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Abstract

If w = 1 is a group law implying virtual nilpotence in every finitely generated metabelian group satisfying
it, then it implies virtual nilpotence for the finitely generated groups of a large class S* of groups including
all residually or locally soluble-or-finite groups. In fact the groups of 5? satisfying such a law are all
nilpotent-by-finite exponent where the nilpotency class and exponent in question are both bounded above
in terms of the length of w alone. This yields a dichotomy for words. Finally, if the law w = 1 satisfies a
certain additional condition—obtaining in particular for any monoidal or Engel law—then the conclusion
extends to the much larger class consisting of all 'locally graded' groups.

2000 Mathematics subject classification: primary 20F19, 20E10, 20F45.

1. Introduction

Let F denote the free group on X = [xux2, •• •}• A law (or identical relation) of a

group G is an identity w s l where w is a word from F, valid under every substitution

X -+ G.

The following two types of group laws are of particular interest: A positive (or

monoidal) law of a group G is a non trivial identity of the form M = u ( o r « u " ' = l)

where u, v are positive words in F, that is, do not involve any of the inverses of

the *,-. The n-Engel law is the law [• • • [[x, y], y],... , y] = 1, where y appears

n times, x := xi,y := x2, and [a,b] := a~xb~xab, the commutator of elements

a, b of an arbitrary group G. (We shall use the 'left-normed' convention, defining

inductively [at, ... , an] := [[au ... , an_x], an]. The n-Engel law then takes the form

[x, y,y,... ,y] = I, which is often further abbreviated to [x, ny] s 1.)
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It is well known that a nilpotent-by-finite exponent group, that is, one with a
nilpotent normal subgroup with quotient of finite exponent, satisfies a monoidal law
([11, 12]), and it is immediate that a nilpotent group satisfies the n-Engel law for
some n. The converse of neither of these statements is true in general: there exists a
2-generator group which is not nilpotent-by-finite exponent yet satisfies a monoidal
law [14], and it is relatively easy to find a group (albeit infinitely generated) which is
n-Engel for some n yet not nilpotent (see for example [8, page 132] or [17, page 362,
Exercise 1]).

We are interested here in the much-studied question as to the extent to which, that
is, for how wide a class of groups, some versions of the converse statements do after all
hold, and also in characterizing those laws which behave in this respect like monoidal
and Engel laws, that is, imply 'virtual nilpotence' for the same large class of groups.

Our results are as follows. We write 5? for the class of groups obtained from the
class of all groups that are soluble-by-(locally finite of finite exponent) by closing
under the operators L and R, where for any group-theoretic class 9£\L3E denotes
the class of all groups locally in SC and R SV the class of groups residually in 5£
(see [16, Section 1.1]). (Thus 5? contains in particular all residually finite or soluble
groups, and all locally finite or soluble groups.) We also write 25«. for the variety
consisting of all locally finite groups of exponent dividing e (the hat distinguishing
this variety from the variety 53 e of all groups of exponent dividing e), and, as usual,
9tc for the variety of all nilpotent groups of class < c. (Note that the fact that the
class 2$€ is actually a variety, is a consequence of Zelmanov's solution of the restricted
Bumside problem [24,23].) Our main result gives a necessary and sufficient condition
for a law w = 1 to single out from the class S* just the nilpotent-by-finite exponent
groups, furnishing in addition the information that the nilpotency class and exponent
in question are bounded above solely in terms of the length of w.

THEOREM A (Compare [1, Theorem]). Let w be any word in F with the property
that every finitely generated metabelian group satisfying the law w = 1 is necessarily
nilpotent-by-finite. Then there exist positive integers c = c(N), e = e(N) depending
only on the length Nofw such that the groups in the class 5? satisfying w = 1 are
just those in the product variety 9tc*8e.

That a monoidal law (in the form uv~l = 1, where u, v are positive words) satisfies
the hypothesis of Theorem A will emerge in the course of the proof. (This also
follows from for instance Point [15].) That the n-Engel law does so follows from
Gruenberg's result [5] that a finitely generated soluble Engel group is nilpotent, and
therefore satisfies a monoidal law.

Theorem A is stronger than related results (for example of Point [15]) in that the
nilpotency class c figuring in the conclusion, as well as the exponent e, depend only
on the length of w. It is this that allows the conclusion to be extended to the full class
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5f, as opposed to just finitely generated soluble-by-finite groups, and in Theorem B
below, where an additional condition is imposed on w, to the very large class of
'locally graded' groups.

As a consequence of Theorem A and a result of Groves [4], we infer the following

DICHOTOMY THEOREM (for words of F). Letw e Fbean arbitrary word. Exactly
one of the following two possibilities occurs:

(i) every group in 5? satisfying the law w = 1 is nilpotent-by'-finite exponent;
(ii) for some n > 2, w = 1 is a law in the restricted wreath product Cn I C, where

C,, C denote the cyclic group of order n and the infinite cyclic group respectively.

