Effects of dietary zinc supply during pregnancy on global DNA methylation

G. Davison¹, J. C. Mathers², D. Ford³ and R. A. Valentine¹

Human Nutrition Research Centre and ¹School of Dental Sciences, ²Institute for Ageing and Health and ³Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4BW, UK

Maternal nutritional status during pregnancy may affect the epigenetic programming of offspring, including effects on DNA methylation patterns, and so lead to phenotypic consequences in adulthood. It is hypothesised that maternal Zn nutrition may affect the DNA methylation status of the offspring through effects on the expression of DNA methyltransferase (DNMT) enzymes. The present study investigated the effects of feeding a Zn-varied diet to pregnant mice on global DNA methylation in offspring and measured the effect of extracellular Zn concentration on the expression of DNMT in a cell-line model.

Pregnant mice were fed a Zn-restricted (15 µg/g), Zn-adequate (50 µg/g) or Zn-supplemented (150 µg/g) diet for the first 17 d of pregnancy. Mice were killed, fetal livers harvested and DNA extracted. Global DNA methylation was measured by the luminometric methylation assay (LUMA) assay using a pyrosequencer (1).

Significantly higher levels of methylation were observed in the DNA of mice fed both Zn-restricted and Zn-supplemented diets compared with mice fed the Zn-adequate diet (Figure).

To investigate the effect of extracellular Zn on the expression of DNMT at the mRNA level, parallel Zn-supplementation studies were carried out in a human SW480 cell-line model. Cells were treated with either basal medium or medium supplemented with 50 µM or 100 µM ZnCl₂ for 96 h. Total RNA was extracted and semi-quantitative RT–PCR analysis of DNMT1 and DNMT3a was carried out. Cells showed a significant increase in DNMT1 and DNMT3a mRNA expression at 100 µM-Zn compared with basal medium (Table).

The findings indicate the potential for Zn nutrition during pregnancy to influence global DNA-methylation patterns in the offspring. Previous analysis of placental RNA samples from the same study revealed reduced levels of transcripts for a number of Zn transporters in mice fed the Zn-restricted and Zn-supplemented diets compared with mice fed the Zn-adequate diet (2). The current findings indicate that site-specific DNA methylation should be explored as a potential mechanism underlying these effects. The observed increase in DNMT mRNA at an increased concentration of extracellular Zn provides evidence in support of the idea that effects of Zn on DNA methylation may be mediated through Zn-dependent changes in the expression of these enzymes.