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Abstract
We prove that, for any countable acylindrically hyperbolic group G, there exists a generating set S of G such that
the corresponding Cayley graph Γ(𝐺, 𝑆) is hyperbolic, |𝜕Γ(𝐺, 𝑆) | > 2, the natural action of G on Γ(𝐺, 𝑆) is
acylindrical and the natural action of G on the Gromov boundary 𝜕Γ(𝐺, 𝑆) is hyperfinite. This result broadens the
class of groups that admit a non-elementary acylindrical action on a hyperbolic space with a hyperfinite boundary
action.

1. Introduction

Hyperfiniteness is a property of countable Borel equivalence relations that measures their complexity.
It is a classical topic in descriptive set theory that has been attracting people’s interest for decades,
and its research is still active to this day. Because any countable Borel equivalence relation is the
orbit equivalence relation of a Borel action of a countable group by the Feldman–Moore theorem
(see Definition 2.6 and [7]), people have investigated orbit equivalence relations of group actions.
Historically, study on amenable groups preceded toward a long-standing open problem asking whether
all orbit equivalence relations of Borel actions of countable amenable groups are hyperfinite. Remarkable
progress on this problem includes partial yet crucial results for Z𝑛 in [21], finitely generated groups
with polynomial growth in [13], countable abelian groups in [9] and polycyclic groups in [4].

On the other hand, there was not much progress made for non-amenable groups until very recently
and this is the focus of this paper. To the best of my knowledge, the only result of hyperfiniteness
in absence of measures in non-amenable case before 2010s was obtained by Dougherty, Jackson and
Kechris in [6], where they proved that the action of the free group 𝐹2 on the Gromov boundary is
hyperfinite. A breakthrough in this direction was achieved by Huang, Sabok and Shinko in [11], where
they generalized this result to cubulated hyperbolic groups. In [16], Marquis and Sabok succeeded in
proving hyperfiniteness of boundary actions of hyperbolic groups in full generality. This was further
generalized to finitely generated relatively hyperbolic groups by Karpinski in [14]. Other important
results in non-amenable case are [20] by Przytycki and Sabok, where they proved that actions of mapping
class groups on the Gromov boundaries of the arc complex and the curve complex are hyperfinite, and
[18] by Naryshkin and Vaccaro, where they proved that boundary actions of hyperbolic groups have
finite Borel asymptotic dimension, which strengthen [16].

Most of the above results in non-amenable case can be summarized by saying that the involved
groups admit a non-elementary acylindrical action on a hyperbolic space with a hyperfinite action on
the Gromov boundary. In this paper, we show that this is true for a much wider class of groups by
proving the following theorem.
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Theorem 1.1. For any countable acylindrically hyperbolic group G, there exists a generating set S of G
such that the corresponding Cayley graph Γ(𝐺, 𝑆) is hyperbolic, |𝜕Γ(𝐺, 𝑆) | > 2, the natural action of G
on Γ(𝐺, 𝑆) is acylindrical and the natural action of G on the Gromov boundary 𝜕Γ(𝐺, 𝑆) is hyperfinite.

Note that acylindrically hyperbolic groups do not need to be finitely generated. The new portion of
Theorem 1.1 is the hyperfiniteness of the action on the Gromov boundary, while the other conditions
were proved by Osin in [19]. Also, the generating set S in Theorem 1.1 is the same as the one constructed
in [19, Theorem 5.4]. The class of acylindrically hyperbolic groups is broad and includes many examples
of interest: non-elementary hyperbolic and relatively hyperbolic groups, all but finitely many mapping
class groups of punctured closed surfaces, 𝑂𝑢𝑡 (𝐹𝑛) for any 𝑛 ≥ 2, directly indecomposable right angled
Artin groups, non-virtually cyclic graphical small cancellation groups including some Gromov monsters
(see [10]), one relator groups with at least three generators, Higman group, most orientable 3-manifold
groups (see [17]) and many others. Proving hyperfiniteness in this broad class faces some difficulties that
didn’t appear in previous results. For exmaple, for acylindrically hyperbolic groups, there is no canonical
generating set in general, local compactness of geodesic ray bundles is lacking (see [16, Section 1]),
and elements of the Gromov boundary may not be represented by geodesic rays. We circumvent these
difficulties by bringing a new insight on the Gromov boundaries of acylindrically hyperbolic groups,
which we explain in Section 3 and Section 6 and by building on the work of Naryshkin and Vaccaro in
[18]. In [18], given a hyperbolic group G with a finite symmetric generating set S, they constructed an
injective Borel measurable map from 𝜕𝐺 to 𝑆N that Borel reduces a finite index subequivalence relation
of the orbit equivalence relation 𝐸𝜕𝐺

𝐺 to the tail equivalence relation 𝐸𝑡 (𝑆), thereby hyperfiniteness of
𝐸𝑡 (𝑆) implied hyperfiniteness of 𝐸𝜕𝐺

𝐺 .
Moreover, Theorem 1.1 has the following application to topological amenability of group actions.

Corollary 1.2 is interesting because it contrasts with the fact that some Gromov monsters are acylin-
drically hyperbolic, and these groups don’t admit a topologically amenable action on any compact
Hausdorff space as they’re non-exact.

Corollary 1.2. For any countable acylindrically hyperbolic group G, there exists a generating set S of
G such that the corresponding Cayley graph Γ(𝐺, 𝑆) is hyperbolic, |𝜕Γ(𝐺, 𝑆) | > 2, the natural action
of G on Γ(𝐺, 𝑆) is acylindrical and the natural action of G on the Gromov boundary 𝜕Γ(𝐺, 𝑆) is
topologically amenable.

The paper is organized as follows. In Section 2, we discuss the necessary definitions and known
results about hyperfinite Borel equivalence relations and acylindrically hyperbolic groups. In Section 3,
we introduce a new way to represent elements of the Gromov boundary of an acylindrically hyperbolic
group for a nice generating set by building on the work of Osin in [19]. In Section 4, we give a proof
of Theorem 1.1 by using techniques developed in Section 3. In Section 5, we introduce topological
amenability of group actions and prove Corollary 1.2. In Section 6, we summarize more results on
the Gromov boundaries of acylindrically hyperbolic groups that are not necessary in the proof of
Theorem 1.1 but are of independent interest for possible future use. Section 6 is independent of Section 4
and Section 5 and can be read as another continuation of Section 3.

2. Preliminary

2.1. Descriptive set theory

In this section, we review concepts in descriptive set theory.

Definition 2.1. A Polish space is a separable completely metrizable topological space.

Definition 2.2. A measurable space (𝑋,B) is called a standard Borel space if there exists a topology
O on X such that (𝑋,O) is a Polish space and B(O) = B holds, where B(O) is the 𝜎-algebra on X
generated by O.
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Definition 2.3. Let X be a standard Borel space and E be an equivalence relation on X. E is called
Borel if E is a Borel subset of 𝑋 × 𝑋 . E is called countable (resp. finite) if for any 𝑥 ∈ 𝑋 , the set
{𝑦 ∈ 𝑋 | (𝑥, 𝑦) ∈ 𝐸} is countable (resp. finite).

Remark 2.4. The word ‘countable Borel equivalence relation’ is often abbreviated to ‘CBER’.

Definition 2.5. Let X be a standard Borel space. A countable Borel equivalence relation E on X is called
hyperfinite if there exist finite Borel equivalence relations (𝐸𝑛)∞𝑛=1 on X such that 𝐸𝑛 ⊂ 𝐸𝑛+1 for any
𝑛 ∈ N and 𝐸 =

⋃∞
𝑛=1 𝐸𝑛.

Definition 2.6 and Definition 2.8 are two important examples of CBERs in this paper.

Definition 2.6. Suppose that a group G acts on a set S. The equivalence relation 𝐸𝑆
𝐺 on S is defined as

follows: For 𝑥, 𝑦 ∈ 𝑆,

(𝑥, 𝑦) ∈ 𝐸𝑆
𝐺 ⇐⇒ ∃ 𝑔 ∈ 𝐺 s.t. 𝑔𝑥 = 𝑦.

𝐸𝑆
𝐺 is called the orbit equivalence relation on S.

Lemma 2.7 is straightforward, but we record the proof for convenience of readers.

Lemma 2.7. Suppose that a countable group G acts on a standard Borel space S as Borel isomorphism,
then 𝐸𝑆

𝐺 is a CBER.

Proof. For any 𝑔 ∈ 𝐺, the set Graph(𝑔) defined by Graph(𝑔) = {(𝑥, 𝑔𝑥) ∈ 𝑆 × 𝑆 | 𝑥 ∈ 𝑆} is Borel since
𝑔 : 𝑆 → 𝑆 is Borel measurable. Since G is countable and we have 𝐸𝑆

𝐺 =
⋃
𝑔∈𝐺 Graph(𝑔), the set 𝐸𝑆

𝐺 is
also Borel, being the countable union of Borel sets. Finally, for any 𝑥 ∈ 𝑆, the orbit equivalence class of
x is exactly 𝐺𝑥, which is countable since G is countable. Thus, 𝐸𝑆

𝐺 is a CBER. �

Recall that any countable set Ω with the discrete topology is a Polish space. Hence, ΩN endowed
with the product topology is a Polish space.

Definition 2.8. Let Ω be a countable set. The equivalence relation 𝐸𝑡 (Ω) on ΩN is defined as follows:
For 𝑤0 = (𝑠1, 𝑠2, · · · ), 𝑤1 = (𝑡1, 𝑡2, · · · ) ∈ ΩN,

(𝑤0, 𝑤1) ∈ 𝐸𝑡 (Ω) ⇐⇒ ∃𝑛, ∃𝑚 ∈ N ∪ {0} s.t. ∀𝑖 ∈ N, 𝑠𝑛+𝑖 = 𝑡𝑚+𝑖 .

𝐸𝑡 (Ω) is called the tail equivalence relation on ΩN.

We list some facts needed for the proof of Theorem 1.1. Proposition 2.9 is a particular case of
[6, Corollary 8.2].

Proposition 2.9 (cf. [6, Corollary 8.2]). For any countable set Ω, the tail equivalence relation 𝐸𝑡 (Ω)
on ΩN is a hyperfinite CBER.

Proposition 2.10 [13, Proposition 1.3.(vii)]. Let X be a standard Borel space and 𝐸, 𝐹 be countable
Borel equivalence relations on X. If 𝐸 ⊂ 𝐹, E is hyperfinite and every F-equivalence class contains
only finitely many E-classes, then F is hyperfinite.

2.2. The Gromov boundary of a hyperbolic space

In this section, we review the Gromov boundary of a hyperbolic space. For more on the Gromov
boundary, readers are referred to [2].

Definition 2.11. Let (𝑆, 𝑑𝑆) be a metric space. For 𝑥, 𝑦, 𝑧 ∈ 𝑆, we define (𝑥, 𝑦)𝑆𝑧 by

(𝑥, 𝑦)𝑆𝑧 =
1
2
(𝑑𝑆 (𝑥, 𝑧) + 𝑑𝑆 (𝑦, 𝑧) − 𝑑𝑆 (𝑥, 𝑦)). (1)
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Proposition 2.12. For any geodesic metric space (𝑆, 𝑑𝑆), the following conditions are equivalent.
(1) There exists 𝛿 ∈ N satisfying the following property. Let 𝑥, 𝑦, 𝑧 ∈ 𝑆, and let p be a geodesic

path from z to x and q be a geodesic path from z to y. If two points 𝑎 ∈ 𝑝 and 𝑏 ∈ 𝑞 satisfy
𝑑𝑆 (𝑧, 𝑎) = 𝑑𝑆 (𝑧, 𝑏) ≤ (𝑥, 𝑦)𝑆𝑧 , then we have 𝑑𝑆 (𝑎, 𝑏) ≤ 𝛿.

(2) There exists 𝛿 ∈ N such that for any 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑆, we have

(𝑥, 𝑧)𝑆𝑤 ≥ min{(𝑥, 𝑦)𝑆𝑤 , (𝑦, 𝑧)𝑆𝑤 } − 𝛿.

Definition 2.13. A geodesic metric space S is called hyperbolic if S satisfies the equivalent conditions
(1) and (2) in Proposition 2.12. We call a hyperbolic space 𝛿-hyperbolic with 𝛿 ∈ N if 𝛿 satisfies both of
(1) and (2) in Proposition 2.12. A connected graph Γ is called hyperbolic, if the geodesic metric space
(Γ, 𝑑Γ) is hyperbolic, where 𝑑Γ is the graph metric of Γ.

In the remainder of this section, suppose that (𝑆, 𝑑𝑆) is a hyperbolic geodesic metric space.

Definition 2.14. A sequence (𝑥𝑛)∞𝑛=1 of elements of S is said to converge to infinity if we have
lim𝑖, 𝑗→∞(𝑥𝑖 , 𝑥 𝑗 )𝑆𝑜 = ∞ for some (equivalently any) 𝑜 ∈ 𝑆. For two sequences (𝑥𝑛)∞𝑛=1, (𝑦𝑛)

∞
𝑛=1 in S

converging to infinity, we define the relation ∼ by (𝑥𝑛)∞𝑛=1 ∼ (𝑦𝑛)∞𝑛=1 if we have lim𝑖, 𝑗→∞(𝑥𝑖 , 𝑦 𝑗 )𝑆𝑜 = ∞
for some (equivalently any) 𝑜 ∈ 𝑆.

Remark 2.15. It’s not difficult to see that the relation ∼ in Definition 2.14 is an equivalence relation by
using the condition (2) of Proposition 2.12.

Definition 2.16. The quotient set 𝜕𝑆 is defined by

𝜕𝑆 = {sequences in 𝑆 converging to infinity}/∼

and called Gromov boundary of S.

Remark 2.17. The set 𝜕𝑆 is sometimes called the sequential boundary of S. Note that 𝜕𝑆 sometimes
coincides with the geodesic boundary of S (e.g., when S is a proper metric space), but this is not the
case in general.

Definition 2.18. For 𝑜 ∈ 𝑆 and 𝜉, 𝜂 ∈ 𝑆 ∪ 𝜕𝑆, we define (𝜉, 𝜂)𝑆𝑜 by

(𝜉, 𝜂)𝑆𝑜 = sup{lim inf
𝑖, 𝑗→∞

(𝑥𝑖 , 𝑦 𝑗 )𝑆𝑜 | 𝜉 = [(𝑥𝑛)∞𝑛=1], 𝜂 = [(𝑦𝑛)∞𝑛=1]}, (2)

where we define 𝜉 = [(𝑥𝑛)∞𝑛=1] as follows. If 𝜉 ∈ 𝜕𝑆, then (𝑥𝑛)∞𝑛=1 is a sequence in S converging to
infinity such that 𝜉 represents the equivalence class of (𝑥𝑛)∞𝑛=1. If 𝜉 ∈ 𝑆, then (𝑥𝑛)∞𝑛=1 is constant with
𝑥𝑛 ≡ 𝜉. We define 𝜂 = [(𝑦𝑛)∞𝑛=1] in the same way.

Proposition 2.19. For any hyperbolic geodesic metric space (𝑆, 𝑑𝑆), there exists a unique topology O𝑆

on 𝑆 ∪ 𝜕𝑆 such that the relative topology of O𝑆 on S coincides with the metric topology of 𝑑𝑆 and for
any 𝜉 ∈ 𝜕𝑆 and 𝑜 ∈ 𝑆, the sets (𝑈 (𝑜, 𝜉, 𝑛))∞𝑛=1 defined by

𝑈 (𝑜, 𝜉, 𝑛) = {𝜂 ∈ 𝑆 ∪ 𝜕𝑆 | (𝜂, 𝜉)𝑆𝑜 > 𝑛}

form a neighborhood basis of O𝑆 at 𝜉.

Remark 2.20. When a group G acts on S isometrically, this action naturally extends to the homeomorphic
action on 𝑆 ∪ 𝜕𝑆.

The following proposition is a variation of [2, Proposition 3.21] and can be proved in the same way.
Indeed, in the statement of [2, Proposition 3.21], the domain of D below is (𝜕𝑆)2.

Proposition 2.21. For any 𝑜 ∈ 𝑆, there exist a map 𝐷 : (𝑆 ∪ 𝜕𝑆)2 → [0,∞) and constants 𝜀, 𝜀′ > 0
with 𝜀′ ≤

√
2 − 1 satisfying the following three conditions.
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(i) 𝐷 (𝑥, 𝑦) = 𝐷 (𝑦, 𝑥) for any 𝑥, 𝑦 ∈ 𝑆 ∪ 𝜕𝑆.
(ii) 𝐷 (𝑥, 𝑧) ≤ 𝐷 (𝑥, 𝑦) + 𝐷 (𝑦, 𝑧) for any 𝑥, 𝑦, 𝑧 ∈ 𝑆 ∪ 𝜕𝑆.

(iii) (1 − 2𝜀′)𝑒−𝜀 (𝑥,𝑦)𝑆𝑜 ≤ 𝐷 (𝑥, 𝑦) ≤ 𝑒−𝜀 (𝑥,𝑦)
𝑆
𝑜 for any 𝑥, 𝑦 ∈ 𝑆 ∪ 𝜕𝑆.

For convenience, if (𝑥, 𝑦)𝑆𝑜 = ∞, then we define 𝑒−𝜀 (𝑥,𝑦)
𝑆
𝑜 = 0.

Remark 2.22. For any 𝑥 ∈ 𝑆, we have (1− 2𝜀′)𝑒−𝜀𝑑𝑆 (𝑜,𝑥) ≤ inf𝑦∈𝑆∪𝜕𝑆 𝐷 (𝑥, 𝑦) by sup𝑦∈𝑆∪𝜕𝑆 (𝑥, 𝑦)𝑆𝑜 ≤
𝑑𝑆 (𝑜, 𝑥). Hence, the map D in Proposition 2.21 is not a metric on (𝑆 ∪ 𝜕𝑆)2. However, D is a metric
on (𝜕𝑆)2. This metric 𝐷 |(𝜕𝑆)2 is called a visual metric and the metric topology of 𝐷 |(𝜕𝑆)2 on (𝜕𝑆)2

coincides with the relative topology of O𝑆 in Proposition 2.19.

2.3. Hull–Osin’s separating cosets of hyperbolically embedded subgroups

In this section, we review hyperbolically embedded subgroups and Hull–Osin’s separating cosets. The
notion of separating cosets of hyperbolically embedded subgroups was first introduced by Hull and Osin
in [12] and further developed by Osin in [19]. There are two differences in the definition of separating
cosets in [12] and in [19], though other terminologies and related propositions are mostly the same
between them. This difference is explained in Remark 2.33. With regards to this difference, we follow
definitions and notations of [19] in our discussion. We begin with defining auxiliary concepts.

Definition 2.23. Let 𝑚, 𝑛 ∈ Z and let Γ be a connected graph with the graph metric 𝑑Γ. A path p in Γ
is a graph homomorphism from one of [𝑚, 𝑛], [𝑚,∞) or R to Γ, where each domain is considered as a
graph with a vertex set Z∩ [𝑚, 𝑛], Z∩ [𝑚,∞) and Z, respectively. When we want to emphasize that the
domain is [𝑚,∞) (resp. R), we call p an infinite path (resp. bi-infinite path). A subpath q of a path p is
a path obtained by restricting p to a subset of the domain of p. For vertices x and y of Γ, a path p from
x to y is a path p with the domain [𝑚, 𝑛] satisfying 𝑝(𝑚) = 𝑥 and 𝑝(𝑛) = 𝑦. We also denote the initial
point x of p by 𝑝− and the terminal point y by 𝑝+. A path p is called closed if 𝑝− = 𝑝+. Similarly, an
infinite path p from x is a path satisfying 𝑝(𝑚) = 𝑥 and we denote the initial point x of p by 𝑝−. A path
p is called geodesic if p is a distance-preserving map from its domain to (Γ, 𝑑Γ). An infinite geodesic
path is also called a geodesic ray. Since geodesic paths are injective, we often identify their images with
maps. For example, we will denote a geodesic ray p by 𝑝 = (𝑥0, 𝑥1, 𝑥2, · · · ), where each 𝑥𝑖 is a vertex of
Γ and each pair (𝑥𝑖 , 𝑥𝑖+1) is adjacent. Also, for a geodesic path p, if q is its subpath from x to y (resp. its
infinite subpath from x), we denote q by 𝑝 [𝑥,𝑦 ] (resp. 𝑝 [𝑥,∞) ).

Remark 2.24. For two paths p and q satisfying 𝑝+ = 𝑞−, we can define the path 𝑝𝑞 by concatenating p
and q. Also, for a path p from x to y, we can define the path 𝑝−1 to be the path from y to x obtained by
reversing the direction of p.

Remark 2.25. For vertices x and y of Γ, we sometimes denote a geodesic path from x to y by [𝑥, 𝑦],
though it’s not necessarily unique.

Definition 2.26. Suppose that G is a group, X is a subset of G and {𝐻𝜆}𝜆∈Λ is a collection of subgroups
of G such that the set 𝑋 ∪

⋃
𝜆∈Λ 𝐻𝜆 generates G. We denote H =

⊔
𝜆∈Λ (𝐻𝜆 \ {1}) and 𝑋 �H to mean

sets of labels. Note that these unions are disjoint as sets of labels, not as subsets of G. Let Γ(𝐺, 𝑋 �H)
be the Cayley graph of G with respect to 𝑋 � H, which allows loops and multiple edges, that is, its
vertex set is G and its positive edge set is 𝐺 × (𝑋 � H). The graph Γ(𝐺, 𝑋 � H) is called a relative
Cayley graph. For each 𝜆 ∈ Λ, we consider the Cayley graph Γ(𝐻𝜆, 𝐻𝜆 \ {1}), which is a subgraph
of Γ(𝐺, 𝑋 � H), and define a metric 𝑑𝜆 : 𝐻𝜆 × 𝐻𝜆 → [0,∞] as follows. We say that a path p in
Γ(𝐺, 𝑋 �H) is 𝜆-admissible if p doesn’t contain any edge of Γ(𝐻𝜆, 𝐻𝜆 \ {1}). Note that p can contain
an edge whose label is an element of 𝐻𝜆 (e.g., the case when the initial vertex of the edge is not in 𝐻𝜆)
and also p can pass vertices of Γ(𝐻𝜆, 𝐻𝜆 \ {1}). For 𝑓 , 𝑔 ∈ 𝐻𝜆, we define 𝑑𝜆( 𝑓 , 𝑔) to be the minimum
of lengths of all 𝜆-admissible paths from f to g. If there is no 𝜆-admissible path from f to g, then we
define 𝑑𝜆 ( 𝑓 , 𝑔) by 𝑑𝜆( 𝑓 , 𝑔) = ∞. For convenience, we extend 𝑑𝜆 to 𝑑𝜆 : 𝐺 × 𝐺 → [0,∞] by defining
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𝑑𝜆 ( 𝑓 , 𝑔) = 𝑑𝜆 (1, 𝑓 −1𝑔) if 𝑓 −1𝑔 ∈ 𝐻𝜆 and 𝑑𝜆( 𝑓 , 𝑔) = ∞ otherwise. The metric 𝑑𝜆 is called the relative
metric.

