
DISTRIBUTIVE EXTENSIONS AND QUASI-FRAMAL 
ALGEBRAS 

TAH-KAI HU 

1. Introduction. In (2; 3; 4), A. L. Foster denned Boolean extensions of 
framal algebras and bounded Boolean extensions of framal-in-the-small 
algebras. Foster proved that the class of Boolean (of bounded Boolean) 
extensions of a framal (a framal-in-the-small) algebra A is coextensive up to 
isomorphism with a certain class of subdirect powers of A, namely, the class 
of normal (of bounded normal) subdirect powers of A. His proofs apply, how­
ever, to considerably more general situations. Indeed, as remarked in (2), the 
construction of Boolean extensions may be carried out for an arbitrary universal 
algebra with finitary operations; this is done, in fact, in (4). Using precisely 
the same methods of proof as those in (2; 3; 4), we extend some of Foster's 
results in two directions : 

1. We allow the algebras in question to admit (possibly) infinitary operations. 
2. We construct extensions of algebras by using distributive lattices in place 

of Boolean algebras. This leads us to consider quasi-framal algebras, which 
include framal algebras in Foster's sense. 

We devote this paper to the statement of these generalizations. In order to 
establish them in a self-contained exposition, we shall reproduce Foster's proofs 
in full (and, in places, in greater detail and somewhat more precise notations). 

In §2, we give certain preliminaries and go to some lengths to clarify the 
foundations of our subject; here we introduce the concept of functional rank of 
a species of algebras, on which the later developments lean rather heavily. 
In §§3-7, we construct certain extensions of an arbitrary universal algebra. 
The distributive extension defined generalizes directly the Boolean extension 
in Foster's sense and is, as described by Foster, a kind of pseudo-hypercomplex 
algebra; while the lattice extension is defined by purely formal analogy with 
Foster's extension and is related to the distributive extensions in much the 
same way as the ring of formal power series over a ring R is related to the ring 
of polynomials over R. In §8, we prove some structure theorems—in terms of 
subdirect factorizations—and this is accomplished, a little surprisingly, for 
entirely arbitrary universal algebras, with no particular identities assumed. 
Special classes of algebras such as quasi-framal algebras are treated in §§9 and 
10. For these algebras, stronger structure theorems may be derived. Finally, 
we consider framal algebras in §11, now, however, in the general setting of 
quasi-framal algebras. 
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2. Some preliminaries. Let © be a non-empty set and v an ordinal. An 
^-function of rank i^ora v-ary operation on © is a mapping / : ©"—>©. We 
write rank f = v. If ($$)$<„ G ©", the image /(($$)$<„) is called £/ze composite of 
(sç)t<t, under f. In particular, an ©-function of rank 0 is just the selection of a 
constant in ©. 

Let a = (<Ti) ui be a family of ordinals. An algebra of species a is an ordered 
pair A = (A, (fi)ui), where A is a non-empty set and each/* (z £ /) isa crrary 
operation on A called a fundamental operation of the algebra A. We define 
ord A, the order of A, to be the cardinality of A : ord if = card A. We define a 
class of ^4-functions called homogeneous A-functions or homogeneous induced 
operations of A recursively as the smallest class of ^-functions satisfying the 
following two properties : 

1. The identity mapping of A is a homogeneous A -function of order 0. 
2. heti Ç / a n d (gf)ioibea (transfinite) sequence of type ô  of homogeneous 

Z-f unctions, each g% (£ < al) being of rank v$ and order c$ (c$ being a cardinal). 
Let c be the least cardinal >ct for every £ < o-*. Denote by X^<ff} ^ the ordinal 
sum of M so»- Let 

vA^'i't-tnteaiA't 

be the canonical bijection, and 

the induced mapping. Then 

is a homogeneous A -function of order c, and is denoted byfi((gç)t<tfi. 
In particular, each fundamental operation ft (i Ç / ) is a homogeneous 

Z-function of order 1. Note that 

rank(/<((gÉ)€<<rt.)) = L K ^ ^ = E K ^ A (rankg f). 

Let / be a homogeneous ^-function of rank v and order c and let /x be an 
ordinal < P . Let (©I)KM be a partition of the initial segment {£|£ < ?} of *> into 
mutually disjoint non-empty subsets. For each 77 < v, let £(77) be the unique 
ordinal </x such that 77 G ©£(,,)• Then there is induced a mapping <p: A* —> Av 

defined by 

<p((a>ùè<id = O i K ^ o for any (a{)€<M G -4M. 

We call the ^4-function f o <p: A» —> A a ^riV/ A-f unction of order c or an induced 
operation of A of order c. In particular, any homogeneous ^4-function is a 
strict ^-function. 

L e t / b e a strict ^4-f unction of rank v and order c and let © be a subset of the 
initial segment {£|£ < v] of i>. Since © has the structure of a well-ordered set, 
it has ordinal number ju and /x < v. There is a unique order-isomorphism of the 
initial segment {£|£ < M} of v onto ©, and this induces in turn a bijection 
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<p: A» —> A®. For each 77 £ {£|£ < ?} — ©, let there be given a fixed cn £ 4 . 
Define the mapping ^ : ^4 e -> A* as follows: If (as)S6© 6 ^4®, then 

where ft, = a , if 77 G © and 6, = cv otherwise. We call the A -function 
/ o yj/ o <p: A^ —> A an A-f unction of order c. In particular, any strict if-function 
is an .4-function and any constant a £ A is an ^4-function. 

Roughly speaking, a homogeneous -4-function is an A -function t h a t can be 
constructed directly via the fundamental operations of A ; a strict A4 unction 
is an A -function obtained from a homogeneous A -function by allowing repeated 
a rguments ; and an A -function is an A -function obtained from a strict Â-
function by holding certain arguments constant . A -functions are roughly 
the * 'polynomial" functions over A. 