(To see this, suppose that for every prime p, w = 1 is not a law in Cp I C, that is,
that (ii) fails to hold. Since Cp i C generates the product variety 2lp2l of the variety of all
abelian groups of exponent p by the variety of all abelian groups (see for example [13,
Corollary 22.44]), it follows that for any soluble (in particular) variety 03 satisfying the
law w = 1, we have 2lp2l £ 53 for all primes p, whence by the dichotomy established
by Groves [4, Theorem A (ii)], 33 c 9t,,<8(,1 for some C\,ex. Hence certainly every
metabelian group satisfying w = 1 is nilpotent-by-finite exponent, so that w satisfies
the assumption of Theorem A, and thence the alternative statement (i).)

A partially related dichotomy is that of Rosenblatt [18] according to which any
group G not containing the free monoid M2 on two generators is restrained, that is,
for every pair of elements a, b of G, the subgroup {a){b} is finitely generated (or,
equivalently, every finitely generated subgroup H has finitely generated commutator
subgroup [H, / / ] ) . (It follows easily from this that for every prime p, the wreath
product Cp l C embeds M2.) A negative answer to the following question would
enable the replacement of the class 5? in Theorem A and the Dichotomy Theorem by
a much larger class—perhaps even that of 'locally graded' groups. (A group is locally
graded if every non-trivial finitely generated subgroup has a proper subgroup of finite
index.) Does there exist a group G having a minimal normal subgroup H which is
infinitely generated, locally finite and of finite exponent, with G/H infinite cyclic,
such that G obeys a law w = 1 satisfying the assumption of Theorem A, that is, not
holding in any Cp I C? It can be shown that such a group could not be restrained,
and would therefore have to embed A/2, in view of Rosenblatt's result. It would thus
furnish an example showing that Theorem A cannot be extended to the class of locally
graded groups unless w satisfies some additional condition.

Among the laws w = 1 satisfying the hypothesis of Theorem A, there are many—
including monoidal laws and the Engel laws—that do satisfy a condition allowing the
extension of Theorem A to the class of locally graded groups. It is well known (see
[2, 3, 5, 9, 15]) that if a group G satisfies a monoidal law or an Engel law then G is
uniformly restrained, that is, there is a positive integer k such that for all a, b e G
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the subgroup (a)<6) can be generated by < A: elements. By Kim and Rhemtulla [9], a
finitely generated, uniformly restrained, locally graded group is polycyclic-by-finite.
Hence applying Theorem A we obtain immediately

THEOREM B. Let w = 1 be a group law with the following two properties:

(i) every finitely generated metabelian group satisfying w = 1 is nilpotent-by-
finite;

(ii) every group satisfying w = 1 is uniformly restrained.

Then there exist positive integers c = c(N), e = e{N) depending only on the length
N of the word w, such that every locally graded group satisfying the law w = 1 lies
in Vlc%e.

A natural question here is whether the qualifier .'uniformly' can be omitted from
condition (ii).

COROLLARY 1 (Compare [2, Theorem B]). For any monoidal law u = v, the lo-
cally graded groups satisfying that law all lie in 0Tc*Be/or some c, e depending only
on the larger of the lengths ofu, v.

The analogue for Engel laws can be improved to the following result (see [3]),
which implies, but is more detailed than, the result of Kim and Rhemtulla [9] that
locally graded n-Engel groups are locally nilpotent.

COROLLARY 2 (Compare [3, Theorem]). For each positive integer n there exist pos-
itive integers c = c(n), e = e(n) depending only on n such that every locally graded
n-Engel group lies in 9IC<8,, n <8e9tc.

REMARKS. 1. The class of locally graded groups, which contains the class &
of [2, 3], is large in — for instance — the sense that it contains nearly all the groups
encountered in standard textbooks on group theory (for example [8, 17]), or that it
consists of the largest class of groups 'constructible' from the class of finite groups
by closing under most standard and some not-so-standard group-theoretic operations.
(A. Rhemtulla has mentioned to us the possibility that the class of locally graded
groups may coincide with that of groups with a generalized series (in one sense or
another—see for example [8, page 160], [16, page 9]) with finite factors.)

2. There would seem to be considerable overlap between the main result of the
present paper and that of Sarah Black [1] (and also those of [2,3], which it generalizes).
In fact [1] gives in essence a characterization of words w yielding the conclusion of
our Theorem A, but in terms of the form of w itself. However the results of [1, 2, 3]
depended ultimately on a lemma of Shalev [20, Lemma 3.2, Case 2] which is not
quite valid as stated. (For the details, see the Remark in Section 2.3.2 below.) Thus
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apart from the improvements claimed for the results of the present paper over those
of [1, 2, 3], it is also justified by the need to provide arguments based on the corrected
version of Shalev's lemma. Nevertheless the arguments we use, although mostly
self-contained, are to a considerable extent adapted from those of Shalev [20], as well
as [1, 2, 15].

