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Lorentz Estimates for Weak Solutions of
Quasi-linear Parabolic Equations with
Singular Divergence-free Drifts

Tuoc Phan

Abstract. This paper investigates regularity in Lorentz spaces for weak solutions of a class of di-
vergence form quasi-linear parabolic equations with singular divergence-free drifts. In this class
of equations, the principal terms are vector field functions that are measurable in (x, t)-variable,
and nonlinearly dependent on both unknown solutions and their gradients. Interior, local bound-
ary, and global regularity estimates in Lorentz spaces for gradients of weak solutions are established
assuming that the solutions are in BMO space, the John-Nirenberg space. The results are even
new when the drifts are identically zero, because they do not require solutions to be bounded as
in the available literature. In the linear setting, the results of the paper also improve the standard
Calderén-Zygmund regularity theory to the critical borderline case. When the principal term in
the equation does not depend on the solution as its variable, our results recover and sharpen known
available results. The approach is based on the perturbation technique introduced by Caffarelli and
Peral together with a “double-scaling parameter” technique and the maximal function free approach
introduced by Acerbi and Mingione.

1 Introduction

This paper establishes local interior, local boundary, and global regularity estimates
in Lorentz spaces for gradients of weak solutions of the following class of quasi-linear
parabolic equations with singular divergence-free drifts, and with conormal bound-
ary condition
(L1)
U — diV[A(X, t,u, Vu) —=b(x, t)u — F(x, t)] =f(x,t) (x,1)eQx(0,T),
(A(x,t,u, Vu) =b(x, t)u —F(x,t),V) =0 (x,t) € 0Q x (0,T),

u(x,0) =up(x), xeQ,

where Q) is a bounded domain in R” with boundary 0Q, v is the unit outward normal
vector on 0Q), f: Qx (0, T) — R is a given measurable function, F,b: Ox (0, T) - R"
are given vector field functions, and u is an unknown solution with a given initial
condition uy for which we do not require any regularity. Moreover, T is a given fixed
positive number, and the principal term

A=A(x,158):0x(0,T) x KxR" — R"
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is a given vector field. We assume that A( -, -, s, ) is measurable in Qr = Q x (0, T)
for every (s, &) € K x R"; A(x, t, -, &) Holder continuous in K for a.e. (x,t) € Qr
and for all £ € R"; and A(x,t,s, -) differentiable in R” for each s € K and for a.e.
(x,t) € Qr. Here, K is an open interval in R, which could be the same as R. We
assume in addition that there exist constants A > 0 and «, € (0,1] such that A satisfies
the following natural growth conditions:

(12) (A(x,t,5,1) —A(x, t,5, &), = &) > Ay - &P
forae. (x,t) € Qr foralls € K, forall §, 5 ¢ R",

(1.3) |A(x, 1,5, &)| + |&||0cA(x, 8,5, )| < Al€]
forae. (x,t) € Qr foralls € K, forall £ e R”,
(1'4) |A(~x: £ S15 E) - A(-x) L, 525 £)| < A|£||Sl - 52|‘x0

forae. (x,t) € Qr forall 51,5, € K, £ e R".

Under the conditions (1.2)-(1.4) and with F = b = 0, the class of equations (1.1)
contains the well-known quasi-linear parabolic equations with zero-flux boundary
condition. If F = 0, but b # 0, equation (1.1) is the standard nonlinear advection-
diffusion equations. The drift term b considered in this paper could be singular. Due
to its relevance in many applications such as in fluid dynamics and mathematical bi-
ology (see [4,11,27,43,44,47] for examples), we are particularly interested in the case
where b is divergence-free, i.e., div[b( -, t)] = 0, in the sense of distributions in Q, for
ae te(0,T).

On one hand, when b = 0 and F, f are sufficiently regular, the C**-regularity the-
ory for bounded, weak solutions of this class of equations (1.1) has been investigated
extensively in the classical work; see for example [22, 23, 31, 33, 45], assuming some
regularity of A in (x, ¢, s, &) € Qr x K x R". On the other hand, when b, F, f are not
so regular or when A is discontinuous in (x, t), one does not expect those mentioned
Schauder’s type estimates for weak solutions of (1.1) to hold. It is therefore mathe-
matically interesting and essentially important to search for regularity estimates of
Calderén-Zygmund type for gradients of weak solutions in Lebesgue spaces. In par-
ticular, in these situations, this kind of Calderén-Zygmund regularity estimates is
vital in studying many questions in nonlinear equations and systems of equations;
see [27] for example. In this perspective, it is known that to establish the Calderén-
Zygmund theory, the class of considered equations must be invariant under the scal-
ings and dilations, see [46] for more geometric intuition of this issue. However, due
to the fact that the nonlinearity of the principal term A depends on u as its variable,
the class of this equations (1.1) is not invariant under the scalings and dilations

u(rx, r’t)

(15) wuvruf), and u(x,t)e~ for all positive numbers 7, A.

Due to the lack of this homogeneity, Calderén-Zygmund type regularity theory for
weak solutions of (1.1) becomes delicate and is still not completely understood. In a
simpler case when A is independent on the variable s € K, and b = f = 0, equation
(1.1) is reduced to

(1.6) us —div[A(x, t,Vu)] =div[F] in Qp,
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and the W4 regularity estimate for weak solutions of equations (1.6) has been non-
trivially and extensively developed by many authors for both elliptic, parabolic set-
tings and also for p-Laplacian type equations; for example, see [6, 8-10,12,14,17,18,
30,34,37].

In recent work [27,38,39], the W4 -regularity estimates for weak solutions of equa-
tions (1.1) with b = 0 is addressed, and the W"4-regularity estimates are established
for bounded weak solutions. To overcome the loss of homogeneity that we men-
tioned, in [27, 38, 39], we introduced some “double-scaling parameter” techniques.
Essentially, we studied an enlarged class of “double-scaling parameter" equations of
the type (1.1). Then, by some compactness argument, we successfully applied the per-
turbation method in [10] to tackle the problem. Careful analysis is required to ensure
that all intermediate steps in the perturbation process are uniform with respect to
the scaling parameters. See also a very recent work [7] for further implementation of
this idea for which global regularity theory for bounded weak solutions of some class
of degenerate elliptic equations is obtained. In all mentioned papers [7, 27, 38, 39],
the boundedness assumption on the solutions is essential to start the investigation of
Wh4-theory. This is because the approach uses maximum principle for the unper-
turbed equations to implement the perturbation technique. We would like to refer
also to [5], in which the W"4-theory for parabolic p-Laplacian type equations of the
form (1.1) is also achieved, but only for continuous weak solutions plus other assump-
tions on A.

In this paper, we establish regularity estimates in Lorentz spaces for gradients of
weak solutions of (1.1) by assuming that the solutions are in the BMO space, i.e., the
critical borderline case, and including the singular drifts b # 0. We achieve this in
Theorems 1.1-1.3. Our paper therefore generalizes the results in [5,7,27,39] for (1.1)
by relaxing the boundedness assumption on solutions, and putting into the context
of Lorentz space setting. Even in the linear case, and with f = 0, our results are also
stronger than the classical Calder6n-Zygmund results. Precisely, in this case, (1.1) is
reduced to

(L7) u; — div[Ag(x, t)Vu] = div[bu + F],
and the classical Calderon-Zygmund theory gives
[Vuel o < CLIEI L + lulp bl ]-

Our results in Theorems 1.1-1.3 below improve this estimate by replacing |u/|; .. by its
borderline case [[u]]pmo- See also [43] for some similar results in this direction for
linear equations and with more regularity assumptions on b. At this point, we also
would like to note that when b, F, f satisfies some certain regularity conditions, weak
solutions of (1.7) are proved in [44,47] to be in C*, with some a € (0,1). The results
in this paper can therefore be considered as the Sobolev counter part of this result,
but for more general nonlinear equations.

Unlike [7,27,38,39], which used “double-scaling parameter"”, we only use “single
scaling parameter" in the class of our equations (see [41, 42]). To be precise, we will
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investigate the following class of equations

u; — div [A(x, t,Au, Vu) = b(x, t)u - F(x, t)] = f(x,t), inQr,
(1.8) (A(x, t, Au, Vu) = b(x, t)u — F(x, t),v) = 0, on 9Q x (0, T),
u(+,0) =uo(-), inQ,

with the scaling parameter A > 0. As we will see in Subsection 2.1, this class of equa-
tions is the smallest one that is invariant with respect to scalings and dilations (1.5)
and contains the class of equations (1.1). When A = 0, f = 0, and b = 0, equation (1.8)
clearly becomes equation (1.6). This paper, therefore, recovers all known results for
(1.6) such as [9,27,43].

In this paper, Br(y) denotes the ball in R” with radius R > 0 and centered at
y € R™. If y = 0, we write B = Bg(0). Also, for each zq = (xo, to) € R"*!, we write

Qr(z0) = Br(x0) x Tr(ty), with Tr(to) = (to — R to + R?).
When z, = 0, we write
Qr = Qr(0,0), Tr=Tr(0).
For a measurable set U c R"*!, for some p, > 0, and for a locally integrable f: U —
R", the bounded mean oscillation semi-norm of f is defined by

1 _
[fllemo(u,pe) =  sup lf(x,t) - fQP(zo)mU| dxdt,

zo=(x0,t0)€U |QP(Z0) n U| Q, (20)nU
0<p<po

where

1

farcon =g,y 01 Jaeno 00

For each p > 0 and g € (0, o], the Lorentz quasi-norm of f on U is defined by

{p[owsq’{(x, ) eU:|f(x,t)]> s}|q/p%}l/q if g < oo,
sup,os| { (x.1) € Ut |f(x, )] > s} * if g = oo.

The set of all measurable functions f defined on U so that || f .4 (i) < oo is denoted
by L?9(U) and called Lorentz space with indices p and q. It is clear that LP>?(U) =
LP(U), the usual Lebesgue space. Moreover, LP>4(U) c LP" forall p >0and 0 < g <
r < oo. When g = oo, the space LP>*°(U) is usually called “weak-L?(U)” space or
Lorentz—Marcinkiewicz space. See [24, Chapter 1.4], for example, for more details on
Lorentz spaces.

Our first main result is the interior regularity estimates for the gradients of solu-
tions of (1.1).

19 N fliracwy =

Theorem 11 Let A > 0,M > 0,p > 2,9 € (0,00], and ay € (0,1]. Then there
exists a sufficiently small constant § = §(p, q, n, A, M, ag) > 0 such that the following
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statement holds. For every R > 0, let A: Qag x K x R” — R" be a Carathéodory map
satisfying (1.2)-(1.4) on Qar x K x R” for some open interval K c R, and

1
(110) [A]BMO R = Sup
(@t zoz(xo,to)eQR,‘Qp(Z())‘
0<p<R
A x,t,, _X t,s,
x[ [ sup [AC£5:8) = Ap, e m]dxdtga.
Qp(20) EeR"\{0}, |f|
seK

Then if F € LP1(Qar, R"), f € L"*P"9(Q,r), and u is a weak solution in Q, of
u; — div[A(x, t,Au, Vu) —bu —F] = f(x, t)
with [[Au]lsmo(qe.r) S M for some A > 0, and [[u]lgmo(qq,r)b € LP9(Qar, R") for
some given divergence-free vector field b defined on Qar, there holds
IVl poa(qey < C [”FHLp,q(QZR) + RIQar|? ™7 [ pwermeacaue)
+ ” [[”]]BMO(QR,R)b”Lp,q(QZR) +|Qarl? ™2 HVMHLz(QzR)],

where n, = Z—ii, and C is a constant depending only on g, p, n, A, ao, M, K.