Convention 2.1. We shall always denote formally distinct A4 unctions, i.e., 
y4-functions constructed in different ways, by distinct letters. Under this con­
vention, distinct letters may represent the same A -function; and if h denotes 
an A -function, it has a unique order, dependent only on the manner in which h 
is constructed, which we denote by ord h. More precisely, we should first 
define a class of symbols generated by the family ( J Q Û / of fundamental 
operations and then interpret them as ^4-functions according to the previous 
definitions. Bu t this would take us too far back into the logical foundations of 
universal algebra. 

Let © be a set and S a class of ©-functions. WTe say t ha t S is closed under 
composition if it satisfies the condition stated below : Let / £ S be of rank ay 

and (gç)s<a a sequence of type a in Ê, each g% (£ < a) being of rank v$. Denote 
by E K « VS the ordinal sum of (y$)$<«• Let 

p. @**<à'« _> n K t t ©'« 

be the canonical bijection, and 

nt<,gt:ni<B ©'«->©• 
the induced mapping. Then 

h =fo ( I l K a ^ ) o <?:©s*«^ _> @ 

is in £ . h is denoted b y / ( (g$) $<«) ; clearly 

rank h = Sh rank / ( r ank ^ ) . 

T H E O R E M 2.1. Let A be an algebra. Then the class of homogeneous A-f unctions 
(of strict Â-functions y or A-f unctions) is closed under composition. 

Proof. We prove only the (simplest) case of homogeneous A -functions. Let S 
be the class of homogeneous ^4-functions. We use the notat ions in the definition 
of closure given above, with A in place of ©. Let o r d / = c. We shall show t h a t 
h 6 S by (transfinite) induction on c. If c = 0, there is nothing to prove. 
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Assume that c > 0 and that the assertion is true for homogeneous X-functions 
of order <c. Suppose that the species of A is a = (<ri)UI. By definition, there 
exist an index i £ / , a sequence (hr,)v<ai of type <rt in S, each ft, (rj < at) being 
of rank /z, and order <c, satisfying the condition stated below : If 

is the canonical bijection, and 

Ur,^ hn:Ilv<9i A^-^ A^ 

is the induced mapping, then 

/ = ft o (n,<<ri hv) o ^, 

where/* is the fundamental operation of 4̂ of index Ù Therefore we have 

ft = ft o (n , < < r i ft,) o ^ o ( n K a gs) o p. 

Note that a = r a n k / = £,<*,- M*> so that 

For each r] < cru denote by 

the canonical bijection ; and denote by 

also the canonical bijection. Then the induced mapping Iï,<( r i <£, is the canonical 
bijection of 

n„<„, ,4S*<*V* onto Uv<ffi(U^vA^) 

and hence (Iï ,< ( r t <i>,) o ^ is the canonical bijection of 

A**<"'i = A^<^^<^ onto nv<ffi(II^Avt). 

It follows that 

if o ( n K a gt) o? = ypo (n{<s,<(r,-M, g^) o <p 

= (n,<<r,.(iij<Mli|[|)) o (n,< ( r . *,) o *. 
Consequently, 

h =fio (n,<<ri A,) o (n,<fft.(nî<M)l g€)) o (n,< ( r . #,) o * 
= ft ° (n,<fft.(ft, o (nKMi? g{) o $ , ) ) o *. 

Since ord ft, < c for every 17 < cr̂ , the inductive hypothesis implies that 

ft, o ( n K ^ g{) o #, e 6 
for every 77 < o-f. Hence ft G S, by definition. This completes the proof. 
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We define the functional rank of the species a = (p^ui, denoted by g(o-), as 
the least infinite cardinal > c a r d v for any A -function of rank v, A being 
an algebra of species a. Given an ^4-function of rank v, there always exists a 
homogeneous A -function of rank >z \ Therefore, g(o-) may be defined solely 
in terms of homogeneous ^-funct ions, A an arbi t rary algebra of species a. 
In part icular, any finitary species has functional rank Ko-

A cardinal m is said to be regular if the sum of any family of less than m 
cardinals, each of which is less than m, is less than m (e.g. 0, 1, 2, Ko, Ki, 
K2,. . • are regular, bu t K« is not) . 

T H E O R E M 2.2. The functional rank %{o-) of the species a = {vl)UI is the least 
regular infinite cardinal > c a r d a if or every i G / . 

Proof. Denote by K the least regular infinite cardinal > c a r d af for every 
i G / . Let A be an arbi t rary algebra of species a. 

Let h be any homogeneous ^4-function of rank a and order c. In order to prove 
t h a t g(o-) < K, it suffices to prove t ha t card a < K. We proceed by induction 
o n e . If c = 0, the assertion is trivial. Assume t h a t c > 0 and t h a t card v < K 
for any homogeneous A -function of rank v and order <c. By definition, there 
exist an index i G / , and a sequence {g$)i<v% of homogeneous A -functions of 
order <c, each g$ (£ < <JX) being of rank vç, such t ha t h = /*((#$) $<*»)> where ft 

is the fundamental operation of A of index i. We have a = rank h = £$<>,• v$ 
and hence 

card a = E K ^ M ^ ) -

But card at < K, by definition of K; moreover, card v$ < K for every £ < au 

by the inductive hypothesis. Therefore card a < K, by the regularity of K. 
T o prove t h a t K < SO7")» w e need only show tha t % (a) is regular. Let 

( Q ) | < „ be a sequence of type v {y an ordinal) of cardinals such t ha t c$ < %(a) 
for every £ < v and card v < $(<r). By definition of $(<r), there exist an ordinal 
a > v, an A -function / o f rank a, and a sequence (gt)ç<a of type a of A -functions, 
each g$ (£ < a) being of rank ju£, such t h a t c$ < card MS for every £ < v. We 
have 

Hi<* c$ < L É O card /x£ < £ K « card jû  = card(S«<« M«) 

= card ( rank( / ( (g { ) t < a ) ) ) . 

