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LINEAR PROJECTIONS AND SUCCESSIVE MINIMA

CHRISTOPHE SOULÉ

Abstract. Let X be an arithmetic surface, and let L be a line bundle on X.
Choose a metric h on the lattice Λ of sections of L over X. When the degree of

the generic fiber of X is large enough, we get lower bounds for the successive

minima of (Λ, h) in terms of the normalized height of X. The proof uses an

effective version (due to C. Voisin) of a theorem of Segre on linear projections

and Morrison’s proof that smooth projective curves of high degree are Chow
semistable.

In arithmetic geometry, cohomology groups are not vector spaces as in
classical algebraic geometry but rather are Euclidean lattices. As a conse-
quence, to understand these groups we need to evaluate not only their rank
but also their successive minima, which are fundamental invariants in the
geometry of numbers. The goal of this article is to perform this task for line
bundles on projective curves.

Let K be a number field, let OK be its ring of integers, and let E be a
projective OK -module of finite rank N . We endow E ⊗Z C with a Hermitian
metric h, and we let μ1, . . . , μN be the logarithm of the successive minima
of (E,h). Assume that XK ⊂ P(E∨

K) is a smooth geometrically irreducible
curve of genus g > 0. We shall find a lower bound for the numbers μi,
g +8 ≤ i ≤ N − 3, in terms of a normalized height of XK and the average of
the μi (Theorem 2). This result is a complement to [13, Theorem 4], which
gives a lower bound for μ1.

The method of proof is a variant of [13, Theorem 4]. It relies upon Morri-
son’s [11] proof of the fact that XK is Chow semistable. We use a filtration
V1 = EK ⊃ V2 ⊃ · · · ⊃ VN of the vector space EK . But, contrary to [13],
this filtration is chosen such that, for suitable values of i, the projection
P(V ∨

i ) · · · → P(V ∨
i+1) does not change the degree of the image of XK . That

such a choice is possible follows from a result of Voisin, namely, an effec-
tive version of a theorem of Segre on linear projections of complex projective
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46 C. SOULÉ

curves (Theorem 1). I thank C. Voisin for proving that result and for helpful
discussions. I am also grateful to the referee for useful corrections.

§1. Linear projections of projective curves

Let C ⊂ Pn be an integral projective curve over C, and let d be its degree.
Assume that C is not contained in some hyperplane, that d ≥ 3, and that
n ≥ 3.

Theorem 1 (Voisin). There exists an integer A(d) and a finite set Σ
of points in (Pn − C)(C), of order at most A(d), such that, for every point
P ∈ Pn(C) − Σ ∪ C(C), the linear projection Pn · · · → Pn−1 of center P maps
C birationally onto its image.

Proof. The existence of a finite set Σ with the property above is a special
case of a theorem of Segre (see [5]). The order of Σ can be bounded as
follows by a function of d.

If n > 3, a generic linear projection into P3 will map C isomorphically
onto its image [10], and the exceptional set Σ ⊂ Pn will map bijectively onto
the exceptional set in P3. Therefore we can assume that n = 3.

When the projection with center P ∈ P3(C) is not birational from the
curve C to its image C ′ ⊂ P2, we have d′ = deg(C ′) ≤ d/2; hence d′ ≤ d − 2,
and P is the vertex of a cone K with base C ′ containing C. So we have to
bound the number of such cones.

Let N be the dimension of the kernel of the restriction map

α : H0
(
P3, O(d′)

)
→ H0

(
C, O(d′)

)
.

Clearly, N is bounded as a function of d, and any f ∈ ker(α) is a homoge-
neous polynomial of degree d′ that vanishes on C.

Let Z ⊂ P3(C) × PN −1(C) be the set of pairs (P,f) such that f is the
equation of a cone K of vertex P . If p1 : P3 × PN −1 → P3 is the first pro-
jection, we have to bound the order of p1(Z). We note that this order is at
most the number c of connected components of Z.

Now Z is defined by equations of bidegree (δ,1), δ ≤ d′. Indeed, f is
homogeneous of degree d′, and (P,f) ∈ Z when all the derivatives of f ,
except those of order d′, vanish at P .

Let L = O(d′,1), let M = dimH0(P3 × PN ,L) − 1, and let

j : P3 × PN → PM
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be the Segre embedding. Since j(Z) is the intersection of j(P3 × PN ) with
linear hyperplanes, the Bézout theorem [7, §8.4] tells us that

c ≤ deg
(
j(P3 × PN )

)
.