Definition 2.27. Suppose that G is a group and {𝐻𝜆}𝜆∈Λ is a collection of subgroups of G. For a subset X
of G, {𝐻𝜆}𝜆∈Λ is said to be hyperbolically embedded in (𝐺, 𝑋) (and denoted by {𝐻𝜆}𝜆∈Λ ↩→ℎ (𝐺, 𝑋)),
if it satisfies the two conditions below.
(1) The set 𝑋 ∪ (

⋃
𝜆∈Λ 𝐻𝜆) generates G and the graph Γ(𝐺, 𝑋 �H) is hyperbolic.

(2) For any 𝜆 ∈ Λ, (𝐻𝜆, 𝑑𝜆) is locally finite, that is, for any 𝑛 ∈ N, {𝑔 ∈ 𝐻𝜆 | 𝑑𝜆(1, 𝑔) ≤ 𝑛} is finite.
A collection of subgroups {𝐻𝜆}𝜆∈Λ is also said to be hyperbolically embedded in G (and denoted by
{𝐻𝜆}𝜆∈Λ ↩→ℎ 𝐺), if there exists a subset X of G such that {𝐻𝜆}𝜆∈Λ ↩→ℎ (𝐺, 𝑋).

In the remainder of this section, suppose that {𝐻𝜆}𝜆∈Λ is hyperbolically embedded in (𝐺, 𝑋) as in
Definition 2.27. We next prepare concepts to define separating cosets.
Definition 2.28 [19, Definition 4.1]. Suppose that p is a path in the relative Cayley graph Γ(𝐺, 𝑋 �H).
A subpath q of p is called an 𝐻𝜆-subpath if the labels of all edges of q are in 𝐻𝜆. In the case that p
is a closed path, q can be a subpath of any cyclic shift of p. An 𝐻𝜆-subpath q of a path p is called
𝐻𝜆-component if q is not contained in any longer 𝐻𝜆-subpath of p. In the case that p is a closed path,
we require that q is not contained in any longer 𝐻𝜆-subpath of any cyclic shift of p. Furthermore, by a
component, we mean an 𝐻𝜆-component for some 𝐻𝜆. Two 𝐻𝜆-components 𝑞1 and 𝑞2 of a path p are
called connected if all vertices of 𝑞1 and 𝑞2 are in the same 𝐻𝜆-coset. An 𝐻𝜆-component q of a path p
is called isolated if q is not connected to any other 𝐻𝜆-component of p.
Remark 2.29. Note that all vertices of an 𝐻𝜆-component lie in the same 𝐻𝜆-coset.

Proposition 2.30 is a particular case of [5, Proposition 4.13] and plays a crucial role in this paper.
Proposition 2.30 [12, Lemma 2.4]. There exists a constant 𝐶 > 0 such that for any geodesic n-gon p in
Γ(𝐺, 𝑋 �H) and any isolated 𝐻𝜆-component a of p, we have

𝑑𝜆(𝑎−, 𝑎+) ≤ 𝑛𝐶.

In the remainder of section, we fix any constant 𝐷 > 0 with

𝐷 ≥ 3𝐶. (3)

We can now define separating cosets.
Definition 2.31 [19, Definition 4.3]. A path p in Γ(𝐺, 𝑋 � H) is said to penetrate a coset 𝑥𝐻𝜆 for
some 𝜆 ∈ Λ if p decomposes into 𝑝1𝑎𝑝2, where 𝑝1, 𝑝2 are possibly trivial, a is an 𝐻𝜆-component and
𝑎− ∈ 𝑥𝐻𝜆. Note that if p is geodesic, p penetrates any coset of 𝐻𝜆 at most once. In this case, a is
called the component of p corresponding to 𝑥𝐻𝜆 and also the vertices 𝑎− and 𝑎+ are called the entrance
and exit points of p and are denoted by 𝑝𝑖𝑛 (𝑥𝐻𝜆) and 𝑝𝑜𝑢𝑡 (𝑥𝐻𝜆), respectively. If in addition we have
𝑑𝜆 (𝑎−, 𝑎+) > 𝐷, then p is said to essentially penetrates 𝑥𝐻𝜆. For 𝑓 , 𝑔 ∈ 𝐺 and 𝜆 ∈ Λ if there exists a
geodesic path from f to g in Γ(𝐺, 𝑋 �H) which essentially penetrates an 𝐻𝜆-coset 𝑥𝐻𝜆, then 𝑥𝐻𝜆 is
called an ( 𝑓 , 𝑔; 𝐷)-separating coset. The set of all ( 𝑓 , 𝑔; 𝐷)-separating cosets of subgroups from the
collection {𝐻𝜆}𝜆∈Λ is denoted by 𝑆( 𝑓 , 𝑔; 𝐷).
Remark 2.32. If a geodesic path p penetrates an 𝐻𝜆-coset 𝑥𝐻𝜆, then the component a of p corresponding
to 𝑥𝐻𝜆 consists of a single edge and is isolated in p by minimality of the length of p.
Remark 2.33. First, in [12, Definition 3.1], whenever 𝑓 , 𝑔 ∈ 𝐺 are in the same 𝐻𝜆-coset 𝑥𝐻𝜆 for some
𝜆 ∈ Λ, 𝑥𝐻𝜆 is included in 𝑆( 𝑓 , 𝑔; 𝐷), but in our Definition 2.31, 𝑆( 𝑓 , 𝑔; 𝐷) can be empty even in this
case. Secondly, in [12, Definition 3.1], separating cosets are considered for each subgroup 𝐻𝜆 separately,
being denoted by 𝑆𝜆 ( 𝑓 , 𝑔; 𝐷), but in our Definition 2.31, we consider separating cosets of all subgroups
from the collection {𝐻𝜆}𝜆∈Λ all together.

The following lemma is immediate from the above definition.
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Lemma 2.34. For any 𝑓 , 𝑔, ℎ ∈ 𝐺 and any 𝜆 ∈ Λ, the following hold.

(a) 𝑆( 𝑓 , 𝑔; 𝐷) = 𝑆(𝑔, 𝑓 ; 𝐷).
(b) 𝑆(ℎ 𝑓 , ℎ𝑔; 𝐷) = {ℎ𝑥𝐻𝜆 | 𝑥𝐻𝜆 ∈ 𝑆( 𝑓 , 𝑔; 𝐷)}.

We list some results on separating cosets so that readers have a better understanding.
Lemma 2.35 (cf. [19, Lemma 4.5]). For any 𝑓 , 𝑔 ∈ 𝐺 and any 𝑥𝐻𝜆 ∈ 𝑆( 𝑓 , 𝑔; 𝐷), every path in
Γ(𝐺, 𝑋 �H) connecting f to g and composed of at most two geodesic segments penetrates 𝑥𝐻𝜆.

The following lemma makes 𝑆( 𝑓 , 𝑔; 𝐷) into a totally ordered set.
Lemma 2.36 [19, Lemma 4.6]. Let 𝑓 , 𝑔 ∈ 𝐺, and suppose that a geodesic path p from f to g penetrates
a coset 𝑥𝐻𝜆 for some 𝜆 ∈ Λ and decomposes into 𝑝 = 𝑝1𝑎𝑝2, where 𝑝1, 𝑝2 are possibly trivial and a is
a component corresponding to 𝑥𝐻𝜆. Then, we have 𝑑𝑋∪H ( 𝑓 , 𝑎−) = 𝑑𝑋∪H ( 𝑓 , 𝑥𝐻𝜆).
Definition 2.37 [19, Definition 4.7]. Given any 𝑓 , 𝑔 ∈ 𝐺, a relation � on the set 𝑆( 𝑓 , 𝑔; 𝐷) is defined
as follows: For any 𝐶1, 𝐶2 ∈ 𝑆( 𝑓 , 𝑔; 𝐷),

𝐶1 � 𝐶2 ⇐⇒ 𝑑𝑋∪H ( 𝑓 , 𝐶1) ≤ 𝑑𝑋∪H ( 𝑓 , 𝐶2).

Lemma 2.38 [19, Lemma 4.8]. For any 𝑓 , 𝑔 ∈ 𝐺, the relation � is a linear order on 𝑆( 𝑓 , 𝑔; 𝐷) and
any geodesic path p in Γ(𝐺, 𝑋 �H) from f to g penetrates all ( 𝑓 , 𝑔; 𝐷)-separating cosets according to
the order �. In particular, 𝑆( 𝑓 , 𝑔; 𝐷) is finite. That is,

𝑆( 𝑓 , 𝑔; 𝐷) = {𝐶1 � 𝐶2 � · · · � 𝐶𝑛}

for some 𝑛 ∈ N and p decomposes into 𝑝 = 𝑝1𝑎1 · · · 𝑝𝑛𝑎𝑛𝑝𝑛+1, where 𝑎𝑖 is the component of p
corresponding to 𝐶𝑖 for each 𝑖 ∈ {1, · · · , 𝑛}.

2.4. Acylindrically hyperbolic group

Theorem 2.39 is a simplified version of [19, Theorem 1.2]. For more details on acylindrically hyperbolic
groups, readers are referred to [19].
Theorem 2.39. For any group G, the following conditions are equivalent.

(AH1) There exists a generating set X of G such that the corresponding Cayley graph Γ(𝐺, 𝑋) is
hyperbolic, |𝜕Γ(𝐺, 𝑋) | > 2, and the natural action of G on Γ(𝐺, 𝑋) is acylindrical.

(AH4) G contains a proper infinite hyperbolically embedded subgroup.

Definition 2.40. A group G is called acylindrically hyperbolic if G satisfies the equivalent conditions
(𝐴𝐻1) and (𝐴𝐻4) from Theorem 2.39.

The following results were obtained in [19, Section 5] in proving the implication (𝐴𝐻4) ⇒ (𝐴𝐻1)
in Theorem 2.39. In Theorem 2.41 below, we consider separating cosets for {𝐻𝜆}𝜆∈Λ ↩→ℎ (𝐺, 𝑋) and
the metric 𝑑Γ(𝐺,𝑌�H) (·, ·) is denoted by 𝑑𝑌∪H (·, ·) for brevity.
Theorem 2.41 (cf. [19, Theorem 5.4, Lemma 5.10]). Suppose that G is a group, X is a subset of G
and {𝐻𝜆}𝜆∈Λ is a collection of subgroups of G hyperbolically embedded in (𝐺, 𝑋). Let 𝐶 > 0 as in
Proposition 2.30, and let 𝐷 > 0 satisfy 𝐷 ≥ 3𝐶 as in equation (3). We also define the subset Y of G by

𝑌 = {𝑦 ∈ 𝐺 | 𝑆(1, 𝑦; 𝐷) = ∅}. (4)

Then, we have for any 𝑓 , 𝑔 ∈ 𝐺,

1
2
(𝑑𝑌∪H ( 𝑓 , 𝑔) − 1) ≤ |𝑆( 𝑓 , 𝑔; 𝐷) | ≤ 3𝑑𝑌∪H ( 𝑓 , 𝑔). (5)

If in addition Λ is finite, then the following hold.
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(a) {𝐻𝜆}𝜆∈Λ ↩→ℎ (𝐺,𝑌 ).
(b) The action of G on Γ(𝐺,𝑌 �H) is acylindrical.

Remark 2.42. In [19, Section 5], the condition |Λ| < ∞ is assumed in all lemmas for proving (𝐴𝐻4) ⇒
(𝐴𝐻1) including [19, Lemma 5.10], which corresponds to the inequality (5) in Theorem 2.41. However,
the condition |Λ| < ∞ is not used in the proof of [19, Lemma 5.10], so we omit it in equation (5) for
our discussion in Section 3 and Section 6. Actually, the condition |Λ| < ∞ is not used in the proof of
[19, Theorem 5.4 (a)] either.

Lemma 2.43 [19, Lemma 5.12]. Let G be a group, H a subgroup of G, X a subset of G. If H is
non-degenerate (i.e., H is a proper infinite subgroup of G) and 𝐻 ↩→ℎ (𝐺, 𝑋), then the action of G on
Γ(𝐺, 𝑋 � 𝐻) is non-elementary (i.e., |𝜕Γ(𝐺, 𝑋 � 𝐻) | > 2).

3. Path representatives of the Gromov boundary

Throughout this section, suppose that G is a group, X is a subset of G and {𝐻𝜆}𝜆∈Λ is a collection of
subgroups of G hyperbolically embedded in (𝐺, 𝑋). Let 𝐶 > 0 as in Proposition 2.30 and fix 𝐷 > 0
satisfying 𝐷 ≥ 3𝐶 as in equation (3). We also define the subset Y of G by𝑌 = {𝑦 ∈ 𝐺 | 𝑆(1, 𝑦; 𝐷) = ∅}
as in Theorem 2.41.

In this section, we will show that elements of the Gromov boundary of the Cayley graph Γ(𝐺,𝑌 �H)
are represented by nice geodesic rays in Γ(𝐺, 𝑋 �H) (see Proposition 3.22). The nice geodesic rays are
characterized by penetrating infinitely many cosets deeply enough (see Lemma 3.20). By using these
path representatives of boundary points, we will extend the notion of Hull–Osin’s separating cosets to
allow a point in the Gromov boundary (see Definition 3.25). We will also investigate the relation between
the path representatives and the topology of 𝜕Γ(𝐺,𝑌 �H) (see Proposition 3.23 and Proposition 3.29).

For brevity, we will denote 𝑑Γ(𝐺,𝑋�H) (·, ·) and (·, ·)Γ(𝐺,𝑋�H)
· by 𝑑𝑋∪H (·, ·) and (·, ·)𝑋∪H

· , respec-
tively (see equation (1)). This will be the same for Γ(𝐺,𝑌 �H) as well. We also emphasize that we will
consider separating cosets and relative metrics for {𝐻𝜆}𝜆∈Λ ↩→ℎ (𝐺, 𝑋), hence we use the notations
𝑆(·, ·; 𝐷) and 𝑑𝜆(·, ·) without including X in them.

As preparation of our discussion, we list auxiliary results that immediately follow from Section 2.3
but have not been recorded explicitly. They’re from Lemma 3.1 up to Lemma 3.5.

Lemma 3.1. Let p be a geodesic path in Γ(𝐺, 𝑋 �H) between two vertices and q be a subpath of p,
then we have 𝑆(𝑞−, 𝑞+; 𝐷) ⊂ 𝑆(𝑝−, 𝑝+; 𝐷).

Proof. Let 𝑝 = 𝑝1𝑞𝑝2 be decomposition of p into subpaths 𝑝1, q and 𝑝2. For any 𝐻𝜆-coset 𝑥𝐻𝜆 ∈
𝑆(𝑞−, 𝑞+; 𝐷), there exists a geodesic path 𝛼 in Γ(𝐺, 𝑋 �H) from 𝑞− to 𝑞+ that essentially penetrates
𝑥𝐻𝜆. Since 𝑝1𝛼𝑝2 is a geodesic path in Γ(𝐺, 𝑋 �H) from 𝑝− to 𝑝+ that essentially penetrates 𝑥𝐻𝜆, we
have 𝑥𝐻𝜆 ∈ 𝑆(𝑝−, 𝑝+; 𝐷). �

Lemma 3.2 means that if two geodesic paths from the same point penetrate the same coset, then their
entrance points are close.

Lemma 3.2. Let 𝑜 ∈ 𝐺 and suppose that B is an 𝐻𝜆-coset for some 𝜆 ∈ Λ and that 𝑝, 𝑞 are (possibly
infinite) geodesic paths from o in Γ(𝐺, 𝑋�H) that penetrate B. Then, we have 𝑑𝜆 (𝑝𝑖𝑛 (𝐵), 𝑞𝑖𝑛 (𝐵)) ≤ 3𝐶.

Proof. Let 𝑥 = 𝑝𝑖𝑛 (𝐵) and 𝑦 = 𝑞𝑖𝑛 (𝐵) for brevity, and let e be the edge in Γ(𝐺, 𝑋 � H) from x to
y whose label is in 𝐻𝜆. Since 𝑝, 𝑞 are geodesic in Γ(𝐺, 𝑋 � H) and penetrates B, e is an isolated
component in the geodesic triangle 𝑝 [𝑜,𝑥 ]𝑒(𝑞 [𝑜,𝑦 ] )−1 by Remark 2.32. This implies 𝑑𝜆(𝑥, 𝑦) ≤ 3𝐶 by
Proposition 2.30. �

Lemma 3.3 means that the distance between two cosets can be measured by a geodesic path penetrating
both of them.
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Figure 1. Proof of Lemma 3.4.

Figure 2. Proof of Lemma 3.5.

Lemma 3.3. Suppose that p is a (possibly infinite) geodesic path in Γ(𝐺, 𝑋 � H) from 𝑝− ∈ 𝐺. If p
penetrates two distinct cosets 𝐶0, 𝐶1 satisfying 𝑑𝑋∪H (𝑝−, 𝐶0) < 𝑑𝑋∪H (𝑝−, 𝐶1), then we have

𝑑𝑋∪H (𝑝𝑜𝑢𝑡 (𝐶0), 𝑝𝑖𝑛 (𝐶1)) = 𝑑𝑋∪H (𝐶0, 𝐶1).

Proof. Let 𝑝 = 𝑝1𝑎𝑝2𝑏𝑝3 be decomposition of p into subpaths such that 𝑎, 𝑏 are components of p cor-
responding to 𝐶0, 𝐶1, respectively. By 𝑎+ ∈ 𝐶0 and 𝑏− ∈ 𝐶1, we have 𝑑𝑋∪H (𝐶0, 𝐶1) ≤ 𝑑𝑋∪H (𝑎+, 𝑏−).
Suppose for contradiction that there exist 𝑥 ∈ 𝐶0, 𝑦 ∈ 𝐶1 such that 𝑑𝑋∪H (𝑥, 𝑦) < 𝑑𝑋∪H (𝑎+, 𝑏−). By
𝑥, 𝑎− ∈ 𝐶0 and 𝑦, 𝑏+ ∈ 𝐶1, we have 𝑑𝑋∪H (𝑎−, 𝑥) ≤ 1 and 𝑑𝑋∪H(𝑦, 𝑏+) ≤ 1. This implies

𝑑𝑋∪H (𝑎−, 𝑏+) ≤ 𝑑𝑋∪H(𝑎−, 𝑥) + 𝑑𝑋∪H(𝑥, 𝑦) + 𝑑𝑋∪H (𝑦, 𝑏+)
< 1 + 𝑑𝑋∪H (𝑎+, 𝑏−) + 1 = 𝑑𝑋∪H (𝑎−, 𝑏+),

which is a contradiction. Hence, we also have 𝑑𝑋∪H (𝑎+, 𝑏−) ≤ 𝑑𝑋∪H (𝐶0, 𝐶1). �

Lemma 3.4 is analogous to Lemma 3.2.

Lemma 3.4. Suppose that 𝐶0, 𝐶1 are cosets of 𝐻𝜆0 , 𝐻𝜆1 , respectively, with 𝐶0 ≠ 𝐶1 and that 𝑝, 𝑞 are
(possibly infinite) geodesic paths in Γ(𝐺, 𝑋 � H) from 𝑝−, 𝑞− ∈ 𝐺, respectively, that penetrate 𝐶0
and 𝐶1 satisfying 𝑑𝑋∪H (𝑝−, 𝐶0) < 𝑑𝑋∪H (𝑝−, 𝐶1) and 𝑑𝑋∪H (𝑞−, 𝐶0) < 𝑑𝑋∪H (𝑞−, 𝐶1). Then, we have
𝑑𝜆0 (𝑝𝑜𝑢𝑡 (𝐶0), 𝑞𝑜𝑢𝑡 (𝐶0)) ≤ 4𝐶 and 𝑑𝜆1 (𝑝𝑖𝑛 (𝐶1), 𝑞𝑖𝑛 (𝐶1)) ≤ 4𝐶.

Proof. Let 𝑥0 = 𝑝𝑜𝑢𝑡 (𝐶0), 𝑥1 = 𝑝𝑖𝑛 (𝐶1), 𝑦0 = 𝑞𝑜𝑢𝑡 (𝐶0), 𝑦1 = 𝑞𝑖𝑛 (𝐶1) for brevity, and let 𝑒0, 𝑒1 be
edges in Γ(𝐺, 𝑋 �H) such that 𝑒0 is from 𝑥0 to 𝑦0 with its label in 𝐻𝜆0 and 𝑒1 is from 𝑥1 to 𝑦1 with its
label in 𝐻𝜆1 . Since the subpaths 𝑝 [𝑥0 ,𝑥1 ] , 𝑞 [𝑦0 ,𝑦1 ] don’t penetrate 𝐶0 nor 𝐶1 by Remark 2.32 and we have
𝐶0 ≠ 𝐶1, 𝑒0 and 𝑒1 are isolated components of the geodesic quadrilateral 𝑒0𝑞 [𝑦0 ,𝑦1 ]𝑒

−1
1 (𝑝 [𝑥0 ,𝑥1 ] )−1. This

implies 𝑑𝜆0 (𝑥0, 𝑦0) ≤ 4𝐶 and 𝑑𝜆1 (𝑥1, 𝑦1) ≤ 4𝐶 by Proposition 2.30. �

Lemma 3.5 is useful to find separating cosets of a pair of elements in G.

Lemma 3.5. Let 𝑜, 𝑥, 𝑦 ∈ 𝐺 and 𝑆(𝑜, 𝑥; 𝐷) = {𝐶1 � 𝐶2 � · · · � 𝐶𝑛}. If a geodesic path q in
Γ(𝐺, 𝑋 �H) from o to y penetrates 𝐶𝑖 for some 𝑖 ∈ {1, · · · , 𝑛}, then we have 𝐶 𝑗 ∈ 𝑆(𝑜, 𝑦; 𝐷) for any j
with 𝑗 < 𝑖.