But/((^^)^<«) is an ^4-function (Theorem 2.1). Hence 

Z«,ct < card (rank (f((gj) f<„))) < g(<r). 

This proves t ha t g(^) is regular. 

Convention 2.2. Given two algebras A = (A, (Ji)ui) and 5 = (i?, (g*)*ej) 
of the same species a = ((Ti)UI} we shall agree to write ft for g* for every i G / , 
provided no confusion can arise. In other words, we shall use the same symbols 
for the fundamental operations of algebras of species a uniformly over the class 
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of algebras of species a. Under this convention and convention 2.1, the same 
letters will also be used to denote corresponding strict ^4-functions and strict 
jB-functions, i.e., strict ^4-functions and strict ^-functions constructed in the 
same way. We also call ft (i £ I) a fundamental operation of the species a 
and a strict A -function / a n induced operation of the species a. 

Let © be a set, £ C ©, and / an ©-function of rank v. We say that £ is 
stable (or closed) under / if / (£") Q X. Assume that this is the case and that 
X 9e 0. T h e n / | 2?, the restriction of/ to £", is a ^-function of rank y called 
/fee %-function induced by / . Clearly, any intersection of subsets of © that are 
stable under/ is stable under/ (unless, of course, both v = 0 and the intersection 
is empty). 

Let A — (.1, (fi)ui) be an algebra of species a = {<T^)UI, and B a non-empty 
subset of A that is stable under each ft (i £ / ) . Then B = (B} (Jt | Bai)UI) 
is an algebra of species a called a subalgebra of A. By convention 2.2, we write/* 
for ft | ^'"i (i Ç I). If fe is a strict A4 unction of rank v, then h\ Bv is also a 
strict ^-function of rank v and is precisely the one that is denoted also by h 
according to Convention 2.2. Let (Bj)jej be a family of subalgebras of A such 
that H ^ 5 , ^ 0. Then 

(C\itj Bj, (Jt | r\jtJ Bj)UI) 

is a subalgebra of A called the intersection of (Si) t e7 and is denoted by O j(J Bj. 
Given a subset © of ^4, if the intersection of all subalgebras containing @ is 
non-empty (which is the case if © is non-empty), it is called the subalgebra of A 
generated by @. A subalgebra of A is easily seen to be stable under each induced 
operation of A, and the subalgebra of A generated by © consists precisely of the 
composites of elements of © under the induced operations (or the homogeneous 
induced operations) of A. 

Certain properties of the functional rank g(o-) of a species a are interesting in 
themselves : 

1. Let A be an algebra of species a generated by a set of cardinality <%(a). 
Then any set of generators of A includes a set of generators of A of cardinality 
<S(<r). 

2. Let A be an algebra of species a which has a minimal set of generators of 
cardinality K > SO7)- Then any set of generators of A has cardinality > X. In 
particular j any two minimal sets of generators of A are equipotent. 

3. Let S be a chain of subalgebras of A which is X-complete for every cardinal 
X < % (a). Then KJ^^B is a subalgebra of A. 

Let A, B be algebras of the same species or, and h an induced operation of rank 
v of the species a. A mapping/:^ —> B is said to preserve h if 

/(*'((««)*<»)) = *(tf(a«))îo) 

for any (a$)$<,; G A\ This condition may be stated more formally as follows: 
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If/":.4" —> Bvis the induced mapping, then hof" = / o h, i.e., the diagram 

fv 

is commutative. A homomorphism of A into B is a mapping /:^4 —> B which 
preserves all fundamental operations of the species a. It is easily seen that a 
homomorphism preserves all induced operations of the species a. A surjective 
(an infective, bijective) homomorphism is called an epimorphism (a mono-
morphism, isomorphism). A homomorphism (an isomorphism) of an algebra 
into itself is called an endomorphism (an automorphism). The class of algebras 
of a fixed species together with homomorphisms is evidently a bicategory. 

Let / , g be ^4-functions of the same rank. Then we speak of / = g as an 
A-identity. If both / and g are homogeneous (are strict) ^4-functions, then 
/ = g is called a homogeneous (a strict) A -identity. In case we are dealing with 
several algebras of the same species, and / , g are strict ^4-functions, we also 
write / = g (mod A) when the identity / = g holds in A. Similarly, if @ is a 
subset of A j f = g (mod ©) means that / = g holds in ©. Clearly, a strict 
identity that holds in A holds in any subalgebra or homomorphic image of A. 

Remark. Let A be an algebra of species a, and denote by g(o-) the functional 
rank of a. We may define functional completeness as follows: A is functionally 
complete (is strictly, homogeneously, or fundamentally functionally complete) 
if each A -function of rank <%(o-) is représenta ble as an 4̂-f unction (a strict, 
homogeneous, or fundamental Â-îunction). For a finitary, these definitions 
reduce to the corresponding ones of A. L. Foster (2). Certain results of Foster 
may be extended. For example, every strictly functionally complete algebra A 
is simple and has no subalgebra except A itself. 

3. Scalar subdirect powers of an algebra. Let Â, B be algebras of the 
same species, a n d / : A —> B a monomorphism. Then the pair (B,f) is called an 
extension of A and A is said to be embedded in S viaf; we also say that B is an 
extension of A, / being now understood. A is called the kernel of the extension 
(B,f). A is isomorphic to a subalgebra of B, namely, the homomorphic image 
f(A), and we often identify A and f(A) via/. 