Local regularity estimates near the boundary are not only interesting by them-
selves, but are also important in many problems, because they only require local in-
formation on data. Our next result is the local regularity estimate on the boundary
0Q) for weak solutions u of (1.1). In this theorem, for z = (y,¢) € Q x R, and R > 0,
we write

Qr(y) =QnBr(y), Kr(z)=Qr(y) xTr(t), Tr(z0) = (dQ N Br(y)) x Tr(t)
When z = (0,0), we write

QRZQR(O), KRZKR(O,O), TRZTR(O,O).
For each X € 0Q), we assume that div[b] = 0 in Q,z (%) and (b, ¥) = 0 on B,z (¥) n Q

in the sense that

(1.11) f ( )(b(x, £),Vo(x))dx =0 forall ¢ e Cy°(Byr(¥X)), forae. t e (0,T).
Qor (X

Theorem 1.2 Let M > 0,A > 0,p > 2,q € (0,00], and ag € (0,1]. Then there
exists a sufficiently small constant § = §(p, q, n, A, M, ag) > 0 such that the following
statement holds true. Suppose that 0 € 0Q and for some R > 0, 0Q N Byg is Cl, and
suppose that A: Krp x K x R" - R” is a Carathéodory map satisfying (1.2)-(1.4) on
Kyr x K x R" for some open interval K c R, and

1
(112) [Alsmo(kg,R) := sup ———
PMORI) ™ e rut) ek, 1K (20)]
0<p<R
A(x,t,5,8) = Aq, (x) (15, &
xf [ sup [A( )~ Aa ) ( )|]dxdt§6.
Kp(20) EeR"~{0}, |£|
seK
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Then for every F € LP1(Kyg, R"), f € L"™P"1(Kyr), if u is a weak solution of
ur —div[A(x, t,Au, Vu) —bu - F] = f(x,t), inKyp,

1.13

(L13) (A(x,t,Au, Vu) —bu —F, %) =0, on Trg,

satisfying [[Au]lgmo(ke,r) < M, and [[u]lsmo kg, r)b € LP1(Kar, R™) with some A >
0 and some given divergence-free vector field b defined on Kyr and satisfying (L11) at
X = 0, there holds

(19) [Vl iy < C Bl + RIKoxl 7 [

Lrxpnxq(Kar)
+| [[”]]BMO(KR,R)')HLp,q(KZR) + | Kar|? 72 | V] 12 (k) ]

where n,, = Z—Ii, and C is a constant depending only on g, p, n, A, ag, M, K.

Theorems 1.1 and 1.3 are still valid if we replace Q,(zo) by Q,(20) = B,(xo) x
(to — 1% tp] and K, (20) by K, (20) = Q,(x0) x (to — p% to]. As a consequence, the
following global regularity estimates in Lorentz space for gradients of weak solutions
of (1.8) can be obtained.

Theorem 1.3 Let M > 0,A > 0,p > 2,9 € (0,00), and ag € (0,1]. Then there
exists a sufficiently small constant § = 8(p, q,n, A, M, ag) > 0 such that the following
statement holds true. Suppose that dQ is C', and suppose that A: Q1 x K x R" — R"
is a Carathéodory map satisfying (1.2)-(1.4) on Qr x R x R” for some T > 0 and some
open interval K c R, and

1
sup — =
zo=(x0,t0)cx(5,1), |Qp(20) N (Q x (£, T))|
0<p<r

f |A(x, 1,5, &) = Aq, (x,) (15, §)]
x [ [ sup
Qp(20)nQr b ger™ {0}, 1&]

seK
for some r > 0,t € (0,T). Then, for every F € LP9(Qr,R"), f € L"P"(Qr),
if u is a weak solution of (1.8) satisfying [[Au]lsmo(ay,ry < M and [[u]lgmo(a,.nb €
LP(Qp,R"™) with some A > 0 and some given vector field b satisfying (L11) at every
X € 0Q, there holds

] dxdt < 6,

194l pragaceryy S C[ IElnaany + flmpmmacary * ITedevocarnbl oy |-

where n, = Z—ﬁ, and C is a constant depending only on q, p, n, A, ag, M, K, 7, Q, 1, T.

Several remarks are worth mentioning regarding Theorems 1.1-1.3. Firstly, we re-
inforce that the most important improvement in Theorems 1.1-1.3 is that they relax
and do not require the solutions to be bounded as in the known work [5,7,27,38,39].
This is completely new even for the case b = 0 and f = 0, in comparison to the known
work that we already mentioned for both Schauder’s regularity theory and Sobolev’s
theory regarding weak solutions of equations (1.1). To overcome the loss of bound-
edness from the assumption, instead of applying the maximum principle during the
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approximation process, we directly derive and carefully use some delicate analysis
estimates and Holder’s regularity estimates for solutions of the corresponding homo-
geneous equations; see the estimates (3.5) and (3.16) for examples. These estimates
are first observed in [41,42] but for elliptic equations. In a related context, interested
readers may see [15, 32] for further study of C*-regularity of weak, BMO solutions.
Secondly, we also note that due to the availability of f, which is scaled differently
compared to F and Vu, the approach based on the Hardy-Littlewood maximal func-
tion and harmonic analysis used in [8-10, 41, 42, 46] does not seem to produce our
desired estimates here. Instead, we use the maximal-function free approach intro-
duced in [1], and also used in [3,5, 6]. This paper seems to be the first one that treats
the equations (1.1) with inhomogeneous f in the Lorentz space setting. In addition,
this paper also treats quasi-linear equations with inhomogeneous singular drifts b,
which has not been done before. As one will find in the proof, to deal with b, we
introduce the function G(x, t) ~ [[u]]smob(x, t), which has the same scaling prop-
erties as F, Vu. This key fact plays an essential role in the proof. Thirdly, we note
that when A = 0, f = 0, and b = 0, Theorems 1.1-1.3 recover and sharpen results in
[6,8-10,14,17,18, 27, 30, 34, 37, 43] when restricted to the class of equations (L.1) in
which A is independent of u € K, see Remark 1.4 for more details on this. See also
[16,29,40] for some other related work with more regular f,F. This paper therefore
not only unifies both W"4-theories for (1.1) and (1.6) but also extends the theory to
the Lorentz regularity estimate setting. Lastly, observe that papers such as [6-8, 37],
among others, regarding the W'4-regularity estimates in nonsmooth domains, only
establish global regularity estimates. Our paper provides the regularity estimates lo-
cally for both the interior and the boundary. Our Theorem 1.1, Theorem 1.2 can be
considered as giving some high regularity estimates of Caccioppoli type, which are
important for many practical purposes for which local information is available and
required. Certainly, our local regularity estimates imply the global ones, as Theo-
rem 1.3 shows. However, it is generally impossible to derive local estimates directly
from the global ones; see [6-9,37].

Remark 1.4 Two important points are worth pointing out.

(i) This paper does not require any regularity assumption on the initial data 1, in
(1.1), compared to [6,9,37] in which it is assumed that uy = 0. Moreover, M is not
required to be small. Note also that the condition [[u]]pymob € L is trivial if b = 0.
Similarly, the condition [[Au]]pmo < M is always satisfied when A = 0.

(ii) If A = 0,b = 0 and f = 0, known results for (1.6) such as [5, 6,9, 37] provide
the estimates of the form

(115) HV”HLP < C[ HFHLP + 1]'

Our estimates in Theorems 1.1-1.3 are invariant under the scalings and dilations, and
they do not contain the inhomogeneous constant, i.e., the number 1 in the right-hand
side of (1.15). Our results are natural and sharp.

We conclude this section by outlining the organization of this paper. Section 2
reviews some definitions and proves preliminaries needed in the paper. Perturbation
arguments, and approximation estimates are given in Section 3. Section 4 establishes
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estimates of level sets of gradients of solutions. The proofs of Theorems 1.1-1.3 are
given in Section 5. The paper concludes with Appendix A, which gives proofs for
some reverse Holder’s inequalities needed in the paper.

2 Definitions and Preliminaries
2.1 Invariant Properties and Definitions of Weak Solutions
Let A’ > 0, and let Q, ¢ R"*! be the parabolic cylinder of radius 2R. Let us consider
a weak solution u of
u; — div[A(x, t,A'u, Vu) —bu(x,t) - F(x,t)] = f(x, t)

in Q,g. Then it is simple to check that for some fixed A > 0, the rescaled function

v(x,t) = @ for (x,t) € Qzr,

is a weak solution in Q,g of

vy —div [K(x,;\\v, vv) = b(x, t)v(x, t) - F(x, t)] -7

for A = A\ >0, A: Qr x K x R” — R" defined by

2.1)

A(x,t,5,08) =
A‘ bl

Moreover, let A = R\,

A(x,t,5,&) = X, t):@,f(x, t)z#, (x,t) € Qar.

1) < YRR g _ )
(2.2) V(1) = =2 Alx b5 6) = A(Rx Rs, 6)

F(x,t) = F(Rx,R%*t), f(x,t) = Rf(Rx,R%*t), b(x,t)=Rb(Rx,R*t)
for (x,t) € Qy, s € K, and & € R”. Then V is a weak solution in Q, of
v, — div[A(x, t, AV, V¥) —bv - F] = 7.

This is the main reason that we study the class of equation (1.8) with a parameter A,
instead of (1.1).

Remark 2.1 Itisnottoo hard to see thatif A: Q;x x KxR"” — R” satisfies conditions
(1.2)-(1.4) on Q,z x K x R™, then the rescaled vector field A: Q, x K x R” — R”™
defined in (2.1) also satisfies the conditions (1.2)-(1.4) on Q,z x K x R" - R" with
the same constants A, ag. The same conclusion also holds for A: Q, x K x R” — R”
defined in (2.2). Moreover,

[K]BMO(QR,R) = [K]BMO(QI)I) = [A]BMO(QR,R))
[[Av]lBmo(ae.r) = [AV]lBMo(Q11) = A “]lBMO (R R)-

With respect to the scalings and dilations, the following remark follows directly
from (1.9); see also [24, Remark 1.4.7].
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Remark 2.2 Forall0 < p,r < coandforall 0 < g < oo, if f is a measurable function
defined on a measurable set U ¢ R"*!, then

|||f|r||LP,q(U) = Hf”]rjp,rq(u) .

Moreover, for a measurable function f defined on Qg with some R > 0, then

17 oy = B2 1F ey

where

fx0) = f(Rx, R?1),  (x,1) € Q.

Let us now give the precise definition of weak solution that is used throughout the
paper.

Definition 2.3 Let K c R be an interval, let A > 0, a9 € (0,1] and a > 2. Also, let
Q ¢ R" bean open and bounded domain with boundary 9€2, and let A: Q7 ; XKXR”
R satisfy conditions (1.2)-(1.4) on Q7. For each F € L*(Qp;R"), f € L o (Qr),
and A > 0, a function u is called a weak solution of

—diV[A(x, t,)Lu,Vu)—bu—F] = f(x, 1), in Qr,
(A(x, t,Au, Vu) —bu —F, %) =0, on 0Q x (0, T),
if Au(x,t) e Kforae. (x,t) € Qr,u € L=((0,T),L*(Q)) n L*((0, T), W-2(Q)),
[ullemo(ar)b € L (Qr,R"), and for all ¢ € C*=(Qr) with ¢(+,0) = ¢(+,T) =0

—f u(ptdxdt+f (A(x,t,\u, Vu) —bu - F, Ve) dxdt =
Qr Qr

[Q (e 0l Dt

Here, LP(U,R") for 1 < p < oo is the Lebesgue space consisting all measurable
functions f: U — R" such that |f|? is integrable on U, and W"?(U) is the standard
Sobolev space on U. Moreover, { -, - ) is the Euclidean inner product in R".

Remark 2.4 Whenb # 0, we require that the solution u € BMO(Q7) to insure that
Ja, (bu, Vo)dz is well defined for a singular vector field b. Indeed, for b € L} (Qr)
with some a > 2, if ¢ € C3°(Q) for some cube Q c Q, since div[b(-,#)] = 0, we can
write

fQT(bu,V(p)dz:/Q(b(u—ﬁQ),Vgo)dz

Then it follows from the Holder’s inequality that

‘f (bu. Vo) dz - f\b|"‘dz /a([Q|u—uQ|“’dz)a,([Q|Vgo|2dz)l/2<oo,

where o is defined as
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2.2 Some Technical Lemmas

Several technical lemmas from analysis are needed in the paper. Our first is a stan-
dard iteration lemma that can be found, for example, in [25, Lemma 4.3] or [23,
Lemma 6.1].

Lemma 2.5 Let ¢ : [r, R] be a bounded, nonnegative function. Assume that for all

r<s<t<R,
B(¢) < 9(s) + (t_AS)K +B,
where A,B >0, x >0and 0 € (0,1). Then
A
9(r) < C(x,0)| TErT +B].

Our next lemma is the classical Hardy inequality, which can be found, for example,
in [26, Theorem 330], [3, Lemma 3.4], and [28].

Lemma 2.6 Let h:[0,00) — [0, 00) be a measurable function such that

fow R(1)d] < oo.

Then, for every k > 1 and for every r > 0, there holds

[OOO/V( [Amh(”)dﬂ)Kd)T)tS(;)K‘/;m)tr[Ah(A)]x%‘

The following variant of the reverse-Holder inequality can be found in [3,
Lemma 3.5] and will be useful for this paper.