Proof. Let q penetrate 𝐶𝑖 and 𝑗 ∈ N satisfy 𝑗 < 𝑖. By 𝐶 𝑗 ∈ 𝑆(𝑜, 𝑥; 𝐷), their exists a geodesic path p in
Γ(𝐺, 𝑋 �H) from o to x that essentially penetrates 𝐶 𝑗 . Note that p penetrates 𝐶𝑖 by Lemma 2.38. Let
𝑝 = 𝑝1𝑎𝑝2, 𝑞 = 𝑞1𝑏𝑞2 be decomposition of 𝑝, 𝑞 into subpaths such that 𝑎, 𝑏 are 𝐻𝜆-component of 𝑝, 𝑞
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corresponding to 𝐶𝑖 , respectively. Let e be the edge from 𝑎− to 𝑏+ in Γ(𝐺, 𝑋 �H) whose label is in 𝐻𝜆.
Since we have 𝑑𝑋∪H (𝑜, 𝑎−) = 𝑑𝑋∪H (𝑜, 𝑏−) = 𝑑𝑋∪H(𝑜, 𝐶𝑖) by Lemma 2.36, the path 𝑝1𝑒𝑞2 from o to
y is geodesic in Γ(𝐺, 𝑋 �H) and essentially penetrates 𝐶 𝑗 . This implies 𝐶 𝑗 ∈ 𝑆(𝑜, 𝑦; 𝐷). �

First of all, we verify hyperbolicity of Γ(𝐺,𝑌�H). Lemma 3.7 is straightforward from [1, Proposition
3.1], which is stated below in a simplified way, but we write down the proof for completeness. Also,
Lemma 3.7 (a) is actually known by [19, Lemma 5.6] since its proof doesn’t use the condition |Λ| < ∞
(see Remark 2.42). Lemma 3.7 (b) is new and plays an important role in this paper together with the
inequality (5) in Theorem 2.41.
Proposition 3.6 (cf. [1, Proposition 3.1]). Given ℎ ≥ 0, there exists 𝑘 (ℎ) ≥ 0 with the following
property. Suppose that Γ is a connected graph and that for each pair of vertices 𝑥, 𝑦 ∈ Γ, we have
associated a connected subgraph L(𝑥, 𝑦) of Γ with 𝑥, 𝑦 ∈ L(𝑥, 𝑦) satisfying (1) and (2) below. (Here,
we define N (𝐴, ℎ) = {𝑣 ∈ Γ | ∃𝑤 ∈ 𝐴 s.t. 𝑑Γ (𝑣, 𝑤) ≤ ℎ}.)
(1) For any vertices 𝑥, 𝑦, 𝑧 ∈ Γ, L(𝑥, 𝑦) ⊂ N (L(𝑥, 𝑧) ∪ L(𝑧, 𝑦), ℎ).
(2) For any vertices 𝑥, 𝑦 ∈ Γ with 𝑑Γ (𝑥, 𝑦) ≤ 1, the diameter of L(𝑥, 𝑦) in Γ is at most h.
Then, Γ is 𝑘 (ℎ)-hyperbolic and for any two vertices 𝑥, 𝑦 ∈ Γ, the Hausdorff distance between L(𝑥, 𝑦)
and any geodesic path in Γ from x to y is bounded above by 𝑘 (ℎ).
Lemma 3.7. The following hold.
(a) We have 𝑋 ⊂ 𝑌 and Γ(𝐺,𝑌 �H) is hyperbolic.
(b) There exists 𝑀𝑋 ∈ N such that for any 𝑥, 𝑦 ∈ 𝐺, any geodesic path 𝛼 in Γ(𝐺, 𝑋 �H) from x to y

and any geodesic path 𝛽 in Γ(𝐺,𝑌 � H) from x to y, the Hausforff distance between 𝛼 and 𝛽 in
Γ(𝐺,𝑌 �H) is bounded above by 𝑀𝑋 .

Proof. If 𝑥 ∈ 𝑋 and 𝑥 ≠ 1, then the edge in Γ(𝐺, 𝑋 �H) from 1 to x with the label 𝑥 ∈ 𝑋 is geodesic
in Γ(𝐺, 𝑋 �H). Since this path consisting of one edge has no 𝐻𝜆-component for any 𝜆 ∈ Λ, we have
𝑆(1, 𝑥; 𝐷) = ∅ by Lemma 2.38. This implies 𝑥 ∈ 𝑌 , hence 𝑋 ⊂ 𝑌 . We will check the two conditions in
Proposition 3.6 considering Γ = Γ(𝐺,𝑌 � H). Note that Γ(𝐺, 𝑋 �H) is a subgraph of Γ(𝐺,𝑌 �H)
by 𝑋 ⊂ 𝑌 . For each pair (𝑥, 𝑦) of elements of G, fix a geodesic path 𝛾𝑥,𝑦 in Γ(𝐺, 𝑋 � H) from x to
y and define L(𝑥, 𝑦) = 𝛾𝑥,𝑦 . Since Γ(𝐺, 𝑋 � H) is 𝛿𝑋 -hyperbolic with 𝛿𝑋 ∈ N (see Definition 2.27
(1)), Proposition 3.6 (1) is satisfied with ℎ = 𝛿𝑋 . Next, let 𝑥, 𝑦 ∈ 𝐺 satisfy 𝑑𝑌∪H (𝑥, 𝑦) ≤ 1, then
𝑆(𝑥, 𝑦; 𝐷) = ∅. Hence, for any vertex 𝑧 ∈ 𝛾𝑥,𝑦 , we have 𝑆(𝑥, 𝑧; 𝐷) = ∅ by Lemma 3.1. This implies
𝑑𝑌∪H (𝑥, 𝑧) ≤ 1. Hence, the diameter of 𝑝𝑥,𝑦 in Γ(𝐺,𝑌 �H) is at most 2, which verifies Proposition 3.6
(2). Since both conditions in Proposition 3.6 are satisfied with ℎ = max{𝛿𝑋 , 2}, the graph Γ(𝐺,𝑌 �H)
is 𝑘 (ℎ)-hyperbolic. Also, let 𝑥, 𝑦 ∈ 𝐺 and let 𝛼 be a geodesic path in Γ(𝐺, 𝑋�H) from x to y, and 𝛽 be a
geodesic path in Γ(𝐺,𝑌 �H) from x to y. By Proposition 3.6, the Hausdorff distance between 𝛽 and 𝛾𝑥,𝑦
in Γ(𝐺,𝑌 �H) is at most 𝑘 (ℎ) and by 𝛿𝑋 -hyperbolicity of Γ(𝐺, 𝑋�H), the Hausdorff distance between
𝛼 and 𝛾𝑥,𝑦 in Γ(𝐺,𝑌 �H) is at most 𝛿𝑋 . Thus, the statement (b) holds with 𝑀𝑋 = 𝑘 (ℎ) + 𝛿𝑋 . �

In the remainder of this section, let Γ(𝐺,𝑌 �H) (resp. Γ(𝐺, 𝑋 �H)) be 𝛿𝑌 -hyperbolic (resp. 𝛿𝑋 -
hyperbolic) with 𝛿𝑋 , 𝛿𝑌 ∈ N.
Remark 3.8. Note that 𝛿𝑌 and 𝑀𝑋 depend only on X by the proof of Lemma 3.7.

The point of Theorem 2.41 equation (5) and Lemma 3.7 (b) is that we can deal with geodesic paths
in Γ(𝐺, 𝑋 � H) as if they are quasi-geodesic in Γ(𝐺,𝑌 � H), though they’re actually not. This will
become clear by results from Lemma 3.9 up to Lemma 3.11 below. Lemma 3.9 is mostly applied to two
elements 𝑔1, 𝑔2 except in the proof of Proposition 3.22.
Lemma 3.9. Let 𝑅 ∈ N, (𝑔𝑖)𝑖∈N, 𝑜 ∈ 𝐺, and suppose that 𝑝𝑖 is a geodesic path in Γ(𝐺, 𝑋 �H) from o
to 𝑔𝑖 for each 𝑖 ∈ N. If (𝑔𝑖 , 𝑔 𝑗 )𝑌∪H

𝑜 ≥ 𝑅 for any 𝑖, 𝑗 ∈ N, then there exist vertices 𝑣𝑖 ∈ 𝑝𝑖 for each 𝑖 ∈ N
such that for any 𝑖, 𝑗 ∈ N, we have

𝑑𝑌∪H (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝛿𝑌 + 2𝑀𝑋 𝑎𝑛𝑑 𝑑𝑌∪H (𝑜, 𝑣𝑖) ≥ 𝑅 − 𝑀𝑋 .
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Proof. For each 𝑖 ∈ N, let [𝑜, 𝑔𝑖] be a geodesic path in Γ(𝐺,𝑌 �H) from o to 𝑔𝑖 and 𝑤𝑖 ∈ [𝑜, 𝑔𝑖] be a
vertex satisfying 𝑑𝑌∪H (𝑜, 𝑤𝑖) = 𝑅. By (𝑔𝑖 , 𝑔 𝑗 )𝑌∪H

𝑜 ≥ 𝑅, we have 𝑑𝑌∪H (𝑤𝑖 , 𝑤 𝑗 ) ≤ 𝛿𝑌 for any 𝑖, 𝑗 ∈ N.
By Lemma 3.7 (b), for each 𝑖 ∈ N, there exists a vertex 𝑣𝑖 ∈ 𝑝𝑖 such that 𝑑𝑌∪H (𝑣𝑖 , 𝑤𝑖) ≤ 𝑀𝑋 . We have
for any 𝑖, 𝑗 ∈ N,

𝑑𝑌∪H (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝑑𝑌∪H (𝑣𝑖 , 𝑤𝑖) + 𝑑𝑌∪H (𝑤𝑖 , 𝑤 𝑗 ) + 𝑑𝑌∪H (𝑤 𝑗 , 𝑣 𝑗 ) ≤ 𝛿𝑌 + 2𝑀𝑋

and 𝑑𝑌∪H (𝑜, 𝑣𝑖) ≥ 𝑑𝑌∪H (𝑜, 𝑤𝑖) − 𝑑𝑌∪H (𝑤𝑖 , 𝑣𝑖) ≥ 𝑅 − 𝑀𝑋 . �

Lemma 3.10 below can be considered as the converse of Lemma 3.9.

Lemma 3.10. Let 𝑜, 𝑥, 𝑦 ∈ 𝐺, and suppose that 𝑝, 𝑞 are geodesic paths in Γ(𝐺, 𝑋 �H) such that p is
from o to x and q is from o to y. If there exist vertices 𝑣 ∈ 𝑝 and 𝑤 ∈ 𝑞 such that 𝑑𝑌∪H (𝑜, 𝑣) ≥ 𝑅 and
𝑑𝑌∪H (𝑣, 𝑤) ≤ 𝐾 with some 𝑅, 𝐾 ∈ N, then we have (𝑥, 𝑦)𝑌∪H

𝑜 ≥ 𝑅 − (𝐾 + 3𝑀𝑋 ) − 2𝛿𝑌 .

Proof. Take geodesic paths [𝑜, 𝑥], [𝑜, 𝑦] in Γ(𝐺,𝑌 � H). By Lemma 3.7 (b), there exist vertices
𝑎 ∈ [𝑜, 𝑥], 𝑏 ∈ [𝑜, 𝑦] such that 𝑑𝑌∪H (𝑎, 𝑣) ≤ 𝑀𝑋 and 𝑑𝑌∪H (𝑏, 𝑤) ≤ 𝑀𝑋 . We have

𝑑𝑌∪H (𝑎, 𝑏) ≤ 𝑑𝑌∪H (𝑎, 𝑣) + 𝑑𝑌∪H (𝑣, 𝑤) + 𝑑𝑌∪H (𝑤, 𝑏) ≤ 𝐾 + 2𝑀𝑋 ,

𝑑𝑌∪H (𝑜, 𝑎) ≥ 𝑑𝑌∪H (𝑜, 𝑣) − 𝑑𝑌∪H (𝑎, 𝑣) ≥ 𝑅 − 𝑀𝑋 ,

and 𝑑𝑌∪H (𝑜, 𝑏) ≥ 𝑑𝑌∪H (𝑜, 𝑣) − (𝑑𝑌∪H (𝑣, 𝑤) + 𝑑𝑌∪H (𝑤, 𝑏)) ≥ 𝑅 − (𝐾 + 𝑀𝑋 ).

This implies (𝑎, 𝑏)𝑌∪H
𝑜 ≥ 𝑑𝑌∪H (𝑜, 𝑎) − 𝑑𝑌∪H (𝑎, 𝑏) ≥ 𝑅 − (𝐾 + 3𝑀𝑋 ). Note (𝑥, 𝑎)𝑌∪H

𝑜 = 𝑑𝑌∪H (𝑜, 𝑎)
and (𝑦, 𝑏)𝑌∪H

𝑜 = 𝑑𝑌∪H (𝑜, 𝑏) since [𝑜, 𝑎], [𝑜, 𝑏] are geodesic in Γ(𝑌 ∪H). Hence,

(𝑥, 𝑦)𝑌∪H
𝑜 ≥ min{(𝑥, 𝑎)𝑌∪H

𝑜 , (𝑎, 𝑏)𝑌∪H
𝑜 , (𝑏, 𝑦)𝑌∪H

𝑜 } − 2𝛿𝑌
≥ 𝑅 − (𝐾 + 3𝑀𝑋 ) − 2𝛿𝑌 . �

Lemma 3.11 describes slim triangle property of Γ(𝐺,𝑌 �H) using separating cosets.

Lemma 3.11. Let 𝑜, 𝑥, 𝑦 ∈ 𝐺 and 𝑆(𝑜, 𝑥; 𝐷) = {𝐶1 � 𝐶2 � · · · � 𝐶𝑛}. If q is a geodesic path in
Γ(𝐺, 𝑋 �H) from o to y and 𝑖 ∈ {1, · · · , 𝑛} satisfies 3𝑑𝑌∪H (𝑥, 𝑦) + 1 ≤ 𝑛 − 𝑖, then q penetrates 𝐶𝑖 .

Proof. Let 𝑖 ∈ {1, · · · , 𝑛} satisfy 3𝑑𝑌∪H (𝑥, 𝑦)+1 ≤ 𝑛−𝑖, and take a geodesic path r in Γ(𝐺, 𝑋�H) from
y to x. Since the path 𝑞𝑟 is from o to x and composed of two geodesic segments, one of q or r penetrates
𝐶𝑖 by Lemma 2.35. Suppose for contradiction that r penetrates 𝐶𝑖 . This implies 𝐶 𝑗 ∈ 𝑆(𝑥, 𝑦; 𝐷) for any
𝑗 ∈ {𝑖 + 1, · · · , 𝑛} by applying Lemma 3.5 to 𝑟−1 and 𝑆(𝑥, 𝑜; 𝐷) = {𝐶𝑛 � · · · � 𝐶1}. This and equation
(5) imply

3𝑑𝑌∪H (𝑥, 𝑦) + 1 ≤ 𝑛 − 𝑖 ≤ |𝑆(𝑥, 𝑦; 𝐷) | ≤ 3𝑑𝑌∪H (𝑥, 𝑦).

This is a contradiction. Hence, q penetrates 𝐶𝑖 . �

Hull–Osin’s separating cosets have been defined only for a pair of group elements. Now, we define
separating cosets for geodesic rays. This notion is useful to clarify nice geodesic rays in Γ(𝐺, 𝑋 �H)
mentioned at the beginning of this section.

Definition 3.12. Let 𝛾 = (𝑥0, 𝑥1, · · · ) be a geodesic ray in Γ(𝐺, 𝑋 �H). We define

𝑆(𝛾; 𝐷) =
∞⋃
𝑛=0

𝑆(𝑥0, 𝑥𝑛; 𝐷),

and call an element in 𝑆(𝛾; 𝐷) a (𝛾; 𝐷)-separating coset.
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Remark 3.13. By Lemma 3.1, we have 𝑆(𝑥0, 𝑥𝑛−1; 𝐷) ⊂ 𝑆(𝑥0, 𝑥𝑛; 𝐷) for any 𝑛 ∈ N. This implies

|𝑆(𝛾; 𝐷) | = lim
𝑛→∞

|𝑆(𝑥0, 𝑥𝑛; 𝐷) | = sup
𝑛∈N

|𝑆(𝑥0, 𝑥𝑛; 𝐷) |.

We collect basic properties of separating cosets for geodesic rays from Lemma 3.14 up to Lemma
3.18.

Lemma 3.14. Suppose that 𝛾 is a geodesic ray in Γ(𝐺, 𝑋 �H), then 𝛾 penetrates all (𝛾; 𝐷)-separating
cosets exactly once.

Proof. Let 𝛾 = (𝑥0, 𝑥1, · · · ) and 𝐵 ∈ 𝑆(𝛾; 𝐷). There exists 𝑛 ∈ N such that 𝐵 ∈ 𝑆(𝑥0, 𝑥𝑛; 𝐷). By Lemma
2.38, 𝛾 [𝑥0 ,𝑥𝑛 ] penetrates B, hence so does 𝛾. If 𝛾 penetrates an 𝐻𝜆-coset more than once, then 𝛾 can be
shortened by an edge whose label is in 𝐻𝜆, which contradicts that 𝛾 is geodesic in Γ(𝐺, 𝑋 �H). �

Note that in Lemma 3.14, the fact that 𝛾 penetrates all (𝛾; 𝐷)-separating cosets doesn’t trivially
follow from the definition of 𝑆(𝛾; 𝐷) because by Definition 3.12, an 𝐻𝜆-coset C is in 𝑆(𝛾; 𝐷) if and
only if there exist 𝑛 ∈ N and a geodesic path p in Γ(𝐺, 𝑋 � H) from 𝑥0 to 𝑥𝑛 such that p essentially
penetrates C, and p may not be a subpath of 𝛾.

Lemma 3.15 is analogous to Lemma 2.36.

Lemma 3.15. Suppose that a geodesic ray 𝛾 in Γ(𝐺, 𝑋 �H) penetrates an 𝐻𝜆-coset B, then we have
𝑑𝑋∪H (𝛾−, 𝛾𝑖𝑛 (𝐵)) = 𝑑𝑋∪H (𝛾−, 𝐵).

Proof. Let 𝛾 = (𝑥0, 𝑥1, · · · ). Take 𝑛 ∈ N satisfying 𝑑𝑋∪H (𝛾−, 𝛾𝑜𝑢𝑡 (𝐵)) < 𝑑𝑋∪H (𝛾−, 𝑥𝑛), then we have
𝑑𝑋∪H (𝛾−, 𝐵) = 𝑑𝑋∪H (𝛾−, (𝛾 [𝑥0 ,𝑥𝑛 ] )𝑖𝑛 (𝐵)) = 𝑑𝑋∪H (𝛾−, 𝛾𝑖𝑛 (𝐵)) by Lemma 2.36. �

As in Definition 2.37, we can align separating cosets for a geodesic ray based on the order of their
penetration.

Definition 3.16. Given a geodesic ray 𝛾 in Γ(𝐺, 𝑋 �H), a relation � on the set 𝑆(𝛾; 𝐷) is defined as
follows: For any 𝐶1, 𝐶2 ∈ 𝑆(𝛾; 𝐷),

𝐶1 � 𝐶2 ⇐⇒ 𝑑𝑋∪H (𝛾−, 𝐶1) ≤ 𝑑𝑋∪H (𝛾−, 𝐶2).

Remark 3.17. By Lemma 3.14 and Lemma 3.15, the relation � in Definition 3.16 is a well-order on
𝑆(𝛾; 𝐷). We will denote 𝑆(𝛾; 𝐷) = {𝐶1 � 𝐶2 � · · · } considering this order.

In Lemma 3.18, given a finite collection of separating cosets of a geodesic ray, we find how long
subpath of the geodesic ray we have to take to contain them.

Lemma 3.18. Let 𝛾 = (𝑥0, 𝑥1, · · · ) be a geodesic ray in Γ(𝐺, 𝑋 � H) and 𝑆(𝛾; 𝐷) = {𝐶1 � 𝐶2 �
· · · }. For any 𝑁, ℓ ∈ N satisfying 𝑑𝑋∪H (𝑥0, 𝛾𝑜𝑢𝑡 (𝐶𝑁+1)) ≤ 𝑑𝑋∪H(𝑥0, 𝑥ℓ), we have {𝐶1, · · · , 𝐶𝑁 } ⊂
𝑆(𝑥0, 𝑥ℓ ; 𝐷). Moreover, letting 𝑆(𝑥0, 𝑥ℓ ; 𝐷) = {𝐵1 � · · · � 𝐵𝑁 � · · · }, we have 𝐵𝑛 = 𝐶𝑛 for any
𝑛 ∈ {1, · · · , 𝑁}.

Proof. By 𝑑𝑋∪H (𝑥0, 𝛾𝑜𝑢𝑡 (𝐶𝑁+1)) ≤ 𝑑𝑋∪H (𝑥0, 𝑥ℓ ), the subpath 𝛾 [𝑥0 ,𝑥ℓ ] penetrates 𝐶𝑁+1. Take 𝑘 ∈
N such that {𝐶1, · · · , 𝐶𝑁+1} ⊂ 𝑆(𝑥0, 𝑥𝑘 ; 𝐷). By applying Lemma 3.5 to 𝑥0, 𝑥𝑘 , 𝛾 [𝑥0 ,𝑥ℓ ] , we have
{𝐶1, · · · , 𝐶𝑁 } ⊂ 𝑆(𝑥0, 𝑥ℓ ; 𝐷). Let 𝑆(𝑥0, 𝑥ℓ ; 𝐷) = {𝐵1 � · · · � 𝐵𝑁 � · · · }. We have 𝐵1 � 𝐶1 by
𝐶1 ∈ 𝑆(𝑥0, 𝑥ℓ ; 𝐷) and by minimality of 𝐵1 in (𝑆(𝑥0, 𝑥ℓ ; 𝐷), �). On the other hand, by minimality of 𝐶1
in (𝑆(𝛾; 𝐷), �), we also have 𝐶1 � 𝐵1, hence 𝐵1 = 𝐶1. Repeating the same argument inductively, we
can see 𝐵𝑛 = 𝐶𝑛 for any 𝑛 ∈ {1, · · · , 𝑁}. �

We can now characterize nice geodesic rays in Γ(𝐺, 𝑋 �H) and study their properties. Lemma 3.20
lists several equivalent conditions of Definition 3.19.

Definition 3.19. We say that a geodesic ray 𝛾 = (𝑥0, 𝑥1, · · · ) in Γ(𝐺, 𝑋 � H) converges to infinity in
Γ(𝐺,𝑌 �H) if the sequence (𝑥𝑛)∞𝑛=1 in G converges to infinity in Γ(𝐺,𝑌 �H).
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Figure 3. Proof of Proposition 3.22.

Lemma 3.20. Suppose that 𝛾 = (𝑥0, 𝑥1, · · · ) is a geodesic ray in Γ(𝐺, 𝑋 �H), then (i)–(vi) below are
all equivalent.

(i) The geodesic ray 𝛾 converges to infinity in Γ(𝐺,𝑌 �H).
(ii) There exists a subsequence (𝑥𝑛𝑘 )∞𝑘=1 that converges to infinity in Γ(𝐺,𝑌 �H).

(iii) |𝑆(𝛾; 𝐷) | = ∞.
(iv) There exists a subsequence (𝑥𝑛𝑘 )∞𝑘=1 such that lim𝑘→∞ |𝑆(𝑥0, 𝑥𝑛𝑘 ; 𝐷) | = ∞.
(v) lim𝑛→∞ 𝑑𝑌∪H (𝑥0, 𝑥𝑛) = ∞.

(vi) There exists a subsequence (𝑥𝑛𝑘 )∞𝑘=1 such that lim𝑘→∞ 𝑑𝑌∪H (𝑥0, 𝑥𝑛𝑘 ) = ∞.

Proof. (i)⇒(ii) and (v)⇒(vi) are trivial. (iii)⇒(iv) follows from Remark 3.13. (i)⇒(v) and (ii)⇒(vi)
follow from the definition of the Gromov product (see equation (1)). (iii)⇔(v) and (iv)⇔(vi) follow
from equation (5). We are left to show (iv)⇒(iii) and (v)⇒(i).

(iv) ⇒ (iii) By Remark 3.13, we have

lim
𝑘→∞

|𝑆(𝑥0, 𝑥𝑛𝑘 ; 𝐷) | = sup
𝑘∈N

|𝑆(𝑥0, 𝑥𝑛𝑘 ; 𝐷) | = sup
𝑛∈N

|𝑆(𝑥0, 𝑥𝑛; 𝐷) | = lim
𝑛→∞

|𝑆(𝑥0, 𝑥𝑛; 𝐷) |.