The layout of the proof of Theorem A is as follows: In Section 2 we establish the
finite case by means of a succession of reductions. The proof of the theorem is then
completed in Section 3.

We are grateful to Olga Macedonska for helpful comments.

2. Proof of Theorem A for finite groups

Thus in this section we shall prove that if w = 1 is a law with the property that
every finitely generated metabelian group satisfying it is nilpotent-by-finite, then there
exist positive integers c = c(N), e = e(N) depending only on the length N of w such
that for every finite group G satisfying w = 1 we have Ge (the subgroup generated by
all e-th powers of elements of G) nilpotent of class < c.

Write F2 for the free group of rank 2 generated by x, y. We shall need the following

LEMMA 1. Let w be as above (that is, as in Theorem A). Then the law w = 1 has
as a consequence a 2-variable law of the form

where k > 1, the s, and f, are nonzero integers with 0 > t\ > • • • > tk, and c is a
product of commutators in elements of the form xy" := y~axya, a el.

PROOF. Denote by W2 the verbal subgroup of F2 determined by w. Since F2 :=
F1/F2®

) W2 is a finitely generated metabelian group satisfying the law w = 1, it follows
from our basic assumption concerning w that F2 is nilpotent-by-finite, and therefore
([11, 12]) satisfies a non-trivial monoidal (here actually semigroup) law

(2) u = v,

where u, v are non-trivial positive words in x and y of equal exponent sums on each of
x and y. We may, by interchanging the variables x and y and cancelling, if necessary,
suppose that u begins with x and v with y, and that u and v end in different symbols
from [x, y}. Furthermore if u does not have xy as initial segment, then by applying
the change of variables x —> xy, y ->• y, we can ensure that it does.
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Assuming this done, we lift the law (2) to F2/ W2, obtaining a relation in F2/ W2 of
the form

(3) uv~x = d,

where d e F2
(2), and the bars indicate elements in F2/ W2. By virtue of the relative

freeness of F2/ W2, the relation (3) will then define a law (MI;"1 = d) in any group
satisfying w = 1, that is, represents a 2-variable consequence of w = 1.

Note that the word uv~l is reduced as written (since u, v end in different symbols
from [x, y}) and has exponent sums 0 on each of x, y. We now rewrite this word as
a product of elements of the form {xs)y', starting on the left. Since u has xy as initial
segment the first such element will be simply x. It is not difficult to see that since v~l

ends in y~l, all other factors of the required form (xs)y' will have t < 0. (To illustrate,
consider u = x;y2;c2;y3;c and v — y1x1yx2y1. Here

KIT1 = xy2x2
y
3xy-2x-2y-lx-2y-2 = xixy'x^ (x-2y'\x-2Y~2.)

Then by collecting the factors (xs)y' of wir1 modulo [{x)Fl, (x)Fl], the law KU"1 = d
implied by (3) becomes MIT1 = x(xs')y'1 • • • (xSk)y'ky == d, where k > 0, 0 > t\ >
••• > tk, the st are all nonzero, and y e [(x)F2, (x^ 2 ] . Since [(x)F\ (x)F2] > F2

(2),
we have dy~x —: c e [(x)F2, (x)F2], and we have arrived at a consequence of the law
w = 1 of the desired form (1). •

COROLLARY 3. For each N > 0 there exist positive integers L = L(N), R = R(N)
depending only on N, such that each word w of length < N satisfying the assumption
of Theorem A has a 2-variable consequence of the form (1), namely

(4) x(x'y"---(x«y't = c,

where k > 0, the st, f, are nonzero integers, 0 > t\ > • • • > tk, c is a product of
commutators in elements of the form xy°, a e Z, and also \tk\ < L and \a\ < R for
all integers a such thatx±y° figures as an entry in a commutator occurring as a factor
of c.

(This is immediate from Lemma 1 and the fact that there are only finitely many
such words w of length < /V (in, say, xi, . . . , xN).)

We now begin the proof of Theorem A for arbitrary finite G satisfying a law w = 1
obeying the assumption of that theorem. The proof involves a sequence of reductions.

2.1. Reduction to the finite soluble case. We shall show that there exists a positive
integer e\ depending only on the length N of w such that Ge' is soluble.

Let A /B be any non-abelian chief factor of the finite group G. (If there are no such
chief factors then G is soluble and we may take ei = 1.) It is well known that A/B
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decomposes as a direct product Si x S2 x • • • S; of finite non-abelian simple groups
all isomorphic to the same simple group 5, and that each element g of G acts by
conjugation on A/B in such a way as to permute the S,; write ng for the permutation
of {Si , . . . , Si) induced by conjugation by g.