Lemma 2.7 Let h:[0,00) — [0, 00) be a nonincreasing, measurable function, and
let k € [1,00),r > 0. Then there is C > 0 such that

oo « 1/1( oo

(f [#h(t)] ﬂ) gA’h(A)+C[ eh() %, forany 1z o0,
A t A t

2.3 Holder Regularity of Weak Solutions of Homogeneous Equations

We recall some results on Holder’s regularity for weak solutions of homogeneous
equations that will be needed in the paper. Those results are indeed consequences
of the well-known, classical De Giorgi-Nash-Moser theory. Our first lemma is about
the interior Holder regularity estimate, whose proof, for example, can be found in
[31, Theorems 1.1 (p. 419) and 2.1 (p. 425)], and also in [2, Theorems 2 and 4] and
[45, Theorem 2.2].

Lemma 2.8 Let A >0, and let Ay: Q, xR" — R" be a Carathéodory map and satisfy
(1.2) and (1.3) on Qy, with some r > 0. If v is a weak solution of the equation

ve —div[A¢(x, 8, Vv)] =0, inQ,.
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Then there exists Cy > 0 depending only on A, n such that

1/2
HVHL‘”(er/s) < Co( ]{2 |V|2dZ) .

Moreover, there exists 3 € (0,1) depending on A, n and HV||L°°(Q5r/5) such that

|x _x/| + |t— t’|1/2 Bo
lv(z) —v(Z")| < Co HVHL‘”(er/s) [ ]

forallz = (x,1),2" = (x',') € Qs 5.

r

To state the boundary regularity, we recall that for some domain QO c R”, and for
each r > 0, zg = (X0, tg) € 0Q x R, we define

Qr(x0) =QnB,(x), Q,=0Q,(0), Ky (z0)=Q,(x0)xL(t0), K,=K;(0,0).
Moreover, we also write

Ti(z0) = (0Q N B,(x0)) x T, (to), T, = T+(0,0).
The following classical boundary Hélder regularity result can be found in [31, Theo-

rems 1.1 (p. 419) and 2.1 (p. 425)], and [45, Theorem 4.2].

Lemma 2.9 Let A > 0 be fixed and let QO c R" be an open bounded domain with
boundary 9Q) € C'. Assume that Aq: K, xR" — R" is a Carathéodory map and satisfies
(1.2) and (1.3) on K, x R" for some r > 0. Assume also that T, # & and v is a weak
solution of the equation

vy —div[A¢(x, £, V)] =0 in K,,
(Ao (x,t,Vv),¥) =0 on T,.
Then there exists Cy > 0 depending only on A, n such that

1/2
¥l ey < ol £, Pez)

Moreover, there exists a constant o depending only on A, n and HVHLGQ(KS'/G) such that
v e Cho (FSr/G)’ and

, |x = x'| + |t = t/|/2 1 Bo

[v(2) = v(2')] < Co |V =iy [ - ]
forallz=(x,1),2' = (x,1') € Ky, 3.

2.4 Self-improving Regularity Estimates of Meyers—Gehring’s Type

We need to establish two higher regularity estimates of Meyers—Gehring’s type; see
[19-21, 35,36, 44], for weak solutions of (1.1). To begin, let us introduce the following
notation, which will be used frequently in the paper. For each function f defined on
U c R™, we write

1-ny

Su(f) = ( [U|f|2"*dz) ™ withn, =

n+2

n+4
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Our first lemma is the interior one.

Lemma 2.10 Let A > 0. Then there exists €y = €9(A, n) > 2 such that the following
statement holds. Suppose that A: Q; x K x R" — R" is a Carathéodory map satisfying
(1.2) and (1.3) on Q. If u is a weak solution of the equation

u; —div[A(x, t, Au, Vu) —bu - F] = f(x,t), inQ,,

with some A > 0, then for every p € [2,2 + €] and yo > 0, there exists a constant
C = C(A, p,n) > 0 such that

( ][Q (20) \W|sz) v
- C[( ng,(m W”'Zd") 1/2( ][QWO) |F|”d") v

e 1/p
¥ P 47) 7 4 g ][ mergy) |,
( ][ermg | ) @(N( £, ., ")

where zg = (x0,t0) € Qi r € (0,1/2), G(x,t) = Eo(n,yo)[[u]]BMo(Ql,l)b and
Co(n,yo) is some definite constant.

The next lemma is a self-improving regularity estimate on the boundary.

Lemma 2.11  For every A > 0, there exists €y = €9(A, n) > 2 such that the following
statement holds. Suppose that Q c R" with boundary 9Q € C'. Suppose that A: K, x
K x R" - R" is a Carathéodory map satisfying (1.2) and (1.3) on K; x K x R" and
(L11) holds on Q, with T, # @. Suppose also that u is a weak solution of the equation
u; — div[A(x, t, Au, Vu) —bu - F] = f(x, 1), in K,
(A(x,t,u,Vu) —bu—F,¥) =0, on Ty,

with some A > 0. Then, for every p € [2,2 + €], and yo > 0, there exists a constant
C = C(A, p,yo,n) > 0 such that

1/p
(]i(z)lvmpdz)
r{<0
1/2 e
col (£ ki) " (£ ooz
KZY(ZO) KZY(ZO)

" ( ]{(2,(20) |E(x, f)\PdZ) v + 3K, (f)( Jiz,(zo) £ (x, t)|mpdz) 1/p]’

Joreveryzo = (20, t0) € Ty, 7 € (0,1/2), G(x, t) = Co(n, yo) [[]lsmo(x,,1)b: 71+ = 453,
and where Co(n, yo) is some definite constant.

Remark 2.12 'Two remarks on Lemmas 2.10 and 2.11 are in order.

(i) Observe that when b € L9(Q) and u € BMO, it does not follow that ub €
L1(Q). Therefore, the above self-improving regularity estimates are new and could
not be directly deduced from the known self-improving regularity estimates.
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(i) Ifb € L(BMO™") and F = f = 0, then a similar self-improving regularity
estimate as in Lemma 2.10 for linear equations is established in [44].

From Remark 2.12, proofs of Lemmas 2.10 and 2.11 are needed. We follow the stan-
dard approach using Caccioppoli’s estimates as in [20, 21]. Details will be given in
Appendix A.

3 Approximation Estimates

3.1 Interior Approximation Estimates

In this section, let A: Qg x Kx R" — R" satisfy (1.2)-(1.4) on Qg x K xR" for some
R > 0. We also recall that d,Qp is the parabolic boundary of Qg. We study a weak
solution u of the class of equations

(3.1 ur — div[A(x, t, Au, Vu) = b(x, t)u - F] = f(x,t), in Qupg,
with the parameter A > 0. The following number is used frequently in the paper:
n+2
32 %= .
(3.2) " n+4

In the sequel, for each a > 2, let &’ > 2 be the number such that

1 1 1 . 2«
—+—==, ie, a = .
o a2 a-2

Moreover, if u is a weak solution of (3.1), we define
G(x,t) = 60(”’ a)[ullemocar,r)b(x5 1), (X, t) € Qagr,

with some definite constant Co (7, @), In our first step, we freeze u in A, and then
approximate the solution u of (3.1) by a solution of the corresponding homogeneous
equations with frozen u. See also [5,7,27,38,41,42] for some similar approaches.

Lemma 3.1 Let A, o > 2 be fixed. Assume that A: Qg x KxR" — R” satisfies (1.2)-
(1.4), and assume that F € L*(Qag,R"), f € L*"*(Qqr), and G € L*(Qar). Assume
also that u € C(Tar, L*(Bar)) N L2(Tar, W2(Byr)) is a weak solution of (3.1) with
some A > 0. Then for each zo = (x9,t9) € Qr, r € (0, R),

(3.3)
1/n.

Vu - Vv|*dx < C(A,n ][ Fdz+1* ][ 2 g,

‘f;'(z()) | | ( )[ Qr(ZO) | | ( Qr(ZO) |f| )

+ U—Uq,(z “dz) " ]l b(x,1)|%dz) |,
(]gr(z())' aol“dz) " ( o P2 )']
where v € C( F,(to),Lz(Br(xo))) OLZ(F,(tO),Wl’z(B,(xO))) is the weak solution
of

vy —div[A(x, £, Au, Vv)] =0, in Q.(z0),

(34) v=u, on apQr(ZO)'
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Moreover, it also holds that

B 1/2
(3.5) (]g( )|v—uQr(Zo)|2dz) <

ctn )| ]lczxzo) vy = Vul'ds) T ( ]{wo) ju~Tiq, () *d2) 1/2] .

Proof Even though the proof is similar and simpler than that of Lemma 3.5 be-
low, we give the proof for the sake of clarity and completeness. Observe that for a
given weak solution u € C(Ir, L*(Bag)) N L*(Tr, WH*(Bag)) of (3.1), by taking
Ao(x,t,&) := A(x, t, Au(x, t), &), we see that Ag: Qo x R” — R” is independent of
the variable s € K, and it satisfies all assumptions in (1.2) and (1.3). Therefore, the
existence of a weak solution v € C(Ty,, L*(B,,)) n L*(Ty,, W"2(B,,)) of (3.4) can be
obtained using the Galerkin’s method [31, pp. 466-475]. It remains to prove the esti-
mates (3.3) and (3.5). Through the procedure using the Skelov’s average (see [5,13,38],
for examples), we can formally use v —u as a test function for equations (3.4) and (3.1).
We obtain

(3.6)

1d/
2dt B,

= bu+F,Vu - Vv dx+/ x, t)(v—u)dx.
JK s [ 0w

|v—u|2dx+f( )(A(x,t,/\u,Vu)—A(x,t,)m,Vv),Vv—Vu)dx
B, (x¢

Also, because div[b(-, t)] = 0, it follows that

| fBr(xo) (b(x, t)u(x,t), Vu - vv) dx‘

- ‘ fB - (b(x, ) [u(x,t) — Uq, (z) ], Vit — VV)dx|

S(fBr(xo)W”_v"de)l/z( fBr(xo) |u—HQr(ZO)|“'dx)l/ul

* ( fB,m) b t)|a)l/a'

Then it follows from an integration in time, Remark 2.1, (3.6), and Young’s inequality
that

1
— sup lv - ulfdx + f |Vu - vv|*dz
2 T, (to) < Brixo) Qr(20)

1
< C(A)[f sup lv - u|*dx
2 1, (t0) 7 Briso)

+[( )(A(x,t,/lu,Vu)—A(x,t,/\u,Vv),Vv—Vu)dz]
Q: (20
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SC(A)[er(xO)|(bu+F,Vu—Vv)|dz+fQ( )|f||v—u|dz]

r(Zo0

1

<= Vu - vv[ldz + C(A f dez+/ v —uldz
s o - <>{ Lz [ -

a [Q’(Z‘“ 4~ Ta e " ) W( [o,uo) Ib(x, t)|“dxdt)2/‘x}.

Hence,

(3.7)
sup > [ v — ul*dx + ][ |Vu - vv|*dz
rr(tO) B’(Xo) Qr(zo)

<C(A ][ B2d z][ —uld
( ){ [ WRdze2 (- s

+ ( ]iv(zo) |u —ﬂQr(zo)|“'dxdt) Z/a’( ]{MZO) b, t)|“dxdt) Z/a}.

Now let po = 21, > 1, where n, is the number defined in (3.2). Also, let pj be the

number such that et P =1l,ie, py = 2(”+2) . It follows from Holder’s inequality, the

parabolic Sobolev 1mbedd1ng (see [31, eqn (3.2), p. 74] or [13, Proposition 3.1, p. 7]),
and Young’s inequality that

(3.8) ][ v —uldz
(o) Allv = ul
’ I/P:) 1/170
< — Pud f POd
( ]{)r(zo) |V u| Z) ( Q:r(20) |f| Z)
< C(n)r( ][ |Vv - Vu|2dz) l/pa( sup > ]l |v - u|2dx) "
- Qr(z0) I, (t0) B, (x0)
1/po
X Podz
( f(;V(ZO) |f| )
1 1
< - ][ |Vv — Vu)[Pdz + ~ sup 12 ][ v — ul*dx
4 JQi(20) 41, (1) By (x0)

2/po
+C(n)r( ][Q(Z)|f|1’°dz) :

The estimates (3.8) and (3.7) imply that

sup r’zf lv - u*dx + ][ |Vu - vv|[*dz
Q:(z0)

r,—(to) Br(xo) r(2o

SCO(A,n)[ ][ BPdz+ 2 ][ |f|P°dz)2/”°
Qr(zo) QY(ZO)
+ U—1Uq (s  dxdt) ]l b(x, t)[*dxdt) " |.
(]{zy(z(,)| o)l )" oty P20 ) ]
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This proves estimate (3.3). Also, by the Poincaré’s inequality, we see that

(£ W-Toolds)”
vV—-—u z
Q:(20) Qr(20)
1/2 12
< - zd + f -y 2d
|:(]€2r(z0)|v u| Z) ( Qr(Z0)|u uQ,—(zu)| Z) ]

1/2 B 1/2
< |:C(n,p)r( ]{2,(20) |Vv - Vu|2dz) + ( ]ir(xo) |u - uQY(Z0)|2dz) :|

This proves (3.5) and completes the proof of the lemma. ]

The next step is to approximate the solution u in Q,,(zo) by the solution w of
(39) wy — div[A(x, t,Alq,, (z,), VW)] =0, in  Qur(20),
' w=v, on 0,Q(20),

where in (3.9) v is a weak solution of (3.4), and « € (0,1/3) is some sufficiently small
constant that will be determined.