Thus, lim𝑘→∞ |𝑆(𝑥0, 𝑥𝑛𝑘 ; 𝐷) | = ∞ implies |𝑆(𝛾; 𝐷) | = lim𝑛→∞ |𝑆(𝑥0, 𝑥𝑛; 𝐷) | = ∞.
(v) ⇒ (i) For any 𝑅 ∈ N, define 𝑅1 = 𝑅 + 3𝑀𝑋 + 2𝛿𝑌 . By (v), there exists 𝑁 ∈ N such that

𝑑𝑌∪H (𝑥0, 𝑥𝑁 ) ≥ 𝑅1. Hence, for any 𝑛, 𝑚 ≥ 𝑁 , we have (𝑥𝑛, 𝑥𝑚)𝑌∪H
𝑥0 ≥ 𝑅1−3𝑀𝑋 −2𝛿𝑌 = 𝑅 by Lemma

3.10 applied to 𝑜 = 𝑥0, 𝑥 = 𝑥𝑛, 𝑦 = 𝑥𝑚, 𝑣 = 𝑥𝑁 , 𝑤 = 𝑥𝑁 . This implies lim inf𝑛,𝑚→∞(𝑥𝑛, 𝑥𝑚)𝑌∪H
𝑥0 ≥

inf𝑛,𝑚≥𝑁 (𝑥𝑛, 𝑥𝑚)𝑌∪H
𝑥0 ≥ 𝑅 for any 𝑅 ∈ N. Thus, lim𝑛,𝑚→∞(𝑥𝑛, 𝑥𝑚)𝑌∪H

𝑥0 = ∞. �

In Definition 3.21 below, we summarize notations related to limits of the nice geodesic rays, which
we will use in what follows.

Definition 3.21. For a sequence (𝑥𝑛)∞𝑛=1 of elements of G that is convergent in Γ(𝐺,𝑌 �H) ∪𝜕Γ(𝐺,𝑌 �
H), we denote its limit point by 𝑌 -lim𝑛→∞𝑥𝑛. For a geodesic ray 𝛾 = (𝑥0, 𝑥1, · · · ) in Γ(𝐺, 𝑋 �H) such
that the sequence (𝑥𝑛)∞𝑛=1 is convergent in Γ(𝐺,𝑌 �H) ∪ 𝜕Γ(𝐺,𝑌 �H), we also denote its limit point
by 𝑌 -lim 𝛾. Note that when we write 𝑌 -lim𝑛→∞𝑥𝑛 ∈ 𝜕Γ(𝐺,𝑌 � H) for a sequence (𝑥𝑛)∞𝑛=1 in G, it
implicitly means that (𝑥𝑛)∞𝑛=1 converges to infinity in Γ(𝐺,𝑌 �H) and its limit point in 𝜕Γ(𝐺,𝑌 �H) is
𝑌 -lim𝑛→∞𝑥𝑛. This is the same for 𝑌 -lim 𝛾 ∈ 𝜕Γ(𝐺,𝑌 �H) as well. We use the notations 𝑋-lim𝑛→∞𝑥𝑛
and 𝑋-lim 𝛾 similarly.

We will now show that any element of G and any point in 𝜕Γ(𝐺,𝑌 � H) can be connected by a
geodesic ray in Γ(𝐺, 𝑋 � H), and by using this we will extend the notion of Hull–Osin’s separating
cosets to allow a point in the Gromov boundary. We emphasize that, in Proposition 3.22, the path 𝛾
below is not necessarily geodesic nor quasi-geodesic in Γ(𝐺,𝑌 �H).

Proposition 3.22. For any 𝑜 ∈ 𝐺 and any 𝜉 ∈ 𝜕Γ(𝐺,𝑌�H), there exists a geodesic ray 𝛾 in Γ(𝐺, 𝑋�H)
from o such that 𝑌 -lim 𝛾 = 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H).

Proof. Let (𝑔𝑛)∞𝑛=1 be a sequence of elements of G that converges to 𝜉. For each 𝑛 ∈ N, take a geodesic
path 𝛾𝑛 in Γ(𝐺, 𝑋 � H) from o to 𝑔𝑛. Since lim𝑖, 𝑗→∞(𝑔𝑖 , 𝑔 𝑗 )𝑌∪H

𝑜 = ∞, there exists a subsequence
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(𝑔0𝑘 )∞𝑘=1 of (𝑔𝑛)∞𝑛=1 such that

inf
𝑘,ℓ∈N

(𝑔0𝑘 , 𝑔0ℓ)𝑌∪H
𝑜 ≥ 2(3(𝛿𝑌 + 2𝑀𝑋 ) + 4) + 1 + 𝑀𝑋 . (6)

By Lemma 3.9 and equation (6), there exist vertices 𝑣0𝑘 ∈ 𝛾0𝑘 for each 𝑘 ∈ N satisfying
𝑑𝑌∪H (𝑣0𝑘 , 𝑣0ℓ) ≤ 𝛿𝑌 + 2𝑀𝑋 and 𝑑𝑌∪H (𝑜, 𝑣0ℓ) ≥ 2(3(𝛿𝑌 + 2𝑀𝑋 ) + 4) + 1 for any 𝑘, ℓ ∈ N. This
and equation (5) imply for any 𝑘, ℓ ∈ N,

3𝑑𝑌∪H (𝑣0𝑘 , 𝑣0ℓ) + 4 ≤ 3(𝛿𝑌 + 2𝑀𝑋 ) + 4 ≤ |𝑆(𝑜, 𝑣0ℓ ; 𝐷) |. (7)

Let 𝑚 = |𝑆(𝑜, 𝑣01; 𝐷) | and 𝑆(𝑜, 𝑣01; 𝐷) = {𝐶1 � 𝐶2 � · · · � 𝐶𝑚}. Since equation (7) implies
3𝑑𝑌∪H (𝑣0𝑘 , 𝑣01) + 1 ≤ 𝑚 − 3, the path 𝛾0𝑘 penetrates 𝐶1, 𝐶2, and 𝐶3 for any 𝑘 ∈ N by Lemma 3.11.
Let 𝐶3 be an 𝐻𝜆-coset. For each 𝑘 ∈ N, let 𝑎0𝑘− and 𝑎0𝑘+ be the entrance and exit points of 𝛾0𝑘 in 𝐶3.
Since 𝛾0𝑘 is geodesic in Γ(𝐺, 𝑋 �H) for each 𝑘 ∈ N, we have

𝑑𝜆 (𝑎01−, 𝑎0𝑘−) ≤ 3𝐶

by Lemma 3.2. Since the relative metric 𝑑𝜆 is locally finite (see Definition 2.27), the set {𝑎0𝑘− | 𝑘 ∈ N}
is finite. Hence, there exist 𝑎1 ∈ {𝑎0𝑘− | 𝑘 ∈ N} and a subsequence (𝑔1′𝑘 )∞𝑘=1 of (𝑔0𝑘 )∞𝑘=1 such that
𝑎1 ∈ 𝛾1′𝑘 for any 𝑘 ∈ N. Note 𝑆(𝑜, 𝑎1; 𝐷) ≥ 1 since we have 𝐶1 ∈ 𝑆(𝑜, 𝑎1; 𝐷) by Lemma 3.5. By
lim𝑘,ℓ→∞(𝑔1′𝑘 , 𝑔1′ℓ)𝑌∪H

𝑜 = ∞, there exists a subsequence (𝑔1𝑘 )∞𝑘=1 of (𝑔1′𝑘 )∞𝑘=1 such that

inf
𝑘,ℓ∈N

(𝑔1𝑘 , 𝑔1ℓ)𝑌∪H
𝑜 ≥ 2(3(𝛿𝑌 + 2𝑀𝑋 ) + |𝑆(𝑜, 𝑎1; 𝐷) | + 4) + 1 + 𝑀𝑋 . (8)

Note 𝑎1 ∈ 𝛾1𝑘 for any 𝑘 ∈ N. By the same argument as (𝑔0𝑘 )∞𝑘=1, we can see that there exist 𝑎2 ∈ 𝐺 and a
subsequence (𝑔2′𝑘 )∞𝑘=1 of (𝑔1𝑘 )∞𝑘=1 such that 𝑎2 ∈ 𝛾2′𝑘 for any 𝑘 ∈ N and |𝑆(𝑜, 𝑎2; 𝐷) | ≥ |𝑆(𝑜, 𝑎1; 𝐷) |+1.
The latter inequality comes from the term |𝑆(𝑜, 𝑎1; 𝐷) | + 4 in equation (8), which corresponds to 4 in
equation (6). By repeating this argument, we can see that there exist 𝑎1, 𝑎2, · · · ∈ 𝐺 and a sequence of
subsequences (𝑔1𝑘 )∞𝑘=1 ⊃ (𝑔2𝑘 )∞𝑘=1 ⊃ · · · satisfying (i) and (ii) below for any 𝑛 ∈ N.
(i) {𝑎1, · · · , 𝑎𝑛} ⊂ 𝛾𝑛𝑘 for any 𝑘 ∈ N.

(ii) |𝑆(𝑜, 𝑎𝑛+1; 𝐷) | ≥ |𝑆(𝑜, 𝑎𝑛; 𝐷) | + 1.
Take the diagonal sequence (𝑔𝑘𝑘 )∞𝑘=1, then for any 𝑛 ∈ N, (𝑔𝑘𝑘 )∞𝑘=𝑛 is a subsequence of (𝑔𝑛𝑘 )∞𝑘=1. Hence,
{𝑎1, · · · , 𝑎𝑛} ⊂ 𝛾𝑛𝑛 for any 𝑛 ∈ N. Note that (ii) and Lemma 3.1 imply 𝑑𝑋∪H (𝑜, 𝑎𝑛) < 𝑑𝑋∪H (𝑜, 𝑎𝑛+1)
for any 𝑛 ∈ N. Define the path 𝛾 : [0,∞) → Γ(𝐺, 𝑋 �H) by

𝛾 =
∞⋃
𝑛=1

𝛾𝑛𝑛 [𝑎𝑛−1 ,𝑎𝑛 ] ,

where we define 𝑎0 by 𝑎0 = 𝑜 for convenience. the path 𝛾 is a geodesic ray since for any 𝑛 ∈ N, we have

𝑛∑
𝑖=1

|𝛾𝑖𝑖 [𝑎𝑖−1 ,𝑎𝑖 ] | =
𝑛∑
𝑖=1

𝑑𝑋∪H (𝑎𝑖−1, 𝑎𝑖) =
𝑛∑
𝑖=1

|𝛾𝑛𝑛 [𝑎𝑖−1 ,𝑎𝑖 ] | = |𝛾𝑛𝑛 [𝑜,𝑎𝑛 ] | = 𝑑𝑋∪H(𝑜, 𝑎𝑛).

Since we have lim𝑛→∞ |𝑆(𝑜, 𝑎𝑛; 𝐷) | = ∞ by (ii) and (𝑎𝑛)∞𝑛=1 is a subsequence of 𝛾, the path 𝛾 converges
to infinity in Γ(𝐺,𝑌 �H) by Lemma 3.20 and we have 𝑌 -lim 𝛾 = 𝑌 -lim𝑛→∞𝑎𝑛.

Finally, we will show𝑌 -lim 𝛾 = 𝜉 ∈ 𝜕Γ(𝐺,𝑌�H). Since we have 𝜉 = 𝑌 -lim𝑛→∞𝑔𝑛 = 𝑌 -lim𝑛→∞𝑔𝑛𝑛,
it’s enough to show 𝑌 -lim𝑛→∞𝑎𝑛 = 𝑌 -lim𝑛→∞𝑔𝑛𝑛 ∈ 𝜕Γ(𝐺,𝑌 �H). For any 𝑅 ∈ N, there exists 𝑁 ∈ N
such that 𝑑𝑌∪H (𝑜, 𝑎𝑁 ) ≥ 𝑅 + 3𝑀𝑋 + 2𝛿𝑌 since we have lim𝑛→∞ 𝑑𝑌∪H (𝑜, 𝑎𝑛) = ∞ by Lemma 3.20.
Hence, for any 𝑚, 𝑛 ≥ 𝑁 , we have (𝑎𝑚, 𝑔𝑛𝑛)𝑌∪H

𝑜 ≥ 𝑅 by Lemma 3.10 applied to 𝑥 = 𝑎𝑚, 𝑦 =
𝑔𝑛𝑛, 𝑣 = 𝑎𝑁 , 𝑤 = 𝑎𝑁 . This implies lim𝑚,𝑛→∞(𝑎𝑚, 𝑔𝑛𝑛)𝑌∪H

𝑜 = ∞, hence 𝑌 -lim𝑛→∞𝑎𝑛 = 𝑌 -lim𝑛→∞𝑔𝑛𝑛
in 𝜕Γ(𝐺,𝑌 �H). �
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We next show that as the limit points of geodesic rays in Γ(𝐺, 𝑋 � H) get closer to one another
in 𝜕Γ(𝐺,𝑌 � H), the geodesic rays have more common separating cosets. Proposition 3.23 has two
important corollaries, Corollary 3.24 and Corollary 3.28.

Proposition 3.23. Let 𝑜 ∈ 𝐺, 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), and suppose that 𝛼 is a geodesic ray in Γ(𝐺, 𝑋 �H)
from o such that 𝑌 -lim 𝛼 = 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H). Let 𝑆(𝛼, 𝐷) = {𝐶1 � 𝐶2 � · · · }. Then, for any 𝑁 ∈ N,
there exists an open neighborhood U of 𝜉 in 𝜕Γ(𝐺,𝑌 �H) such that any geodesic ray 𝛽 in Γ(𝐺, 𝑋 �H)
from o satisfying 𝑌 -lim 𝛽 ∈ 𝑈 penetrates 𝐶𝑛 for any 𝑛 ∈ {1, · · · , 𝑁}.

Proof. Given 𝑁 ∈ N, define 𝑅 ∈ N by

𝑅 = 2(3(𝛿𝑌 + 2𝑀𝑋 ) + 𝑁 + 2) + 1 + 𝑀𝑋 + 2𝛿𝑌 . (9)

Let 𝜂 ∈ 𝜕Γ(𝐺,𝑌 �H) satisfy (𝜉, 𝜂)𝑌∪H
𝑜 > 𝑅 (see equation (2)) and 𝛽 be a geodesic ray in Γ(𝐺, 𝑋 �H)

from o such that 𝑌 -lim 𝛽 = 𝜂. Let 𝛼 = (𝑥0, 𝑥1, · · · ) and 𝛽 = (𝑦0, 𝑦1, · · · ). It’s not difficult to see from
equation (2) that (𝜉, 𝜂)𝑌∪H

𝑜 > 𝑅 implies

lim inf
𝑖, 𝑗→∞

(𝑥𝑖 , 𝑦 𝑗 )𝑌∪H
𝑜 > 𝑅 − 2𝛿𝑌 .

Hence, there exists 𝑘 ∈ N such that (𝑥𝑘 , 𝑦𝑘 )𝑌∪H
𝑜 > 𝑅 − 2𝛿𝑌 . By Lemma 3.9 applied to

𝑜, 𝑥𝑘 , 𝑦𝑘 , 𝛼[𝑜,𝑥𝑘 ] , 𝛽 [𝑜,𝑦𝑘 ] , there exist ℓ, 𝑚 with ℓ, 𝑚 ≤ 𝑘 such that 𝑑𝑌∪H (𝑥ℓ , 𝑦𝑚) ≤ 𝛿𝑌 + 2𝑀𝑋

and 𝑑𝑌∪H (𝑜, 𝑥ℓ) ≥ 𝑅 − 2𝛿𝑌 − 𝑀𝑋 . This implies, together with equation (5) in Theorem 2.41 and
equation (9),

3𝑑𝑌∪H (𝑥ℓ , 𝑦𝑚) + 𝑁 + 2 ≤ 3(𝛿𝑌 + 2𝑀𝑋 ) + 𝑁 + 2 ≤ |𝑆(𝑜, 𝑥ℓ ; 𝐷) |. (10)

Let 𝐿 = |𝑆(𝑜, 𝑥ℓ ; 𝐷) | and 𝑆(𝑜, 𝑥ℓ ; 𝐷) = {𝐵1 � · · · � 𝐵𝐿}. By Lemma 3.11, 𝛽 [𝑦0 ,𝑦𝑚 ] penetrates 𝐵𝑛
for any 𝑛 ∈ {1, · · · , 𝑁} since equation (10) implies 3𝑑𝑌∪H (𝑥ℓ , 𝑦𝑚) + 1 ≤ 𝐿 − 𝑁 . Meanwhile, suppose
𝑑𝑋∪H (𝑜, 𝑥ℓ) ≤ 𝑑𝑋∪H (𝑜, 𝛼𝑜𝑢𝑡 (𝐶𝑁+1)) for contradiction, then we have 𝛼[𝑜,𝑥ℓ ] ⊂ 𝛼[𝑜,𝛼𝑜𝑢𝑡 (𝐶𝑁+1) ] . This
implies |𝑆(𝑜, 𝑥ℓ ; 𝐷) | ≤ |𝑆(𝑜, 𝛼𝑜𝑢𝑡 (𝐶𝑁+1); 𝐷) | ≤ 𝑁 + 1 by Lemma 3.1. This contradicts that we get
𝑁 + 2 ≤ |𝑆(𝑜, 𝑥ℓ ; 𝐷) | by equation (10). Thus, we have 𝑑𝑋∪H (𝑜, 𝛼𝑜𝑢𝑡 (𝐶𝑁+1)) < 𝑑𝑋∪H (𝑜, 𝑥ℓ). Hence,
we have 𝐵𝑛 = 𝐶𝑛 for any 𝑛 ∈ {1, · · · , 𝑁} by Lemma 3.18. Thus, 𝛽 penetrates𝐶𝑛 for any 𝑛 ∈ {1, · · · , 𝑁}.
Finally, since the set 𝑉 = {𝜂 ∈ 𝜕Γ(𝐺,𝑌 �H) | (𝜉, 𝜂)𝑌∪H

𝑜 > 𝑅} is a neighborhood of 𝜉, there exists an
open set U of 𝜕Γ(𝐺,𝑌 �H) such that 𝜉 ∈ 𝑈 and 𝑈 ⊂ 𝑉 . This U satisfies the statement for N. �

Corollary 3.24 is the final step to extend the notion of Hull–Osin’s separating cosets, which is done
in Definition 3.25.

Corollary 3.24. Let 𝑜 ∈ 𝐺 and suppose that 𝛼, 𝛽 are geodesic rays in Γ(𝐺, 𝑋 �H) from o such that
𝑌 -lim 𝛼 = 𝑌 -lim 𝛽 ∈ 𝜕Γ(𝐺,𝑌 �H). Then, we have 𝑆(𝛼; 𝐷) = 𝑆(𝛽; 𝐷).

Proof. Let 𝛼 = (𝑥0, 𝑥1, · · · ), 𝛽 = (𝑦0, 𝑦1, · · · ), and 𝑆(𝛼; 𝐷) = {𝐶1 � 𝐶2 � · · · }. By Proposition 3.23,
𝛽 penetrates 𝐶𝑛 for any 𝑛 ∈ N since 𝑌 -lim 𝛽 is obviously contained in any open neighborhood of
𝑌 -lim 𝛼. For any 𝑛 ∈ N, there exists 𝑘 ∈ N such that {𝐶1, · · · , 𝐶𝑛+1} ⊂ 𝑆(𝑜, 𝑥𝑘 ; 𝐷). Let ℓ ∈ N satisfy
𝑑𝑋∪H (𝑜, 𝛽𝑜𝑢𝑡 (𝐶𝑛+1)) ≤ 𝑑𝑋∪H (𝑜, 𝑦ℓ ). By Lemma 3.5, we have {𝐶1, · · · , 𝐶𝑛} ⊂ 𝑆(𝑜, 𝑦ℓ ; 𝐷) ⊂ 𝑆(𝛽; 𝐷).
This implies 𝑆(𝛼; 𝐷) ⊂ 𝑆(𝛽; 𝐷). Similarly, we can also see 𝑆(𝛽; 𝐷) ⊂ 𝑆(𝛼; 𝐷). �

Definition 3.25. Given 𝑥 ∈ 𝐺 and 𝜉 ∈ 𝜕Γ(𝐺,𝑌�H), we take a geodesic ray 𝛾 in Γ(𝐺, 𝑋�H) satisfying
𝛾− = 𝑥 and 𝑌 -lim 𝛾 = 𝜉 and define the set of cosets 𝑆(𝑥, 𝜉; 𝐷) by

𝑆(𝑥, 𝜉; 𝐷) = 𝑆(𝛾; 𝐷).

We call an element of 𝑆(𝑥, 𝜉; 𝐷) a (𝑥, 𝜉; 𝐷)-separating coset.
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Figure 4. Proof of Corollary 3.28.

Remark 3.26. By Proposition 3.22 and Corollary 3.24, Definition 3.25 is well-defined, that is, 𝛾 above
exists and 𝑆(𝑥, 𝜉; 𝐷) doesn’t depend on 𝛾. Also, 𝑆(𝑥, 𝜉; 𝐷) is exactly the set of all cosets that are
essentially penetrated by some geodesic ray 𝛾 in Γ(𝐺, 𝑋 �H) from x with 𝑌 -lim 𝛾 = 𝜉.

We will next show in Corollary 3.28 that two geodesic rays in Γ(𝐺, 𝑋 �H) having the same limit in
𝜕Γ(𝐺,𝑌 �H) penetrate the same separating cosets after going far enough. This will play an important
role to show hyperfiniteness in the proof of Theorem 1.1. We begin with an auxiliary lemma. Lemma
3.27 is a well-known fact, but we write down a sketch of the proof for completeness.

Lemma 3.27. Suppose that Γ is a connected graph, x is a vertex and 𝛽 = (𝑦0, 𝑦1, · · · ) is a geodesic ray.
Then, there exists 𝑘 ∈ N such that for any geodesic path p from x to 𝑦𝑘 , the path 𝑝𝛽 [𝑦𝑘 ,∞) is a geodesic
ray.