Hence c is bounded by a function of d.

Corollary 1. Given any projective line Λ ⊂ Pn, there exists a finite
set Φ of order at most A(d) + d in Λ such that, if P ∈ Λ − Φ, the linear
projection of center P maps C birationally onto its image.

Proof. Since C is not equal to Λ, the cardinality of C ∩ Λ is at most d.
So the corollary follows from Theorem 1.

Remark. The proof of Theorem 1 provides an upper bound for A(d).
Indeed,

deg(j) =
(

3 + N

3

)
d′3,

d′ ≤ d/2, and

N = dimH0
(
P3, O(d′)

)
=

d′3

6
+ d′2 +

11
6

d′ + 1.

In particular, when d ≥ 12, we get

log
(
A(d) + d

)
≤ 12 log(d) − 12.

§2. Successive minima

2.1.
Let K be a number field, let [K : Q] be its degree over Q, let OK be its

ring of integers, let S = Spec(OK) be the associated scheme, and let Σ be
the set of complex embeddings of K. Consider a Hermitian vector bundle
(E,h) over S; that is, E is a torsion-free OK -module of finite rank N , and
for all σ ∈ Σ, the associated complex vector space Eσ = E ⊗OK

C is equipped
with a Hermitian scalar product hσ. If σ̄ is the conjugate of σ, we assume
that the complex conjugation Eσ � Eσ̄ is an isometry. If v ∈ E, we define

‖v‖ = max
σ∈Σ

√
hσ(v, v).
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If i is a positive integer, i ≤ N , we let μi be the infimum of the set of real
numbers r such that there exist v1, . . . , vi ∈ E, linearly independent over K,
such that log ‖vα‖ ≤ r for all α ≤ i. The number μi is thus the logarithm of
the ith successive minimum of (E,h). Let

(1) μ =
μ1 + · · · + μN

N
.

2.2.
If E∨ = Hom(E, OK) is the dual of E, we let P(E∨) be the associated

projective space, representing lines in E∨. Let E∨
K = E∨ ⊗OK

K, and let
XK ⊂ P(E∨

K) be a smooth geometrically irreducible curve of genus g and
degree d. We assume that the embedding of XK into P(E∨

K) is defined by a
complete linear series on XK . We also assume that d ≥ 2g + 1. The rank of
E is thus N = d + 1 − g.

If X is the Zariski closure of XK in P(E∨), and if O(1) is the canoni-
cal Hermitian line bundle on P(E∨), the Faltings height of XK is the real
number

h(XK) = d̂eg
(
ĉ1(O(1))2 | X

)
(see [2, (3.1.1) and (3.1.5)]).

2.3.
For any positive integer i ≤ N , we define the integer fi by the formulas

fi = i − 1 if i − 1 ≤ d − 2g

and
fi = i − 1 + α if i − 1 = d − 2g + α, 0 ≤ α ≤ g.

Assume that k and i are two positive integers, k ≤ N , i ≤ N . We let

hi,k =

{
fi if i ≤ k, i = N − 1, or i = N,

fk if k ≤ i ≤ N − 2.

Finally, if 2 ≤ k ≤ N , we let

Bk = max
i=2,...,N

h2
i,k

(i − 1)hi,k −
∑i−1

j=1 hj,k

.

Proposition 1. For every k such that 2 ≤ k ≤ N − 3, the following
inequality holds:

Bk(μN+1−k − μ1)+
h(XK)
[K : Q]

+2dμ ≥ (2d − NBk)(μ − μ1) − 2d log
(
A(d)+d

)
.
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2.4.
From Proposition 1, we shall deduce the following result.

Theorem 2. If g > 0, for every integer k such that 4 ≤ k ≤ d − 2g − 6,
the following inequality holds:

μN+1−k − μ ≥ −k
( h(XK)

2d[K : Q]
+ μ

)
− 12d log(d) + 12d.

Remarks. (i) It is proved in [13] that, when d ≥ 2g + 1,

h(XK)
2d[K : Q]

+ μ ≥ 2g(d − 2g)
d2 + d − 2g2

(μ − μ1).

In particular,
h(XK)

2d[K : Q]
+ μ ≥ 0.