Lemma 3.2 Let A,M > 0, > 2, and ag € (0,1] be fixed, and let € € (0,1). There
exist positive, sufficiently small numbers

k=x(A, M,n,ag,¢) and & =01(e, A\, M,n, ) in (0,¢)

such that the following holds. Assume that A: Qap x K x R" — R" satisfies (1.2)-(1.4),
and assume that F € L*(Qar, R"), G € L*(Qar,R"), f € L*"*(Qar), and

][ FPdz+ ][ |f|2"*dz)1/"*+( ]l IG(x t)|“dz)§ <52
Q(z0) Q(20) Qz0) -

for some zy = (xo,t0) € Qr and some r € (0,R). Then, for every A > 0, if u €
C(Tar, L*(Byr)) N LP (Tyr, W2(Byr)) is a weak solution of (3.1) satisfying

]{2 - |Vu|2dz <1 and [[)LM:HBMO(QR,R) <M,

it holds that

][ |Vv - Yw|dz < €%,
Qe (20)

where w is the weak solution of (3.9).

Proof The proof is similar that of Lemma 3.6 in the next subsection, but using
Lemma 2.8 and (3.5) instead of Lemma 2.9 and (3.16), respectively. We therefore skip
the proof. ]

The next lemma is a general result that compares the solution w of (3.9) with a
solution of the corresponding constant coefficient equation.

Lemma 3.3 Let A > 0 be fixed; then there is some y = y(A,n) > 2 such that the
following statement holds. For some zy = (X, to) € Qg, assume that Ag: Qp x R* —
R” such that (1.2) and (1.3) hold for some R > 0. Assume also that for some p € (0, R/2),
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w is a weak solution of w; — div[Ag(x,t,Vw)] = 0 in Q,(20). Then there is some

function
h € Loo( (pr/4(t0), LZ(B7P/4(.x())) n LZ( F7P/4(t(]), WI’Z(B7P/4(X())))
such that
1 1/2
(7 |Vw—Vh|2dz) <
|Q7p/4(z0)| Q7,/4(20)
C(A, n)[Ag2 (o [vwdz) "
> BMO(Q2r,R) |Q2p(ZO)| Qap(20) :
Moreover,

1 ) 1/2
HVh||L°°(Q3p/2(ZO)) < C(A,n)( 7|Q2P(Zo)| /(;ZP(ZO) |[Vw| dz) .

Proof The proofis simple, and we give it here for the sake of completeness. Observe
that from Lemma 2.11, there is p; = p1(A, n) > 2 such that

(3.10) ( ][Q

Let us denote

1/p1 1/2
[vwP'dz) < C(A,pon) ][ (vwlPdz) .
7p/4 ) ( Q2p )
a(t, &) = ][ Ao(x,t,&)dx,

B7p/4(x0)

O Ag,Bspya(x0) = Ao, |€§|_ alt £)|, EeR" N {0}.

Then let h be a weak solution of
311 hy —div[a(t,Vv)] =0, in Q;,/4(20),
' h=w, ondyQs,(zo).

Observe that the existence of h can be obtained by a standard method using Galerkin’s
approximation. Also, from Skelov’s average as in [5,13], we can formally use w — h as
a test function for both the equations of w and of 4 to obtain

1d

—— w—hzdx+f a(t,vw) —a(t,Vh),Vw - Vh)dx
2dt —/f;7p/4(x0) | | B7P/4(X0)( ( ) ( ) )

= _/ ( )<a(t7VW)—A0(x, t,Vh),Vw - Vh)dx.
B7p74(x0

This and (1.2) imply that

1
- sup [ |w—h|2dx+f |Vw - Vh|[*dz
2 B;p74(x0) Q74/4(20)

teT7,/4(t0)

<C(A) )|a(t,Vw) - Ao(x,t,Vw)||[Vw — Vh|dz

Q7p/4(ZO

<C(A) AoBypya(x0) (36 1) [ VW[ VW = Vh|dz.

®
Q74/4(20)
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Now let y > 2 satisfy

v omo 2
Then, by using Holder’s inequality and (3.10), we see that

][ [Vw - Vh[dz
Q7p/4(20)
1/y
<C(A ][ ® ; N7 ][
( )( Q7p/4(zO)| A0, Q74 ( o) (2, 1)] z) ( [
1/2
8 ( ][ |Vw - Vh|2dz)

Q7p/4(20)

2/ 5 1/2 , 1/2
<cmdallon( f, ., [77Fd) (f, . [ww-vhldz) "
2p (20 p/a(Z0

Hence,

( ]l |Vw — Vh|2dz) " < C(A,n)[Ag] ( ][ |Vw|2dz) v
Q7,/4(20) - ’ 0/BMO(Qr.R) Q2p(20) ’

and this proves the first assertion of the lemma. To prove the last estimate of
Lemma 3.3, we can use standard regularity theory for equation (3.11) to obtain

VR 1~ gy eony < S ) ( ]{2

This, together with the fact that [Ag Jgmo(qe,r) S C(A, 1), the triangle inequality,
and (3.28) imply (3.11). The proof of the lemma is complete. [ |

1 1 1
+

1/p
|Vw|1’dz)

7p/4 (ZO)

1/2
Vhidz)

7p/4(20)

Our next result is the main result of the section.
Proposition 3.4 Let A > 0,a > 2 and ay € (0,1] be fixed. Then, for every € €
(0,1), there exist sufficiently small numbers ¥ = (A, M, n, ag,€) € (0,1/3) and &y =

0o(e, A, M, n,a9) € (0, €) such that the following holds. Assume that A: Qur xKxR" —
R" satisfies (1.2)-(1.4) and (1.10) holds with § replaced by &y. Assume also that

][ [FPdz + ][ |f|2"*dz)l/"*+( ][ IG(x t)|“dz)%<82
QZr(Zo) QZr(ZO) er(Zo) -0

for some zo = (xq,to) € Qg and some r € (0,R/2). Then for every A > 0, if u €
C(Tar, L*(Byr)) N L*(T2r, WH2(Bag)) is a weak solution of (3.1) satisfying

][ VuPdz<1 and [Aullsao(onr) < M
Quzr (20)

then there is h € C(T7zy/2(t0), L*(Brierj2(%0))) N L?(Trerja(to)s W (B2 (%0)))
such that the following estimate holds:

1 2 2
ool Jaepen 7~ THE S 1Ml ey = O
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Proof The proposition follows directly by applying Lemma 3.2 with r replaced by
2r, Lemma 3.3 with Ag(x, ¢, §) = A(x,t, A, (z,)> §) and p = 2kr, and the triangle
inequality. u

3.2 Boundary Approximation Estimates

To be convenient for the readers and self-contained, we recall some frequently used
notation. For each R > 0, we write B = Br(0) for the ball in R” centered at the
origin with radius R. Moreover, for an open set Q) ¢ R" with boundary o€, we write

QRIBROQ, KR:QRXFR, and TR:(anBR)xFR.

We also denote by d,Kr the parabolic boundary of Ky, moreover, for each z, =
(x0, to), we define

Qr(x0) = x0 + Qr, Kr(20) =20 + Kr, Tr(20) = 2o + Tg.
We can assume that T>g # @, and we will investigate weak solutions u of the equation
uy — div[A(x, t, Au, Vu) =b(x, t)u —F(x,t)] = f(x,t), in Ky,
(3.12) (A(x, t,Au, Vu) = b(x, t)u — F(x, 1), V) = 0, on Thg.
with the parameter A > 0. By a weak solution of (3.12) we mean any
u € C(Tar, L*(Qar)) N L*(Tyr, WH(Qar))
such that G € L*(K,g) for some a > 2, Au(x, t) € K for a.e. (x,t) € Kyg, and

—f u(x,t)at(p(x,t)dz+f (A(x,t,Au, Vu) —bu-F,Ve)dz =
Kar Kzr

[ g ndz
Kar
for all ¢ € C5°(Q,g). Here,

G(x,t) = Eo(n, a)[u]lpmo(ke,R)P(x, ), 2= (x,t) € Kap,

for some definite constant Co (7, a). As before, for each a > 2, let &’ be the number

satisfying

(3.13) 1 + L 1, ie, o = 20 .
a a2 a-2

Recall that the number #, is defined in (3.2). Our first step is to approximate u by the

solution v of the homogeneous equation with frozen u in A.

Lemma 3.5 Let A, > 2 be fixed. Assume that A:Kp x K x R* — R” satisfies
(1.2)-(1.4). Assume that G € L*(Kg), and u is a weak solution of (3.12) for some A > 0.
Then for each zy = (xo, to) € Kg and each r € (0, R), it holds that

(3.14) ][ |Vu - vv[Pdz <
K (zo)

2 1/n.
2 o « 2 2N,
CO(A,H)[ ]{WO) [EPdz + ( Ji,(m G(x, )["dz) "+ ][I;,(z(;) P de) ]
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wherev € C(T,(t0), L*(Q,(x0))) nL*(T,(to), W-2(Q,(x0))) is the weak solution of

vy —div[A(x, £, Au, Vv)] =0, in K, (z9),
(3.15) v=u, ond,K.(z0) Tr(20),
(A(x, t,Au, Vv),¥) =0, on T,(2o), if T,(20) # @.

Moreover,

. ) 1/2
(3.16) (]€<,(z0) |v—uK,(ZO)| dZ) <

1/2 12
2 7l 2
C(n)[r( ]€<,(z0) [vu - dz) " ( ]{0(20) o=t )| dz) ]

Proof 1If T,(zp) = @&, this lemma follows directly from Lemma 3.1. Therefore, we
only consider the case where T,(zp) # @. The proof is similar to that of Lemma 3.1
with some modification dealing with the boundary. Observe that since 9Q ¢ C!,
Q,(xo) is a Lipschitz domain. Therefore, W"2(Q,(x,)) is well defined with all
imbedding and compact imbedding properties. Therefore, the existence of the so-
lution v of (3.16) can be obtained by Galerkin’s method (see [31, pp. 466-475]). It then
remains to prove the estimates (3.14) and (3.16). By proceeding with Steklov’s average
(see [5,13,38]), we can formally use v — u as a test function for the equations (3.15)
and (3.12) to infer that

1d

2
1d —ultd +f AGx, £, Vit) — A(x, £ Aw, V), Vit — Tv)d
2dt /Q,(xo) [v—ul"dx Qr(xo)( (x, 8, Au, Vu) = A(x, t,Au, Vv), Vu — Vv)dx

=/s;r(xo)(b(x,t)u+F,Vu—Vv)dx+/ f(v—u)dx.

Q,(x0)

Due to the fact that divb = 0 on Q,z and (b, ¥) = 0 on B,z N Q) in the sense that
fﬂr(xo) b(x,t)-Ve(x)dx=0 forall g e Ci°(B,(xp)), fora.e. t €Iy,
we see that
/(;(xo)(b(x, £)u, Vi - Vv)dx = fo,<xo><b(x’ Ot Tk ooy} Tt - TV dx.

Therefore,

1d

EE -/Qr(xo) |V - u|2dx + L,(xo)(A(x’ t, Au, Vu) - A(x, t, Au, VV), Vu— Vv)dx

= b(x, t)[u — Uk, (4, +F,Vu—Vvdx+f v—u)dx.
JARLCHIE A s [ fr-w)
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From this and conditions (1.2)—-(1.4), we infer that

1
— sup |v—u|2dx+f |Vu - vv[dz
2 fer, (19) 4 Qr(x0) K (20)
1
< — sup lv — u|*dx

2 ter, (ty) 7 Q(x0)

+ C(A)[ fK . )(A(x, £ Au, Vu) — A(x, t, Au, Vv), Vu - Vv)dz]

<o [ (bl =g ) iwu-vols [
1

<= f |Vu - vv|*dz
2 JK,(z0)

+C(A)[fK(Z)(|F|2+|b|2|u—uKr(ZO)|2)dz+L(Z)|f||v—u|dz].

V-]

Then

sup r’zj[ v —ul*dx + ]l |Vu - vv|*dz <
tel,(to) Q,(x0) K, (z0)

C(A,n)[ ]€< - (|1:|2 + b |u _HK,(ZD)‘Z)dZ+ ]i - [fllv - u|dz].