Let (Âj)jeJ be a family of algebras of the same species, and B a subalgebra 
of the direct product TVj€jÂj. For each k G J, denote by Trk:TLjeJ Aj —» Ak 

the projection of index k. We say that B is a subdirect product of (Aj)jeI if 
Tj(B) = A j for every j G J. 

Let A be an algebra, © any set, and B a subalgebra of the direct power A®. 
Assume that for any a G A the element (as)se^> 6 A® defined by as = a for 
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every s G © belongs to B ; in other words, B contains all the constant mappings 
of © into A. Then B is clearly a subdirect power of A. We say that B is a scalar 
subdirect power of A. If © ^ 0, the mapping <p:A —» 13, which maps each a ^ i 
upon the element (as)*€© G 5 with as = a for every a G ^4, is easily seen to be 
a monomorphism of A into 5 . <p is called the natural monomorphism of A into B. 
By definition, (B, <p) is an extension with kernel A. 

Now let A be an algebra oîfinitary species, © any set, and B a subalgebra of 
the direct power Â®. Assume that for any (a5)S€© G B the set [as\s G ©} 
is finite (which is always the case if either A or © is finite). Then B is called a 
bounded subalgebra of A®. 

4. Lattice extensions of an algebra. Let A be an algebra of species a, 
and let g M denote the functional rank of a. A lattice L is said to be A-admissible 
if it is a lattice with 0 and 1 which satisfies the following two conditions: 
(1) If ord A = 1, L is X-complete for every cardinal X < S(°0« (2) If ord 
^î > 1, L is (ord ^4) ^-complete for every cardinal X < $(&). Thus, if a is a 
finitary species and 4̂ is a finite algebra, an Z-admissible lattice is an arbitrary 
lattice with Oand 1. 

Let ©, X be sets, x G &1, and / G Ï . Then we shall use [x]t to denote the 
co-ordinate of index t of x. 

Assume that L is an ^4-admissible lattice. I f / is an A -function of rank v, 
where card v < g (<*") » w e define an LA-function / of rank ^ as follows : 

K(xùi<p) = (^(^)K ,6/-i(a)(nK , [x^] cp) a € A , foho G (LA)1'. 

We call / /Â0 LA-function induced by f with core L. We use here the usual con­
vention that the join (the meet) of the empty family of elements of L is 0 
(is 1). We have card v < g(o-) and 

card / - 1 (a) < cardai" = (ord A)cM\ 

Our definition is therefore valid. 
Let A = {A, (ft) i ei) be an algebra of species a, and L an ^4-admissible lattice. 

For each i G / , let /* be the LA-function induced by ft with core L. Then 
(Z,A, (/*) * €/) is an algebra of species a called the lattice extension of A with core L. 
(The extension terminology will be justified later.) According to a previous 
convention, we shall write ft for ft (i G I). Note that LA also has the structure 
of a lattice with 0 and 1, namely, as a direct power of L. 

Assume that L is any lattice with 0 and 1, and that I is any set. As usual, 
we define the Kronecker delta as the mapping ô : I X I —> L defined by 
diti = l and« < f , = OiH ^j((ij) £1X1). 

THEOREM 4.1. Let A be an algebra, L an A-admissible lattice of order > 1 , 
and LÀ the lattice extension of A with core L. Then the mapping <p:A —» LA 

defined by <p(c) = (ôCta)a eA is a monomorphism of A into ZA 

Proof, That <p is injective is trivial. Assume t h a t / i s a fundamental operation 
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of A of rank a and that ( Q ) K « £ A ".Take a G A. We have 

If a = / ( ( Q ) K « ) » t n e n (Q)S<« e / _ 1 (^) and [^(^)]cf = 5C£,C£ = 1 for every 
£ < a. On the other hand, suppose that a ^ / ( ( Q ) ^ » ) - Then ( Q ) K « # f_1(a)-
Thus, if (#É) £<a G / _ 1 (a), we must have bv ^ cv for some ^ < a, SO that 

[<p(cv)]bv = « c , t 6 f = 0. 

In either case, we readily obtain 

!/((*(*«))«<«]« = [*>(f( (<*)*«,))]«• 

It follows that /((^(C{)){<«) = ^>(f( (£$)$<«))• We conclude that <p is a mono-
morphism. 

The notations being as in Theorem 4.1, <p is called /Ae natural monomorphism 
of A into LA. This being said, we now call A the kernel of the lattice extension. 

5. Distributive extensions of an algebra. Let X be a cardinal. A lattice 
L is said to be ^-distributive if it satisfies the following condition : Let / be a set 
of cardinality < X, and for each i £ I let (Xi,ji)UiJi be a family of elements of 
L, Ji being a set of cardinality < X; then 

and dually, whenever both sides are defined. 
Let A be an algebra of species a, and let g(c) denote the functional rank of 

<r. A lattice L is said to be distributively Â-admissible if it is Jf-admissible and 
(ord A) ^-distributive for every cardinal X < %{o). Thus, if a is a finitary 
species and A is a finite algebra, a distributively ^4-admissible lattice is an 
arbitrary distributive lattice with 0 and 1. 

Let A be an algebra of species a, and L a distributively A -admissible lattice. 
Let A (L) denote the subset of L consisting of all x Ç LA such that (1) 
[x]a C\ [x]b = 0 for a, b £ A and a ^ b 

(i.e. [x]a r\ [x]b = [x]a H [x]& H <5a,& for any ( f l ^ l U X ^ ) , 

and (2) UaeA [x]a = 1. In other words, A(L) consists of all partitions of L 
indexed by A. L e t / be an A -function of rank v, and / the LA-function induced 
by / with core L (here rank v < 5(°"))- We shall prove that A (L) is stable 
under/. Let (#$)$<> £ A (L)v. We must show that 

/ ( (* € )K>) eA(L). 
The proof is divided into two parts : 

1. Let a, b 6 A, a y£ b. Take (C$)É<„ G f~l(a) and (d^)^<y £ f " 1 ^ ) . Then 
f((cùï<>>) ~ a ?* b =/((^{){<")- Hence there exists 77 < v such that ^ 5̂  dv 

so that [xJCi? P\ [xv]dr) = 0 and thus 
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Using the assumed distributivity of L, we obtain 

0 = ^'((^)^<v,(d^)^<J,)€/-i(a)X/-i(6)(/r>iK''([Xdc^ ^ [#$]<*{)) 

= [/((^)«<0]«nLf((^)KF)]6. 