(ii) From Bombieri and Vaaler’s version of Minkowski’s theorem on suc-
cessive minima (see [4]), we know that

−μ ≥ d̂eg(E,h)
N [K : Q]

− log |DK |
2[K : Q]

− K(N),

where DK is the absolute discriminant of K and the constant K(N) depends
only on N . If hL2 is the L2-metric on H0(X, O(1)) (see [3, (1.2.3)]), the
quantity

1
[K : Q]

(h(XK)
2d

− d̂eg(H0(X, O(1)), hL2)
N

)
is the normalized height of XK introduced by Bost [3, (1.2.4)].

2.5.
To prove Proposition 1, fix a positive integer k ≤ N − 3 and choose ele-

ments x1, . . . , xN in E, linearly independent over K and such that

log ‖xi‖ = μN −i+1, 1 ≤ i ≤ N.

Fix integers nα, α = k + 1, . . . ,N − 2, to be specified later (in §2.7). If
1 ≤ i ≤ N , we define

(2) vi =

{
xi + nixi−1 if k + 1 ≤ i ≤ N − 2,

xi otherwise.
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We get a complete flag EK = V1 ⊃ V2 ⊃ · · · ⊃ VN by defining Vi to be the
linear span of vi, vi+1, . . . , vN .

When m is large enough, the cup-product map

ϕ : E⊗m
K → H0

(
XK , O(m)

)
is surjective; hence H0(XK , O(m)) is generated by the monomials

vα1
1 · · · vαN

N = ϕ(v⊗α1
1 · · · v⊗αN

N ),

α1 + · · · +αN = m. A special basis of H0(XK , O(m)) is a basis made of such
monomials.

Let r1, r2, . . . , rN be N real numbers, and let r = (r1, . . . , rN ). We define
the weight of vi to be ri, we define the weight of a monomial in E⊗m

K to be
the sum of the weights of the vi occurring in it, and we define the weight of
a monomial u ∈ H0(XK , O(m)) to be the minimum wtr(u) of the weights of
the monomials in the vi mapping to u by ϕ. The weight wtr(B) of a special
basis B is the sum of the weights of its elements, and wr(m) is the minimum
of the weights of special bases of H0(XK , O(m)).

When r1 ≥ r2 ≥ · · · ≥ rN = 0 are natural integers, there exists er ∈ N such
that, as m goes to infinity,

wr(m) = er
m2

2
+ O(m)

(see [12], [11, Corollary 3.3]).
Our next goal is to find an upper bound for er.

2.6.
For every positive integer i ≤ N , we let ei be the drop in degree of XK

when projected from P(E∨
K) to P(V ∨

i ). A criterion of Gieseker (see [8], [11,
Corollary 3.8]) tells us that er ≤ S with

S = min
1=i0<· · ·<i�=N

�−1∑
j=0

(rij − rij+1)(eij + eij+1).

Note that S is an increasing function in each variable ei. Furthermore, it
follows from Clifford’s theorem and Riemann-Roch that

(3) ei ≤ fi

for every positive i ≤ N (see [11, proof of Theorem 4.4]). (Note that in [11,
Theorem 4.4], the filtration of V0 has length n + 1, while n = dimV0. In
our case, we start the filtration with V1, hence the discrepancy between our
definition of fi and that of [11].)
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2.7.
We now specify our choice of the integers ni in (2). This is where our

argument will differ from that of [13, Theorem 4], which corresponds to the
choice ni = 0 for every i.

Let w1, . . . ,wN ∈ E∨
K be the dual basis of v1, . . . , vN . The linear projection

from P(V ∨
i ) to P(V ∨

i+1) has center the image ẇi of wi.
If y1, . . . , yN ∈ E∨

K is the dual basis of x1, . . . , xN , then we get

wi =

{
yi + nizi if k ≤ i ≤ N − 3,

yi otherwise,

where zi + yi+1 is a linear combination of yi+2, yi+3, . . . with coefficients
depending only on ni+1, ni+2, . . . . When n 
= m are two integers, the vectors
yi +nzi and yi +mzi are linearly independent over K; therefore, their images
in P(V ∨

i ) are distinct. Since eN −3 ≤ fN −3 and g > 0, we get eN −3 ≤ d − 3;
therefore, the image of XK in P(V ∨

i ), i ≤ N − 3, has degree at least 3.
Furthermore, dimP(V ∨

i ) ≥ 3. By Theorem 1 and Corollary 1, it follows that
we can choose ni such that 0 ≤ ni < A(d)+d and the projection from P(V ∨

i )
to P(V ∨

i+1) does not change the degree of the image of XK . We fix the integers
ni, k ≤ i ≤ N − 3, with this property. Hence we have

(4) ei = ek whenever k ≤ i ≤ N − 2.