Now we control the last two terms in the right-hand side of the previous estimate.
Observe that from (3.13), the John-Nirenberg theorem, and Holder’s inequality, it
follows that

bPlu-u 2)d
o )

2/a 1 , 2/a’
<cm( £ Ibld ik, oyl d
(11)( K'r(ZO) | | Z) ( |Qr(z())| Kr(zﬂ) ‘M qu(ZO)| Z)

Y ) tx 2/a tx 2/a
< Colm ) [liouem( £, . BIdz)" = ( £, 16Co0dz) "

On the other hand, as in (3.8), we define py = 2n, and p; such that 1/pe +1/pg = 1,

ie, py = % From Holder’s inequality, the parabolic Sobolev imbedding (see [31,

eqn. (3.2), p. 74] or [13, Proposition 3.1, p. 7]), and Young’s inequality, it follows that

(3.17) ][ v—u|ldz
o [f1lv = ul

< ( ]{Q(ZO) v - ulp"’dz) 1/p;( ]{Q(ZO) |f|P°dz)l/p0

1 1
<= |Vv - Vul*dz + = sup r’zj[ v —ul*dx
2 JK,(z0) 4 T, (to) B, (x0)

2/po
+C(n)P( Ji(z)|f|1’°dz) .
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Therefore,

sup r* ][ lv —ul*dx + ][ |Vu - vv|dz <
teT,(to) Q. (x0) K, (z0)
C(A, ) ][ BP + ( ][ G(x, 1)|"dz) ¥
’ K, (z0) Ki(z)

+r2( ]{Q(z(;) If(x, t)|P°dz) 2/p0] ,

and (3.14) follows. Lastly, we prove (3.16). Observe that the triangle inequality gives

_ 2 ) B R
- dz<C ][ — dz + ][ _ d .
]ll;r(xO) ‘V uKr(ZO)| [ K, (20) |V u| K0 (20) |u uKy(Zg)' x:I

Then, using the Poincarés inequality for the first term in the right-hand side of the
above inequality, we see that

1/2
— 2
(£ Tl dz) ' <

12 B 12
C(n)[r( ]ll;r(zo) vu-vvfdz) J€<,<z(,> =T o) ]

This proves (3.16) and also completes the proof. ]

Lemma 3.6 Let A,M > 0,a > 2 and ag € (0,1) be fixed. Then, for every ¢ €
(0,1), there exist sufficiently small numbers k = k(A, M, n, ag,€) € (0,1/3) and &, =
82(e, A, M, n,ap) € (0,€) such that the following holds. Assume that A: K;p x KxR" —
R" such that (1.2)-(1.4) hold with some R > 0 and some open set K c R, and assume
that

(3.18) ][ |F|2dz+(][ |G|"‘dz)%+r2(][ \f\Z"*dz)l/"*<az
K:(20) K. (z0) K:(20) -

for some zg = (xp,tp) € Kg and some r € (0,R). Then, for every A > 0, if u is a weak
solution of (3.12) satisfying

£ uldx<t and [ullaogn <M,
2xr (20

then there is a weak solution w of
wi — div[A(x, t, Ak, (), VW)] = 0, in K (20),
on 0,Kier(20) \ Tir(20),

(3.19) w=v,
(A(x, t, )LEK”(Z())’ VW)’ 17) =0, on Txr(z())> ifTKr(ZO) # )

such that the following estimate holds

12 1/2 we2
(3.20) ( ][ |Vu - Vw|2dz) <e and ( ][ |Vw|2dz) <1+277,
Km(z()) er(z())

where in (3.19) the function v is defined as in Lemma 3.5.
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Proof For a given sufficiently small € > 0, let ¢’ € (0,¢/2) and x € (0,1/3), both
sufficiently small depending on €, A, M, n, &y, which will be determined. Now, by
Lemma 3.5 with ¢, we can find 8, = 82(¢’, A, k) > 0 sufficiently small such that if
(3.18) holds, then

(3.21) ][ ) |Vu - vv[’dz < (€")* k"2,
K, (z¢

_ 2 1/2 .
M f, o I Exolde) < Clnp)re's 0+ M),

where v is the solution of (3.15). Observe that the first inequality in (3.21) and the fact
that ¢/, k € (0,1) imply

1/2
(3.22) ( ][ |W\2dz)
Kaxr(z0)
1/2 1/2
< - vv|*d + ][ 2d
( ]€<2x‘r(zﬂ) |vu VV‘ Z) ( KZK‘V(ZO) |Vu| Z)

1 , 1/2
S(Wﬁr(%)‘vbl—vw dZ) +1<2.

Note that when A = 0, w = v. The lemma is then trivial with every « € (0,1/3). There-
fore, we only need to consider the case where A > 0. From the standard Caccioppli’s
type estimate for the solution v of (3.15) and (3.21), we also see that

12 C(A,n) _ L\ 2
(3.23) ][ wopdz) < Cum) ][ e .
( etz ) (1—2K)K72r( ooy )] )

n+2

<C(Am)[e+ Mk )],

where in the last estimate we have used the fact that « € (0,1/3) to control the factor
1 - 2x. Now, let w be the weak solution of (3.19), whose existence can be obtained by
a standard procedure using Galerkin’s method; see [31, pp. 466-475]. It remains to
prove the estimate (3.20). By using the Skelov average as in [5,13], we can formally
take v — w as a test function for equations (3.19) and (3.15) to obtain

1d

(3.24) 33 [Q”(xo) |v—w|2dx+f0”(x0)(A(x, t,/lu,Vv),Vw—Vv)dx

= [ (A(x, t, Ak, (z), VW), VW — Vv) dx
er(xo)
From this, it follows that

1
5 Sup v —wldx + f |Vv — Vw|*dz
21, (t9) J Qur(%0) Kur(20)

1
< C(A)[ — sup lv - wl*dx
21, (ty) < Qur(x0)

+ fK ( )(A(x, t, AUk, (z0)> vv) - A(x, t, Ak, (z0)> vw), Vv - Vw)dz]
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<00 e

A(x, t,Au, Vv), Vv — d
+me(zo) (A(x, t, Au, Vv), Vv Vw)| z]

<C(A) |Vv||Vv — Vw|dz
Kir(20)

(A(x, t, AUk, (z0)> VV), Vv = Vw)‘ dz

1
sC(A)[ |Vv|2dz+ff Vv - Vwldz.
Kir(20) 2 Kir (20)

This last estimate together with (3.23) imply that

( ]i (20) s Vw‘zdz) "
kr{<0

< C(A,n)( ]l;(

< C(A, n)( Ji - |Vv|zdz) v < Ci(A,n)[€ + M(rKnT”A)_I].

1/2
|Vv|2dz)
(20)

Kr

Hence, if MCy (A, n)(Ax"T r) ™! < %> we can choose ¢’ sufficiently small such that

4C (A, n)e <e.

From these choices, it follows that

1/2
( ][ |Vv - Vw|2dz) <e/2.
Kir(20)

This estimate, the triangle inequality, and the first estimate in (3.21) give

( ]i (20) |Vu - Vw|2dz) v
S ( ]im(Zo) |Vu - Vv|2dz) 2 + ( Jiw(zo) Vv - Vw|2dz) 12

1/2
][ |Vu—Vv|2dz) +ef2<€ +ef2<¢,
K, (zo)

<(am
which is the first estimate in (3.20). It therefore remains to consider the case
(3.25) Arc'ie< 2C1 (A, n)M.
In this case, we note that from our choice that €’ < ¢, we particularly have
A" e'r < C(A, M, n).
Then it follows from (3.21) that

7 L\
/\( ]i,(xo) [v =Tk, (z)] dz) < C(A, M, n).

From this and equation (3.15), we can apply Hélder’s regularity theory in Lemmas 2.8
and 2.9 for the function

V(x,t) = A[v(x = X0, t — to) — UK, (z0)]s (x,1) €K},
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to find that there is By € (0,1) depending only on A, n such that v € CP*(K,, ).
Then, by scaling back, we obtain the following estimates

(326) Av- ”KAZ«»)”Lw(KS,/ﬁ(zo)) < C(A, M, n),

" t_tll/2 Bo
)L|v(z)—v(z’)|SC(A,M,n)[|x bl " <xh
r

forallz = (x,t),z" = (x', ') € Kxr(20)-

From now on, for simplicity, we write & = u — U, (,,). We can use (3.24) again to

obtain
[ [v—w| dx+/ |Vv - vw|*dz
2 r (to) Qeer(%0) Kier(20)
< C(A)[ — sup lv —w|*dx
21, (1) J Qr(x0)

+ /1-< ( )(A(x, t, AUk, (z0)> VV) = A(x, t, Ak, (z4), VW), VV = Vw)dz]
<C(A) f oy VG 6 AT (a, T¥) = A £ A, T), v = V)
Kir (20
< C(A) f [A7] | Vv||[vv - Vw|dz
Kkr(zo)

1
<= f Vv - Vwdz + C(A) f T T2z,
2 JKyr(20) Kir(20)

Hence,
Vv - Vwltdz < C(A ]l T2 |vv|dz.
foe) Paz<c(n) f, iy

For p; > 2 and sufficiently close to 2 depending only on A, n, we write g = ““P F> 2.

Using Holder’s inequality and the self-improving regularity estimate, Lemma 2] 11 we
then obtain

1—2

Jim(z(»)'vv_vw‘zdzgc(/‘)( ][ o) mq) ; (]€<KY(ZO)|VV|P1dZ)P21

<c(an)( ]lK (zo)lquz)}”z( ]im(zo) [vvdz).

Kr

We further write

][ N7l1dz = ][ (AT dz
er(zﬂ) KKV(ZO)
1/2 1/2
AaPdz ][ AaPa2d
<(f . haraz) (£ parea)
N
< C(m, a0) Mo renn ]lK ., Wl dz)
<cnman) £ [rard )l/2
S n, , X u z
0 Kyr(20)
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Therefore,

][ |Vv - vw|idz <
er(ZO)
p-2

C(A, M, n, ]l Aid W][ 24z).
( " “0)( er(z()) | m Z) ( KZKT(Z()) |VV| Z)
This and (3.22) imply that

p1-2

(3.27) ][ ( )|VV—VW|2dz§C(A,M,n,(x0)( ][ afdz)
Kir (20

Kir(20)

On the other hand, we also write

Aul%dz
]€<xr(20)| A]
<C ][ Mu-v 2der][ MV = Vi, (2 2dz
[ Sy PPz £ =T )

AMu -7 24
+]ll;x,(zo)| (uK,“(ZO) Vny(Zo))| Z]

~(n+2) R = 2
SC(n)[K ]lKT(ZO) [A(u—v)| dz+]€<m(zo)|)t(v Ve (z0))| dz].

Then, by using Poincaré’s inequality for the first term on the right-hand side of the
last estimate, we obtain

( ]€< (20) A dz) "
o 1/2

C(A, n)[)LrK_nTﬂ( ]iy(z()) |Vu - VV|2dz) +A sup  |v(z) - v(z')|].

x,y€Ker (20)
This, (3.21), and (3.26) imply that

(o )" sl ]

From this last estimate, estimate (3.27) can be written as
P2
]l o |Vv — Yw|*dz < C(A, M, n, ) (Are’ + Kﬁ‘))}T.
Kir (2o

From this and (3.25), we can further conclude that

p-2

( ]i ( )|Vv— Vw|2dz)l/2 < CZ(A,M,oco,n)[ 6; +Kﬁ°] i
wr (20 €k’

Now we choose « sufficiently small depending only on A, M, n, &, and € such that

2p1

Bo . [ €  Im2

k™ < .
Z[ZCZ(A, M, ag, n)]

Then we choose €’ > 0 sufficiently small depending only on A, n, &g, and € such that

n+2 2m
1o €K [ € ]m
2 L2C (A, M, ap,n)
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From these choices, we obtain

1/2
( ][ |V - Vw|2dz) <ef2.
Kir(20)

Then we use the first estimate in (3.21) and the triangle inequality again to obtain the
first estimate in (3.20). It now remains to prove the second estimate in (3.20). By the
triangle inequality, the assumption in this lemma, and that ¢ € (0,1), we see that

( ]€<K,(zo) |VW|2dZ) ; < ( ]€<xr(zo) V- Vu|2dz) " * ( ]{(Kr(zo) |Vu|2dz) "

n+2

1/2
§e+(2"+2][ |Vw|2dz) <1+2%
KZKV(Z())

as desired. The proof is therefore complete. ]

Our next result is a standard approximation that, in particular, gives a comparison
of the solution w of (3.19) with a constant coefficient solution.