Write c = c(x, y) for the right-hand side of the law (4), a consequence of w = 1.
We first show that for each g e G if any orbit under the above action of g on
{Si , . . . , Si) has size exceeding 2R, then for every member Sr of that orbit we have

c(hB, gB) = 1 in A/B for all hB e Sr.

This is seen as follows. Suppose c(x, y) ^ 1 (otherwise there is nothing to prove).
Let xy°\xy°2 be distinct entries in (possibly coinciding) commutator factors of c.
We cannot have Sf — Sf2, since this would imply that Sf"""' — Sr, and the orbit
containing Sr would then have size at most |ori — a2\ <2R (see Corollary 3), contrary
to our assumption. Hence S f = S, ^ Sj = Sf2, yielding [(fcfl)*"1, (hB)*"1] = 1 for
all hB e Sr, that is, all elements of the form {hB)s° where hB e Sr and xy° is an entry
in c, commute, so that c(hB, gB) = 1 (in G/B) for all g e G,hB e Sr, as claimed.

Suppose now that g e G and r e { 1 , . . . , /} are such that c(hB, gB) = 1 for all
hB £ Sr. Since (4) is a law in G, it follows that then

(5) h(hs')s" • • • (hSk)g'k = 1 mod B for all hB e Sr,

where, as in (4), k > 1,0 > tx > • • • > tk, and the st are all nonzero. Choose hB e Sr

nontrivial (that is, hB ^ B); then since the cosets (hs')g'' B belong to various of the
direct factors S i , . . . , S; of A/B, in order for (5) to hold we must have for at least one
j e { 1 , . . . , k] that also {hs> )*'J B is a (non-trivial) element of Sf, so that Sf = Sr for
this j . Hence in this situation the size of the orbit containing Sr under the action of
ng is bounded above by |4 | , and therefore by the number L of Corollary 3.

We have thus established the following assertion: For each g e G, every orbit
of the action of g by conjugation on {S\,... , S{\, the set of simple direct factors of
an arbitrary non-abelian chief factor A/B of G, has size bounded above by M :=
max{L, 2R], which depends only on the length N ofw.

It follows immediately that for every simple direct factor S of every non-abelian
chief factor of G we have

(6) Gm < NG(S).

By Jones [7] only the variety of all groups contains infinitely many pairwise non-
isomorphic finite non-abelian simple groups. Hence in particular there are only a finite
number of pairwise non-isomorphic groups that can occur as composition factors of
groups satisfying any nontrivial law w = 1 of length < N having the same property
as w = 1. Taking K to be the largest of the orders of these simple groups, it follows
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that for every simple direct factor S of every non-abelian chief factor of G we have
that | Aut(5)| divides K\. From this and (6) we infer immediately that for any finite
group G satisfying w = 1 we have GM'K' < CG(A/B) for every non-abelian chief
factor A/B of G, whence

(7) GM'K'<f]CG(A/B),

where the intersection is taken over all non-abelian chief factors A/B of G. It is not
difficult to show that the intersection in (7) is a soluble subgroup of G, whence the
desired conclusion with e\ := M\Kl.

2.2. Reduction to the finite nilpotent case. By the previous reduction, we may
now assume that our finite group G satisfying the law w = 1 is soluble. We shall now
show that there is a positive integer e2 depending only on the length N of w such that
Gei is nilpotent.

Let G = Go l> G\ > • • • \> Gr — {1} be a chief series for G. Since G is finite soluble,
each chief factor G,/G,+ 1 is finite elementary abelian. Let g be any element of G;
then conjugation by g induces an automorphism of each chief factor G,/G,+i. In the
usual way we may consider G,/ Gi+\ as an (additively written) vector space Vt over Zp

(where p is the exponent of G,/ G,+1) on which conjugation by g induces an invertible
linear transformation Tg. Now the subgroup H/Gi+\ of G/Gi+\ generated by gGi+i

together with G,/G,+i satisfies the law w = 1 since G does, and therefore also the
2-variable law (4). Replacing in that law y by gl := g'Gi+i, for each / = 1, 2 , . . . in
turn, and x by h := /JG,+I for any h e G,, we obtain

(8) hih")*"1 • • • (hSk)'g"k = 1 for all h e G,, and each / = 1, 2 , . . . ,

since the right-hand side c(x, y) of the law (4) becomes c(h, gl) = 1. In the additive
notation of the vector space Vt, equation (8) translates into

(I + si T''1 + s2 T"1 H + skT"k) Vi = (0).
ft ft o

nomial
Thus the linear transformations 7* ', / = 1, 2 , . . . , all satisfy the non-constant poly-