2.8.
From (3) and (4), we conclude that

ei ≤ hi,k if 1 ≤ i ≤ N

(see §2.3). Hence, by Morrison’s main combinatorial theorem [11, Corol-
lary 4.3], for any decreasing sequence of real numbers r1 ≥ r2 ≥ · · · ≥ rN we
have, if k ≥ 2,

S ≤ ψ(r)

with

ψ(r) = Bk ·
N∑

i=1

(ri − rN ).

So, when r1 ≥ r2 ≥ · · · ≥ rN = 0 is a decreasing sequence of integers,

(5) er ≤ ψ(r).
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Let

(6) si =

{
log ‖xi−1‖ + log(A + d) if k + 1 ≤ i ≤ N − 2,

log ‖xi‖ + log(A + d) otherwise,

and let ri = si − sN . The sequence r1, . . . , rN = 0 is decreasing, and (2)
implies that

log ‖vi‖ ≤ log ‖xi−1‖ + log(1 + ni) ≤ si if k + 1 ≤ i ≤ N − 2,

and
log ‖vi‖ = log ‖xi‖ ≤ si otherwise.

We endow O(1) with the metric induced by the metric h on E. We
choose a Hermitian metric, invariant by complex conjugation, on the com-
plex points of X , and we endow M = H0(X, O(m)) with the associated
L2-metric. After multiplying the metric on X by a fixed constant, we know
that, for every m, the morphism ϕ is norm decreasing. Therefore, if u =
ϕ(v⊗α1

1 · · · v⊗αN
N ) is a monomial in M , we have

log ‖u‖ ≤
N∑

i=1

αi log ‖vi‖ ≤
N∑

i=1

αisi =
N∑

i=1

αiri + msN .

By definition of wtr(u), we get

log ‖u‖ ≤ wtr(u) + msN .

Let d̂eg(M̄) be the arithmetic degree of the Hermitian vector bundle M̄ =
(M,hL2) over S. From the inequality above and the Hadamard inequality,
we deduce that, for any special basis B of M ,

d̂eg(M̄) ≥ −[K : Q]
∑
u∈ B

(
wtr(u) + msN

)
.

This implies that

d̂eg(M̄) ≥ −[K : Q]
(
wr(m) + mh0(XK , O(m))sN

)
.

By (5) and the definition of er, since both wr(m) and ψ(r) are linear
functions of r, by approximating r by a collection of rational numbers we
get that, for every positive real number η,

wr(m) ≤
(
ψ(r) + η

)m2

2
+ O(m)
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(see [13, §2.2]), so we get

d̂eg(M̄) ≥ −[K : Q]
(
ψ(r) + 2dsN + η

)m2

2
+ O(m).

On the other hand, by [6, Corollary to Theorem 3] and [9, Theorem 8],
we have

d̂eg(M̄) = h(XK)
m2

2
+ O

(
m log(m)

)
.

Therefore, for every η > 0,

(7) h(XK) ≥ −[K : Q]
(
ψ(r) + 2dsN + η

)
.

By the definition of ψ, we deduce from (7) that

h(XK)
[K : Q]

+ 2dsN ≥ −Bk

( N∑
i=1

ri

)
,

and, using (6), that

(8)
h(XK)
[K : Q]

+2dμ1 ≥ −Bk

( N∑
i=1

(μi − μ1)+μN+1−k − μ3

)
− 2d log

(
A(d)+d

)
.

Since μ3 ≥ μ1, (8) implies the inequality in Proposition 1.

2.9.
To make Proposition 1 more explicit, we need to evaluate Bk. For any

i = 2, . . . ,N , we let

Bi,k =
h2

i,k

(i − 1)hi,k −
∑i−1

j=1 hj,k

so that
Bk = sup

i
Bi,k.

Lemma 1. Assume that k − 1 ≤ d − 2g. Then
• if i ≤ k,

Bi,k = 2 − 2
i
;

• if k ≤ i ≤ N − 2,

Bi,k = 2 − 2
k
.

https://doi.org/10.1215/00277630-2009-002 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2009-002


54 C. SOULÉ

2.10.
To prove Lemma 1, we first assume that i ≤ k. Then, if j ≤ i, we have

hj,k = fj = j − 1.

