model introduced by Adrian et al. (2000). Although the evidence for this model
is compelling for smooth-wall turbulence, we think it is less likely to occur in the
present flow, especially near the wall, for the following reasons.

(i) The roughness would disrupt the formation of near-wall hairpin vortices.
(ii) In the outer layer, roughness-scale signatures are still embedded in the scales of

vortices and the spacing between them.
(iii) Clear signatures of hairpin vortex packets are not present in our x–z plane data,

such as elongated low-speed streaks with counter-rotating vortex pairs on both
sides. We do not mean to imply that there are no low-speed regions, but that their
spatial extent differs from those in smooth-wall turbulence. In fact, figure 17(a)
shows such a low-speed area, but it is patchy and has a short streamwise extent. It
should be noted that Wu & Christensen (2010) still attribute these patchy regions
to low-speed streaks induced by hairpins.

(iv) In x–y planes, the counter-rotating vortices that form a pair do not have equal
strength, and the negative ones are almost always stronger. As noted earlier, the
time-resolved data show that the near-wall positive vortices are often induced
from the roughness by the negative ones travelling above. However, in the model
proposed by Wu & Christensen (2006), these pairs, referred to as retrograde and
prograde vortices, result from slicing an �-hairpin vortex by the imaging plane,
which would require the two counter-rotating vortices to have the same strength.

(v) The ejections that cause high SGS flux near the wall occur within regions of
strong sweep.

To explain the phenomena observed, we propose a ‘U shape’, illustrated in figure 18,
as the fundamental vortical structure in the present rough-wall flow. The formation
of the structures is related to the roughness-induced spatial non-uniformity in the
streamwise velocity distribution shown by our x–z plane data at 0 < y < 2k (Hong
et al. 2011). The velocity is low along the pyramid ridgeline with a minimum above
the forward face of the pyramid, and relatively high between the ridgelines. In such
a domain, a predominantly spanwise vortex formed at the low-velocity regions is
prone to being stretched axially by the faster streaming flow between the pyramids.
Consequently, we postulate that this process generates U-shaped structures with heads
along the ridgeline and legs extending forward between them. Although such a
phenomenon could be associated with flow separation and vortices wrapping around
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ejection and sweep Ejection

RidgelineHigh-speed flow 
between the ridgelines

Sweep

FIGURE 18. Schematics for the near-wall flow structure formation and interaction.

the roughness elements, the structures and processes described here develop above
the rough surface. In reality, the quasi-streamwise legs of this structure are generally
oriented asymmetrically. Nevertheless, during early phases, both counter-rotating legs
have negative spanwise vorticity, and exhibit streamwise and wall-normal components
of opposite sign. Imposed by the roughness geometry, these structures are initiated
every λ/2 in the spanwise direction. Therefore, the minimum distance between their
adjacent legs shortly after formation is less than λ/2, consistent with the p.d.f. of
spacing between x–z plane counter-rotating vortices shown in figure 16. The space
between two legs of the same U-shaped structure is subjected to a sweeping flow,
while the ejections generated between two adjacent legs of neighbouring structures
tend to lift them away from the wall. Figure 18 also illustrates how the presence of
multiple structures might create the intersecting pattern of counter-rotating vortices as
well as the sweep-ejection interface observed in the instantaneous and conditionally
averaged distributions. The contracting flow at this sweep-ejection interface would
produce strong SGS energy flux there. As noted before, intense near-wall SGS flux
events frequently occur under large-scale sweeps, which bring high-momentum fluid
to the wall, enhancing the strength of the U-shaped structures formed around the
roughness elements. This process inherently involves direct production of SGS energy
from turbulence originally at scales that are much larger than the filter size, possibly
contributing to the increase in non-local energy flux near the wall (figure 4).

The distinct intersecting pattern diminishes rapidly at higher elevations as the rising
legs interact with each other. However, as the spectra, p.d.f. of vortex spacing, and
conditionally averaged distributions demonstrate, the roughness signature persists. In
the outer layer, the significantly lower SGS energy flux is mainly produced by
contraction of bundles of roughness-scale eddies within isolated remnant vortex trains.
Nevertheless, these trains still maintain a preferred alignment consistent with that
occurring near the wall, i.e. the positive ωy train is more likely to be aligned in the
quadrant 1–3 direction, and the negative ωy train in the quadrant 2–4 direction. The
vorticity distribution conditioned on high Π 3k

xz combines both signatures (figure 11a),
and therefore still displays two pairs of counter-rotating vortices in the vicinity of the
conditioning point, although the two trains are not present at the same time.