Proof. Define the map 𝑓 : N → Z by 𝑓 (𝑛) = 𝑑Γ (𝑦𝑛, 𝑦0) − 𝑑Γ (𝑦𝑛, 𝑥). Since 𝛽 is geodesic, we have
𝑓 (𝑛) = 𝑛 − 𝑑Γ (𝑦𝑛, 𝑥),∀𝑛 ∈ N. This and |𝑑Γ (𝑦𝑛+1, 𝑥) − 𝑑Γ (𝑦𝑛, 𝑥) | ≤ 1,∀𝑛 ∈ N imply that f is
non-decreasing. The map f is also bounded above by 𝑑Γ (𝑦0, 𝑥). Hence, there exists 𝑘 ∈ N such that
𝑓 (𝑛) = 𝑓 (𝑘) for any n with 𝑛 ≥ 𝑘 . Since this implies 𝑑Γ (𝑦𝑛, 𝑥) = 𝑑Γ (𝑦𝑛, 𝑦𝑘 ) + 𝑑Γ (𝑦𝑘 , 𝑥) for any n with
𝑛 ≥ 𝑘 , this k satisfies the statement. �

Corollary 3.28. Suppose that 𝛼, 𝛽 are geodesic rays in Γ(𝐺, 𝑋 � H) that converge to infinity in
Γ(𝐺,𝑌 �H), and let 𝑆(𝛼; 𝐷) = {𝐶1 � 𝐶2 � · · · }. If 𝑌 -lim 𝛼 = 𝑌 -lim 𝛽 in 𝜕Γ(𝐺,𝑌 �H), then there
exists 𝑁 ∈ N such that for any 𝑛 ≥ 𝑁 , 𝛽 penetrates 𝐶𝑛 satisfying 𝑑𝑋∪H(𝛽−, 𝐶𝑛) < 𝑑𝑋∪H(𝛽−, 𝐶𝑛+1)
and we have, when 𝐶𝑛 is an 𝐻𝜆-coset,

𝑑𝜆 (𝛼𝑖𝑛 (𝐶𝑛), 𝛽𝑖𝑛 (𝐶𝑛)) ≤ 4𝐶 and 𝑑𝜆 (𝛼𝑜𝑢𝑡 (𝐶𝑛), 𝛽𝑜𝑢𝑡 (𝐶𝑛)) ≤ 4𝐶. (11)

Proof. Let 𝛽 = (𝑦0, 𝑦1, · · · ). By applying Lemma 3.27 to Γ(𝐺, 𝑋 � H), there exist 𝑘 ∈ N and a
geodesic path p in Γ(𝐺, 𝑋 � H) from 𝛼− to 𝑦𝑘 such that the path 𝛾 defined by 𝛾 = 𝑝𝛽 [𝑦𝑘 ,∞) is a
geodesic ray in Γ(𝐺, 𝑋 � H). By 𝛾 [𝑦𝑘 ,∞) = 𝛽 [𝑦𝑘 ,∞) , we have 𝑌 -lim 𝛾 = 𝑌 -lim 𝛽 = 𝑌 -lim 𝛼. This
implies 𝑆(𝛾; 𝐷) = 𝑆(𝛼; 𝐷) by Corollary 3.24. Hence, 𝛾 penetrates 𝐶𝑛 for any 𝑛 ∈ N by Lemma
3.14. Note that |𝑆(𝛾; 𝐷) | = ∞ implies lim𝑛→∞ 𝑑𝑋∪H (𝛾−, 𝛾𝑖𝑛 (𝐶𝑛)) = ∞. Hence, there exists 𝑁 ≥ 2
such that 𝑑𝑋∪H(𝛾−, 𝛾𝑖𝑛 (𝐶𝑁−1)) > 𝑑𝑋∪H(𝛾−, 𝑦𝑘 ). By 𝛾 [𝑦𝑘 ,∞) = 𝛽 [𝑦𝑘 ,∞) , the path 𝛽 penetrates 𝐶𝑛

for any 𝑛 ≥ 𝑁 − 1. Let 𝑛 ≥ 𝑁 and 𝐶𝑛 be an 𝐻𝜆-coset. By 𝐶𝑛−1 � 𝐶𝑛 and 𝛾− = 𝛼−, we have
𝑑𝑋∪H (𝛾−, 𝐶𝑛−1) < 𝑑𝑋∪H (𝛾−, 𝐶𝑛). This implies

𝑑𝑋∪H (𝛽−, 𝐶𝑛) − 𝑑𝑋∪H (𝛽−, 𝐶𝑛−1) = 𝑑𝑋∪H (𝑦𝑘 , 𝛽𝑖𝑛 (𝐶𝑛)) − 𝑑𝑋∪H (𝑦𝑘 , 𝛽𝑖𝑛 (𝐶𝑛−1))
= 𝑑𝑋∪H (𝑦𝑘 , 𝛾𝑖𝑛 (𝐶𝑛)) − 𝑑𝑋∪H (𝑦𝑘 , 𝛾𝑖𝑛 (𝐶𝑛−1))
= 𝑑𝑋∪H (𝛾−, 𝐶𝑛) − 𝑑𝑋∪H (𝛾−, 𝐶𝑛−1) > 0.
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Hence, we have 𝑑𝜆(𝛼𝑖𝑛 (𝐶𝑛), 𝛽𝑖𝑛 (𝐶𝑛)) ≤ 4𝐶 by applying Lemma 3.4 to 𝐶𝑛−1, 𝐶𝑛, 𝛼, 𝛽. Similarly, we
have 𝑑𝜆 (𝛼𝑜𝑢𝑡 (𝐶𝑛), 𝛽𝑜𝑢𝑡 (𝐶𝑛)) ≤ 4𝐶 by applying Lemma 3.4 to 𝐶𝑛, 𝐶𝑛+1, 𝛼, 𝛽. �

Finally, we show that if the limit points in 𝜕Γ(𝐺, 𝑋 � H) of geodesic rays in Γ(𝐺, 𝑋 � H) are
convergent, then their limit points in 𝜕Γ(𝐺,𝑌 � H) are also convergent. Proposition 3.29 can be
considered as opposite to Proposition 3.23. This will become clear in Proposition 6.2.

Proposition 3.29. Let 𝑜 ∈ 𝐺 and suppose that 𝛼 is a geodesic ray in Γ(𝐺, 𝑋 �H) from o converging
to infinity in Γ(𝐺,𝑌 �H). For any open neighborhood U of 𝑌 -lim 𝛼 in 𝜕Γ(𝐺,𝑌 �H), there exists an
open neighborhood V of 𝑋-lim 𝛼 in 𝜕Γ(𝐺, 𝑋 �H) such that if a geodesic ray 𝛽 in Γ(𝐺, 𝑋 �H) from o
converging to infinity in Γ(𝐺,𝑌 �H) satisfies 𝑋-lim 𝛽 ∈ 𝑉 , then we have 𝑌 -lim 𝛽 ∈ 𝑈.

Proof. Let 𝛼 = (𝑥0, 𝑥1, · · · ). For any open neighborhood U of 𝑌 -lim 𝛼 in 𝜕Γ(𝐺,𝑌 �H), there exists
𝑅 ∈ N such that

{𝜂 ∈ 𝜕Γ(𝐺,𝑌 �H) | (𝑌 -lim 𝛼, 𝜂)𝑌∪H
𝑜 ≥ 𝑅} ⊂ 𝑈 (12)

by Proposition 2.19. We define 𝑅1 = 𝑅 + 𝛿𝑋 + 3𝑀𝑋 + 2𝛿𝑌 . Since we have lim𝑛→∞ 𝑑𝑌∪H (𝑜, 𝑥𝑛) = ∞ by
Lemma 3.20, there exists 𝑁 ∈ N such that

𝑑𝑌∪H (𝑜, 𝑥𝑁 ) ≥ 𝑅1.

By Proposition 2.19, there exists an open neighborhood V of 𝑋-lim 𝛼 in 𝜕Γ(𝐺, 𝑋 �H) such that

𝑉 ⊂ {𝜂′ ∈ 𝜕Γ(𝐺, 𝑋 �H) | (𝑋-lim 𝛼, 𝜂′)𝑋∪H
𝑜 > 𝑁 + 2𝛿𝑋 }. (13)

We show that V satisfies the statement. Let 𝛽 = (𝑦0, 𝑦1, · · · ) be a geodesic ray in Γ(𝐺, 𝑋 �H) from o
converging to infinity in Γ(𝐺,𝑌 �H) such that 𝑋-lim 𝛽 ∈ 𝑉 . By equation (13), it’s not difficult to see
lim inf𝑖, 𝑗→∞(𝑥𝑖 , 𝑦 𝑗 )𝑋∪H

𝑜 > 𝑁 . Since 𝛼 and 𝛽 are geodesic rays in Γ(𝐺, 𝑋 �H) from o, this implies

𝑑𝑌∪H (𝑥𝑁 , 𝑦𝑁 ) ≤ 𝑑𝑋∪H (𝑥𝑁 , 𝑦𝑁 ) ≤ 𝛿𝑋 .

Hence, for any 𝑛, 𝑚 ≥ 𝑁 , we have (𝑥𝑛, 𝑦𝑚)𝑌∪H
𝑜 ≥ 𝑅1 − (𝛿𝑋 + 3𝑀𝑋 ) − 2𝛿𝑌 = 𝑅 by applying Lemma

3.10 to 𝛼[𝑜,𝑥𝑛 ] , 𝛽 [𝑜,𝑦𝑚 ] , 𝑥 = 𝑥𝑛, 𝑦 = 𝑦𝑚, 𝑣 = 𝑥𝑁 , 𝑤 = 𝑦𝑁 . This implies

(𝑌 -lim 𝛼,𝑌 -lim 𝛽)𝑌∪H
𝑜 ≥ lim inf

𝑖, 𝑗→∞
(𝑥𝑖 , 𝑦 𝑗 )𝑌∪H

𝑜 ≥ 𝑅.

Hence, we have 𝑌 -lim 𝛽 ∈ 𝑈 by equation (12). �

4. Proof of main theorem

In this section, we prove Theorem 1.1. We follow the approach of [18], where they gave another proof of
the fact that the action of any hyperbolic group on its Gromov boundary is hyperfinite. Their approach
goes as follows. Given a hyperbolic group G with a finite symmetric generating set S, we fix a well-order
on S. This order induces the lexicographic order ≤lex on 𝑆N, which enables us to pick for 𝜉 ∈ 𝜕𝐺, a
geodesic ray from 1 to 𝜉 in the Cayley graph Γ(𝐺, 𝑆) whose label is the minimum in (𝑆N, ≤lex) among all
such geodesic rays. This defines an injective Borel measurable map from 𝜕𝐺 to 𝑆N that Borel reduces a
finite index subequivalence relation of the orbit equivalence relation 𝐸𝜕𝐺

𝐺 to the tail equivalence relation
𝐸𝑡 (𝑆), thereby hyperfiniteness of 𝐸𝑡 (𝑆) implies hyperfiniteness of 𝐸𝜕𝐺

𝐺 .
We first verify in Lemma 4.1 that the Gromov boundary is a Polish space (see Definition 2.1).

Actually, we can show slightly more. It’s interesting to know whether the statement of Lemma 4.1 holds
for any completely metrizable hyperbolic space, that is, whether 𝑆∪𝜕𝑆 is completely metrizable for any
completely metrizable hyperbolic space S. For a graph Γ, we denote its vertex set by 𝑉 (Γ). The proof
below uses that 𝑉 (Γ) is discrete.
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Lemma 4.1. For any hyperbolic graph Γ, the topological space 𝑉 (Γ) ∪ 𝜕Γ is completely metrizable. If
in addition 𝑉 (Γ) is countable, then 𝑉 (Γ) ∪ 𝜕Γ is Polish.

Proof. Fix a vertex 𝑜 ∈ Γ, and take the map 𝐷 : (Γ ∪ 𝜕Γ)2 → [0,∞) and constants 𝜀, 𝜀′ > 0 as in
Proposition 2.21. We define the map 𝐷 : (𝑉 (Γ) ∪ 𝜕Γ)2 → [0,∞) by 𝐷 (𝑥, 𝑦) = 𝐷 (𝑥, 𝑦) if 𝑥 ≠ 𝑦 and
𝐷 (𝑥, 𝑦) = 0 if 𝑥 = 𝑦. By Proposition 2.21, it’s not difficult to see that 𝐷 is a metric and the metric
topology of 𝐷 coincides with the relative topology of OΓ on 𝑉 (Γ) ∪ 𝜕Γ (see Proposition 2.19). Here,
we used discreteness of (𝑉 (Γ),OΓ |𝑉 (Γ) ) since the metric topology of 𝐷 on 𝑉 (Γ) is discrete by Remark
2.22. We will show that 𝐷 is complete. Let (𝑥𝑛)∞𝑛=1 be a Cauchy sequence of (𝑉 (Γ) ∪ 𝜕Γ, 𝐷). Since
𝑉 (Γ) is dense in 𝑉 (Γ) ∪ 𝜕Γ, we can take for each 𝑛 ∈ N, a vertex 𝑦𝑛 ∈ 𝑉 (Γ) such that 𝐷 (𝑥𝑛, 𝑦𝑛) ≤ 1

𝑛 .
The sequence (𝑦𝑛)∞𝑛=1 in 𝑉 (Γ) is also a Cauchy sequence in the metric 𝐷 and it’s enough to show that
(𝑦𝑛)∞𝑛=1 is convergent. If there exists a constant subsequence (𝑦𝑛𝑘 )∞𝑘=1 (i.e., 𝑦𝑛𝑘 ≡ 𝑦 for some 𝑦 ∈ 𝑉 (Γ)),
then (𝑦𝑛)∞𝑛=1 converges to y in 𝐷. If there is no constant subsequence of (𝑦𝑛)∞𝑛=1, then there exists a
subsequence (𝑦𝑛𝑘 )∞𝑘=1 whose elements are all distinct. This implies 𝐷 (𝑦𝑛𝑘 , 𝑦𝑛ℓ ) = 𝐷 (𝑦𝑛𝑘 , 𝑦𝑛ℓ ) for any
𝑘 ≠ ℓ. Since this implies lim𝑘,ℓ→∞(𝑦𝑛𝑘 , 𝑦𝑛ℓ )Γ𝑜 = ∞, the sequence (𝑦𝑛𝑘 )∞𝑘=1 converges to some 𝑦 ∈ 𝜕Γ in
OΓ. Hence, (𝑦𝑛)∞𝑛=1 converges to y as well. Thus, 𝑉 (Γ) ∪ 𝜕Γ is completely metrizable with 𝐷. If 𝑉 (Γ)
is countable, 𝑉 (Γ) is a countable dense subset of 𝑉 (Γ) ∪ 𝜕Γ. Hence, 𝑉 (Γ) ∪ 𝜕Γ is Polish. �

From here up to Lemma 4.9, suppose that G is a countable group, X is a subset of G and {𝐻𝜆}𝜆∈Λ
is a countable collection of subgroups of G hyperbolically embedded in (𝐺, 𝑋). Let 𝐶 > 0 as in
Proposition 2.30, and fix 𝐷 > 0 satisfying 𝐷 ≥ 3𝐶 as in equation (3). We also define the subset Y of G
by 𝑌 = {𝑦 ∈ 𝐺 | 𝑆(1, 𝑦; 𝐷) = ∅} as in Theorem 2.41. The difference from Section 3 is that we assume
G and Λ are countable.

Since 𝑋 � H is countable, we fix a well-order ≤ on 𝑋 � H by some injection 𝑋 � H ↩→ N. The
lexicographic order ≤lex on (𝑋 � H)N is naturally defined from the order ≤ on 𝑋 � H, that is, for
𝑤0 = (𝑠1, 𝑠2, · · · ), 𝑤1 = (𝑡1, 𝑡2, · · · ) ∈ (𝑋 �H)N, we have

𝑤0 <lex 𝑤1 ⇐⇒ ∃𝑛 ∈ N s.t.

(∧
𝑖<𝑛

𝑠𝑖 = 𝑡𝑖

)
∧ 𝑠𝑛 < 𝑡𝑛.

Similarly, we define the lexicographic order ≤lex on (𝑋 � H)𝑛 for each 𝑛 ∈ N. Note that (𝑋 � H)N
becomes a Polish space with the product topology as mentioned in Section 2.1.

As suggested at the beginning of this section, the important step of the proof of Theorem 1.1 is for
a boundary point 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), picking one geodesic ray in Γ(𝐺, 𝑋 �H) from 1 to 𝜉 in a Borel
way. This is done by reading the labels of all geodesic rays from 1 to 𝜉 and comparing these labels by
the lexicographic order defined above. Definition 4.2 and Definition 4.3 are for setting up notations for
the labeling.

Definition 4.2. For 𝑤 = (𝑠1, 𝑠2, · · · ) ∈ (𝑋 � H)N, we define the infinite path 𝛾𝑤 from 1 ∈ 𝐺 in
Γ(𝐺, 𝑋 �H) by 𝛾𝑤 = (1, 𝑥𝑤,1, 𝑥𝑤,2, · · · ), where the n-th vertex 𝑥𝑤,𝑛 is defined by

𝑥𝑤,𝑛 = 𝑠1 · · · 𝑠𝑛

for each 𝑛 ∈ N.

Definition 4.3. For 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), we define the subset G (𝜉) of (𝑋 �H)N by

G (𝜉) = {𝑤 ∈ (𝑋 �H)N | 𝛾𝑤 is geodesic in Γ(𝐺, 𝑋 �H) and 𝑌 -lim 𝛾𝑤 = 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H)}.

Remark 4.4. Note that the condition 𝑌 -lim 𝛾𝑤 = 𝜉 in Definition 4.3 implicitly requires that 𝛾𝑤

converges to infinity in Γ(𝐺,𝑌 �H) (see Definition 3.21). Also, for any 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), the set G (𝜉)
is nonempty by Proposition 3.22.
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We will show that picking one geodesic ray from G (𝜉) is possible in Corollary 4.6. Lemma 4.5 is the
auxiliary lemma for this.

Lemma 4.5. For any 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), the set G (𝜉) is closed in (𝑋 �H)N.

Proof. Note that (𝑋 � H)N is metrizable. Suppose that a sequence (𝑤𝑖)∞𝑖=1 in G (𝜉) converges to
𝑤 ∈ (𝑋 � H)N. It’s straightforward to see that 𝛾𝑤 is geodesic in Γ(𝐺, 𝑋 � H). We will first show
|𝑆(𝛾𝑤 ; 𝐷) | = ∞. Let 𝑆(1, 𝜉; 𝐷) = {𝐶1 � 𝐶2 � · · · } (see Definition 3.25). Since 𝑤𝑖 ∈ G (𝜉) implies
𝑆(𝛾𝑤𝑖 ; 𝐷) = 𝑆(1, 𝜉; 𝐷) for any 𝑖 ∈ N, we have for any 𝑖, 𝑛 ∈ N,

𝑑𝑋∪H(1, 𝛾𝑤𝑖
𝑜𝑢𝑡 (𝐶𝑛)) = 𝑑𝑋∪H(1, 𝛾𝑤𝑖

𝑖𝑛 (𝐶𝑛)) + 1 = 𝑑𝑋∪H (1, 𝐶𝑛) + 1 (14)

by Lemma 3.15. For any 𝑁 ∈ N, we define k by 𝑘 = 𝑑𝑋∪H (1, 𝐶𝑁+1) + 1. Since (𝑤𝑖)∞𝑖=1 converges to
w, there exists 𝐼 ∈ N such that 𝑥𝑤𝐼 ,𝑚 = 𝑥𝑤,𝑚 for any 𝑚 ∈ {1, · · · , 𝑘} (see Definition 4.2). This implies
{𝐶1, · · · , 𝐶𝑁 } ⊂ 𝑆(1, 𝑥𝑤𝐼 ,𝑘 ; 𝐷) = 𝑆(1, 𝑥𝑤,𝑘 ; 𝐷) ⊂ 𝑆(𝛾𝑤 ; 𝐷) by equation (14) and Lemma 3.18. Hence,
we have |𝑆(𝛾𝑤 ; 𝐷) | = ∞ since 𝑁 ∈ N is arbitrary. Since (𝑤𝑖)𝑖=1∞ converges to w, (𝑋-lim 𝛾𝑤𝑖 )𝑖=1∞
converges to 𝑋-lim 𝛾𝑤 in 𝜕Γ(𝐺, 𝑋�H). Hence, (𝑌 -lim 𝛾𝑤𝑖 )𝑖=1∞ converges to𝑌 -lim 𝛾𝑤 in 𝜕Γ(𝐺,𝑌�H)
by Proposition 3.29. This implies𝑌 -lim 𝛾𝑤 = 𝜉 by𝑌 -lim 𝛾𝑤𝑖 = 𝜉,∀𝑖 ∈ N. Thus, we have 𝑤 ∈ G (𝜉). �

Corollary 4.6. For any 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), the element min≤lex G (𝜉) exists.

Proof. For each 𝑛 ∈ N, we define the element 𝑠𝜉 ,𝑛 ∈ 𝑋 �H and the subset G (𝜉)𝑛 of G (𝜉) inductively
as follows:

𝑠𝜉 ,1 = min{𝑠1 ∈ (𝑋 �H, ≤) | ∃𝑤 ∈ G (𝜉) s.t. 𝑤 = (𝑠1, 𝑠2, · · · )},
G (𝜉)1 = {𝑤 ∈ G (𝜉) | 𝑤 = (𝑠𝜉 ,1, 𝑠2, · · · )},
𝑠𝜉 ,𝑛+1 = min{𝑠𝑛+1 ∈ (𝑋 �H, ≤) | ∃𝑤 ∈ G (𝜉)𝑛 s.t. 𝑤 = (𝑠𝜉 ,1, · · · , 𝑠𝜉 ,𝑛, 𝑠𝑛+1, · · · )},

G (𝜉)𝑛+1 = {𝑤 ∈ G (𝜉)𝑛 | 𝑤 = (𝑠𝜉 ,1, · · · , 𝑠𝜉 ,𝑛, 𝑠𝜉 ,𝑛+1, · · · )}.

Note that each G (𝜉)𝑛 is nonempty since G (𝜉) is nonempty. We define the element 𝑤 𝜉 ∈ (𝑋 �H)N by
𝑤 𝜉 = (𝑠𝜉 ,1, 𝑠𝜉 ,2, 𝑠𝜉 ,3, · · · ) and take an element 𝑤𝑛 ∈ G (𝜉)𝑛 for each 𝑛 ∈ N. Since (𝑤𝑛)𝑛=1∞ converges
to 𝑤 𝜉 in (𝑋 �H)N, we have 𝑤 𝜉 ∈ G (𝜉) by Lemma 4.5. Since 𝑤 𝜉 ∈

⋂∞
𝑛=1 G (𝜉)𝑛, we have 𝑤 𝜉 ≤lex 𝑤

for any 𝑤 ∈ G (𝜉). �

Definition 4.7 below is well-defined by Corollary 4.6.

Definition 4.7. We define the map Φ : 𝜕Γ(𝐺,𝑌 �H) → (𝑋 �H)N by

Φ(𝜉) = min≤lex G (𝜉).

For each 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), we denote Φ(𝜉) = (𝑠𝜉 ,1, 𝑠𝜉 ,2, 𝑠𝜉 ,3, · · · ).

We will show that the map Φ(𝜉) is injective and continuous in Lemma 4.8 and Lemma 4.9. This will
finish the step of picking a geodesic ray for a boundary point.

Lemma 4.8. The map Φ : 𝜕Γ(𝐺,𝑌 �H) → (𝑋 �H)N is injective.

Proof. This follows since we have 𝜉 = 𝑌 -lim 𝛾Φ( 𝜉 ) for any 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H). �

Recall that we put the discrete topology on the countable set 𝑋 � H and the product topology on
(𝑋 �H)N.

Lemma 4.9. The map Φ : 𝜕Γ(𝐺,𝑌 �H) → (𝑋 �H)N is continuous.
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Figure 5. Proof of Proposition 4.10.

Proof. It’s enough to show that for any 𝜉 ∈ 𝜕Γ(𝐺,𝑌 � H) and any 𝑘 ∈ N, there exists an open
neighborhood U of 𝜉 in 𝜕Γ(𝐺,𝑌 � H) such that 𝑠𝜂,𝑛 = 𝑠𝜉 ,𝑛 for any 𝜂 ∈ 𝑈 and any 𝑛 ∈ {1, · · · , 𝑘}.
Indeed, given 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H), the open sets {𝑉𝑘 }∞𝑘=1 defined by 𝑉𝑘 = {(𝑠𝑛)∞𝑛=1 ∈ (𝑋 �H)N | 𝑠𝑛 =
𝑠𝜉 ,𝑛,∀𝑛 ∈ {1, · · · , 𝑘}} form a neighborhood basis of Φ(𝜉). Hence, for any open neighborhood V of
Φ(𝜉), there exists 𝑘 ∈ N such that 𝑉𝑘 ⊂ 𝑉 . For this k, we will be able to take an open neighborhood
U of 𝜉 such that Φ(𝑈) ⊂ 𝑉𝑘 . This will imply continuity of Φ at 𝜉. Hence, we will get continuity of Φ
since 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H) is arbitrary.