Therefore,
i−1∑
j=1

hj,k =
i−1∑
j=1

(j − 1) =
(i − 2)(i − 1)

2
,

and

Bi,k =
(i − 1)2

(i − 1)2 − (i−2)(i−1)
2

= 2 − 2
i
.

Assume now that k ≤ i ≤ N − 2. Then, if 1 ≤ j ≤ k − 1, we have

hj,k = fj = j − 1.

Furthermore, if k ≤ j ≤ i − 1, we get

hj,k = fk = k − 1.

Therefore,

Bi,k =
(k − 1)2

(i − 1)(k − 1) −
∑k−1

j=1(j − 1) −
∑i−1

j=k(k − 1)
= 2 − 2

k
.

2.11.
Lemma 2. Assume that g > 0 and that 4 ≤ k ≤ d − 2g − 6. Then Bk < 2

and
2d − NBk ≥ 2d

k
.

To prove Lemma 2, we first compute BN −1,k and BN,k under the assump-
tion k − 1 ≤ d − 2g. When d − 2g ≤ i − 1 < N , we have

fi = 2i − 2 − d + 2g.

Therefore,
hN −1,k = fN −1 = 2(N − 2) − d + 2g = d − 2,

and
hN,k = fN = 2(N − 1) − d + 2g = d.
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On the other hand,

N −2∑
j=1

hj,k =
k∑

j=1

fj +
N −2∑

j=k+1

fk

=
k∑

j=1

(j − 1) +
N −2∑

j=k+1

(k − 1),

and
N −1∑
j=1

hj,k =
N −2∑
j=1

hj,k + fN −1.

Therefore,

BN −1,k =
(d − 2)2

(N − 2)(d − 2) −
∑k

j=1(j − 1) −
∑N −2

j=k+1(k − 1)
(9)

=
(d − 2)2

(N − 2)(d − 1 − k) + k(k−1)
2

,

and

BN,k =
d2

(N − 2)d + 2 −
∑k

j=1(j − 1) −
∑N −2

j=k+1(k − 1)
(10)

=
d2

2 + (N − 2)(d + 1 − k) + k(k−1)
2

.

When i ≤ N − 2, we know from Lemma 1 that

Bi,k ≤ 2 − 2
k

< 2;

hence,

2d − NBi,k ≥ 2d − (d + 1 − g)
(
2 − 2

k

)
≥ 2d

k
.

When i = N − 1, we put k = 4 + p, p ≥ 0, and d = 10 + 2g + p + t, t ≥ 0.
Then (9) implies that 2 − BN −1,k has the same sign as 2gt + 14g + p + t2 +
12t + 38, which is positive. On the other hand,

2d − NBN −1,k − 2d
k
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has the sign of the numerator of k − 1 − NkBN −1,k/(2d), namely,

(2 + p)t3 +
(
p2 + (5g + 21)p + 10g + 36

)
t2

+
(
(8 + 4g)p2 + (8g2 + 121 + 72g)p + 186 + 118g + 16g2

)
t + (g − 1)p3

+ (5 + 26g + 4g2)p2 + (172 + 4g3 + 60g2 + 240g)p

+ 244 + 328g + 92g2 + 8g3 > 0.

Similarly, (10) implies that 2 − BN,k has the same sign as t2 +(2g+12)t+
42 + 10g + p, so it is positive, and

2d − NBN,k − 2d
k

has the sign of

(2 + p)t2 +
(
(9 + 3g)p + 12 + 6g

)
t + (g − 1)p2 + (11 + 18g + 2g2)p

− 14 + 22g + 4g2 > 0.

This ends the proof of Lemma 2.

2.12.
To prove Theorem 2, we first note that Bk < 2 and 2d − NBk ≥ 2d/k by

Lemma 2. Since μ1 ≤ μN+1−k and μ1 ≤ μ, Proposition 1 implies that

2(μN+1−k − μ1) +
h(XK)
[K : Q]

+ 2dμ ≥ 2d
k

(μ − μ1) − 2d log
(
A(d) + d

)
.

By dividing this inequality by 2d, we obtain

(11)
1
d
(μN+1−k − μ1) +

h(XK)
2d[K : Q]

+ μ ≥ 1
k
(μ − μ1) − log

(
A(d) + d

)
.

Since k < d, we get

μN+1−k − μ1 + k
( h(XK)

2d[K : Q]
+ μ

)
≥ μ − μ1 − d log

(
A(d) + d

)
,

and, since d ≥ 12, the remark in §1 implies Theorem 2.
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