(9) / ( Z ) := 1 + slZ-" + s2Z-h- + • • • + skz-k elp[zl

At this juncture we need the following

LEMMA 2 (Compare [19, Lemma 3.3]). Let K be any field, and f (z) € K[z] any
polynomial over K of degree d > 0 with nonzero constant term. If I is the ideal in
K[z] generated by f (z), / (z2), . . . , / (zd+l), then there exist positive integers q, m
bounded above by a function of d only, such that (zm — I)17 6 / .
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PROOF. Note that the ring K[z] is a principal ideal domain and so of course also
enjoys unique factorization. Let g(z) be a generator of /, and let p\,... ,p, be the
distinct prime polynomials occurring as factors of g(z). Observe that since/ (z) has
non-zero constant term, so also do all of the p,, and also that since deg g < deg/ = d,
we have degp, < d for all i, and t < d. Write Pt := (p,), the ideal generated by
Pi, i = I, ... ,t, and consider the fields F, := K[z]/Pj. Regarded as having its
coefficients in F,, the polynomial/ («) has roots z + P,, z2 + P,, . . . , zd+1 + P,-, since
P, ~2 /• Since deg/ = d, it follows that zT> = zJ' mod P, for some 0 < r, < st <
d + 1. Now z £ P, since the p, all have non-zero constant term. Hence zm' = 1
mod P, where 0 < m, := 5, — r, < d. Writing m := mim2 • • • m,, we infer that

Z = 1

(Note that since m, < d, t < d, we have m < dd.) Let g be largest such that pi is
a factor of g(z) for some i. (Observe that since degg < d, we have q < d.) Then
(P\ • • • />r)? € (g(z)) = / , whence (zm - 1)* e /, as required. •

We now return to our reduction argument. By the lemma just proved, applied to
the polynomial / (z) in (9), since T~l satisfies / (z) — 0,f (z2) = 0, . . . , we infer the
existence of positive integers m, q bounded above by a function of tk only, such that

(10) {T~m - \)q = 0.

In terms of the multiplication in G, since g is arbitrary this translates into:

[h, gm,..., gm] e G,+1 for all h e G,, g e G.

Since i also was arbitrary, we have

[hug
m,... ,gm] e G,+2 for all h, e G,+l, g e G.

i

In particular putting hx = [h, gm, ... , gm], we obtain

9

[h, f , . . . , gm] e G,+2,
2q

and so on. Thus by induction we conclude that for all g, h e G,

[h,gm,...,gm] = l,
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that is, for every g e G, gm is an Engel element (right Engel, in the terminology of
[6]) of G. By [6, Lemma 6.13] a finite soluble group generated by Engel elements is
nilpotent; hence Gm is nilpotent.

Since m is bounded above by a function of | 4 | only, by arguing as in Corollary 3
we can show that m is bounded above by a number B say, depending only on N, the
length of w, and we may then take e2 := B\.

2.3. The finite nilpotent case. In view of the above reductions, we may now assume
that our finite group G satisfying the law w = 1 is nilpotent; in fact, since a finite
nilpotent group is the direct product of its Sylow subgroups, we may assume that G
is a finite p -group for some prime p.

The proof of Theorem A in this case splits into two subcases.

2.3.1. Subcase: p sufficiently large. This subcase concerns primes p > T where
T = T(N) is a positive integer depending only on A7, to be defined in the course of
our argument. We begin with

LEMMA 3. As before let F denote the free group with free basis [xux2, •• •}• A

law w = 1 satisfying the assumption of Theorem A has as a consequence a law of the

form

(11) [xl...,xl] = YiYi---Ys,

where each Yi is of the form [//.,-, v,] with fi(, v, commutators inx\, ... ,Xc of weights

> 2, and where for every j — 1, . . . , c, either Xj orx~~x is an entry in /z, or i>, (so that

each Yi has Xj or xjx as an entry for all j = / , . . . , c).

PROOF. Let W denote the verbal subgroup of F generated by w. Then F :=
FI WFm is a metabelian group satisfying the law w = 1. Since the wreath product
CPl l C of a cyclic group of prime order pi with an infinite cycle, is finitely generated
and metabelian but not nilpotent-by-finite, it cannot satisfy the law w = 1. Hence
in view of the fact that CPl 1 C generates the product variety 2lPl2l, we infer that
2lPl 21 £ var F. Hence by [4, Theorem A (ii)] varF is contained in 91^2^ for some
c, e, that is, F satisfies the law [x', . . . , jcf] s 1. Lifting this to F, we have