Let 𝑆(1, 𝜉; 𝐷) = {𝐶1 � 𝐶2 � · · · } (see Definition 3.25). By lim𝑖→∞ 𝑑𝑋∪H (1, 𝐶𝑖) = ∞, there exists
𝑁 ∈ N such that 𝑑𝑋∪H (1, 𝐶𝑁 ) > 𝑘 . By Proposition 3.23, there exists an open neighborhood U of
𝜉 in 𝜕Γ(𝐺,𝑌 � H) such that for any 𝜂 ∈ 𝑈 and any 𝑤 ∈ G (𝜂), the path 𝛾𝑤 penetrates 𝐶𝑖 for any
𝑖 ∈ {1, · · · , 𝑁}. Let 𝜂 ∈ 𝑈. We define m by 𝑚 = 𝑑𝑋∪H(1, 𝐶𝑁 ) for brevity and let 𝐶𝑁 be an 𝐻𝜆-coset.
We claim

{(𝑠1, · · · , 𝑠𝑚) ∈ (𝑋 �H)𝑚 | ∃𝑤 ∈ G (𝜂) s.t. 𝑤 = (𝑠1, · · · , 𝑠𝑚, · · · )}
={(𝑠1, · · · , 𝑠𝑚) ∈ (𝑋 �H)𝑚 | ∃𝑤 ∈ G (𝜉) s.t. 𝑤 = (𝑠1, · · · , 𝑠𝑚, · · · )}.

(15)

Indeed, for any 𝑤1 ∈ G (𝜂) and 𝑤2 ∈ G (𝜉), let 𝑒1, 𝑒2 be the edges in Γ(𝐺, 𝑋 � H) whose labels are
in 𝐻𝜆 such that 𝑒1 is from 𝛾𝑤1

𝑖𝑛 (𝐶𝑁 ) to 𝛾𝑤2
𝑜𝑢𝑡 (𝐶𝑁 ) and 𝑒2 is from 𝛾𝑤2

𝑖𝑛 (𝐶𝑁 ) to 𝛾𝑤1
𝑜𝑢𝑡 (𝐶𝑁 ). We have

𝑥𝑤1 ,𝑚 = 𝛾𝑤1
𝑖𝑛 (𝐶𝑁 ), 𝑥𝑤1 ,𝑚+1 = 𝛾𝑤1

𝑜𝑢𝑡 (𝐶𝑁 ), 𝑥𝑤2 ,𝑚 = 𝛾𝑤2
𝑖𝑛 (𝐶𝑁 ), and 𝑥𝑤2 ,𝑚+1 = 𝛾𝑤2

𝑜𝑢𝑡 (𝐶𝑁 ) by Lemma 2.36.
Hence, the paths 𝛼1, 𝛼2 defined by

𝛼1 = 𝛾𝑤1
[1,𝑥𝑤1 ,𝑚 ]𝑒1𝛾

𝑤2
[𝑥𝑤2 ,𝑚+1 ,∞) and 𝛼2 = 𝛾𝑤2

[1,𝑥𝑤2 ,𝑚 ]𝑒2𝛾
𝑤1
[𝑥𝑤1 ,𝑚+1 ,∞)

are geodesic in Γ(𝐺, 𝑋 �H). By 𝑌 -lim 𝛼1 = 𝑌 -lim 𝛾𝑤2 = 𝜉 and 𝑌 -lim 𝛼2 = 𝑌 -lim 𝛾𝑤1 = 𝜂, we have
𝛼1 ∈ G (𝜉) and 𝛼2 ∈ G (𝜂). This implies equation (15). By equation (15), we have 𝑠𝜂,𝑛 = 𝑠𝜉 ,𝑛 for any
𝑛 ∈ {1, · · · , 𝑚}. �

We are now ready to show hyperfiniteness of the boundary action in Proposition 4.10, which is
essentially the proof of Theorem 1.1. The difference of the conditions in Proposition 4.10 from those at
the beginning of this section is that we further assume that Λ is finite.

Proposition 4.10. Suppose that G is a countable group, X is a subset of G and {𝐻𝜆}𝜆∈Λ is a finite
collection of subgroups of G hyperbolically embedded in (𝐺, 𝑋). Let 𝐶 > 0 as in Proposition 2.30,
and fix 𝐷 > 0 satisfying 𝐷 ≥ 3𝐶. We also define the subset Y of G by 𝑌 = {𝑦 ∈ 𝐺 | 𝑆(1, 𝑦; 𝐷) = ∅}
as in equation (4). Then, the orbit equivalence relation 𝐸𝐺 on 𝜕Γ(𝐺,𝑌 � H) induced by the action
𝐺 � 𝜕Γ(𝐺,𝑌 �H) is a hyperfinite CBER.

Proof. Since G is countable, 𝜕Γ(𝐺,𝑌 � H) is Polish being a closed subset of the Polish space 𝐺 ∪
Γ(𝐺,𝑌 �H) by Lemma 4.1. Since 𝜕Γ(𝐺,𝑌 �H) is a Polish space and G is a countable group acting on
𝜕Γ(𝐺,𝑌 �H) homeomorphically, 𝐸𝐺 is a CBER by Lemma 2.7. We will show that 𝐸𝐺 is hyperfinite.
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Define the subsets 𝑅, 𝑅1 of (𝜕Γ(𝐺,𝑌 � H))2 by 𝑅 = (Φ × Φ)−1(𝐸𝑡 (𝑋 � H)) and 𝑅1 = 𝑅 ∩ 𝐸𝐺
(see Definition 2.8 for 𝐸𝑡 (𝑋 � H)). Since 𝐸𝑡 (𝑋 � H) is hyperfinite by Proposition 2.9 and the map
Φ is an injective Borel measurable map by Lemma 4.8 and Lemma 4.9, R is a hyperfinite CBER on
𝜕Γ(𝐺,𝑌 �H). Hence, 𝑅1 is also hyperfinite. We define the constant K by

𝐾 =

(
max
𝜆∈Λ

|{ℎ ∈ 𝐻𝜆 | 𝑑𝜆(1, ℎ) ≤ 4𝐶}|
)2
. (16)

Note 𝐾 < ∞, since Λ is finite by our assumption and each 𝑑𝜆 is locally finite. We will show that each
𝐸𝐺-class is composed of at most K equivalence classes of 𝑅1. This implies that 𝐸𝐺 is hyperfinite by
Proposition 2.10. Suppose for contradiction that there exist 𝜉0, 𝜉1, · · · , 𝜉𝐾 ∈ 𝜕Γ(𝐺,𝑌 � H) such that
(𝜉𝑖 , 𝜉 𝑗 ) ∈ 𝐸𝐺 \ 𝑅1 for any distinct 𝑖, 𝑗 ∈ {0, 1, · · · , 𝐾} (i.e., 𝑖 ≠ 𝑗). For each 𝑖 ∈ {0, 1, · · · , 𝐾}, there
exists 𝑔𝑖 ∈ 𝐺 such that 𝑔𝑖𝜉𝑖 = 𝜉0 by (𝜉𝑖 , 𝜉0) ∈ 𝐸𝐺 . We take 𝑔0 = 1. Let 𝑆(𝛾Φ( 𝜉0) ; 𝐷) = {𝐶1 � 𝐶2 � · · · }.
By Corollary 3.28, there exists 𝑁0 ∈ N such that for any 𝑖 ∈ {0, 1, · · · , 𝐾} and any 𝑛 ≥ 𝑁0, the path
𝑔𝑖𝛾

Φ( 𝜉𝑖 ) penetrates 𝐶𝑛 and satisfies equation (11). Define 𝑚𝑖 by

𝑚𝑖 = 𝑑𝑋∪H (𝑔𝑖 , (𝑔𝑖𝛾Φ( 𝜉𝑖) )𝑖𝑛 (𝐶𝑁0))

for each 𝑖 ∈ {0, 1, · · · , 𝐾}. Note 𝑚0 = 𝑑𝑋∪H (1, 𝐶𝑁0). For any distinct 𝑖, 𝑗 ∈ {0, 1, · · · , 𝐾}, (𝜉𝑖 , 𝜉 𝑗 ) ∉ 𝑅1
implies (Φ(𝜉𝑖),Φ(𝜉 𝑗 )) ∉ 𝐸𝑡 (𝑋 �H). Hence, there exists 𝑘 ∈ N such that

(𝑠𝜉𝑖 ,𝑚𝑖+1, · · · , 𝑠𝜉𝑖 ,𝑚𝑖+𝑘 ) ≠ (𝑠𝜉 𝑗 ,𝑚 𝑗+1, · · · , 𝑠𝜉 𝑗 ,𝑚 𝑗+𝑘 ) (17)

for any distinct 𝑖, 𝑗 ∈ {0, 1, · · · , 𝐾}. On the other hand, there exists 𝑁1 ∈ N such that
𝑑𝑋∪H (1, 𝛾Φ( 𝜉0)

𝑖𝑛 (𝐶𝑁1 )) > 𝑚0 + 𝑘 by lim𝑛→∞ 𝑑𝑋∪H(1, 𝛾Φ( 𝜉0)
𝑖𝑛 (𝐶𝑛)) = ∞. Define ℓ ∈ N by ℓ =

𝑑𝑋∪H (𝐶𝑁0 , 𝐶𝑁1) + 1. By Lemma 3.3, we have

𝑑𝑋∪H ((𝑔𝑖𝛾Φ( 𝜉𝑖 ) )𝑖𝑛 (𝐶𝑁0 ), (𝑔𝑖𝛾Φ( 𝜉𝑖 ) )𝑖𝑛 (𝐶𝑁1 )) = ℓ and 𝑑𝑋∪H (𝑔𝑖 , (𝑔𝑖𝛾Φ( 𝜉𝑖 ) )𝑖𝑛 (𝐶𝑁1 )) = 𝑚𝑖 + ℓ

for any 𝑖 ∈ {0, 1, · · · , 𝐾}. In particular, 𝑚0 + ℓ = 𝑑𝑋∪H (1, 𝛾Φ( 𝜉0)
𝑖𝑛 (𝐶𝑁1)) > 𝑚0 + 𝑘 implies ℓ > 𝑘 . By

equation (11), the set{(
(𝑔𝑖𝛾Φ( 𝜉𝑖) )𝑖𝑛 (𝐶𝑁0), (𝑔𝑖𝛾Φ( 𝜉𝑖) )𝑖𝑛 (𝐶𝑁1)

)
∈ 𝐺 × 𝐺

��� 𝑖 = 0, 1, · · · , 𝐾
}

has at most K elements (see equation (16)). Hence, by the pigeonhole principle, there exist distinct
𝑖, 𝑗 ∈ {0, 1, · · · , 𝐾} such that

(𝑔𝑖𝛾Φ( 𝜉𝑖 ) )𝑖𝑛 (𝐶𝑁0 ) = (𝑔 𝑗𝛾Φ( 𝜉 𝑗 ) )𝑖𝑛 (𝐶𝑁0) and (𝑔𝑖𝛾Φ( 𝜉𝑖) )𝑖𝑛 (𝐶𝑁1) = (𝑔 𝑗𝛾Φ( 𝜉 𝑗 ) )𝑖𝑛 (𝐶𝑁1). (18)

By equation (18), minimality of Φ(𝜉𝑖) in (G (𝜉𝑖), ≤lex), and minimality of Φ(𝜉 𝑗 ) in (G (𝜉 𝑗 ), ≤lex), we
have

(𝑠𝜉𝑖 ,𝑚𝑖+1, · · · , 𝑠𝜉𝑖 ,𝑚𝑖+ℓ) = (𝑠𝜉 𝑗 ,𝑚 𝑗+1, · · · , 𝑠𝜉 𝑗 ,𝑚 𝑗+ℓ). (19)

Indeed, suppose for contradiction that equation (19) doesn’t hold. We assume without loss of generality,
(𝑠𝜉𝑖 ,𝑚𝑖+1, · · · , 𝑠𝜉𝑖 ,𝑚𝑖+ℓ) <lex (𝑠𝜉 𝑗 ,𝑚 𝑗+1, · · · , 𝑠𝜉 𝑗 ,𝑚 𝑗+ℓ) and define 𝑎, 𝑏 by 𝑎 = (𝑔𝑖𝛾Φ( 𝜉𝑖) )𝑖𝑛 (𝐶𝑁0) and
𝑏 = (𝑔𝑖𝛾Φ( 𝜉𝑖) )𝑖𝑛 (𝐶𝑁1) for brevity. By equation (18), the path

𝛼 = (𝑔 𝑗𝛾Φ( 𝜉 𝑗 ) )[𝑔 𝑗 ,𝑎] · (𝑔𝑖𝛾Φ( 𝜉𝑖) )[𝑎,𝑏] · (𝑔 𝑗𝛾Φ( 𝜉 𝑗 ) )[𝑏,∞)

is well-defined. Since 𝛼 is a geodesic ray in Γ(𝐺, 𝑋�H) from 𝑔 𝑗 satisfying𝑌 -lim 𝛼 = 𝑌 -lim 𝑔 𝑗𝛾
Φ( 𝜉 𝑗 ) =

𝑔 𝑗𝜉 𝑗 , the path 𝑔−1
𝑗 𝛼 is a geodesic ray from 1 with 𝑌 -lim 𝑔−1

𝑗 𝛼 = 𝜉 𝑗 . Hence, we have Lab(𝛼) =
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Lab(𝑔−1
𝑗 𝛼) ∈ G (𝜉 𝑗 ), where Lab denotes labels of paths in Γ(𝐺, 𝑋 � H). On the other hand, we

have Lab(𝛼) <lex Lab(𝑔 𝑗𝛾Φ( 𝜉 𝑗 ) ) = Φ(𝜉 𝑗 ) by (𝑠𝜉𝑖 ,𝑚𝑖+1, · · · , 𝑠𝜉𝑖 ,𝑚𝑖+ℓ) <lex (𝑠𝜉 𝑗 ,𝑚 𝑗+1, · · · , 𝑠𝜉 𝑗 ,𝑚 𝑗+ℓ).
This contradicts that Φ(𝜉 𝑗 ) is minimal in (G (𝜉 𝑗 ), ≤lex). Hence, we have (𝑠𝜉𝑖 ,𝑚𝑖+1, · · · , 𝑠𝜉𝑖 ,𝑚𝑖+ℓ) ≥lex
(𝑠𝜉 𝑗 ,𝑚 𝑗+1, · · · , 𝑠𝜉 𝑗 ,𝑚 𝑗+ℓ). We can also show the converse inequality from minimality of Φ(𝜉𝑖) in
(G (𝜉𝑖), ≤lex). Thus, we get equation (19), which contradicts equation (17) by ℓ > 𝑘 . �

Proof of Theorem 1.1. By Theorem 2.39 (𝐴𝐻4), there exist a proper infinite subgroup H and a subset
X of G such that 𝐻 ↩→ℎ (𝐺, 𝑋). Let 𝐶 > 0 as in Proposition 2.30, and fix 𝐷 > 0 satisfying 𝐷 ≥ 3𝐶.
We also define the subset Y of G by 𝑌 = {𝑦 ∈ 𝐺 | 𝑆(1, 𝑦; 𝐷) = ∅} as in equation (4). By Theorem 2.41
and Lemma 2.43, the Caylay graph Γ(𝐺,𝑌 �𝐻) is hyperbolic, |𝜕Γ(𝐺,𝑌 �𝐻) | > 2, and the action of G
on Γ(𝐺,𝑌 � 𝐻) is acylindrical. By Proposition 4.10, the orbit equivalence relation 𝐸𝐺 induced by the
action of G on 𝜕Γ(𝐺,𝑌 �𝐻) is hyperfinite. Thus, 𝑆 = 𝑌 ∪𝐻 is a generator of G satisfying the statement
of Theorem 1.1. �

5. Application to topologically amenable actions

In this short section, by applying Theorem 1.1 we will prove that any countable acylindrically hyperbolic
group admits a topologically amenable action on a Polish space (see Theorem 5.5). We begin with
introducing some facts about topologically amenable actions and stabilizers of boundary points for a
group acting on a hyperbolic space. For more on topologically amenable actions, readers are referred
to [3].

Definition 5.1. Suppose that G is a countable group and X is a Polish space. A homeomorphic action
𝐺 � 𝑋 is called topologically amenable if for any finite subset S of G, any compact set K of X and any
𝜀 > 0, there exists a continuous map 𝑝 : 𝑋 → Prob(𝐺) such that

max
𝑔∈𝑆

sup
𝑥∈𝐾

‖𝑝(𝑔𝑥) − 𝑔 · 𝑝(𝑥)‖1 < 𝜀.

Theorem 5.2 immediately follows from Theorem A.1.1 and Theorem A.3.1 of [8] and connects
hyperfiniteness and topological amenability of group actions. Note that in Theorem A.3.1 of [8], the
condition that the Polish space is 𝜎-compact is used only to show that topological amenability implies
Borel amenability.

Theorem 5.2. Let 𝐺 � 𝑋 be a homeomorphic action of a countable group G on a Polish space X. If
𝐸𝑋
𝐺 is hyperfinite and for any 𝑥 ∈ 𝑋 , its stabilizer Stab𝐺 (𝑥) = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑥} is amenable, then

𝐺 � 𝑋 is topologically amenable.

Proof. Hyperfiniteness of 𝐸𝑋
𝐺 and amenability of stabilizers imply Borel amenability of the action

𝐺 � 𝑋 by [8, Theorem A.1.1]. Borel amenability trivially implies measure-amenability by their
definitions. Measure-amenability implies topological amenability by [8, Theorem A.3.1]. �

We will next show that boundary stabilizers of a group acting acylindrically on a hyperbolic space
are amenable in Lemma 5.4. Lemma 5.3 is auxiliary for Lemma 5.4. Both of these lemmas should be
well-known to experts, but I will record the sketch of proofs for convenience of readers. Note that the
(1, 𝛿)-quasi-geodesic ray p in Lemma 5.3 may not be continuous.

Lemma 5.3. Suppose that (𝑆, 𝑑𝑆) is a 𝛿-hyperbolic geodesic metric space with 𝛿 ∈ N, then for any
𝑜 ∈ 𝑆 and 𝜉 ∈ 𝜕𝑆, there exists a (1, 𝛿)-quasi-geodesic ray p from o to 𝜉, that is, 𝑝 : [0,∞) → 𝑆 satisfies
𝑝(0) = 𝑜, sup𝑠,𝑡 ∈[0,∞) |𝑑𝑆 (𝑝(𝑠), 𝑝(𝑡)) − |𝑠 − 𝑡 | | ≤ 𝛿 and lim𝑠→∞ 𝑝(𝑠) = 𝜉.

Proof. Let (𝑥𝑛)∞𝑛=1 be a sequence of points in S that converges to 𝜉. By taking a subsequence of (𝑥𝑛)∞𝑛=1
if necessary, we may assume that for any 𝑛, 𝑚 ∈ N with 𝑛 ≤ 𝑚, (𝑥𝑛, 𝑥𝑚)𝑆𝑜 ≥ 𝑛 holds since we have
lim𝑛,𝑚→∞(𝑥𝑛, 𝑥𝑚)𝑆𝑜 = ∞. For each 𝑛 ∈ N, take a geodesic path 𝑝𝑛 from o to 𝑥𝑛. Note that (𝑥𝑛, 𝑥𝑚)𝑆𝑜 ≥ 𝑛
implies 𝑑𝑆 (𝑜, 𝑥𝑛) ≥ 𝑛 for any 𝑛 ∈ N. Define the map 𝑝 : [0,∞) → 𝑆 as follows. For each 𝑛 ∈ N, p

https://doi.org/10.1017/fms.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.24


Forum of Mathematics, Sigma 23

isometrically maps [𝑛 − 1, 𝑛) to the subpath 𝑞𝑛 of 𝑝𝑛 satisfying 𝑑𝑆 (𝑜, 𝑞𝑛−) = 𝑛 − 1. By 𝑑𝑆 (𝑜, 𝑞1−) = 0,
we have 𝑝(0) = 𝑜. Let 𝑠, 𝑡 ≥ 0 with 𝑠 ≤ 𝑡, then there exist 𝑛, 𝑚 ∈ N such that 𝑠 ∈ [𝑛 − 1, 𝑛) and
𝑡 ∈ [𝑚 − 1, 𝑚). We have 𝑛 ≤ 𝑚. Let 𝑎 ∈ 𝑆 be the unique point on 𝑝𝑚 satisfying 𝑑𝑆 (𝑜, 𝑎) = 𝑠. Since a
and 𝑝(𝑡) are both on the geodesic path 𝑝𝑚, we have 𝑑𝑆 (𝑎, 𝑝(𝑡)) = 𝑑𝑆 (𝑜, 𝑝(𝑡)) − 𝑑𝑆 (𝑜, 𝑎) = 𝑡 − 𝑠. By
(𝑥𝑛, 𝑥𝑚)𝑆𝑜 ≥ 𝑛 > 𝑠, we have 𝑑𝑆 (𝑝(𝑠), 𝑎) ≤ 𝛿. Hence, we have

|𝑑𝑆 (𝑝(𝑠), 𝑝(𝑡)) − |𝑠 − 𝑡 | | = |𝑑𝑆 (𝑝(𝑠), 𝑝(𝑡)) − 𝑑𝑆 (𝑎, 𝑝(𝑡)) | ≤ 𝑑𝑆 (𝑝(𝑠), 𝑎) ≤ 𝛿

for any 𝑠, 𝑡 ≥ 0 with 𝑠 ≤ 𝑡. It’s not difficult to show that for any 𝑁 ∈ N, if 𝑛, 𝑚 ≥ 𝑁 , then (𝑥𝑛, 𝑝(𝑚))𝑆𝑜 ≥
𝑁 − 𝛿. This implies lim𝑠→∞ 𝑝(𝑠) = 𝜉. �

Lemma 5.4. Suppose that (𝑆, 𝑑𝑆) is a 𝛿-hyperbolic geodesic metric space with 𝛿 ∈ N and a group G
acts on S isometrically and acylindrically. Then, for any 𝜉 ∈ 𝜕𝑆, the stabilizer Stab𝐺 (𝜉) of 𝜉 is virtually
cyclic.
Proof. Let 𝜉 ∈ 𝜕𝑆 and 𝐻 = Stab𝐺 (𝜉). Since the action 𝐺 � 𝑆 is acylindrical so is 𝐻 � 𝑆. Hence, by
[19, Theorem 1.1] H satisfies exactly one of the following three conditions: (a) H has bounded orbits;
(b) H is virtually cyclic and contains a loxodromic element; (c) H contains infinitely many independent
loxodromic elements. Since H fixes 𝜉, (c) cannot occur. We will show that in case (a), H is finite (hence
virtually cyclic). Fix 𝑜 ∈ 𝑆, and define 𝜀 by 𝜀 = sup𝑔∈𝐻 𝑑 (𝑜, 𝑔𝑜) < ∞. By Morse lemma (see [2,
Chapter III. H, Theorem 1.7]), there exists a constant 𝐾 (𝛿) > 0 such that for any (1, 𝛿)-quasi-geodesic
path q and any geodesic path 𝑞′ from 𝑞− to 𝑞+, the Hausdorff distance between q and 𝑞′ is at most 𝐾 (𝛿).
Define 𝜀′ by 𝜀′ = 𝜀 + 4𝐾 (𝛿) + 7𝛿. Since 𝐻 � 𝑆 is acylindrical, there exist 𝑅, 𝑀 ∈ N such that for any
𝑥, 𝑦 ∈ 𝑆 with 𝑑𝑆 (𝑥, 𝑦) ≥ 𝑅,

|{𝑔 ∈ 𝐻 | 𝑑𝑆 (𝑥, 𝑔𝑥) ≤ 𝜀′ and 𝑑𝑆 (𝑦, 𝑔𝑦) ≤ 𝜀′}| ≤ 𝑀. (20)

By Lemma 5.3, there exists a (1, 𝛿)-quasi-geodesic ray p from o to 𝜉. Let 𝑔 ∈ 𝐻, then by 𝑔𝜉 = 𝜉 the
path 𝑔𝑝 is a (1, 𝛿)-quasi-geodesic ray from 𝑔𝑜 to 𝜉. Take a real number 𝑠 > 0 satisfying 𝑑𝑆 (𝑜, 𝑝(𝑠)) >
max{𝜀 + 𝐾 (𝛿), 𝑅}, then by Morse lemma and 𝑑𝑆 (𝑜, 𝑝(𝑠)) > 𝑑𝑆 (𝑜, 𝑔𝑜) + 𝐾 (𝛿), there exists 𝑡 > 0 such
that 𝑑𝑆 (𝑝(𝑠), 𝑔𝑝(𝑡)) ≤ 2𝐾 (𝛿) + 2𝛿. This implies

𝑑𝑆 (𝑔𝑝(𝑠), 𝑔𝑝(𝑡)) = 𝑑𝑆 (𝑝(𝑠), 𝑝(𝑡)) ≤ |𝑠 − 𝑡 | + 𝛿 ≤ |𝑑𝑆 (𝑜, 𝑝(𝑠)) − 𝑑𝑆 (𝑔𝑜, 𝑔𝑝(𝑡)) | + 3𝛿
≤ 𝑑𝑆 (𝑜, 𝑔𝑜) + 𝑑𝑆 (𝑝(𝑠), 𝑔𝑝(𝑡)) + 3𝛿 ≤ 𝜀 + 2𝐾 (𝛿) + 2𝛿 + 3𝛿.