2. Let a f i . Define (<*$)$<,, G ^4" by a^ = a for every £ < v and â by 
à = / ( (a €)«<*)-Then ( a ^ < " € / - 1 ( â ) . Hence 

Using the assumed distributivity of L, we get 

i = nK,(naeA[x^]a) = vjacA(nK,[x^]a) ç ua6^[/((xi)K,)]-. 
Here we also made use of (1). Since [â \ a £ A) C ^4, we immediately obtain 
^ac i [ / (W{< ' ) l a = 1. This completes the proof o f / ( ( x ^ , ) G 4 ( L ) . 

Since 4̂ (L) is stable under /, the A (L)-function / | A (L)v induced by / is 
defined. We call J | A (L)v the A (L)-function induced by f with core L. 

Let LA denote the lattice extension of A with core L, L being distributively 
^4-admissible. As a consequence of the result above, A (L) is stable under the 
fundamental operations of LA and hence inherits the structure of a subalgebra 
of LA\ we call this subalgebra the distributive extension of A with core L. We 
immediately obtain 

THEOREM 5.1. Let A be an algebra, L a distributively Â-admissible lattice of 
order > 1, and A(L) the distributive extension of A with core L. Then the mapping 
<p: A —•> A (L) defined by <p(c) = (ôc,a)a €A is a monomorphism of A into A(L). 

The notations being as in Theorem 5.1, <p is called the natural monomorphism 
of A into A{L). This being said, we now call A the kernel of the distributive 
extension. 

Remark. The assumptions being as above, note that there is also a rather 
1 'natural" subalgebra of LA which contains the algebra Â(L) as a subalgebra, 
namely, the subalgebra determined by the set of elements x £ LA such that 
[x]a H [x]b = 0 for a, b £ A and a ^ b. 

In the particular case when we are dealing with Boolean algebras, a dis­
tributive extension is also called a Boolean extension. 

6. Bounded lattice extensions of an algebra of finitary species. Let 
A be an algebra of finitary species and L any lattice with 0 and 1. Let 93 (LA) 
be the set of all x £ LA such that [x]a = 0 for almost all a £ A (i.e. [x]a ^ 0 for 
all but a finite number of indices a £ A). If / is an A -function of finite rank n, 
we define a 93(LA)-function/of rank n as follows: 

/((**)Kn) = (^(cy)K ,€r-i(a)(nK n[^] c i)) a e A , (xj)j<n £ $}(LA)n. 
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We need to show that / is well-defined. By definition, for each j < n, there 
exists a finite subset Bj Q A such that [xj]a = 0 for all a G A — Bj. Let 
C = ^Jj<n Bj. Then C is also a finite subset of A and [Xj]a = 0 for any j < n 
and a G A — C. For any (Cj)j<n G An — Cn, we have [Xj]cj = 0 for any j < n 
and hence ^j<n[xj]cj = 0; consequently, for the join operation involved in 
the definition of /, we may replace the index s e t / - 1 (a) by f~l(a) C\ Cn. Since 
f~l(a) C\ Cn Ç Cn and both n and C are finite, the co-ordinate [f((Xj)j<n)]a is 
well-defined for any a G A. Moreover, f{Cn) is also finite; and if a G A — f(Cn), 
we have [f((xj)j<n)]a = 0. Therefore f((xj)j<n) G 33 (Z/1). This shows that / i s a 
well-defined 33 (LA)-function. We call / the $8(LA)-function induced by f with 
core L. 

Let A = ( J , (ft) i ei) be an algebra of a finitary species a, and Z any lattice 
with 0 and 1. For each i G / , let/* be the 33(Z/1)-function induced by ft with 
core L. Then (33(LA), (/^i €/) is an algebra of species a called the bounded lattice 
extension of A with core L. (The extension terminology will be justified later.) 
According to a previous convention, we shall write/* for/; (i G / ) . 

As in Section 4, we readily obtain 

THEOREM 6.1. Let A be an algebra of a finitary species, L a lattice with 0 and 1 
of order > 1, and 33 (LÀ) the bounded lattice extension of A with core L. Then the 
mapping if : A —» 33(LA) defined by <p(c) = (ôc>a)aeA is a monomorphism of A 
into^(lA). 

<p is called the natural nonomorphism of A into 33 (LA). This being said, we now 
call A the kernel of the bounded lattice extension. 

THEOREM 6.2. Let A be an algebra of a finitary species, and L an Â-admissible 
lattice. Then the bounded lattice extension of A with core L is a subalgebra of the 
lattice extension of A with core L. 

In particular, if A is a finite algebra, the two extensions coincide. 