Using the U-shaped vortices as building blocks, a possible mechanism for the
vortex train formation along with its x–y plane signatures is illustrated in figure 19.
At the x–y plane aligned with the pyramid ridgeline, the time-resolved data show
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Region of ejection
Region of ejection

Region of sweep
Region of sweep
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y
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Region of negative

Region of high SGS flux

 

(a)

(b)
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Region of high 
SGS stressesVortex 3

Vortex 2

Vortex 1

FIGURE 19. (a) Schematics of a possible mechanism generating a train of coherent structures
(U-shaped structures) above a rough wall. (b) The instantaneous x–y ridgeline plane view of
the inclined vortex train. (c) An x–y plane view of a conditionally averaged flow field based
on strong SGS energy flux.

that spanwise vortices form near the pyramid crest and remain near the wall for a
while. Occasionally, they rise away from the surface along trajectories similar to that
presented in figure 17(b). As discussed earlier, although such intense events appear in
a small fraction of the realizations, they dominate the SGS flux. Once the ejection-
induced lifting is initiated, it involves multiple structures that are generated from
different roughness elements at different times, which form an inclined vortex train.
The inclination angle of this train (figure 7) and the trajectory of the rising vortex
(figure 17) fluctuate around the angle of the conditionally averaged shear layer, 16◦

(figure 8). This lifting process could be contributed by both entrainment of large-scale
outer-layer structure and ejection induced by interacting legs of neighbouring U-shaped
vortices. Since the latter mechanism is supported by the near-wall time-resolved data
(figure 17b), we would like to elaborate on this process using an illustration presented
in figure 19(a). As an outer-layer sweep passes along the wall, the location where
strong U-shaped vortices are generated shifts downstream with time. Vortex 1, i.e.
the first vortex produced and lifted by the local ejection at t0 − 2δt, is convected
downstream at a faster rate than the near-wall flow along the trajectory indicated
by the dashed line. Here, δt is the advection time of the large-scale sweep between
two roughness elements. Vortex 2 is generated later at t0 − δt, presumably by the
same sweep. Consequently, vortex 2 lags behind and is located below vortex 1. As
the sweep proceeds, it produces an inclined train of such vortices, illustrated as the
three structures depicted at t0. The resulting flow field would yield the signature
sketched in figure 19(b) at the x–y ridgeline plane, consistent with the instantaneous
sample presented in figure 7. Conditional averaging based on strong SGS flux, which
captures such extreme events, would produce the distributions of vorticity, shown
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in figure 19(c). Furthermore, as a U-shaped structure rises from the surface, the
area below it becomes filled with entrained roughness-scale eddies (figures 7a and
17b), which fall in the subgrid scale in the present analysis. The SGS energy flux
increases when these eddies are strained by the resolved flow, and peaks when they are
subjected to the contraction at sweep-ejection interface. Consequently, it is reasonable
to expect that the conditionally averaged regions of high SGS kinetic energy and flux
are inclined at a steeper angle compared with that of the large-scale vortex train,
consistent with figure 9(b,e,f ). When the conditional averaging is based on the near-
wall flow, one should expect that the resolved TKE peaks in the sweep region, under
which the structures are more likely to be generated and lifted. The resolved TKE
peak shifts to the ejection region in the outer layer as the rising structures interact
and increase in scales. Accordingly, the distinct intersecting signature in the x–z plane
disappears.

3.4. Features of the SGS flow field based on the resolved turbulence
The previous sections have shown the substantial contribution of coherent structures
to the SGS energy transfer. Since LES of high Reynolds number flows does not
resolve the roughness-scale phenomena, as a first step in modelling the SGS energy
transfer in the presence of coherent structures we explore methods of identifying these
structures using resolved quantities. Figures 20(a) and 20(b) show 3k-filtered velocity
fluctuations using conditional averaging based on high −∂ ũ3k/∂x and −∂ ũ3k/∂y
(highest 5 %) at y = 11k, respectively, following the procedures described earlier in
this paper. Inclined shear layers of different shapes bounded by ejection below and
sweep above appear under both conditions. However, in the ∂ ũ3k/∂x-based results
(figure 20a), the ejection region shifts to a higher elevation downstream of the
conditioning point, creating what appears to be a discontinuity in the inclined layer.
The inclination of this layer upstream and downstream of the discontinuity is still
∼16◦, in agreement with the Π 3k

