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The water surface response to subcritical turbulent flow over a backward-facing step
(BFS) is studied via high-resolution large-eddy simulation (LES). The LES method is
validated first using data of previously reported experiments. The LES-predicted water
surface is decomposed into different types of gravity waves as well as turbulence-driven
forced waves. Analysis of the LES data reveals the interplay between low-frequency
large-scale turbulence structures, which are the result of flow separation from the step and
reattachment behind the step, and the dynamics of the water surface. The water surface
deformation is mainly the result of freely propagating gravity waves and forced waves,
owing to turbulence in the form of rollers and/or hairpin vortices. Gravity waves with
zero group velocity define the characteristic spatial and temporal scales of the surface
deformations at higher frequencies, while large eddies determine their low-frequency
modulation. These deformations are mainly confined in lateral bands that propagate
downstream following the advection of the near-surface streamwise vortices (rollers)
that are shed from the step. Steeper surface waves are observed in regions of negative
perturbation velocity gradient and down-welling, downstream of the larger rollers, and are
associated with thin isolated regions of high vorticity near the surface. The investigation
of such a complex flow has shown that the decomposition of the water surface fluctuations
into its different physical components may be used to identify the dynamics of the
underlying flow structure.
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1. Introduction

Understanding the physics linking water surface behaviour and underlying hydrodynamics
is important for numerous environmental and engineering applications such as gas and
heat transfer across a free surface boundary and non-contact flow monitoring. The
interaction between a water surface and the turbulent flow underneath is complex,
involving a number of processes. On the one hand, it has been widely acknowledged that
the water surface of a turbulent channel flow over a rough bed deforms in response to
non-uniform and unsteady momentum transport and resonance processes within the flow
beneath the surface. On the other hand, large-scale vertical fluid motions are flattened and
redistributed to streamwise and lateral motions when approaching the water surface (Guo
& Shen 2010).

As discussed by Brocchini & Peregrine (2001), the interaction between a turbulent
flow and the water surface is known to produce a variety of water surface deformation
patterns, which can be the direct local manifestation of near-surface coherent turbulent
structures (e.g. vortex dimples, scars, boils) or the result of resonances or instabilities,
which selectively amplify certain periodic modes (e.g. gravity waves). The boundaries
between these two processes are not well defined. For instance, Teixeira & Belcher
(2006) showed numerically that turbulent pressure fluctuations can excite quasi-periodic
forced deformations, which can transition to gravity waves when the forcing ceases or
alternatively decays. Gravity waves are known to occur at the margins of turbulent boils
(Longuet-Higgins 1996), but water surface waves can also distort and modify turbulence
(e.g. Teixeira & Belcher 2002; Guo & Shen 2013).

Experimental studies of turbulent open channel flows have shown the simultaneous
presence of gravity waves and other non-dispersive surface deformations that propagate
at a speed close to the speed of the flow near the water surface (Savelsberg & van de
Water 2009; Dolcetti et al. 2016; Dolcetti & García Nava 2019). The presence of multiple
types of surface deformations, including dispersive waves with different velocity and
direction of propagation, the possibility of interactions among different scales, and the
local modification of turbulent structures near the water surface, may all be reasons for the
difficulty in providing a clear description of the interaction between turbulence and water
surface deformations for all flow conditions.

Considering the complexity and expense of eddy-resolving numerical simulations of
open-channel flows, the vast majority of these have employed a prescribed water level
together with a free-slip boundary condition (i.e. rigid lid approximation) to represent
the water surface. The surface-elevation-gradient terms in the momentum equations for
free-surface flows are replaced by pressure gradients in this approximation, so the dynamic
effects of water surface variations are properly accounted for. Such an approximation
has been proved valid by several studies (Kara et al. 2015b; McSherry, Chua & Stoesser
2017) and to be applicable to open channel flows with low Froude numbers and generally
very small surface deviations. These studies have provided significant insights into
open-channel flows in which wall-generated turbulence dominate the turbulence statistics.
Only few eddy-resolving numerical studies of open-channel flow focused on deformable
free surfaces. Shen & Yue (2001) used both direct numerical simulation (DNS) and
large-eddy simulation (LES) to investigate the interactions between a turbulent shear flow
and free surface at low Froude numbers. Comparisons between DNS and LES show that
closer to the free surface, less energy is transferred from grid scale to subgrid-scale, which
is associated with vertical motions approaching zero at the water surface and thus the
highly anisotropic nature of the flow at the water surface. Shi, Thomas & Williams (2000)
performed LES of open channel flow at Froude (Fr) and Reynolds (Re) numbers of
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Water surface deformation BFS

Fr = 0.66 and Re = 20 800, showing that the mean turbulence kinetic energy increases
when the flow approaches the water surface. Energy from vertical velocity components is
mostly redistributed to the spanwise component.