7. Bounded distributive extensions of an algebra of finitary species. 
Let A be an algebra of finitary species, and L a distributive lattice with 0 and 1. 
As in §6, we define 33(LA) as the set of all x G LA such that [x]a = 0 for almost 
alla G A. We define 33 (A(L)) as the subset of 33 (LA) consisting of all x G 33 (LA) 
such that (1) [x]a Pi [x]b = 0 for a, b G A and a ?± b, and (2) ^JaeAMa = 1. 
In other words, 33(̂ 4 (L)) consists of all finite ''partitions" of L indexed by A. 
L e t / be an A -function of finite rank n, and / the 33 (LA) -function induced b y / 
with core L. Then as in §5, we can prove that 33(̂ 4 (L)) is stable under/; hence 
the 3304 (L))-function/ | 33(^ (L))w induced by / i s defined. We call/ | 33(̂ 4 (L))n 

the 33 (A (L))-function induced by/wi th core L. 
Let 33 (LA) denote the bounded lattice extension of A with core L, L being 

a distributive lattice with 0 and 1. As a consequence of the result above, 
33(̂ 4 (L)) is stable under the fundamental operations of 33 (LA) and hence 
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inherits the structure of a subalgebra of 33 (Z/) ; we call this subalgebra the 
bounded distributive extension of A with core L. 

THEOREM 7.1. Let A be an algebra of afinitary species, L a distributive lattice 
with 0 and 1 of order > 1 , and $&(Â(L)) the bounded distributive extension of A 
with core L. Then the mapping <p : A —•> $$(A (L)) defined by <p(c) = (dCta)a eA is a 
monomorphism of A into 33 (A (L) ). 

(p is called the natural monomorphism of A into $8(Â(L)). This being said, 
we call A the kernel of the bounded distributive extension. 

THEOREM 7.2. Let A be an algebra of a finitary species, and L a distributively 
A-admissible lattice. Then the bounded distributive extension of A with core L 
is a subalgebra of the distributive extension of A with core L. 

In particular, if A is a finite algebra, the two extensions coincide. 
A bounded distributive extension whose core is a Boolean algebra is also 

called a bounded Boolean extension. 

8. The structure of distributive extensions: subdirect factorizations: 

THEOREM 8.1. Let A be an algebra, L a distributively Â-admissible and atomic 
Boolean algebra, and A(L) the Boolean extension of A with core L. Then A(L) 
is isomorphic to a scalar subdirect power of A. Moreover, if L is complete, A(L) 
is isomorphic to a direct power of A. 

Proof. Let © be the set of atoms of L. Fix 5 £ ©. If x £ A (L), there exists 
an index c £ A such that 5 C [x]c, because s Ç 1 = \JaeA[x]a; moreover, 
c is unique, because [x]a Pi [x]b = 0 for a, b £ A and a 7e b. Denoting c by 
fs(x), we obtain a mapping fs:A(L) —> A. We have s Ç [x]fs(X) for every 
x G A(L). We shall now prove that fs is a homomorphism of A(L) into A. 
Let H e a fundamental operation of rank v, and let (x^)^<v £ A(L). We are 
to prove that 

For this purpose, it is sufficient to show that s Ç [h((x^)ç<p)]b where 

b = h((fs(x^))^<v). 

By definition, 5 C [x^]fsix^ for every £ < v so that s C r^ofa^kcrt)- ^ u t 

(S*(xù)i<* £ h-l(b). Hence 

This proves our claim. 
For each / Ç ©, let wt : A® —> A be the projection of index /. Denote by Â^ 

the direct power of A with exponent ©. Then there exists a unique homo­
morphism / : A{L) —-> ^4@ such that 7rs O / = fs for every 5 G ©.In order to show 
t h a t / is injective, it suffices to prove that the family (/s)se@ of mappings of 
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A (L) into A distinguishes points in the sense t ha t if x, y G A (L) and x 9e y, 
then ft(x) 7e ft(y) for some / Ç ©. Assume then t h a t x, y £ A (JL) and x ^ y. 
Then there exists a f i such t ha t [x]a 9^ [y]a. For this a £ ^4, we mus t have 
Ma ^ [y)a* ^ O o r [y]a r\ [x]a* 9e 0, where * denotes complimentation in the 
Boolean algebra L. We may assume tha t [x]a r\ [y]a* 9^ 0. By atomici ty of Z, 
there exists an a tom t C [x]a P\ [y]a* so t ha t t C [#]a bu t / C | j ] a does not hold. 
Hence /* (x) = a 9e ft(y)- We conclude t h a t / i s a monomorphism. 

If c f A, t h e n / m a p s (ôCta)aeA £ ,4 (L) upon the element (cs)se@ Ç f(A(L)) 
defined by cs = c for every s £ @. Hence the homomorphic image f(A(L)) 
must be a scalar subdirect power of A. This proves the first assertion of the 
theorem. 

Assume now tha t L is complete. We must prove t ha t / is surjective. Let 
(#s)se® t A'z. For each a £ A, define Xa = {s £ <& \ as = a} and define 
x = (U 5 É x a s)a (A- By the completeness of L, {Jseza s is defined for every a G i , 
so tha t x £ LA. The proof t ha t x ^ A (L) is in two par ts : 

1. Let a, b £ A and a 9^ b. If 5 G ï a and / £ £ 0 , then 5 and / are dist inct 
a toms and hence s C\ t = 0. Therefore 

Ma r\ M0 = QJs.Zas) r\ çuttXb t) = u(, l<)e£aXÎJ(5 r u ) = o. 
(The distr ibutivi ty used here is valid in any complete Boolean algebra (1).) 

2. Since W a e A £ a = ©, where VJ here denotes set-theoretic union, by the 
completeness of L, we have 

But W 5 e e ^ = L by the atomicity of L. Thus , W a e A [x ] a = 1. We conclude 
t h a t x c A (L). We have 

irs(f(x)) = 0 * o / ) ( x ) = fs(x) = fs((\JteXat)a€A) = a , for every 5 G @. 

Therefore f(.r) = (as).S€@. This completes the proof of Theorem 8.1. 