Hence, we have 𝑑𝑆 (𝑜, 𝑔𝑜) ≤ 𝜀′ and 𝑑𝑆 (𝑝(𝑠), 𝑔𝑝(𝑠)) ≤ 𝑑𝑆 (𝑝(𝑠), 𝑔𝑝(𝑡)) + 𝑑𝑆 (𝑔𝑝(𝑡), 𝑔𝑝(𝑠)) ≤ 𝜀′ for
any 𝑔 ∈ 𝐻. By 𝑑𝑆 (𝑜, 𝑝(𝑠)) > 𝑅 and equation (20), this implies |𝐻 | ≤ 𝑀 . �

Now, we show topological amenability of the boundary action. We restate Corollary 1.2 as Theorem
5.5 here. This is an immediate corollary of the above facts and Theorem 1.1.
Theorem 5.5. For any countable acylindrically hyperbolic group G, there exists a generating set S of
G such that the corresponding Cayley graph Γ(𝐺, 𝑆) is hyperbolic, |𝜕Γ(𝐺, 𝑆) | > 2, the natural action
of G on Γ(𝐺, 𝑆) is acylindrical, and the natural action of G on the Gromov boundary 𝜕Γ(𝐺, 𝑆) is
topologically amenable.
Proof. Take the generating set S of G in Theorem 1.1. Since the action 𝐺 � Γ(𝐺, 𝑆) is acylindrical,
the stabilizer Stab𝐺 (𝜉) is amenable for any 𝜉 ∈ 𝜕Γ(𝐺, 𝑆) by Lemma 5.4. This and hyperfiniteness of
the action 𝐺 � 𝜕Γ(𝐺, 𝑆) imply that 𝐺 � 𝜕Γ(𝐺, 𝑆) is topologically amenable by Theorem 5.2. �

6. Appendix (more on path representatives)

This section is continuation of Section 3. 𝐺, 𝑋, {𝐻𝜆}𝜆∈Λ, 𝐶, 𝐷,𝑌 are the same as were defined at the
beginning of Section 3. We will list more results on path representatives of the Gromov boundary
𝜕Γ(𝐺,𝑌 �H) for possible future use.
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After recording the result that 𝜕Γ(𝐺,𝑌 �H) is homeomorphic to a certain subset of 𝜕Γ(𝐺, 𝑋 �H)
(see Proposition 6.2), which was essentially proved in Section 3, we will first show that any two distinct
points of 𝜕Γ(𝐺,𝑌 �H) can be connected by a bi-infinite geodesic path in Γ(𝐺, 𝑋 �H) (see Proposition
6.5). By using this path representative, we will extend the notion of Hull–Osin’s separating cosets to
pairs of points in 𝜕Γ(𝐺,𝑌 � H) (see Definition 6.9). Finally, we will verify that this generalization
of separating cosets to boundary points satisfies similar properties to those of Hull–Osin’s separating
cosets (see Lemma 6.11 and Proposition 6.14).

In Definition 6.1, we define the set of limit points in 𝜕Γ(𝐺, 𝑋 � H) of all nice geodesic rays in
Γ(𝐺, 𝑋 �H). This set turns out to be homeomorphic to 𝜕Γ(𝐺,𝑌 �H).

Definition 6.1. We define the subset A of 𝜕Γ(𝐺, 𝑋 �H) by

𝐴 = {𝜉 ′ ∈ 𝜕Γ(𝐺, 𝑋 �H) | ∃𝛾 : geodesic ray in Γ(𝐺, 𝑋 �H) s.t. |𝑆(𝛾; 𝐷) | = ∞∧ 𝑋-lim 𝛾 = 𝜉 ′}.

For 𝜉 ′ ∈ 𝐴, take a geodesic ray 𝛾 in Γ(𝐺, 𝑋 �H) such that |𝑆(𝛾; 𝐷) | = ∞ and 𝑋-lim 𝛾 = 𝜉 ′. The
geodesic ray 𝛾 converges to infinity in Γ(𝐺,𝑌 � H) by Lemma 3.20 and the limit point 𝑌 -lim 𝛾 is
independent of 𝛾 taken for 𝜉 ′ by Proposition 3.29 and Lemma 3.27. Hence, this defines the well-defined
map Ψ : 𝐴 → 𝜕Γ(𝐺,𝑌 �H) by

Ψ(𝜉 ′) = 𝑌 -lim 𝛾.

Proposition 6.2. The map Ψ is a homeomorphism from A to 𝜕Γ(𝐺,𝑌 �H).

Proof. Injectivity and surjectivity of Ψ follow from Corollary 3.28 and Proposition 3.22, respectively.
Continuity of Ψ and Ψ−1 follow from Proposition 3.29 and Proposition 3.23, respectively. �

Remark 6.3. By Proposition 6.2 and the Luzin–Souslin Theorem (see [15, Corollary 15.2]) for Ψ−1,
the set A is Borel in 𝜕Γ(𝐺, 𝑋 �H). It’s interesting to know whether the geodesic boundary is Borel or
not in 𝜕Γ(𝐺, 𝑋 �H). Recall that the geodesic boundary of a geodesic hyperbolic metric space S is the
set of all points in the Gromov boundary 𝜕𝑆 that can be realized as the limit point of a geodesic ray in S.

We will now begin our discussion to extend the notion of Hull–Osin’s separating cosets to pairs of
boundary points, which completes in Definition 6.9. Definition 6.4 sets up notations for the endpoints
of a bi-infinite geodesic path.

Definition 6.4. Suppose that 𝛾 = (· · · , 𝑥−1, 𝑥0, 𝑥1, · · · ) is a bi-infinite geodesic path in Γ(𝐺, 𝑋 � H)
such that the sequences (𝑥𝑛)∞𝑛=1 and (𝑥𝑛)−∞𝑛=−1 converge to infinity in Γ(𝐺,𝑌 �H). We denote the limit
point 𝑌 -lim𝑛→∞𝑥𝑛 in 𝜕Γ(𝐺,𝑌 �H) by 𝑌 -lim 𝛾+ and the limit point 𝑌 -lim𝑛→−∞𝑥𝑛 in 𝜕Γ(𝐺,𝑌 �H) by
𝑌 -lim 𝛾−.

As we did in Proposition 3.22, we first show that two distinct boundary points can be connected by
a bi-infinite geodesic path of the smaller Cayley graph.

Proposition 6.5. For any two distinct points 𝜉, 𝜂 ∈ 𝜕Γ(𝐺,𝑌 � H), there exists a bi-infinite geodesic
path 𝛾 in Γ(𝐺, 𝑋 �H) such that 𝑌 -lim 𝛾− = 𝜉 and 𝑌 -lim 𝛾+ = 𝜂.

Proof. By Proposition 3.22, fix geodesic rays 𝛼 = (1, 𝑥1, 𝑥2, · · · ), 𝛽 = (1, 𝑦1, 𝑦2, · · · ) in Γ(𝐺, 𝑋 �H)
from 1 such that 𝑌 -lim 𝛼 = 𝜉 and 𝑌 -lim 𝛽 = 𝜂. Since 𝜉 ≠ 𝜂, it’s straightforward to see that there exist
𝑅, 𝑚0 ∈ N such that for any 𝑖, 𝑗 ≥ 𝑚0,

(𝑥𝑖 , 𝑦 𝑗 )𝑌∪H
1 ≤ 𝑅. (21)

For each 𝑛 ≥ 𝑚0, fix a geodesic path 𝛾𝑛 in Γ(𝐺, 𝑋�H) from 𝑥𝑛 to 𝑦𝑛. Also, take a geodesic path [𝑥𝑛, 𝑦𝑛]
in Γ(𝐺,𝑌 �H) for each 𝑛 ≥ 𝑚0, then there exists a vertex 𝑧′𝑛 ∈ [𝑥𝑛, 𝑦𝑛] such that 𝑑𝑌∪H (1, 𝑧′𝑛) ≤ 𝑅+ 𝛿𝑌
by equation (21) and we can take a vertex 𝑧𝑛 ∈ 𝛾𝑛 satisfying 𝑑𝑌∪H (𝑧′𝑛, 𝑧𝑛) ≤ 𝑀𝑋 by Lemma 3.7 (b).
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Figure 6. The bi-infinite path 𝛾 in the proof of Proposition 6.5.

This 𝑧𝑛 satisfies

𝑑𝑌∪H (1, 𝑧𝑛) ≤ 𝑅 + 𝛿𝑌 + 𝑀𝑋 (22)

for each 𝑛 ≥ 𝑚0. Let 𝑆(𝛼; 𝐷) = {𝐶𝛼
1 � 𝐶𝛼

2 � · · · } and 𝑆(𝛽; 𝐷) = {𝐶𝛽
1 � 𝐶

𝛽
2 � · · · }, and let

each 𝐶𝛼
𝑖 (resp. 𝐶𝛽

𝑖 ) be a coset of 𝐻𝜆𝛼
𝑖

(resp. 𝐻
𝜆
𝛽
𝑖
). Define I by 𝐼 = 3(𝑅 + 𝛿𝑌 + 𝑀𝑋 ) + 2. We claim

that for any 𝑖, 𝑛 ∈ N satisfying 𝐼 ≤ 𝑖 and 𝑑𝑋∪H (1, 𝛼𝑜𝑢𝑡 (𝐶𝛼
𝑖+1)) ≤ 𝑛, 𝛾𝑛 penetrates 𝐶𝛼

𝑖 . Indeed, let
𝑆(𝑥𝑛, 1; 𝐷) = {𝐵1 � · · · � 𝐵𝑚}. By applying Lemma 3.18 to 𝛼 and 𝑆(1, 𝑥𝑛; 𝐷), we have 𝐵𝑚−( 𝑗−1) = 𝐶𝛼

𝑗
for any 𝑗 ∈ {1, · · · , 𝑖}. Since we have 3𝑑𝑌∪H (1, 𝑧𝑛) + 1 ≤ 𝑖 − 1, the path 𝛾𝑛 penetrates 𝐶𝛼

𝑖 (= 𝐵𝑚−(𝑖−1) )
by applying Lemma 3.11 to 𝑥𝑛, 1, 𝛾 [𝑥𝑛 ,𝑧𝑛 ] . By applying Lemma 3.2 to (𝛼[1,𝑥𝑛 ] )−1 and 𝛾𝑛, we have

𝑑𝜆𝛼
𝑖
(𝛼𝑜𝑢𝑡 (𝐶𝛼

𝑖 ), (𝛾−1
𝑛 )𝑜𝑢𝑡 (𝐶𝛼

𝑖 )) = 𝑑𝜆𝛼
𝑖
((𝛼[1,𝑥𝑛 ] )−1

𝑖𝑛 (𝐶𝛼
𝑖 ), (𝛾𝑛)𝑖𝑛 (𝐶𝛼

𝑖 )) ≤ 3𝐶.

In the same way, we can also see that for any 𝑖, 𝑛 ∈ N satisfying 𝐼 ≤ 𝑖 and 𝑑𝑋∪H (1, 𝛽𝑜𝑢𝑡 (𝐶𝛽
𝑖+1)) ≤ 𝑛, the

path 𝛾𝑛 penetrates 𝐶
𝛽
𝑖 and we have 𝑑

𝜆
𝛽
𝑖
(𝛽𝑜𝑢𝑡 (𝐶𝛽

𝑖 ), 𝛾𝑛 𝑜𝑢𝑡 (𝐶𝛽
𝑖 )) ≤ 3𝐶. Since 𝑑𝜆𝛼

𝑖
and 𝑑

𝜆
𝛽
𝑖

are locally
finite for any 𝑖 ∈ N, the sets 𝐴𝑖 , 𝐵𝑖 defined by

𝐴𝑖 = {ℎ ∈ 𝐶𝛼
𝑖 | 𝑑𝜆𝛼

𝑖
(ℎ, 𝛼𝑜𝑢𝑡 (𝐶𝛼

𝑖 )) ≤ 3𝐶} and 𝐵𝑖 = {ℎ ∈ 𝐶
𝛽
𝑖 | 𝑑

𝜆
𝛽
𝑖
(ℎ, 𝛽𝑜𝑢𝑡 (𝐶𝛽

𝑖 )) ≤ 3𝐶}

are finite for any 𝑖 ∈ N. Hence, by the above claim for 𝑖 = 𝐼, there exist a subsequence (𝛾1𝑘 )∞𝑘=1 of
(𝛾𝑛)∞𝑛=𝑚1 and vertices 𝑎1 ∈ 𝐴𝐼 , 𝑏1 ∈ 𝐵𝐼 such that {𝑎1, 𝑏1} ⊂ 𝛾1𝑘 for any 𝑘 ∈ N. By repeating this
argument for 𝑖 = 𝐼 + 1, 𝐼 + 2, · · · and taking subsequences, we can see that there exist a sequence of
subsequences (𝛾1𝑘 )∞𝑘=1 ⊃ (𝛾2𝑘 )∞𝑘=1 ⊃ · · · and vertices 𝑎𝑛 ∈ 𝐴𝐼+𝑛−1, 𝑏𝑛 ∈ 𝐵𝐼+𝑛−1 for each 𝑛 ∈ N such
that {𝑎𝑛, · · · , 𝑎1, 𝑏1, · · · , 𝑏𝑛} ⊂ 𝛾𝑛𝑘 for any 𝑛, 𝑘 ∈ N. Take the diagonal sequence (𝛾𝑘𝑘 )∞𝑘=1, then for
any 𝑛, 𝑘 ∈ N satisfying 𝑘 ≥ 𝑛, we have

{𝑎𝑛, · · · , 𝑎1, 𝑏1, · · · , 𝑏𝑛} ⊂ 𝛾𝑘𝑘 . (23)

Define the bi-infinite path 𝛾 in Γ(𝐺, 𝑋 �H) by

𝛾 =
∞⋃
𝑖=2

𝛾𝑛𝑛 [𝑎𝑛 ,𝑎𝑛−1 ] ∪ 𝛾11[𝑎1 ,𝑏1 ] ∪
∞⋃
𝑛=2

𝛾𝑛𝑛 [𝑏𝑛−1 ,𝑏𝑛 ] .

By equation (23), 𝛾 is geodesic in Γ(𝐺, 𝑋 � H). By 𝑑𝑌∪H (𝑎𝑛, 𝛼𝑜𝑢𝑡 (𝐶𝛼
𝐼+𝑛−1)) ≤ 1,∀𝑛 ∈ N and

𝑌 -lim𝑛→∞𝛼𝑜𝑢𝑡 (𝐶𝛼
𝐼+𝑛−1) = 𝜉, we have 𝑌 -lim𝑛→∞𝑎𝑛 = 𝜉. This implies 𝑌 -lim 𝛾− = 𝑌 -lim𝑛→∞𝑎𝑛 = 𝜉 by

Lemma 3.20. Similarly, 𝑌 -lim𝑛→∞𝑏𝑛 = 𝜂 implies 𝑌 -lim 𝛾+ = 𝜂. �

As in Definition 3.12 and Definition 3.16, we next define separating cosets for a bi-infinite geodesic
path and align these separating cosets based on the order of their penetration.
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Definition 6.6. For a bi-infinite geodesic path 𝛾 = (· · · , 𝑥−1, 𝑥0, 𝑥1, · · · ) in Γ(𝐺, 𝑋 �H), we define the
set 𝑆(𝛾; 𝐷) of cosets by

𝑆(𝛾; 𝐷) =
⋃

𝑛,𝑚∈Z,𝑛<𝑚
𝑆(𝑥𝑛, 𝑥𝑚; 𝐷).

We call an element of 𝑆(𝛾; 𝐷) a (𝛾; 𝐷)-separating coset.

Remark 6.7. In Definition 6.6, we have 𝑆(𝛾; 𝐷) =
⋃
𝑛∈N 𝑆(𝑥−𝑛, 𝑥𝑛; 𝐷) by Lemma 3.1. Also, since 𝛾

penetrates all cosets in 𝑆(𝛾; 𝐷) by Lemma 2.35, we can define the relation � on 𝑆(𝛾; 𝐷) as follows: for
any 𝐶1, 𝐶2 ∈ 𝑆(𝛾; 𝐷),

𝐶1 � 𝐶2 ⇐⇒ ∃𝑁 ∈ Z s.t. ∀𝑛 ≤ 𝑁, 𝑑𝑋∪H (𝑥𝑛, 𝛾𝑖𝑛 (𝐶1)) ≤ 𝑑𝑋∪H(𝑥𝑛, 𝛾𝑖𝑛 (𝐶1)).

We can see that the relation � is a linear order. We write 𝑆(𝛾; 𝐷) = {· · · � 𝐶−1 � 𝐶0 � 𝐶1 � · · · }
considering this order.

As in Corollary 3.24, we finally show that two bi-infinite geodesic paths with the same endpoints
have the same separating cosets. This enables us to define separating cosets for a pair of boundary points
using a bi-infinite geodesic path connecting them.

Lemma 6.8. Suppose that 𝜉, 𝜂 ∈ 𝜕Γ(𝐺,𝑌 � H) are distinct and 𝛼, 𝛽 are bi-infinite geodesic paths
in Γ(𝐺, 𝑋 � H) such that 𝑌 -lim 𝛼− = 𝑌 -lim 𝛽− = 𝜉 and 𝑌 -lim 𝛼+ = 𝑌 -lim 𝛽+ = 𝜂. Then, we have
𝑆(𝛼; 𝐷) = 𝑆(𝛽; 𝐷).
Proof. Let 𝛼 = (· · · , 𝑥−1, 𝑥0, 𝑥1, · · · ) and 𝑆(𝛼; 𝐷) = {· · · � 𝐶−1 � 𝐶0 � 𝐶1 � · · · }. By 𝑌 -lim 𝛼− =
𝑌 -lim 𝛽−, 𝑌 -lim 𝛼+ = 𝑌 -lim 𝛽+, and Corollary 3.28, there exists 𝑁 ∈ N such that 𝛽 penetrates
𝐶−𝑛 and 𝐶𝑛 for any 𝑛 ≥ 𝑁 . For any 𝑖 ∈ Z, there exists 𝑚 ∈ N such that 𝐶𝑖 ∈ 𝑆(𝑥−𝑚, 𝑥𝑚; 𝐷) by
Remark 6.7. For N and m, there exists 𝑛 ≥ 𝑁 such that 𝛼[𝑥−𝑚 ,𝑥𝑚 ] ⊂ 𝛼[𝛼𝑜𝑢𝑡 (𝐶−𝑛) ,𝛼𝑖𝑛 (𝐶𝑛) ] . Since this
implies 𝐶𝑖 ∈ 𝑆(𝛼𝑜𝑢𝑡 (𝐶−𝑛), 𝛼𝑖𝑛 (𝐶𝑛); 𝐷) by Lemma 3.1, there exists a geodesic path p in Γ(𝐺, 𝑋 �
H) from 𝛼𝑜𝑢𝑡 (𝐶−𝑛) to 𝛼𝑖𝑛 (𝐶𝑛) that essentially penetrates 𝐶𝑖 . Let 𝐶−𝑛, 𝐶𝑛 be cosets of 𝐻𝜆−𝑛 , 𝐻𝜆𝑛 ,
respectively, and let 𝑒1, 𝑒2 be the edges of Γ(𝐺, 𝑋 � H) with their labels in 𝐻𝜆−𝑛 , 𝐻𝜆𝑛 , respectively,
such that 𝑒1 is from 𝛽𝑖𝑛 (𝐶−𝑛) to 𝛼𝑜𝑢𝑡 (𝐶−𝑛) and 𝑒2 is from 𝛼𝑖𝑛 (𝐶𝑛) to 𝛽𝑜𝑢𝑡 (𝐶𝑛). Since we have
𝑑𝑋∪H (𝛼𝑜𝑢𝑡 (𝐶−𝑛), 𝛼𝑖𝑛 (𝐶𝑛)) = 𝑑𝑋∪H (𝛽𝑜𝑢𝑡 (𝐶−𝑛), 𝛽𝑖𝑛 (𝐶𝑛)) = 𝑑𝑋∪H (𝐶−𝑛, 𝐶𝑛) by Lemma 3.3, the path
𝑒1𝑝𝑒2 from 𝛽𝑖𝑛 (𝐶−𝑛) to 𝛽𝑜𝑢𝑡 (𝐶𝑛) is geodesic in Γ(𝐺, 𝑋�H) and essentially penetrates𝐶𝑖 . This implies
𝐶𝑖 ∈ 𝑆(𝛽𝑖𝑛 (𝐶−𝑛), 𝛽𝑜𝑢𝑡 (𝐶𝑛); 𝐷) ⊂ 𝑆(𝛽; 𝐷). Hence, we have 𝑆(𝛼; 𝐷) ⊂ 𝑆(𝛽; 𝐷). Similarly, we can also
see 𝑆(𝛽; 𝐷) ⊂ 𝑆(𝛼; 𝐷). �

We can now extend the notion of Hull–Osin’s separating cosets to a pair of boundary points in the
same way as Definition 3.25.

Definition 6.9. For 𝜉, 𝜂 ∈ 𝜕Γ(𝐺,𝑌�H) with 𝜉 ≠ 𝜂, we take a bi-infinite geodesic path 𝛾 in Γ(𝐺, 𝑋�H)
satisfying 𝑌 -lim 𝛾− = 𝜉 and 𝑌 -lim 𝛾+ = 𝜂, and define the set 𝑆(𝜉, 𝜂; 𝐷) of cosets by

𝑆(𝜉, 𝜂; 𝐷) = 𝑆(𝛾; 𝐷).