xy -based analysis. On the other hand, conditioning on
−∂ ũ3k/∂y (figure 20b) reduces the inclination angle of the shear layer locally near
the conditioning point and shifts the ejection region upstream and to an area below
this point. The discrepancies between the large-scale flow structures in figure 20 are
imposed by the local flow features associated with each condition, which preferentially
accentuates a specific region in the coherent structure. To demonstrate this point,
figure 20(c) depicts part of the previously discussed flow, highlighting the regions
of high −∂ ũ3k/∂x and −∂ ũ3k/∂y. High −∂ ũ3k/∂x develops at the transition between
sweep and ejection, just upstream of the rising U-shaped vortex. Consequently, the
region of highest vorticity is located downstream of the conditioning point (figure 20a).
Conversely, high −∂ ũ3k/∂y is expected to occur very near the base of the U shape,
where ω̃3k

z is high, and the vortex still lies in a horizontal (x–z) plane, consistent with
figure 20(b).

The x–z plane perspectives of the ∂ ũ3k/∂x-based conditional averaging has also been
explored at both y= k and y= 11k. The vorticity and resolved TKE maps (not shown)
display trends that are similar to those obtained using Π 3k

xz or −τ 3k
11 S̃3k

11 as conditioning
variables (figures 11 and 12). The similar trends include the two pairs of counter-
rotating vortices, the dominance shift from sweeps upstream of the conditioning point
at y = k to ejections downstream at y = 11k. These results confirm that the major
characteristics of the coherent structures that are responsible for high SGS energy flux
can still be captured without resolving flow features of the roughness (height) scale.
The same conclusion should also hold for flow structures of scales larger than λ since
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FIGURE 20. Conditionally averaged filtered velocity fluctuation and vorticity map for the
highest 5 % (a) −∂ ũ3k/∂x (b) −∂ ũ3k/∂y at y = 11k. For clarity, only one in eight vectors is
plotted in the horizontal direction and one in four vectors is plotted in the vertical direction.
(c) A schematic showing peak locations of −∂ ũ3k/∂x and −∂ ũ3k/∂y with respect to coherent
structure.

the main features of coherence structure persist in Πλ
xy-based conditional averages

(figure 14).
As discussed before, due to the presence of coherent structures, the regions of

high SGS stress components do not coincide with those of the corresponding high
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resolved TKE. Nevertheless, there is substantial correlation between resolved strain
and SGS stress components that are spatially displaced, or even between different
stress and strain components. We have investigated the cross-correlations between
∂ ũ3k

i /∂xj and SGS stresses, denoted as ρ[∂ ũ3k
i /∂xj(x, y), τ 3k

ij (x, y)], using only data
conditioned on high Π 3k

xy at (0, 11k), as before. Of the correlations at the same
location, high values (>0.5) are only obtained along the inclined shear layer, and only
for ρ[∂ ũ3k/∂y(x, y), τ 3k

11 (x, y)] and ρ[∂ṽ3k/∂y(x, y), τ 3k
12 (x, y)](not shown). Intriguingly,

the correlation of τ 3k
12 with ∂ ũ3k/∂x yields a much lower value (<0.2) than those

with ∂ṽ3k/∂y. This difference suggests that out-of-plane flow must play a significant
role since ∂ ũ3k/∂x and ∂ṽ3k/∂y would exhibit the same trends if the flow were
predominantly two-dimensional. Another notable result is the poor correlation between
∂ ũ3k/∂y and τ 3k

12 at the same location, consistent with Liu et al. (1994).
As for spatially displaced strain and stress components, figure 21 presents three

sample correlations between ∂ ũ3k
i /∂xj at (0, 11k) and the stress in the vicinity of

this point. The distribution of ρ[∂ ũ3k/∂x(0, 11k), τ 3k
11 (x, y)], shown in figure 21(a), has

negative maxima that coincide with the negative vorticity peaks. This co-occurrence
indicates that the SGS kinetic energy in the streamwise direction is preferentially
elevated within the shear layer vortices during periods of strong streamwise contraction
at the conditioning point. The positive correlation is maximum in the ejection region
below the shear layer, and has a smaller peak at the edge of the sweeping area.
This trend implies that when the magnitude of ∂ ũ3k/∂x falls above the mean value
of the conditionally averaged data, i.e. the contraction is particularly strong, the stress
is lower than the mean values in the ejection region, and vice versa. During high
contraction events, the SGS energy is concentrated in the inclined shear layer. The
high ρ[∂ ũ3k/∂y(0, 11k), τ 3k

11 (x, y)] near the conditioning point, as shown in figure 21(b),
confirms the close coupling between the resolved shear strain and the primary
contributor to the SGS kinetic energy in the shear layer. The correlation between
∂ ũ3k/∂y and τ 3k

12 (figure 21c) is locally quite poor. It only reaches a negative peak of
∼0.3 at a location about 1k displaced above the conditioning point. This trend seems
to be a manifestation of increasing transport of subgrid momentum away from the wall
with increasing strength of resolved structures.