Lemma 3.7 Let A > 0 be fixed. Then, for every € € (0,1), there exists a constant
8" = &' (A, n,e) > 0 and sufficiently small such that the following statement holds.
Assume that Q is be an open bounded domain with boundary 0Q € C'. Assume also
that Ag: Kp x R" — R" satisfying (1.2) and (1.3) and [Aq]gmo(ky,r) < O for some
R > 0. Suppose that w is a weak solution of

wy —div[Ag(x,t, Vw)] =0, in Ky, (20),
(Ag(x,t,Yw), V) =0, on Ty,(20), if Tap(20) # B>

][ |Vw|*dz <1,
Kup

with some 0 < p < R/4 and some zy = (xo,to) € Kg. Then there is some function h
such that

and it satisfies

1/2
(328) ( ]ll;zp(zo) |VW - Vh|2dz) < 62 and ||VhHL°°(Kp(Zo)) < C(A, T’l)

Proof The proof can be done exactly the same way as that of Lemma 3.3. Since
0Q is C, the Lipschitz regularity estimates for weak solutions of the corresponding
homogeneous equation with frozen coefficient hold true if T>,(zo) # @. Alterna-
tively, since dQ is C, it is sufficiently flat in the sense of Reifenberg. Therefore, this
lemma follows from [9, Lemma 6 and Corollary 1]; see also [6]. One can flatten the
boundary as in [27] and prove a similar approximation in the upper-half cube Q; as
in Lemma 3.3. |

Finally, we state and prove the main result of the section.

Proposition 3.8 Let A,M > 0,a > 2 and let ay € (0,1) be fixed. Then for every
€ € (0,1), there exist sufficiently small numbers x = k(A, M, n, ag,€) € (0,1/3) and
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8 =08(e,A,M,n,ay) € (0,€) such that the following holds. Assume 9Q € C', and let
A:Kop x K x R" - R” such that (1.2)-(1.4) and (1.12) hold, and assume that

][ [Fdz + ( ][ |G|"‘dz)§ +(8)7( ][ | f|2”*dz)l/ Py
Ksr(z0) Kgr(z0) Ksr(20) N

for some zy = (x0,t0) € Kg, and r € (0,R/8). Then, for every A > 0, if u is a weak
solution of (3.12) satisfying

][ ( )IVu|2dz <1 and [[Au]lgmo(kg.r) <M,
Kiexr (2o

then thereis h € L°°( Tyur (o), L2(Q4K,(x0))) n L2( Tyur (o), WI’Z(Q“,(xO))) such
that the following estimate holds:

Vu-VhPdz<e’,  |Vh|- < C(A, n).
-7ll\<4,<,(zo)| U | € H HL (ler(zﬂ)) ( n)

Proof Let

n+2

8= min{(?z( %[%] ’ e,A,M,n,oc),8'(A,n,e/[2(1+2(n+2)/z)])},

where 8, is defined as in Lezmma 3.6, and ¢’ is defined as in Lemma 3.7. Moreover, let
k =x(A, M, n,ao, %[ %] %e) be the number defined in Lemma 3.6. Then, by apply-
ing Lemma 3.6 with r replaced by 87, we can find w € L°°( Tsir(to), LZ(ng,(xo))) n
L*( Tgxr(to), WH2(Qsxr(x0))) satisfying

(3.29) ( ]is”(m |Vu - Vw[dz) " 4] e

1/2 n
( ][ |VW|2dz) <1427,
K&xr(zo)

Then we can apply Lemma 3.7 with Ao (x, t, §) = A(x, t, Aig,, (), &), p = 2x7, and
with some suitable scaling, we can find a function h € L™ ( Tarer (t0)s L*(Quaur(x0) )) n
LZ( Taxr(to), WI’Z(Q4K,(x0))) such that the following estimate holds:

1/2
(3.30) (]im(z(,) |vW—vh|2dz) <ef2, [Vhlw k(e < C(AS1).

It then follows from (3.29), (3.30), and the triangle inequality that

( ]€< (20) IVu- Vh|2dz)l/2
4xr\( <0

< ( ]im(zt)) |Vu - VW|2dz) " * ( ]im(zo) |VW N Vh|2dz) v

142 1/2
< [2] ’ ( ]i - |Vu - Vw|2dz) +ef2<e.

The proof is therefore complete. ]
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4 Level Set Estimates

This section gives the key level set estimates needed in the proofs of the main theorems
Theorems 1.1 and 1.2. We can assume R = 1, since the general case R > 0 can be
achieved by using the dilation (2.2), Remark 2.1, and the dilation property of Lorentz
quasi-norms, Remark 2.2.

Let € > 0 be a sufficiently small number to be determined depending only on the
given numbers n, A, p,q, and ap . Let § = 8(e, A, M, n, ap), k = x(A, M, n, ag,€)
be the numbers defined in Proposition 3.8. Note that since ¢ depends on n, A, p, g
and ay, the numbers x and ¢ also only depend on these numbers. Assume that all
assumptions in Theorem 1.2 are valid with this § and R = 1. For each A > 0, and if u is
a weak solution of (1.13), recall that

G(x,t) ~ [[ullpmo(x,b(x, 1),  (x,t) € Ks.

We fix # > 2 such that n < min{2 + €¢, p}, where ¢y = €9 (A, n) validates Lemmas 2.10
and 2.11. Let us also denote

F(x,t) = [F(x, )] +G(x, )| + S(NIf (%, O™, (x,8) € Ky,

where n, is defined in (3.2), and

(4.1) 5() = ( fK 1 DPdz) 7

As we will see in (4.9) and (4.10), the function § plays an essential role in our proof.
Observe also that since p > 2,

@2) S ™ Dppaciyy = 1 f 1o iepy 1

From now on, let 7y > 0 be the number defined by

(4.3) Tp = ( ]€<2|Vu|2dz)l/2+%( ]iz |F|’7dz)l/71 < 00.

For fixed numbers 1 < y < 2, and 7 > 0, we denote the upper-level set of Vu in K, by

]rj:*p,n*q(Kz) < C(”) HfHLn*p,n*q(Kz) .

E, (1) = {Lebesgue point (x,t) € K, of Vu : [Vu(x, t)| > T}.

The following proposition estimating the upper-level sets of Vu is the main result of
this section.

Proposition 4.1 There exist Ng = No(A, n) > 1and By = Bo(n) such that

) bl ds
[Bq (No7)| < €[ [Exy (/)] + @ Ar/45”’{(x, ) €K [ 0)] > 5} | ]

n+2

forall1< s < s, <2, forevery 7> Bo 1o, where By := Bo[(s2—s1)x]™ 2.

The rest of the section is devoted to proving Proposition 4.1. We follow the ap-
proach developed in [1] and used in [3,5,6]. However, some nontrivial modifications
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are also required to treat the terms f,b and to obtain the sharp homogeneous esti-
mates; see Remark 1.4. For each Z € K, and each r > 0, we define

CZ,(z) = ( ]lK,(Z) |Vu|2dz) v %( ]ir@ |F|’1dz) v

Several lemmas are needed to prove Proposition 4.3. The first is a stopping-time ar-
gument lemma.

Lemma 4.2  There exists a constant By = Bo(n) such that for each 1 < s; < s, < 2,

7> ByTo, and for z € Eq, (T), there is 7 < % such that

CZ,(z)=1 and CZ.(z)<7t forallre(rzl).

Proof The argument is quite standard; see [1,3,5,6]. Observe that because r < 1 and
n > 2, we have

CZ,(Z) < C(n)[ ( %) (n+2)/2( ]{{2 |Vu|2dz) 1/2 . ( %) (n+2)/71%( ]ll‘(z |F|'7dz) 1/’7]

< C(l’l)To
= p(n+2)/2°

Therefore, if r > %, then for By = C(n)[40]("*?)/2, we see that

C(n)1o

40 (n+2)/2
S S c(n)( )

m TOZB()[(Sz—Sl)K]_%T()<T.

271

Then

(s2—s1)%
40

On the other hand, when z € E, (1), by Lebesgue’s theorem, we see that if r is suffi-
ciently small, then

CZ,(z) <1, when <r<l, and 1> Byo.

CZ,(z) > .

Due to the fact the CZ, (%) is absolutely continuous, we can find rz, which is the largest

number in (0, %) such that CZ,_(z) = 7. From this, the conclusion of the lemma
follows. u

Lemma 4.3 For each T > Byto, and each 1 < s; < s, < 2, there exists a countable,
disjoint family {K,,(z;) }icg with r; < % and z; € K, such that the following hold:

(i) Esl(T) c U,o; Ks,, (Zi);
(i) CZ,(zi)=7,and CZ,,(r) < 1 forallre (r;,1).

Moreover, for each i € J, the following estimate holds:
(44) [K;,(z:)] < C(A, p, n)[lKr,-(Zi) N Es,(7/4)]

v (T;)” fr;sﬂ{(x,t)eKr,(z,-):|F(x,t)|>s}|%].
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Proof Conclusions (i) and (ii) follow directly from Lemma 4.2 and Vitali’s covering
lemma. It remains now to prove (4.4). Observe that if

1 T
4.5 — F )t rld 2 )
(45) 5,7]{<”(Zi)| (. 1)[dz> 2
then
21 "
K (2l € s [ NGO
2" o ds
- 1 )
_7”6’1]0 s |{(x,t)eKri(z,).|F(x,t)|>s}| ;

M 8t/4 oo
:W[/o ...+[M4...]

 Kn(z) | 2 ds

+ —fszsﬂ‘{(x,t) € K, (z;) : |F(x, 1) >s}‘?.

on N

Hence, (4.4) follows.
Otherwise, i.e., if (4.5) is false, it follows from the fact that CZ,,(z;) = 7 that
2
][ Vuldz> =,
Ky (zi) 22

and therefore
2

2
Ki(z)< S [ [vuPdxde.
T K,.i(Z,‘)

(s2—s1)%

Then observe that since r; < ~25

, we have K,,(z;) c Kj,, and hence

22 22
Ky, (zi) < = f |Vu|*dz + = |Vu|*dz
12 JK,, (2i) By, (7/4) 12 JK,, (20)nEs, (7/4)

i 2
< [Kr, (z0)] +Z f |Vul*dz.
4 12 JK,, (2)NE,, (/4)

Therefore,

16
K, (z;)| < —f 2dz.
Ky, (2i)] ) K,,.(z,-)ﬁEsz(r/4)|vu| z

This and Hoélder’s inequality with some yo > 0 yield that

1
6|K,.(z;)|ro +l 1
K, (20| « T2 (0 f o |VHPOdz) T K (20) 0 By (/)]
ri \Zi

Hence,

_1 6 Ty L
@) Ky @I < S(f wuPdz) K, (@) 0 B (1) .
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On the other hand, with y, sufficiently small so that 2(1 + yo) < #, we can apply
Lemmas 2.10 and 2.11 to obtain
(4.7)

(£ o) ™
v (zi
< C[( ]izn-(zi) |Vu|2dz) 1/2 n ( ]izri(m |F|2(1+y0)dz) ey
+ ( ]lK2r,~(Zi) |G|2(1+70)2dz) ae? 4 S(f)( ]€<2,i(zi) |f|2n*(l+y0)) m]

Then since 2(1+ y,)? < #, we can use Holder’s side inequality to control the last three
terms on the right-hand of (4.7) as the following:

“8) ( ]€<2,.(zi) |F|2(1+Y0)dz) o * ( ]izy.(z,-) |G|2(1+y0)2d2) m
+ (Zri)( ]i o |f|2n*(1+y0)) m
2y (zi
( ]€<2r,-(zi) |F|"dz) i * ( ]€<,,.(zi) |G|"dz) ! + 9(f)( f[;zri(zi) |f|n*”) '
: C( ]ll\(z,.(zi) |F|ndz) ;'

Collecting the estimates (4.6), (4.7), and (4.8), we conclude that

IN

1 6 e 1
Ke(z) 7 < (£ 9uPO0dz) UK (20) 0 B (/4)
T K,i(z,«)

< C(A,n)
72

< C(A,m)[Ky, (21) 0 Eqy (1/4)] 0.