We call an element of 𝑆(𝜉, 𝜂; 𝐷) a (𝜉, 𝜂; 𝐷)-separating coset. For convenience, we also define 𝑆(𝜉, 𝜉; 𝐷)
by 𝑆(𝜉, 𝜉; 𝐷) = ∅ for any 𝜉 ∈ 𝜕Γ(𝐺,𝑌 �H).
Remark 6.10. Definition 6.9 is well-defined by Proposition 6.5 and Lemma 6.8. Also, 𝑆(𝜉, 𝜂; 𝐷) is
exactly the set of all cosets that are essentially penetrated by some bi-infinite geodesic path 𝛾 in
Γ(𝐺, 𝑋 �H) satisfying 𝑌 -lim 𝛾− = 𝜉 and 𝑌 -lim 𝛾+ = 𝜂.

Our next goal is to show Proposition 6.14, which is an analogue of [12, Lemma 3.9]. We first prepare
auxiliary results. For distinct elements 𝜉, 𝜂 ∈ 𝜕Γ(𝐺,𝑌�H), if a bi-infinite geodesic path in Γ(𝐺, 𝑋�H)
satisfies 𝑌 -lim 𝛾− = 𝜉 and 𝑌 -lim 𝛾+ = 𝜂, then we say that 𝛾 is from 𝜉 to 𝜂.

Lemma 6.11 below is analogous to Lemma 2.35.
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Figure 7. Proof of Lemma 6.11.

Lemma 6.11. Let 𝐷 ≥ 6𝐶. For any distinct elements 𝜉, 𝜂, 𝜁 ∈ 𝜕Γ(𝐺,𝑌 �H) and any 𝐵 ∈ 𝑆(𝜉, 𝜂; 𝐷),
B is either penetrated by all bi-infinite geodesic paths in Γ(𝐺, 𝑋 �H) from 𝜉 to 𝜁 or penetrated by all
bi-infinite geodesic paths in Γ(𝐺, 𝑋 �H) from 𝜁 to 𝜂.

Proof. Let 𝑆(𝜉, 𝜂; 𝐷) = {· · · � 𝐶−1 � 𝐶0 � 𝐶1 � · · · }, and suppose that there exist 𝑗 ∈ Z and a bi-
infinite geodesic path q in Γ(𝐺, 𝑋 �H) from 𝜉 to 𝜁 that doesn’t penetrate 𝐶 𝑗 . Take a bi-infinite geodesic
path p in Γ(𝐺, 𝑋 �H) from 𝜉 to 𝜂 that essentially penetrates 𝐶 𝑗 . For any bi-infinite geodesic path 𝛼 in
Γ(𝐺, 𝑋 �H) from 𝜁 to 𝜂, there exists an 𝐻𝜆-coset 𝐵′ and 𝑖, 𝑘 ∈ Z with 𝑖 < 𝑗 < 𝑘 such that 𝐵′ (resp.
𝐶𝑖 , 𝐶𝑘 ) is penetrated by both q and 𝛼 (resp. p and q, p and 𝛼) by Corollary 3.28. Note 𝐵′ ≠ 𝐶 𝑗 since
q doesn’t penetrate 𝐶 𝑗 . Let 𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 be cosets of 𝐻𝜆𝑖 , 𝐻𝜆 𝑗 , 𝐻𝜆𝑘 , respectively, and let 𝑒1, 𝑒2, 𝑒3 be the
edges in Γ(𝐺, 𝑋 �H) with their labels in 𝐻𝜆𝑖 , 𝐻𝜆, 𝐻𝜆𝑘 , respectively, such that 𝑒1 is from 𝑝𝑜𝑢𝑡 (𝐶𝑖) to
𝑞𝑜𝑢𝑡 (𝐶𝑖), 𝑒2 is from 𝑞𝑖𝑛 (𝐵′) to 𝛼𝑜𝑢𝑡 (𝐵′), and 𝑒3 is from 𝛼𝑖𝑛 (𝐶𝑘 ) to 𝑝𝑖𝑛 (𝐶𝑘 ). If 𝛼 doesn’t penetrate
𝐶 𝑗 , then the component of 𝑝 [𝑝𝑜𝑢𝑡 (𝐶𝑖) , 𝑝𝑖𝑛 (𝐶𝑘 ) ] corresponding to 𝐶 𝑗 is isolated in the geodesic hexagon
𝑒1𝑞 [𝑞𝑜𝑢𝑡 (𝐶𝑖) ,𝑞𝑖𝑛 (𝐵′) ]𝑒2𝛼[𝛼𝑜𝑢𝑡 (𝐵′) ,𝛼𝑖𝑛 (𝐶𝑘 ) ]𝑒3(𝑝 [𝑝𝑜𝑢𝑡 (𝐶𝑖) , 𝑝𝑖𝑛 (𝐶𝑘 ) ] )−1 by 𝐶 𝑗 ∉ {𝐶𝑖 , 𝐶𝑘 , 𝐵

′}. This implies
𝑑𝜆 𝑗 (𝑝𝑖𝑛 (𝐶 𝑗 ), 𝑝𝑜𝑢𝑡 (𝐶 𝑗 )) ≤ 6𝐶 by Proposition 2.30. This contradicts that p essentially penetrates 𝐶 𝑗

since we assume 𝐷 ≥ 6𝐶. Thus, 𝛼 penetrates 𝐶 𝑗 . �

Lemma 6.12 below means that if a geodesic ray converges to one endpoint of a bi-infinite geodesic
path, then the geodesic ray penetrates separating cosets of the bi-infinite path in the same order as the
order of the separating cosets.

Lemma 6.12. Let 𝐷 ≥ 4𝐶. Suppose that 𝜉, 𝜂 ∈ 𝜕Γ(𝐺,𝑌 �H) are distinct and 𝛼 is a geodesic ray in
Γ(𝐺, 𝑋 �H) from 𝛼− ∈ 𝐺 to 𝜂. Let 𝑆(𝜉, 𝜂; 𝐷) = {· · · � 𝐶−1 � 𝐶0 � 𝐶1 � · · · }. If 𝛼 penetrates 𝐶𝑖 for
some 𝑖 ∈ Z, then the subpath 𝛼[𝛼𝑜𝑢𝑡 (𝐶𝑖) ,∞) penetrates 𝐶𝑖+1.

Proof. By 𝐶𝑖+1 ∈ 𝑆(𝜉, 𝜂; 𝐷), there exists a bi-infinite geodesic path 𝛽 in Γ(𝑋 � H) from 𝜉 to 𝜂 that
essentially penetrates 𝐶𝑖+1. By 𝑌 -lim 𝛼 = 𝑌 -lim 𝛽+ = 𝜂 and Corollary 3.28, there exists j with 𝑗 > 𝑖 + 1
such that 𝐶 𝑗 is penetrated by both 𝛼 and 𝛽 and satisfies 𝑑𝑋∪H (𝛼−, 𝛼𝑖𝑛 (𝐶𝑖)) < 𝑑𝑋∪H (𝛼−, 𝛼𝑖𝑛 (𝐶 𝑗 )).
Note that 𝛽 penetrates 𝐶𝑖 . Let 𝐶𝑖 , 𝐶𝑖+1, 𝐶 𝑗 be cosets of 𝐻𝜆𝑖 , 𝐻𝜆𝑖+1 , 𝐻𝜆 𝑗 , respectively, and let 𝑒1, 𝑒2
be the edges in Γ(𝐺, 𝑋 � H) with their labels in 𝐻𝜆𝑖 , 𝐻𝜆 𝑗 , respectively, such that 𝑒1 is from
𝛼𝑜𝑢𝑡 (𝐶𝑖) to 𝛽𝑜𝑢𝑡 (𝐶𝑖) and 𝑒2 is from 𝛼𝑖𝑛 (𝐶 𝑗 ) to 𝛽𝑖𝑛 (𝐶 𝑗 ). If the subpath 𝛼[𝛼𝑜𝑢𝑡 (𝐶𝑖) ,∞) doesn’t
penetrate 𝐶𝑖+1, then the component of 𝛽 [𝛽𝑜𝑢𝑡 (𝐶𝑖) ,𝛽𝑖𝑛 (𝐶 𝑗 ) ] corresponding to 𝐶𝑖+1 is isolated in the
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Figure 8. Proof of Lemma 6.12.

Figure 9. Proof of Lemma 6.13.

geodesic quadrilateral 𝑒1𝛽 [𝛽𝑜𝑢𝑡 (𝐶𝑖) ,𝛽𝑖𝑛 (𝐶 𝑗 ) ]𝑒
−1
2 (𝛼[𝛼𝑜𝑢𝑡 (𝐶𝑖) ,𝛼𝑖𝑛 (𝐶 𝑗 ) ] )−1 by 𝐶𝑖+1 ∉ {𝐶𝑖 , 𝐶 𝑗 }. This implies

𝑑𝜆𝑖+1 (𝛽𝑖𝑛 (𝐶𝑖+1), 𝛽𝑜𝑢𝑡 (𝐶𝑖+1)) ≤ 4𝐶 by Proposition 2.30. This contradicts that 𝛽 essentially penetrates
𝐶𝑖+1 since we assume 𝐷 ≥ 4𝐶. Thus, 𝛼[𝛼𝑜𝑢𝑡 (𝐶𝑖) ,∞) penetrates 𝐶𝑖+1. �

Lemma 6.13 below enables us to create a new bi-infinite geodesic ray by concatenating two geodesic
paths.

Lemma 6.13. Suppose that 𝜉, 𝜂 ∈ 𝜕Γ(𝐺,𝑌 � H) are distinct, 𝛼 is a geodesic ray in Γ(𝑋 � H) from
𝛼− ∈ 𝐺 to 𝜂, and 𝛽 is a bi-infinite geodesic path in Γ(𝑋 �H) from 𝜉 to 𝜂. If 𝛼 and 𝛽 penetrate an 𝐻𝜆-
coset B satisfying 𝑑𝐻𝜆 (𝛽𝑖𝑛 (𝐵), 𝛽𝑜𝑢𝑡 (𝐵)) > 3𝐶 and e is the edge in Γ(𝐺, 𝑋�H) from 𝛽𝑖𝑛 (𝐵) to 𝛼𝑜𝑢𝑡 (𝐵)
whose label is in 𝐻𝜆, then the bi-infinite path 𝛽(−∞,𝛽𝑖𝑛 (𝐵) ]𝑒𝛼[𝛼𝑜𝑢𝑡 (𝐵) ,∞) is geodesic in Γ(𝐺, 𝑋 �H).

Proof. Let 𝛼 = (𝑥0, 𝑥1, · · · ) and 𝛽 = (· · · , 𝑦−1, 𝑦0, 𝑦1, · · · ), and let 𝑁 ∈ Z satisfy 𝑦𝑁 = 𝛽𝑖𝑛 (𝐵). Fix
𝑖 ∈ Z with 𝑖 < 𝑁 . There exist 𝑘 ∈ N and a geodesic path p in Γ(𝐺, 𝑋 � H) from 𝑦𝑖 to 𝑥𝑘 such
that the path 𝑝𝛼[𝑥𝑘 ,∞) is geodesic in Γ(𝐺, 𝑋 � H) by Lemma 3.27. By 𝑌 -lim 𝛼 = 𝑌 -lim 𝛽+ = 𝜂
and Corollary 3.28, there exists a 𝐻𝜆1 -coset 𝐵1 ∈ 𝑆(𝛼, 𝐷) such that 𝛽 penetrates 𝐵1 and we have
𝑑𝑋∪H (𝑥0, 𝑥𝑘 ) < 𝑑𝑋∪H (𝑥0, 𝛼𝑖𝑛 (𝐵1)) and 𝑑𝑋∪H (𝑦𝑖 , 𝛽𝑖𝑛 (𝐵)) < 𝑑𝑋∪H (𝑦𝑖 , 𝛽𝑖𝑛 (𝐵1)). Let 𝑒1 be the edge in
Γ(𝐺, 𝑋�H) from 𝛼𝑖𝑛 (𝐵1) to 𝛽𝑖𝑛 (𝐵1) whose label is in 𝐻𝜆1 . Define the path q by 𝑞 = 𝑝𝛼[𝑥𝑘 ,𝛼𝑖𝑛 (𝐵1) ] , and
consider the geodesic triangle Δ = 𝑞𝑒1 (𝛽 [𝑦𝑖 ,𝛽𝑖𝑛 (𝐵1) ] )−1. The component of 𝛽 [𝑦𝑖 ,𝛽𝑖𝑛 (𝐵1) ] corresponding
to B cannot be isolated in Δ by Proposition 2.30 and 𝑑𝐻𝜆 (𝛽𝑖𝑛 (𝐵), 𝛽𝑜𝑢𝑡 (𝐵)) > 3𝐶. By this and 𝐵 ≠ 𝐵1,
the path q penetrates B. Hence, we have

𝑑𝑋∪H (𝑦𝑖 , 𝛽𝑖𝑛 (𝐵)) = 𝑑𝑋∪H (𝑦𝑖 , 𝑞𝑖𝑛 (𝐵)) (= 𝑑𝑋∪H (𝑦𝑖 , 𝐵))
and 𝑑𝑋∪H (𝛼𝑜𝑢𝑡 (𝐵), 𝛼𝑖𝑛 (𝐵1)) = 𝑑𝑋∪H (𝑞𝑜𝑢𝑡 (𝐵), 𝛼𝑖𝑛 (𝐵1)) (= 𝑑𝑋∪H(𝛼𝑖𝑛 (𝐵1), 𝐵))
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Figure 10. Proof of Proposition 6.14.

by Lemma 2.36. This implies

|𝛽 [𝑦𝑖 ,𝛽𝑖𝑛 (𝐵) ]𝑒𝛼[𝛼𝑜𝑢𝑡 (𝐵) ,𝛼𝑖𝑛 (𝐵1) ] | ≤ 𝑑𝑋∪H (𝑦𝑖 , 𝛽𝑖𝑛 (𝐵)) + 1 + 𝑑𝑋∪H (𝛼𝑜𝑢𝑡 (𝐵), 𝛼𝑖𝑛 (𝐵1))
= 𝑑𝑋∪H (𝑦𝑖 , 𝑞𝑖𝑛 (𝐵)) + 1 + 𝑑𝑋∪H (𝑞𝑜𝑢𝑡 (𝐵), 𝛼𝑖𝑛 (𝐵1))
= |𝑞 | = 𝑑𝑋∪H (𝑦𝑖 , 𝛼𝑖𝑛 (𝐵1)).

Hence, the path r defined by 𝑟 = 𝛽 [𝑦𝑖 ,𝛽𝑖𝑛 (𝐵) ]𝑒𝛼[𝛼𝑜𝑢𝑡 (𝐵) ,𝛼𝑖𝑛 (𝐵1) ] is geodesic in Γ(𝐺, 𝑋 � H) and has
the same endpoints as q. This implies that 𝛽 [𝑦𝑖 ,𝛽𝑖𝑛 (𝐵) ]𝑒𝛼[𝛼𝑜𝑢𝑡 (𝐵) ,∞) (= 𝑟𝛼[𝛼𝑖𝑛 (𝐵1) ,∞)) is geodesic in
Γ(𝐺, 𝑋 � H) since 𝑞𝛼[𝛼𝑖𝑛 (𝐵1) ,∞) (= 𝑝𝛼[𝑥𝑘 ,∞) ]) is geodesic in Γ(𝐺, 𝑋 � H). Since i with 𝑖 < 𝑁 is
arbitrary, this implies that 𝛽(−∞,𝛽𝑖𝑛 (𝐵) ]𝑒𝛼[𝛼𝑜𝑢𝑡 (𝐵) ,∞) is geodesic in Γ(𝐺, 𝑋 �H). �

We are now ready to show Proposition 6.14. The proof is similar to [12, Lemma 3.9] modulo the
above auxiliary lemmas.

Proposition 6.14. Let 𝐷 ≥ 11𝐶. For any 𝜉, 𝜂, 𝜁 ∈ 𝐺 ∪ 𝜕Γ(𝐺,𝑌 �H), 𝑆(𝜉, 𝜂; 𝐷) can be decomposed
into 𝑆(𝜉, 𝜂; 𝐷) = 𝑆′ � 𝑆′′ � 𝐹 such that 𝑆′ ⊂ 𝑆(𝜉, 𝜁 ; 𝐷), 𝑆′′ ⊂ 𝑆(𝜁, 𝜂; 𝐷), and |𝐹 | ≤ 4.

Proof. We will only show the case where 𝜉, 𝜂, 𝜁 ∈ 𝜕Γ(𝐺,𝑌 � H) and 𝜉, 𝜂, 𝜁 are all distinct because
the proof of other cases is similar. Let 𝑆(𝜉, 𝜂; 𝐷) = {· · · � 𝐶−1 � 𝐶0 � 𝐶1 � · · · }, and define
P𝜉 = {𝑖 ∈ Z | ∀𝛾 : bi-infinite geodesic path in Γ(𝐺, 𝑋 � H) from 𝜉 to 𝜁 penetrates 𝐶𝑖} and P𝜂 =
{𝑖 ∈ Z | ∀𝛾 : bi-infinite geodesic path in Γ(𝐺, 𝑋 � H) from 𝜁 to 𝜂 penetrates 𝐶𝑖}. By Lemma 6.11,
we have Z = P𝜉 ∪ P𝜂 . Suppose for contradiction that there exists a sequence (𝑖𝑘 )∞𝑘=1 in P𝜉 such
that lim𝑘→∞ 𝑖𝑘 = ∞. Take bi-infinite geodesic paths 𝑝, 𝑞 in Γ(𝐺, 𝑋 � H) such that p is from 𝜉 to 𝜁
and q is from 𝜉 to 𝜂. Since 𝑖𝑘 ∈ P𝜉 implies 𝑑𝑌∪H (𝑝𝑖𝑛 (𝐶𝑖𝑘 ), 𝑞𝑖𝑛 (𝐶𝑖𝑘 )) ≤ 1 for any 𝑘 ∈ N, we have
𝜁 = lim𝑘→∞ 𝑝𝑖𝑛 (𝐶𝑖𝑘 ) = lim𝑘→∞ 𝑞𝑖𝑛 (𝐶𝑖𝑘 ) = 𝜉. This contradicts our assumption that 𝜉, 𝜂, 𝜁 are distinct.
Hence, there exists 𝑖1 ∈ Z such that P𝜉 ∩ [𝑖1,∞) = ∅. Similarly, we can see P𝜂 ∩ (−∞, 𝑖2] = ∅ for
some 𝑖2 ∈ Z. In particular, P𝜂 is nonempty and minP𝜂 exists. Define N by 𝑁 = minP𝜂 .

We claim {𝐶𝑖 | 𝑖 ≥ 𝑁 + 2} ⊂ 𝑆(𝜁, 𝜂; 𝐷). Fix a bi-infinite geodesic path 𝛽 in Γ(𝐺, 𝑋 � H) from
𝜁 to 𝜂. By 𝑁 ∈ P𝜂 , the path 𝛽 penetrates 𝐶𝑁 . Hence, the subpath 𝛽 [𝛽𝑜𝑢𝑡 (𝐶𝑁 ) ,∞) penetrates 𝐶𝑁+1 by
Lemma 6.12. Let 𝐶𝑁+1 be an 𝐻𝜆-coset, then we have 𝑑𝜆 (𝛽𝑖𝑛 (𝐶𝑁+1), 𝛽𝑜𝑢𝑡 (𝐶𝑁+1)) > 3𝐶. Indeed, take
a bi-infinite geodesic path 𝑝′ in Γ(𝐺, 𝑋 �H) from 𝜉 to 𝜂 that essentially penetrates 𝐶𝑁 . By applying
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Lemma 3.4 to 𝐶𝑁 and 𝐶𝑁+1, we have 𝑑𝜆(𝑝′𝑖𝑛 (𝐶𝑁+1), 𝛽𝑖𝑛 (𝐶𝑁+1)) ≤ 4𝐶. By the same argument for
𝐶𝑁+1 and 𝐶𝑁+2, we can also see 𝑑𝜆(𝑝′𝑜𝑢𝑡 (𝐶𝑁+1), 𝛽𝑜𝑢𝑡 (𝐶𝑁+1)) ≤ 4𝐶. Since 𝑝′ essentially penetrates
𝐶𝑁+1, this implies

𝑑𝜆(𝛽𝑖𝑛 (𝐶𝑁+1), 𝛽𝑜𝑢𝑡 (𝐶𝑁+1))

≥ 𝑑𝜆(𝑝′𝑖𝑛 (𝐶𝑁+1), 𝑝′𝑜𝑢𝑡 (𝐶𝑁+1)) − 𝑑𝜆(𝛽𝑖𝑛 (𝐶𝑁+1), 𝑝′𝑖𝑛 (𝐶𝑁+1)) − 𝑑𝜆(𝛽𝑜𝑢𝑡 (𝐶𝑁+1), 𝑝′𝑜𝑢𝑡 (𝐶𝑁+1))
> 𝐷 − 4𝐶 − 4𝐶 ≥ 3𝐶.

(24)

For any 𝑖 ≥ 𝑁 + 2, there exists a bi-infinite geodesic path 𝛼 in Γ(𝐺, 𝑋 � H) from 𝜉 to 𝜂 that
essentially penetrates 𝐶𝑖 . Note that 𝛼 penetrates 𝐶𝑁+1. Let e be the edge in Γ(𝐺, 𝑋 � H) from
𝛽𝑖𝑛 (𝐶𝑁+1) to 𝛼𝑜𝑢𝑡 (𝐶𝑁+1) whose label is in 𝐻𝜆. By Lemma 6.13, the bi-infinite path 𝛾 defined by
𝛾 = 𝛽(−∞,𝛽𝑖𝑛 (𝐶𝑁+1) ]𝑒𝛼[𝛼𝑜𝑢𝑡 (𝐶𝑁+1) ,∞) is geodesic in Γ(𝐺, 𝑋 � H) and essentially penetrates 𝐶𝑖 . This
implies 𝐶𝑖 ∈ 𝑆(𝛾; 𝐷). On the other hand, we have 𝑆(𝛾; 𝐷) = 𝑆(𝜁, 𝜂; 𝐷) by 𝑌 -lim 𝛾− = 𝑌 -lim 𝛽− = 𝜁
and 𝑌 -lim 𝛾+ = 𝑌 -lim 𝛼+ = 𝜂. Thus, we have {𝐶𝑖 | 𝑖 ≥ 𝑁 + 2} ⊂ 𝑆(𝜁, 𝜂; 𝐷). Similarly, we can also see
{𝐶𝑖 | 𝑖 ≤ 𝑁 − 3} ⊂ 𝑆(𝜉, 𝜁 ; 𝐷) since we have 𝑁 − 1 ∈ P𝜉 by Z = P𝜉 ∪ P𝜂 and 𝑁 = minP𝜂 . Thus, we
get the desired decomposition by defining 𝑆′, 𝑆′′, 𝐹 by 𝑆′ = {𝐶𝑖 | 𝑖 ≤ 𝑁 − 3}, 𝑆′′ = {𝐶𝑖 | 𝑖 ≥ 𝑁 + 2}
and 𝐹 = {𝐶𝑁−2, 𝐶𝑁−1, 𝐶𝑁 , 𝐶𝑁+1}. �
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