(12) [xf,... ,Jcf] = t M in F,

for some w1 e W,d e F( 2 ) . Since d e F(2) it may be expressed as a product d\ • • -d,
of commutators of the form d( = [a,, /3,-] where a,, /J, are commutators of weights > 2
with all entries from among xf\ ... ,xfx. (If any d,had entries xfx with/ > c, we
could eliminate these d{ by applying to (12) the substitution x, -*• xt (i — 1 , . . . , c),
x, -+ 1 (/ > c).)
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We now show that there is in fact an equation of the form (12) in F with d a product
of commutators (as before) each of which involves all of xf\ ... ,xfx as entries.
Suppose for instance that some of the dt in d — di • • • d, do not involve x\. Setting
xi —> 1 in (12) then yields 1 = w2dh • • • dh in F, where w2 results from w\, and the dtj

are, in the same order as before, just those commutator factors of d not involving xfx.
Hence dit • • • dh e W, whence the original right-hand side of (12) can be rewritten as

wid = i M , , • • • du(dhdh • • • dtl)-
xdx •••d,

= wi(dildh---dil)-
ldx •••dl,

where w3 := w\dh • • • du e W. It is now easy to see that (dh • • • di,)~xd\ • • • d, can

be rewritten as a product of commutators of the required form all involving xf1. One
now continues by treating x2 in the same way, and so on. •

We now apply this lemma to the situation of our finite p-group G (with p 'suffi-
ciently large', satisfying the law w = 1. By this lemma w = 1 has a consequence of
the form

where p e F(2> and is a product of commutators in x\,... ,x-c, each involving all of
x\,... ,x-c. By collecting those of these commutators involving each of x\, ... ,x-c

exactly once, we obtain p = pxp2 where now px is a product of commutators from
F(2) involving each xt exactly once, and p2 is a product of commutators from F( 2 )

of weights > c. Hence on making the substitution x\ —>• x,x2,... , x-c —*• y, the
word Pi(xu ... , x{) becomes p\(x, y, . . . , y) = 1, since each commutator factor of
p\{x\,... , Xc) is of the form [p., v] where p., v are commutators in disjoint sets of
elements from [x\, ... , x^}. Hence we have a law of the following form holding in
G:

(13) [ x i , y i , . . . , y i ] = p 2 ( x , y , . . . , y ) ,

c-1

where p2 is a product of commutators from F(2) in x and y of weights > c.
We now impose a preliminary lower bound on p, namely:

p > e.

From this assumption and the law (13) which our p-group G satisfies, it follows that
G satisfies a law of the form

(14)

r-1
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where p3 is a product of commutators in x and y (from F(2)) of weights > c.
Write L = L(G) for the Lie ring determined in the usual way by the lower central

series G = Go > G\ > • • • > G* = {1} of G, that is, with additive structure given by
that of the abelian group

0 (GJG2) © • • • e (Gt

(written additively), and the Lie multiplication by the rule [a G,, bGj] := [a, b\Gi+j+\,
fora e G,_i, b e Gj-\, extended linearly.

Since in the law (14) the left-hand side has weight c while wt p3 > c, it follows (as
in the proof of [22, Lemma 6], by replacing y by yi • • • y-c-\ in (14) and expanding)
that L(G) satisfies the 'linearized Engel law'

(15) ] P [x,yaW,... , yff(r-i)] - 0 .

The argument now continues somewhat as in [2, page 517]. Setting y = y, = • • • =
yc-\ in (15) we infer that the subring (c — 1)!L satisfies the (c — 1)-Engel condition
[x, i-iy] = 0- Hence by [2, Corollary 4] (a consequence of Zelmanov's deep results
on the Engel condition in Lie algebras—see [21]) there exist positive integers e3, c3

depending on c such that

that is

(16)

where we have written ex := e3[(c — 1)!]C3. Back in the group G, (16) yields

(17) (Yci(G)r<yc,+l(G).

We now impose a further lower bound on p, assuming in addition that

p > e4.

From this assumption it follows that (yCi(G)y = yCi{G), and then from (17) we
deduce that G has class < c3.

Hence provided p > max{e, e4), the p-group G satisfying the law w = 1 will have
nilpotency class < c3 where e, e4, c3 all depend only on the word w. Much as before,
if we now take T to be the maximum of all such e, e4 obtained as above for all the
(finitely many) words of length < A' satisfying the assumption of Theorem A, then
T = T(N), that is, depends only on N, and we conclude that:

If G is any p-group with p > T{N) satisfying the law w = I, then there is a positive
integer cA(N) also depending only on N (namely the largest of all the c3 obtained as
above for all words w of length < N satisfying the assumption of Theorem A) such
that G has nilpotency class < c*(N).

Thus the proof in Subcase 2.3.1 is complete.
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2.3.2. Subcase: p < T(N). We are now reduced to the situation where G is a
finite p-group satisfying the law w = 1, with p < T(N).

We shall need the following two lemmas.

LEMMA 4 (Compare [20, Proof of Lemma 3.2, Case 2]). Let V be a vector space
over 7Lp and T an invertible linear transformation of V whose order s is a power of p.
Suppose that there exist integers m, q > 0 such that (Tm — l)q = 0. Then the order s
of T satisfies the inequality s < mp q.