4. Summary and discussions
Utilizing a series of high-resolution and time-resolved PIV datasets, we have

investigated the SGS energy transfer among different scales in a rough-wall channel
flow. Based on the energy spectra, we divide the turbulence into four scale ranges:
large scales (>6k ∼ λ), intermediate scales (3–6k), roughness scales (1–3k) and small
scales (<k). The ensemble-averaged results show that with decreasing distance from
the wall, there is a marked increase in the non-local SGS energy flux from scales
larger than 3k to small scales. Moreover, the fraction of turbulence dissipated by
eddies in the roughness scale is substantial in the outer layer, and is particularly
high near the wall. This trend is consistent with the excessive amount of intense
roughness-scale eddies that are generated near the wall and dispersed well above the
roughness sublayer.

Conditional averaging is applied to investigate the flow structures that dominate
energy transfer from large-scale to roughness-scale range. The analysis shows that a
small fraction of the flow produces a considerable fraction of the SGS energy flux, e.g.
5 % of the flow volume generating the highest flux is responsible for 50 % of the total
energy flux. In x–y planes, the conditionally averaged flow exhibits a large inclined
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FIGURE 21. Contours of correlations between resolved velocity gradients and SGS
stress components: (a) ρ[∂ ũ3k/∂x(0, 11k), τ 3k

11 (x, y)]; (b) ρ[∂ ũ3k/∂y(0, 11k), τ 3k
11 (x, y)]; (c)

ρ[∂ ũ3k/∂y(0, 11k), τ 3k
12 (x, y)]. The dashed rectangles mark the region where correlations are

calculated. The background for (a) is the conditionally averaged vorticity based on high
−∂ ũ3k/∂x shown in figure 20(a). The background for (b,c) is the conditionally averaged
vorticity based on high −∂ ũ3k/∂y shown in figure 20(b).

shear layer containing negative spanwise vorticity, bounded by an ejection below and
a sweep above. Near the wall, the sweeping flow is dominant, while the ejection is
stronger in the outer layer. In x–z planes, the conditional flow field is composed of two
pairs of counter-rotating vortices that surround and induce a contracting flow at the
peak of SGS flux. The direction of this flow is consistent with the location of sweep
and ejection regions in x–y planes.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

40
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.403


124 J. Hong, J. Katz, C. Meneveau and M. P. Schultz

Examination of instantaneous realizations in the roughness sublayer reveals a
flow pattern that largely agrees with the conditionally averaged results. It further
shows the presence of the counter-rotating vortex pairs at the intersection of two
vortex trains, each containing multiple λ-spaced vortices of the same sign. We
propose a flow structure and generation mechanism that explains the observed planar
signatures. The mechanism consists of the formation of U-shaped quasi-streamwise
vortical structures that develop as spanwise vorticity is stretched in regions of high
streamwise velocity between roughness elements. They are lifted away from the
wall by the ejection resulting from other U-shaped structures generated at adjacent
roughness elements. Existence of these structures has been supported recently by
three-dimensional, high-resolution holographic PIV measurements (Talapatra & Katz
2012). Statistical analysis of the three-dimensional alignment of vorticity provides
evidence of structures wrapping around the region of low velocity along the ridgeline.
Moreover, the analysis shows that ωz is dominant at 0 < y < k, and the formation of
elongated, sharply inclined legs due to interactions among neighbouring legs occurs
predominantly at k < y < 4k. These results demonstrate that U-shaped structures
are indeed generated above the roughness elements due to flow non-uniformities
induced by the pyramids. The U-shaped structure postulated in our study bears
some resemblance to the head-down hairpin vortex proposed for canopy flows in
Finnigan, Shaw & Patton (2009). According to their study, these structures co-exist
with the ‘regular’ hairpins. They postulate two mechanisms that could contribute to
the generation of the head-down hairpins. The first is associated with an ejection
emerging from the wall (induced by the regular hairpins) that blocks the higher-
velocity flow above. The second explanation utilizes the linear stability analysis of
Pierrehumbert & Widnall (1982), which attributes the formation of these structures
to the mutual induction of coherent spanwise ‘Stuart’ vortices. Based on our study,
one might also speculate that the spatial non-uniformities in streamwise velocity
induced by the canopy elements contribute to the generation of the head-down
hairpins.