A Boolean algebra is said to be completely distributive if it is complete and 
X-distributive for every cardinal K. A result of Tarski shows t h a t a completely 
distr ibutive Boolean algebra is isomorphic to the field of all subsets of some set 
(1 ). Therefore a completely distr ibutive Boolean algebra is also atomic. 

T H E O R E M 8.2. Let A be an algebra. Then the class of Boolean extensions of A 
with completely distributive cores is co-extensive up to isomorphism with the class of 
direct powers of A. 

Proof. Let I be a completely distr ibutive Boolean algebra. Then L is dis-
tributively T-admissible, complete, and atomic. Therefore the Boolean 
extension of A with core L is isomorphic to a direct power of A, by Theorem 
8.1. 

On the other hand, let © be any set, and A® the direct power of A with 
exponent 2 . Let X = {{s} | 5 £ ©} (i.e. X is the set of singleton subsets of ©) . 
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Then the direct powers A® and Ax are isomorphic. Let L be the field of ail sub­
sets of ©. Then L is a completely distributive Boolean algebra with X as its 
set of atoms. As in the proof of Theorem 8.1, we see that the Boolean extension 
of A with core L is isomorphic to Ax and hence also to A®. 

THEOREM 8.3. Let A be an algebra of finitary species, and L a distributive lattice 
with 0 and 1. Then the bounded distributive extension of A with core L is isomorphic 
with a bounded scalar subdirect power of A. 

Proof. L can be represented isomorphically as a ring of subsets of a set in such 
a way that 0 (that 1) of L corresponds to the empty set 0 (to the entire set) 
(1). Considering the field of all subsets of this set, we see that L is embedded in 
a completely distributive Boolean algebra M in such a way that the 0 (the 1) 
of L corresponds to the 0 (the 1) of M. We may assume that M contains L 
as a sublattice. Let © be the set of atoms of M. Now we may proceed in the 
same way as in the proof of Theorem 8.1. 

9. Quasi-framal algebras. A quasi-frame is an algebra Q= (Q, (0,1, + , X)) 
of species (0, 0, 2, 2) satisfying the following identities: 

0 + q = q + 0 = q, lXq = qXl=q, 0Xq = q X0 = 0 (qfQ). 

A subalgebra of a quasi-frame Q is again a quasi-frame called a sub-qua si-frame 
of Q. Note that the set {0, 1} determines a sub-quasi-frame of Q, in fact, the 
unique one generated by 0; and if 0 ^ 1, this quasi-frame may be considered a 
chain of order 2 (i.e. isomorphic to the ordinal 2) by regarding + (by regarding 
X) as join (as meet). 

Let A be an algebra. Assume that there exist A -functions (strict A -functions, 
homogeneous A -functions, or fundamental operations of i ) 0, 1, + , X such 
that Q = (A, (0, 1, + , X) is a quasi-frame. Then Q is called a quasi-frame 
(a strict, homogeneous, or fundamental quasi-frame) for A, and A is said to be 
quasi-framal (to be strictly, homogeneously, or fundamentally quasi-framal). 

Thus, any lattice with 0 and 1 and any (not necessarily associative) linear 
algebra with identity over an associative ring with identity are quasi-framal 
algebras; in particular, any (not necessarily associative )ring with identity is a 
quasi-framal algebra. 

Let A be a quasi-framal algebra with Q = (A, (0, 1, + , X)) as a quasi-frame 
for A, and © any set. For each a £ A, the mapping pa\A^ —» AB defined by 
Pa(as)se&) = (ôas,a)s6© is called the projector of A® of index a relative to the quasi-
frame Q. Let B be a subalgebra of A which is a scalar subdirect power of A. If 
{Ja* A Pa(B) ÇI B, then B is said to be a normal subdirect power of A relative to Q. 

The notations being as above, assume that B is, in fact, a normal subdirect 
power of A relative to the quasi-frame Q. Let L be the set of all elements 
(aj s e© G B such that as = 0 or 1 for every s G ©. Since B is a scalar subdirect 
power of A, B must contain the element in A each of whose co-ordinates is 0 
(is 1). Thus, L T^ 0. It is easy to see that L determines a sub-quasi frame L 
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of the quasi-frame Q e for A®. It is further obvious that L is isomorphic to a 
subdirect power of the ordinal 2 and is hence a distributive lattice (1). L is in 
fact a distributive lattice with 0 and 1, whose 0 (whose 1) is the element each 
of whose co-ordinates is 0 £ A (is 1 Ç A). We call L the core of B induced by Q. 

If B is a normal subdirect power of A relative to any quasi-frame (to any 
strict quasi-frame, homogeneous quasi-frame, or fundamental quasi-frame) for 
Ay then B is said to be a normal (a strictly, homogeneously, ox fundamentally 
normal) subdirect power of A. 

THEOREM 9.1. Let A be a quasi-framal (a strictly, homogeneously, or funda­
mentally quasi-framal) algebra, L a distributively Â-admissible and atomic Boolean 
algebra, and A(L) the Boolean extension of A with core L. Then A (L) is isomorphic 
to a normal {a strictly, homogeneously, or fundamentally normal) subdirect power 
ofÂ. 

Proof. We use the notations of the proof of Theorem 8.1. We already know 
that/(^4(L)) is a scalar subdirect power of A. Let Q = (A, (0, 1, + , X)) beany 
quasi-frame (any strict quasi-frame, homogeneous quasi-frame, or fundamental 
quasi-frame) for A, and let c G A. Denote by pc : A® —» A® the projector of 
index c relative to Q. Let x £ A (L). We need only prove thatpc(f(x)) £ f(A (L)). 
We have 

Pc(f(x)) = Pcdfsix))**®) = ($/.(*) .<;)*€©• 

Let the element y £ A (L) be defined as follows : [y]0 = U f l £ A_(C ) [4 ,Wi = [x]c, 
and y a = 0 for a £ A, a ^ 0, 1. Now/ , (3;) = 1 if and only if s C [y^ = [x]cand 
the latter holds if and only if fs(x) = c; furthermore, fs(y) = 0 if fs(x) ^ £. 
Hence/,(3/) = 8Mx)teand so 

PcCfW) = («/.<*).<)..© = (/.Cv)).«© =/(?) ef(A(L)). 