PROOF. Write s = pr, r > 1. (If s = 1 the desired inequality holds trivially.)
Since T satisfies the polynomial zp' — 1 = (z — l ) p in Zp[z], the minimal polynomial
of T is a power of (z — 1), say (z — 1)'. From / < pr~l it would follow that
Tp' ' — 1 = (T — l)p"1 = 0, contradicting the assumption that T has order pr. Hence
pr > I > pr~l. Since by hypothesis T also satisfies (zm — 1)* = 0 we must have
mq > / > pr~l. Hence mqp > pr = s, as required. •

REMARK. In Case 2 of [20, Lemma 3.2] slightly more is claimed on the basis of
the assumption (Tm — l)q = 0, namely that 5 < 2mq. However the example of
V := Zp © Zp, T = [o {]. shows this to be false in general, since here T has order

p, yet (T — I)2 = 0, so that taking m = 1, q = 2, we have 2mq ^_ p = s for primes
p>3.

LEMMA 5 (Compare [19, Lemma 3.3]). Let f (z) be a polynomial over Z of degree
d > 0 with non-zero constant term, and let J be the ideal of Z[z] generated by
f (z),f (z2), • •. , / (zd+i). There exist positive integers q, m bounded above by a
function ofd only, and a positive integer r determined by f, such that r{zm — 1)* G J.

PROOF. The ideal of Q[z] corresponding to J is Q ® J =: I, say. Applying
Lemma 2 of Section 2.2 to this ideal, with K = Q, we infer the existence of d-
bounded positive integers m, q such that (zm — I)9 6 / . Hence there exists a positive
integer r such that r(zm — l)q 6 J. (Clearly r—as well as m and q—is determined by
the polynomial / (z). However whether r is bounded above by a function of d alone
is not clear.) •

We are now ready for the proof of Theorem A in the situation of a finite p-group
G with p < T(N) satisfying the law w = 1. The argument largely follows that of
Shalev [20], with some adjustments.

Let H/K be any elementary abelian normal section of G, that is, H, K < G, K <
H, H/K an elementary abelian p-group, and let g e G be arbitrary. As before we
denote by Tg the linear transformation of H/K considered as a vector space over Zp,
induced by conjugation by g. Since G satisfies w = 1, by Lemma 2 of Section 2.2
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and the argumentation just preceding and following that lemma, there exist positive
integers m, q determined by w alone, such that

Applying Lemma 4 above, we infer that the order s (= pr say) of Tg satisfies the
inequality s < mqp. Since in the present subcase we are assuming p < T(N), it
follows that for every g e G the order s of Tg is bounded above by a number D,
say, depending only on the word w. Hence GD' centralizes every elementary abelian
normal section of G. It is not difficult to verify (or see [20, Lemma 4.1]) that therefore
P := GD' (or P := Gim if p = 2) is a powerful p-group, that is, P? > [P, P] (or
P4 > [P, P] if p = 2).

Now let A = H\/ Kx be any abelian (not necessarily elementary abelian) normal
section of G and again let g e G be arbitrary. Since the group {gKu A) is a cyclic
extension of the abelian group A and satisfies the law w = 1, it follows as in Section 2.2
(see equation (8)) that

a(aSl)?1 • • • (aSky"k = 1 for all a e A, / = 1, 2 , . . . ,

where g :— gK\. Write ag for the automorphism of A induced by conjugation by g.
Then (compare (9)) the automorphisms a~!, I = 1, 2 , . . . , all satisfy (in End A with
A written additively) the non-constant polynomial of positive degree given by

/ (Z) = 1 + SiZ~'1 + S2Z~'2 + ••• + SkZ~'k 6 1[Z].

Writing J for the ideal of Z[z] generated by all polynomials h(z) such that h(a~l) — 0,
we infer from Lemma 5 above the existence of positive integers r,m,q depending on
/ (z), and therefore ultimately on w only, such that

(18) r(a™ - l)q = 0 in End A.

Write e5 := Dim and consider Q := Ges. Since GD]m < (GD')m = Pm, it follows
that Q < Pm. Since P is powerful, we have by [10, Propositions 1.7 and 4.1.7] that
every element of the group Pm, and therefore every element of Q, is of the form gm

for some g e P. Hence for every element h 6 Q we have in view of (18)

r(ah - l)q = 0 in End A.

Since A is a p-group it follows that in fact

(19) Ps(ah- 1)* = 0 in End A,

where p5 is the largest power of p dividing r.
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Consider the series A > pA > p2A > • • • > p'A = 0 for A (written additively).
Since each factor p'A/p'+lA is elementary abelian and therefore centralized by P
and hence by Q (< P), we have for all h e Q

( o r * - l ) p ' A < p ' + 1 A , * = 0 , l / - I .

Thus by (19) we have (ah - l)q+s = 0 in End A for all h e Q. Translated into
multiplicative notation this becomes

(20) [A, ,+,*] = {1} for all h e Q.

Write d for the nilpotency class of Q, and c" := \{d + l ) /2] . Then yd,(Q) is a fully
invariant abelian subgroup of Q = C 5 and hence of G, so that by (20)

[yAQ), 9+sh] = {l] for all h e Q.