CZan, (212K, (1) 0 Eoy (/)75

This implies

Ky, (zi)] < C(A, n)|Kr, (2:) N E, (7/4)],
and (4.4) follows. The proof is therefore complete. ]
Proof of Proposition 4.1 Fix s, s,, and 7 as in the statement of Proposition 4.1. For

each i € J, observe that from Lemma 4.3(ii), CZ4or,(z;) < 7 and CZy7,(2zi) < T,
where7; = x7'r; € (0,1/40). Therefore, we have

1

(]€<40K—,>,(z,-) |Vu|2dz) &

1/n
<1, (][ |F|’7dz) < dr.
Kaor; (2i)
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Moreover, since Ky, (2;) © K», it follows that there is some constant Cy = Co(n) > 1
such that

(4.9) 20?,-(][;< (Z)|f|2“*dz
207; (2i

=20?,-|Km\*<i*%)(fl<2 |f|2n*dz)2:*_§(ﬁzm(Zi)|f|2n*dz)l/2
<ams(( . iPaz)”

Now, with the Cy defined in (4.9), we define ' = 3Co7, 7 = u/7/, and A = /1. We see
that 7 is a weak solution of

) 1/(2nx)

207; (21)

i, - div|[ A(x, t, A%, Vi) - ub - F| = f, in K,
(A(x,t, 27, va@) - b - F,7) =0, on T,

where

F - f bred A(-xa t>S> T’E)
F= g f= p and A(x,t,s,¢) = —

From Remark 2.1, A satisfies all conditions (1.2)-(1.4) and

[K]BMO(KI,I) = [A]smo(k,.1) < 05

—~

Oalswowen = Dulswouen <M. £ [valtdz<1.
Ko, (1)
Also, with G ~ [#llsmo(k,,1)bs and some a = 2(1 + yo) € (2, 77), it follows from (4.9)

and Holder’s inequality that
(4.10)

( ]ir (Zi)|if|2dz)l/2+( ]{%(Zi)@a]dz) " ]{%(mmzn* )"
[ o), e el ]
S\ ma) e fJera) e sn( )]
< ¢ £ ) s (f era) s f, ) d

< %( ]€<m,. |F|"dz) s,

Therefore, all assumptions in Proposition 3.8 are satisfied with r = 57;/2. Hence, we
can find a function v; such that

—~ —~ 12 2 —~
‘leOri(Zi) Vu-vvil'dz<e®,  [VVill = (k,, (1)) < Co(Asm).

Then, by scaling back with v; = 7'%;, we obtain

]€< o |Vu - Vvi[*dz < 9Ci €2, HVV,'\|L°°(K5”(Z,,)) <3Co(A,n)T.
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Now, let Ng = 6Co(A, n)+/C.(n), where C,(n) is defined to be

|Kior(20)|
|Kr(ZO)|
Observe that from Lemma 4.3,

|Es, (No7)| < Z|{(x, t) € Ky, (z1) ¢ |Vu(x, t)] > NOT}|.

Cu(n) 2 forallr € (0,1) forallzg € QN B,.

ied
Therefore,
N,
|E51(N()T)| < § |{(X, l’) € KSn (Zi) : |Vu(x, t) _ VV,'(X, t)| N T()‘L’}|
ied
N,
+ E H(x,t) € Ksp, (z;) 1| Vvi(x, 1) > TOTH
i€l
NoT
<X { 0o 1) € Kuon () s [9,1) = wwi(, 0] > = |
i€l

232 f 2
<= Vu - Vu;|“d
(NOT) ; Kl()r,-(zi)| ! uldz

2 2 2 2 22 2 2
<9C2e (Fo) ;|K10,,.(z,-)\ <9Cke (m) C*(n);|l<,i(z,-)|.

From this and our choice of Ny, it follows that
|E (NoT)| < € 3 Ky, (20)],
iel
and the conclusion of our proposition follows directly from (4.4) and the fact that
{K;,(zi) }ieg is a disjoint family. [ |

5 Proof of Main Theorems

As already discussed, Theorem 1.3 follows immediately from Theorems 1.1 and 1.2 and
a standard energy estimate. The proof of Theorem 1.1 is, however, similar to that of
Theorem 1.2 by using Proposition 3.4 instead of Proposition 3.8. We therefore skip
its proof and focus on proving Theorem 1.2. Again, through the dilation (2.2) and
Remarks 2.1 and 2.2, we can assume without loss of generality that R = 1.

Proof of Theorem 1.2 With Proposition 4.1 in hand, the proof is now standard (see
[1,3,6]). We give it here for the sake of completeness. For each k € N, we define
(Vu)g(x, t) = max{|Vu(x, t)|, k}. It should be noted that we do not know yet if Vu
isin LP9(K;). However, since (Vu)y is bounded, (Vu)y € LP1(K;) for all p > 2 and
0 < g < oo. For p € [1,2], we let

Ef(r) = { (0, 1) e Ky : (Vu)i(, 1) > 7).

By considering the cases k < NgTand k > N7, we can conclude from Proposition 4.1
that

(5.1) |E§(TN0)|§€2[|E£‘2(T/4)+(81)’7 f&zsﬂ{(x,t)eK2:|F(x,t)|>s}|%]
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forall T > By1g = Bo[(s2 - SZ)K]’("”)/ZTO. We now divide the proof into two cases
depending on whether or not g = co.

Case I: We start with the easy case when g = oo. In this case, it is trivial that

(5.2) [(Vu)k HLp,m(Ksl)

1/p
= supr‘ {(x.t) e Ky : (V)i > T}‘

>0

g[ sup T‘{(x,t)eKsl:(Vu)k>7}|1/17

0<7<NpBoTo

+ sup T‘{(x, 1) € Ky : (Vu)g > T}|1/p].

NoBoT1o<T

From (4.3), the first term on the right-hand side of (5.2) is obviously controlled by

|Ka| P NoBoo < C[(s2 = s1)x] "2/ 1Vul ey + 87 1P i) ]
< C[(s2 _SI)K]—(n+2)/2[ HquLz(Kz) +67! HFHLP,OQ(Kz) ]

On the other hand, with (5.1), the second term on the right-hand side of (5.2) can be
rewritten and then controlled as

1/p
sup T‘ { (x,8) €Ky, : (Vu)g > T}‘

NoBo1o<T

=Ny sup T|{(x, t) e Ky, o (Vu)g > NOT}|1/P

BoTo<T

< celr sup T[|{(x, £) e K, : (Vu)g > 1/4}‘

7>Bo 1o

1 < ds 1/p
n . ds
OOL fws [{(x,t) e Ky : |F(x,1)| > s} S]

< celr H(vu)kHLp,w(Ksz) + 8P

oo d l/p
X sup (TP_WA s”_PsP|{(x,t)eK2:|F(x,t)|>s}|—S) ]
>BoTo /4 S

<céelr H(Vu)kHLp,w(KsZ) y o HFHLMQ(KZ)

o 1/p
p-n n-p-1
X sup (T [67/45 ds) ]

>Bo 7o

< C[€2/P H(V”)kHLp,w(KSZ) +87! IF[l oe () ]
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Hence, combining the previous two estimates, we see that for every1 < s; < s, < 2,
there is a constant C; = C;(A, n) > 0 such that

||(vu)k”LP’°°(Ksl) <GP H(v”)kHLP@(KSZ)
+ Cil(s2 = sl DLV iy + 87 E e iy |-

This and since ¢ is sufficiently small so that Ce*l? < 1/2, we can use the iteration
Lemma 2.5 to imply that

H(V”)k”LW(Kl)
< C(s 1 ps [ Vel 2y + 1Fl e (i) |
< C[ HV”HLZ(KZ) + ”F”LP)‘”(KZ) + HG”me(KZ) + 9(f)H 1™

We note that the Lorentz quasi-norm is lower semi-continuous with respect to the a.e.
convergence. Because of this, we can take k - oo and use (4.2) to obtain the desired
estimate (1.14).

LP»°°(K2):| :

Case II: We consider the case 0 < g < co. In this case,
(5.3)
SN,

<CNopea)( [ ["1{0r0) € Ko s (Ve ) > Nos} ]

(L)L) e

Using (4.3), the first term I is easily controlled as follows:

a/p dS)l/q

n+2

(5.4) I < C|Ky|"? By o < C[(s2 —s)e] 7 | IVull 2 x,y + 5! HFHLn(KZ)]

n+2

< Cl(s2=s0)x]™ = [ VUl iy + 87 1 iy -
For the term I,, we use (5.1) to control it as
(5.5)

I < Cez/"( fﬁ::o sq| {(x,t) e Ke, : (Vi) (x, t) > s/4}‘

oo oo q/p 1/q
. Cez/p(S’”/P( fA S(pfn)q/p{ f 7| {(x,t) e Kz : F(x, 1) > 7] ﬂ} @)
B 8s/4 T

070 s

a/p ds ) 1/q
N

2
< cel? H(vu)kHLqu(Ksz)

- ~ dr
-1 (p-n)al/p " ) dr
el ( ‘/B\OTO((SS) { £S/4T |{(x’ t) €K 'F(x’t) > T}| T }

= C[EZ/P ”(V”)k“m,q(KSZR) Jr]] ’

a/p ds a
S

where
(5.6)
oo oo dryalrds)'
_ 8! (p-n)a/p U : — — .
7=6 (/ﬁm(as) {fwr [{(x,1) € Ky : F(x,) > 7} T} S)
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To control ], we consider the cases g > p and g < p. When q > p, we use Hardy’s
inequality, Lemma 2.6 with

K= % >1, r= (p_pﬂ)q >0, and h(7r)=1""{(x,t) €K, :F(x,t) > 1}

Observe that because 7 < p, we have F € L(K;), and hence h € L'((0, c0)). There-
fore, Lemma 2.6 implies

q/pé]l/q

]éC(S_l[ foos(p"”)q/ps”q/p“(x, t) e Ky: F(x,t) >s}| :
0

- ca‘l[ fomsq|{(x, t) e Kyt F(x, t) > 5}‘(1/1)@]%

=Co™! HFHLP»II(KZ) .

N

This estimate, (5.3), (5.4), and (5.5) imply that

H(V“)kHLp,q(Ksl) <

_n+2 —
Col 7 1(Tuel nage,y + (52 = s0K] 2 (196l iy + 67 Flnacrny )]

for some constant C, depending only on A, 1, p, q. Using this and taking e sufficiently
small such that Czez/ P <1/2, we can apply the iteration lemma, Lemma 2.5, to obtain

[(Vi) il ooy < COIVENL k) + Il Loacrs) ) -

Then, as before, we can send k — oo to infer that

IVt < COIVENLk,) + 1Fpacky) )-

This estimate and (4.2) imply the desired estimate (1.14).
It now only remains to consider the case where g < p. In this case, by using
Lemma 2.7 with

/p
;czgzl, r:%, and h(‘[)=‘{(x,t)EKZZF(X,t)>T}‘q ,
q
we see that

( fgir’?‘{(x, t) e Ky : F(x,t) > T} ?)Q/p

) ( fasz [qu/p‘ { (x,1) €Ky : F(x, t) > T}|q/p]p/qﬂ)q/"

T

< C[ (s8)"q/‘" { (x,t) € Ky : F(x,t) > 85/4} ‘ v

+[jo T’W/PH(x,t) €K, :F(x,t) > T}‘

s/4

Q/Pﬂ]
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Plugging this estimate into the definition of J in (5.6), we infer that

J < ca-l[( [0 w(s@)(P_”)q/P(S(?)W/P‘{(x, t) e Ky: F(x,t) > 55/4}|

+{ [Om(sg)(pfn)q/p( /;oo an/p‘{(x) £) e Kyi F(x, ) > T}‘q/pﬁ) 615}1/11:

a/p dS)l/q
s

s/4 T/ s

< C(S‘l[ \|F\|Lp,q(K2) +{ ./o (56)(P—n)q/p

x(/&Z‘r"q/"H(x,t)EKZ:F(x,t)>T}‘
= CO'[IIF] ppaicyy +7']-

We control J’ by using Fubini’s theorem as follows:

J = ( fooo T'm/p‘{(x’ £ e Ky F(x, 1) > T}‘q/p( fOT/(M)(sS)(P’”)q/P%) ?)1/‘;
sC( fomrq‘{(x,t)eKz:F(x,t)>1}‘

Hence, we conclude in this case that ] < C | F|| Lra(K,)- From this estimate, (5.3), (5.4),
and (5.5), we again conclude that

(Ve ppa, ) <
Co[ 7 1Tkl page,y + (52— s0K]F (11Vul 120 + 8 I ngiey ) |-

Arguing as before, by choosing e such that C;¢*/? <1/2 and then sending k — oo, we
also obtain

Q/Pﬂ)é}l/q-

T N

alp dry\1/4
7) =C HFHLP,q(KZ) .