This proves Theorem 9.1. 

Theorem 9.1 is a sharper version of Theorem 8.1 for quasi-framal algebras. 
In the same way, we can prove a sharper version of Theorem 8.3 for quasi-
framal algebras of finitary species. We shall, however, give a stronger result in 
§10. 

10. Qiiasi-framal-in-the-small algebras of finitary species. Let A be 
an algebra of finitary species, and l e t / b e an A -function. Assume that for any 
finite subset © of A, there exists an A -function (a strict Â-î unction, homo­
geneous A4 unction, or fundamental operation of A)fs such t h a t / = /© (mod ©. 
Then we say t h a t / is A-representable in the small (is strictly A-representable in 
the small, homogeneously Â-representable in the small, or fundamentally A-repre­
sentable in the small). 

Let A be an algebra of finitary species, and Q = (A, (0, 1, + , X)) a quasi-
frame with the same underlying set A as A. Assume that 0, 1, + , X are all 
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Z-representable in the small. Then we call Q a small quasi-frame for A and we 
say that A is quasi-framal-in-the-small. Related notions such as small strict 
quasi-frame for A, strictly quasi-framal-in-the-small algebra, etc. are denned in 
the same way. 

Again, projectors relative to small quasi-jrames, normal-in-the-small subdirect 
powers, etc. are defined in the same way as in §9. 

Obviously any quasi-framal algebra of finitary species is also quasi-framal-
in-the-small. On the other hand, any finite quasi-framal-in-the-small algebra is 
quasi-framal. 

THEOREM 10.1. Let A be a quasi-framal-in-the-small (a strictly, homogeneously, 
or fundamentally quasi-framal-in-the-small) algebra of finitary species. Then the 
class of bounded distributive extensions of A is coextensive up to isomorphism with 
the class of bounded normal-in-the-small (of strictly, homogeneously, or funda­
mentally nor mal-in-the- small) subdirect power of A. 

Proof. Using Theorem 8.3 and a proof analogous to that of Theorem 9.1, 
we readily see that any bounded distributive extension of A is isomorphic to a 
bounded normal-in-the small subdirect power of A. 

On the other hand, let B be a bounded normal-in-the-small subdirect power 
of A ; we may assume that B is a subalgebra of the direct power A®. Let (5 be a 
small quasi-frame for A, and L the core of B induced by Q. For each a G A, 
denote by pa : A® —> A® the projector of index a; we note that each pa (a £ A) 
maps B into L. Define the mapping / : B —> 33(̂ 4 (L)) by f(b) = (pa(b))aeA. 
Now any b G B is of the form (bs) se@ where bs G A for every s G @, so that 

f(b) = / ( W u @ ) = (Pa((bs)st®))aeA = ((<56,,a)5€@)aeA-

In order to show t h a t / is well-defined, we must prove that f(b) G $8(A(L)). 
The proof of this falls into three parts : 

1. Since B is a bounded subalgebra of Â®, the set {bs\s G ©} is finite and so 
for all but finitely many a G A we have bs ^ a for every 5 G ©. Hence 
Pa(b) = (ô6s,a)se© = 0 ( = the least element of L) for almost all a G A. 

2. Let a, a' G A and a 9^ a'. Then 

Pa(b) Xpa'(b) = (8f,9ta)st<& X ( ô & , , a ' ) s e © = (^bs,a X àbs,a')se<& = (Az,a')se<5 = 0 

( = the least element of L). Here X = Pi = meet operation in the lattice L. 
3. HaeAPa(b) = £fl€A(<5&s,a)se<&. Since <56s,a = 0 for every 5 G ©, for almost 

all a £ A, the last expression is equal to ( l ] a «A 56s>a)se© = 1 ( = the greatest 
element of L). Here Y, = VJ = join operation in the lattice L. 

Thus, fis well-defined. 

As in the proof of (2, Theorem 17, Part I I ) , we can prove t h a t / is an iso­
morphism. 

11. Framal algebras and framal-in-the-small algebras of finitary 
species. We shall now show that quasi-framal algebras generalize framal 
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algebras in the sense of A. L. Foster (2; 3; 4) by giving a definition of frames 
in terms of quasi-frames which is essentially equivalent to that given by Foster. 

A frame is an algebra F = (F, (0, 1, u, n, + , X)) of species (0, 0, 1, 1, 2, 2) 
such that (F, (0, 1, + , X)) is a quasi-frame and the following identities are 
satisfied : 

0U = 0n = 1, lu = ln = 0; 

4" = /" = g («e /0; 
g + r = (gu X ru)n (g, r £ F). 

The notions of framal-algebras, framal-in-the-small algebras of finitary species, 
etc. are defined in the same way as in §9. 

Combining Theorem 10.1 and a result of Foster (4, Theorem 11.1), we 
immediately get 

THEOREM 11.1. Let A be a framal-in-the-small (a strictly, homogeneously, or 
fundamentally framal-in-the-small) algebra of finitary species. Then the following 
classes of algebras are coextensive up to isomorphism: 

( 1 ) the class of bounded distributive extensions of A, 
(2) the class of bounded Boolean extensions of A, 
(3) the class of bounded normal-in-the-small (of strictly, homogeneously, or 

fundamentally nor mal-in-the-small) subdirect powers of A. 

It should be observed here that "normal-in-the-small" in our sense is 
identical with "normal" in Foster's sense (4). 
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