By [20, Proposition D] it follows that

[ y A Q ) , Q , Q , . . . , Q ] = {1)

for some /3 = fi(q + s, d(Q)) where d{Q) is the least number of generators of Q.
Hence d < p + \(d + I)/!], yielding d < p + (d + 2)/2, whence d < ip + 2.

Now since Q = C 5 , the quotient G/ Q has exponent bounded above by e5. Hence
by Zelmanov's solution of the Restricted Burnside Problem [24,23], \G/Q\is bounded
above by a function of e5 and d(G). Hence d(Q) is also so bounded, whence p and
therefore also the class d of Q are so bounded.

We separate out part of what we have so far proved (for use in a slightly different
context below) as a

PROPOSITION (Compare [20, Proposition 5.3]). Given any d > 0, ifG is any finite
d-generator p-group with p < T(N), satisfying the law w = 1, then there exist
positive integers e5 = e5(A0 and d = d(N, d) (where N is the length ofw) such that

Ys+i(Gei) = {1}.

(Note that G€i =: Q above. Note also that from the preceding argument we may
immediately infer only the dependence of e$ and d on the word if rather than just its
length. However by the usual argument (see earlier), involving possible replacement
of e5 and d by larger numbers, we may in fact assume dependence only on N—as
well as d in the case of d.)
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We now return to the powerful p -group P (:= GD!). Letgj, g2 be any elements of P.
Applying the above proposition to Po := (gu g2) we have, since Po is 2-generator,
that

(21) y(^,2) + 1,(Pos) = {!}•

Writing cs(N) := ^(N, 2), it follows from (21) in particular that [gf5, Cig?] = 1 for
all git gi 6 P, that is, P satisfies the law

(22) [xe\ Ciy
e>] = 1,

where e5, c5 depend only on N.
The proof now continues as in [2, page 515], starting from the second displayed

formula on that page. (Note that the first displayed formula there is incorrect.) That
argument starts with a powerful p-group satisfying the law [*", Cly"] = 1 for some
eu C\, and concludes (at the top of p.518) that there exist numbers e3, c3 depending
only on e\, C\ such that the original powerful p-group belongs to 91^2$^. Translating
this into our present notation, we infer the existence of numbers e6, c6 depending only
on e5, c5 such that P e ^C62JC6. Then since P = Gm we have the desired conclusion
for G, completing the proof in Subcase 2.3.2, and with that the proof of Theorem A
for finite groups. •

3. Completion of the proof of Theorem A

We now show that any finitely generated soluble-by-finite group G satisfying the
law w = 1 lies in the variety 9tf2J(. for some c = c(N), e = e(N) depending only on
the length N of w. In view of this dependence of c, e only on N, Theorem A then
follows immediately.

The argument will follow that of [2] beginning on page 518, adapted to our present
situation. (In particular the context in [2, page 518 et seqq.] of a generating subsemi-
group 5 of G satisfying a semigroup law will no longer be relevant. However the
proof given there of Theorem D to the effect that if S satisfies a semigroup law then
that law actually holds in G (and furthermore G e 9Tf(Ai)23<.<#)) remains valid.)

With G, as above, any finitely generated soluble-by-finite group satisfying the law
w = 1, suppose that m is such that Gm is soluble. Observe first that by a well-known
result of Hall (see for example [17, 15.4.1, page 453]) the quotient

G := G/[yk(G
m), yk(G

m)]

is residually finite for every k since it is abelian-by-nilpotent-by-finite. Hence there
is a chain G > G\ > Gi > • • • of normal subgroups of G such that \G : G,| < oo
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and Pi G, = {1}. Since G/Gi is finite and satisfies the law w = 1, we have by the
finite case of the theorem, already established, that G/ G, € 91$,, for some c = c(N),
e = e(N) depending only on the length N of w. Since G is a subcartesian product of
the G/Gi, it follows that G 6 913 , . , or, equivalently,

(23) yc{Ge) < [yk(G
m), yk{Gm)\ for all k.

Consider now the descending chain G = No > N\ > N2 > • • • of subgroups of finite
index in G, defined inductively by

W, := Gme, Ni+l : = N<, for i > 1.

Since the TV, are all finitely generated subgroups of G, the argument leading to (23)
applies to each of them, so that

YcW) < [yk(Nd, YkW,)] for all i, k,

that is,

Yc(Nl+i) < [YkW), Yk(Nt)] for all i, it.

Hence writ ing / for the solubili ty length of Gm, we have in par t icular

m (2) 0 = {1},

where the equality follows from the fact that N{ = Gme < Gm and Gm is soluble of
length /. Hence G is a finite extension of a group of class < c, namely Ni+i, and is
therefore residually finite, whence we infer, as earlier, that G e 9^03,,. •
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