The SGS flux typically peaks during ejection events that form under large-scale
sweeps at the contracting flow interface between the sweep and ejection. As a
sweeping event is transported downstream, its interaction with adjacent roughness
elements at different times generates a series of ejection-induced lifting events.
The resulting generation of multiple structures at different phases of development
provides a plausible mechanism for inclined vortex train formation observed in the
instantaneous realizations. The angle of conditionally averaged shear layer, 16◦, is not
significantly different from those of the sample instantaneous train and the trajectory
of lifted vortices in time-resolved data. It should be noted that prior publications (e.g.
Volino et al. 2007; Wu & Christensen 2007, 2010) attribute the inclined layer pattern
over rough walls to hairpin packets, similar to smooth walls.

In the outer layer, e.g. at y = 11k, the SGS flux is significantly weaker than in the
near-wall level, and peaks mainly within single vortex trains owing to the interaction
of eddies within this structure. These trains still maintain a preferred alignment
consistent with that occurring near the wall, i.e. the positive ωy train is aligned in
the quadrant 1–3 direction, and the negative ωy train in the quadrant 2–4 direction.
Therefore, the formation of two counter-rotating vortex pairs in the conditionally
averaged vorticity distribution is an artifact resulting from combining vortex trains
rotating in opposite directions during the conditional averaging process. In spite of
the differences between structures appearing in the roughness sublayer and those of
the outer layer, the roughness signature is evident in both. This signature includes a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

40
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.403


Coherent structures and associated subgrid-scale energy transfer 125

characteristic vortex size of k, streamwise spacing of λ between vortex clusters located
in a single train, and a most probable distance of 0.5λ between counter-rotating
vortices in the outer layer.

The flow characteristics and distribution of SGS energy flux observed in this
study inherently depend on the specific geometry and length scales of the
roughness elements (k and λ) as well as their spatial arrangement. The spacing
between structures and the resulting flow channelling facilitate the formation of
U-shaped structures, which carry the roughness signature with them to the outer
layer. Conceivably, for example, more tightly packed three-dimensional roughness
elements would reduce their scale and lead to more frequent interaction between
adjacent vortical structures. As a result, the local dissipation rate would be
enhanced, suppressing the propagation of the roughness signatures to higher elevations.
Conversely, with increasing scales of roughness elements and spacing between them,
the structures that carry their signature might be able to travel farther up in the
outer layer. This conjecture is consistent with the stronger roughness effect observed
for turbulence over two-dimensional sparse roughness compared to flows over three-
dimensional roughness provided in a number of recent studies (e.g. Lee et al. 2011;
Volino, Schultz & Flack 2011). For surfaces with more randomly distributed roughness
of varying scales (Wu & Christensen 2010), the characteristics of structures would
also vary, and therefore might not yield readily detected signatures of vortex spacing
and scales in energy spectra. Like some of recent turbulence studies over smooth
and rough walls (e.g. Wu & Christensen 2010; Lee et al. 2011; Volino et al.
2011), the flow described in this paper contains outer-layer structures with sizes
that are much larger than the characteristic roughness scales. These structures might
be involved in the previously mentioned large-scale sweeping events that initiate the
near-wall ejections. Many of their features are consistent with the hairpin packet
model introduced by Adrian et al. (2000), as demonstrated in Hong et al. (2011).
A number of publications (e.g. Krogstad & Antonia 1994; Wu & Christensen 2010)
indicate that the presence of roughness reduces the streamwise extent of these large
structures.

Development of SGS stress models that account for the dominant effect of coherent
structures in the rough-wall turbulent flow is a great challenge. As we show, the
region of high SGS kinetic energy and flux are spatially displaced from the region of
high resolved TKE, i.e. the flow generating and transporting the SGS turbulence.
Accordingly, some of the highest correlations occur between spatially displaced
resolved velocity gradients and SGS stresses. However, since the main features of
the coherent structures can be reproduced using only resolved flow parameters as
a basis for conditional sampling, one hopes that improved modelling based on the
filtered flow is feasible. Since a few intense structures are sufficient for generating the
majority of energy flux, a workable model may be developed by introducing the proper
type of inclined vortices and following a logic similar to that described by Misra &
Pullin (1997) and Chung & Pullin (2009). Note that spatial displacements based on
inclined structures were proposed by Piomelli et al. (1989) for a wall model relating
wall stress to velocity. Such a model should account for the effect of roughness scales
and geometry, as well as the interactions between resolved turbulence and roughness,
which lead to the upsurge of SGS energy flux and stresses. This substantial increase
in SGS flux near the wall is a key difference between the trends shown in the present
paper and the smooth-wall boundary layer data provided by Natrajan & Christensen
(2006).
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