1Vl oagiy < CCIVEN iy + 1 Fl paciey) ) -
This and (4.2) give (1.14). The proof is therefore complete once we chose € <

min{z%l, ﬁ, 2%}}1’/ 2, where Cj, C,, C3 are constants defined above and dependent
only on A, M, g, n, ap. |

A Proofs of Lemmas 2.10 and 2.11

We only prove Lemma 2.11, since Lemma 2.10 is similar. We follow the approach used
in [21,44]. To this end, some notation is needed. We fix a cut-off function ¢ € C3°(B,)
with the properties ¢(x) =1, for x € B;. For each r > 0, and each x; € R", we also
define

‘Px(;,2r(x) = (P( (x - xO)/’) .
As in [21], the following mean value of u will be used:

-1
M) w0 ( [ Phadx) [ e 09l (0
Without loss of generality, we can assume that R = 1. Hence, we consider the equation
u; —div[A(x, t,u,Vu) -bu-F] = f, inK,,

A2
(A2) (A(x,t,u,Vu) -bu—-F,¥) =0, onT,.
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We recall that if u is a solution of (A.2), we define
G(x, 1) = Co (yo, n)[[u]lsmo k1) b(x, 1), (%) € Ky,

for some constant Cgj (Yo, n) > 1 defined as in (A.4) below.

Lemma A.1  Ifuis a weak solution of (A.2), then for every ty, t € (=4,4) with t) < f,
and every xo € Q, and p € (0,1),

|uxo,2p(t2) - ”xo,Zp(tl)|
1 ty 1 t2
< C(A, / / + |F|)d +—f f ,t)|d
A 7 fo g (TR dze 2 5 [ UGz

t 1/2
+Pl([[9() GPdz) .

Proof With Steklov’s average as in [5, 13, 38], we can formally use ¢y, ,, as a test
function for (A.2) to obtain

1) 9 d —f 1) @ 2p () dx =
fﬂzp(xo)u(x 2)Pxg2p (x)dx o ( )u(x 1) @xo,2p (X)dx

2p (X0

t
_// (A(x, 1, Vut) = (u — Tk, )b — F, Vo, 5, )dx
t Q2p(x0)

ty
" [tl [sz(xo)f(x’ t)‘/’xo,zp(x)dx_

Therefore,

[thx0,2p (£2) = thxy,2p (£2)]

C(A n) ta
|, fnz,,m) Vi + |F] dz+pf fw NG
1/2 1/2
2 — 2
[tl fﬂzp(xo) |b| dz ([ |u — g, dz) ]
C(A n) /fo
Yul+ F dz + f f x,1)|dz
A AR (LR R A e

1/2
f f GPdz) ]
t Q2 (x0)

The proof is complete. u

Lemma A.2 (Caccioppoli type estimate) For each zy = (xo,ty) € K, for each p €
(0,1), if u is a weak solution of (A.2), there holds

-2 2 2
su u(x,t) — ty,, dx+][ Vul|“dz
P p fnp(ml (%, 1) = g, oy |

7€ly, (to) p(20

2/
< C(A,n)[p_2 ]i o |t =ty 2pdz + ( ]£ |G|"‘dz)
o f G 0Pdz (15 npPde) v
K2p ’ Ksp ’ )
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where a = 2(1+ yo) with yo > 0 is any fixed number and n, = :—12.

Proof Let o e Cg°(I2,(t)) be a cut-off function satisfying 0 < ¢ < 1and
, 100 for all
o(t)=1forallteT,(tp), and [o'(t)]< 7 orall t € [, (1).

By using Steklov’s average as in [5,13,38], we can formally use

2 2
(u_uxo,Zp(t))O (t)(Pxo,Zp
as a test function for the equation (A.2) to obtain

1d ) 5
Py - Ux t t)d
2dt /on,Z,u(xo) (P2p|u u 0’29( )| o ( ) X

+atux0,2,0(t)0'2(t) ](;zp(xﬂ) <Pi0,zp(u—ux0’zp)dx
:_fn ( )gZ(t)(A(x,t,u,Vu)—bu—F,V[(u—uxo,zp)(pio’zp])dx

2p(Xo
" )02 (1) > i 50)d
sz(xo)f(x )0 ( )(PXO’ZP(u u O:ZP) x

+fQ . )<p§p|u-uxO,zp(t)Ea'(t)a(t)dx.

We observe that from Lemma A.1, 0,1y, 2,(t) is integrable and is defined a.e. t €
I, (to). Moreover, it follows immediately from (A.1I) that

2
U — Uy, 2p)dx =0.
~/sz(xo) ¢x0,2p( )ZP)

From this and since (1.11) holds on Q, it follows that for each 7 € T5,(to),

! 2 2 2
2 /nxo,z,)(xo) Prg,2p|t(%, T) = thy 0 (7) 707 () dx
+f f (A(x, t,u, Vu), Vu)o® (£) 93, 5,dz
to—4p? JQap(x0) >
T
:—2/ [ (A(, U, VL), Vg, 20 ) (U = Uy 2p) Pre,2p0° () dz
t0_4pz QZP(XO)
T
+ -u b+F, —u, 2 d
/l:()—4P2 fQZp(xo)<(u uKZp(ZO)) V[(u u O’ZP)ngO,Zp]) z
T
+ x, )02 (t) > U= Uy, 2p)dz
fto—w [shp(xo)f( )77 (%2, 2)
T
2 2 7
+ —ttyy 2o ()P0’ (t)o(t)dz.
o oy Pl = 020 (P (0 (1)
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This and the conditions (1.2) and (1.3) imply that

(A.3) sup (pfc0)2p|u(x, T) = txy0p (7)[P 0% (7)dx
1€l (o) Q2p(x0)

IVt 2p)0, 0 (1)dz
KZP(ZO)
< C(A>[ [ V1T sty 20107 ()2
K2p(z0)

b||lu-u F
# f oy (bl |+ F)

< (198193, 25 + 21 = 20 [V 0201020 ) 0 (1) 2

-,
Kap(

P
+ 2 e (DRl Olo(0ds].
/sz(zo)gox"’zf"u Usy2p()[*|0" (t)|0(t)dz

We now control the first two terms on the right-hand side of (A.3). Let € > 0 be
sufficiently small, which will be determined. Use Hélder’s inequality and Young’s in-
equality, we obtain

NG D10 (1) 9%y 2t =tz 2p|dz

f |v”‘9"xo,2p|v‘PXO,2p||u_”xo,2p|02(t)dz <
K3, (z0)

2 2 2 2 2. 2
t)dz+ C f X — Uy t)dz.
oo [T Bz (D24 C@) [ Vgl = oy P (1)

Similarly,
'/I; (z0) (|b| |u _EKZp(ZO)| + |F‘) ( |Vu|¢gzc0,2p +2[u - ”xo,2p| |V¢X0,2P|(Pxo,2p) Uz(t)dz
2p (20
e [ IVulel, oot (Ddz
KZp(ZO) ’
2C@[ [ (1Pl =T ol + FP) 03, 207 (1)dz
2p (20

— 2 2 2
+ U— Uy, V@x, o°(t)dz|.
fzp(20)| ,2p| | ,2p| ( ) ]

Applying Hélder’s inequality again for the term involving b, we see that

M) P T ) P9l 0007 ()2
2p(20

2e 20\ (@-2)/a
< b|*d ]l _u
( ]ilp(zo) bl Z) ( K2y (20) Ju uK2p(Zo)‘ )

< Cy(n,y0) [[”]]123M0(K1,1)( ][

2/a
o |b|"‘dz)
a 2/a
=(J€<2,,<ZO> Gl*dz) "
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Then, by writing w = |u(x, t) — tx,2p (£)||@xo,20 (x)0(t) and collecting all last esti-

mates together with (A.3), and the choice of € sufficiently small, we infer that

(A5)

p~% sup lw(x, t)|*dx + ][
K

|vw|*dz
Tely, (1) < Q2p(%0) p(20)

2,

<C(A, n)[ £ o1 20 P (92,2010 (D1 (1) + V0 20 (1)
2p (%0

L2
+( ]lep(zo) |G| dz) +]€<2 "

P

2 2
S T Or

Finally, it remains to control the last term on the right hand side of (A.5). This,
however, can be done exactly the same way as in (3.17) using Holder’s inequality,

Sobolev imbedding [31, eqn (3.2), p. 74]), and Young’s inequality with e sufficiently
small. We then obtain

£ Ol = g2, 0% (1)dz
KZP(ZO)

Se[p_z sup lw(x, t)[*dx + ][
K

telz,(to) Q2p(x0)

) [B[2g%, 2007 (1)dz

|VW|2dxdt]
(20)

2p

2 2n U
L Cme)p (]i NCD] “dz)

Then with € sufficiently small, it follows from (A.5) and the last estimate that

p% sup |w(x, t)|2dx+][
K

|vw|*dz
€D, (to) Q2p(x0) (20)

2p(Z

SC(A,n)[]{( ( )Iu—ux°,zp|2((Pio,z,,lo’(t)la(f)+|V<px0,zp|202(t))
2p (20
+( ]l |G|“dz)2/“+][ B2 , 0%(t)dz
Kap (20) Kop(zo) 0%

1/n.
+p2( ]€<2,,(zo) |f(x,t)|2n*dz) ]

The proof of the lemma is now complete. ]
Lemma A.3 ‘Thereis y € (1,2) depending only on n such that for every ¢ > 0 and

o = 2(1+ yo) with some yo > 0, there exists Co = Co(A, n,€) such that the following

holds. For every zo = (%o, to) € Ky, for each p € (0,1/4), if u is a weak solution of (A.2),
then

2/u 2/a
][ |Vu|2dz£e][ |Vu|2dz+Co[( ][ |Vu|”dz) +( ][ |G‘rxdz)
K, (20) Kyp Kiyp(2z0) Ky,

v £ GanPdz s SO £, 1t t)z”*dz)],
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where n, = 2, and G(f) is defined in (4.1).

n+4’

Proof For simplicity in writing, let us denote

2/a
?(zp):(]izp(zo) G| dz) +J{<2< (s, ) dz

p (20

SUP( f, . fCenPrdz).

By Poincaré’s inequality, we see that

p? U =ty 25|’ dz < C(n) ][ |Vul|*dz.
KZP(ZO)

KZP(ZO)

This estimate, Lemma A.2, and (4.9) imply that

(A6) p? sup |t = Uy, 252 dx < C(A, n)[ ][

teT, (to) 7 Qo (%0) Kzp (20

) |Vul*dz + EF(Zp)] .

We now let & = u — uy, »,. Then observe that

1/2
A7) p? aldz < p £ 2
an  prf eaesp?| s (f )

K2, (20) telp,(to)

_ 2
x ]l ( ][ aldx) dt
| JT2p(t0) Q25 (x0)

1/2
< Cp_l[( ]€<4p(zo) |Vu|2dz) + 3"(4p)1/2]

12 ]
y ][ (J[ [aldx) dt
| JT2p(t0) Q25 (x0)

where we have used (A.6) in the last estimate with p replaced by 2p. We now control
the last multiplier on the right-hand side of (A.7). To this end, if # > 2, and we take

2% = % ,and when n = 2, we can take 2* to be any number that is greater than 2. Then

let y € (1,2) such that 5 + i = 1 (observe that y = 2 if n > 2). From this, Holder’s

n+2
inequality, Poincaré’s inequality, and the Sobolev-Poincaré inequality, it follows that

p- ]ip(to) ( ]izp(x(,) m'zdx)l/zdt
@ ]€2p<fo) [( ]flz,,(xo) |ﬁ]“dx) ﬁ( ]gz,,(m W*dx) Zb]dt
s £ NCE wba) S (f, ) |
sc(n)]fzp(to)[( ]{hp(m|w|ﬂdx)2?( Jézp(xoﬂv“'zdx);]dt-
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We then use Holder’s inequality twice for the time integration in the last estimate to
infer that

1/2
-1 u%dx)  dt
P ][r-zp(fO) ( ]€2p(x0) |A1 )
2u—-1

- C(H)[( ]izp(m vufaz) ”][ ]ip(tu) | ]{zzp<x0> Vuldz) :] N
< cOm)( ]{QP(ZO)IWI”dz)E( ﬁzp(zo)wuﬁdz)?

The last estimate together with (A.7) imply that

p [ul*dz

Kz, (20)

<c(n)( ]{( (

4p

1/2
Vuldz) "+ 5 (ap)"]
20)

L

x ( ]€<4,,(ZO) |Vu|"dz) 2M( ]€<4p(zO) |Vu|2dz)%

< 6]€<4,;(Zo) |Vu|2dz + C(n,e)[( ]€<4P(z0) |Vu|”dz) i + §(4P)] ’

From this estimate and Lemma A.2, we see that

ng][ 2dz+ C(An, ][ kdz) "+ F(4p)].
]€<P(z°)|vu| i K4p(20)|vu| e+ ¢ ne)[( K4P(ZO)|vu| Z) " (P)]

Hence, Lemma A.3 is proved. u

Proof of Lemma 2.11  The proof follows from Lemma A.3 and the standard Gehring
type lemma (for example, see [21, Proposition 1.3], [20, Proposition 5.1], or [23, Corol-
lary 6.1, p. 204]). [ |
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