Apart from open-channel flows over smooth beds, fewer numerical or experimental
studies focused on the link between water surface deformation and the flow structures
generated by bed features. Xie, Lin & Falconer (2014) performed open-channel flow
simulations over a two-dimensional (2-D) dune using LES. The predicted water
surface showed the steepest slope above the recirculation region, where substantial
flow deceleration takes place and where the minimum water surface fluctuations were
observed. McSherry, Stoesser & Chua (2018) performed LES of free-surface flow over
square bars at varying spacings and relative submergences. Their results exhibited
visible standing waves in the large bar-spacing cases, whilst the water surface hardly
deformed in the small-spacing cases. In their experiments, Mandel et al. (2017, 2019)
measured the surface deformations induced by a submerged canopy, inferring a link
between surface slope distributions and the spanwise vortices generated at the shear
layer, while Gakhar, Koseff & Ouellette (2020) demonstrated the diversity of surface
patterns originating above different types of bottom features, such as canopy, dunes or
spheres.

Although the mechanism for boils (i.e. surface-renewal eddies) produced by flow
separation downstream of a bedform has been demonstrated by previous studies (Jackson
1976; Muraro et al. 2021), to the authors’ best knowledge, there are few numerical
studies focused on the interrelation between surface excitation and the form-induced
large sub-surface turbulence scales. Free-surface flows experiencing a sudden geometric
expansion remain of fundamental research interest due to the complex hydrodynamics
featuring flow separation and reattachment processes. Similar open channel flows to a
backward-facing step flow are ubiquitous in nature, for example, flows over dunes or over
natural beds with depth-scale geomorphological features such as in step-pool systems
or over engineered structures such as broad-crested weirs. Extensive experimental and
numerical research has been conducted to examine different aspects of backward-facing
step flows, such as skin-friction (Jovic & Driver 1995), expansion ratio (Adams & Johnston
1988; Ötügen 1991), Reynolds number effects (Friedrich & Arnal 1990; Schram, Rambaud
& Riethmuller 2004; Nadge & Govardhan 2014), as well as vortex shedding and shear
layer flapping (Eaton 1980; Hu, Wang & Fu 2016). Nevertheless, understanding of the
interaction between step-generated flow structures and free-surface dynamics is currently
limited. In addition to the evolution of turbulent structures, studies have demonstrated that
even a small variation of free-surface elevation can noticeably change the pressure level
and distribution within a backward-facing step flow (Nakagawa & Nezu 1987). Therefore,
an explicit numerical model of backward-facing step flow with free-surface capturing is
needed to better understand the processes of how the shear layer turbulence is modulated
in response to the dynamics of the water surface.

This paper reports on large-eddy simulations of subcritical open-channel flow over a
backward-facing step, a 2-D geometry which creates a complex three-dimensional (3-D)
unsteady flow that contains significant turbulence-generated structures. The objectives
of the study are to visualize and quantify how step-generated flow separation and
reattachment (and the turbulence structures evolving from that motion) contribute to
deformation of the water surface, to classify the water surface deformation and to provide
insights into the physical mechanisms causing it and any interactions with the underlying
flow.
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2. Methodology

2.1. Large-eddy simulation
The open-source large-eddy simulation code Hydro3D is employed to simulate
open-channel flow over a backward-facing step. The code has been validated and applied to
a number of open-channel flow applications, e.g. Nikora et al. (2019), Stoesser, McSherry
& Fraga (2015), Ouro & Stoesser (2019) and Chua et al. (2019). The code solves the
spatially filtered Navier–Stokes equations in an Eulerian framework:

∇ · u = 0, (2.1)

∂u
∂t

= − 1
ρ

∇p − u · ∇u + ν∇2u − ∇τ + f + g, (2.2)

where u denotes the filtered resolved velocity field, p denotes the pressure, ν is the
kinematic viscosity, f represents the volume force from the immersed boundary method
used to represent the effect of the step and g is the gravitational acceleration. The sub-grid
scale stress tensor, τ , results from unresolved small-scale fluctuations, and is approximated
by the wall-adapting local eddy-viscosity (WALE) model (Nicoud & Ducros 1999) for the
case presented in this paper. Hydro3D is based on finite differences with staggered storage
of 3-D velocity components and central storage of pressure on Cartesian grids.

The governing equations (2.1) and (2.2) are advanced in time by the fractional-step
method (Chorin 1968). In the predictor step, convection and diffusion terms are solved via
an explicit three-step Runge–Kutta predictor. Fourth- and second-order central difference
schemes are used to approximate convective and diffusive terms, respectively. In the
corrector step, the pressure and a divergence-free velocity field are obtained by solving the
Poisson equation via a multigrid iteration scheme (Cevheri, McSherry & Stoesser 2016).

The free surface is captured using the level set method (LSM) proposed by Osher &
Sethian (1988). The LSM introduces a level set signed distance function φ:

φ(x, t) < 0 if x ∈ Ωgas, (2.3a)

φ(x, t) = 0 if x ∈ Γ, (2.3b)

φ(x, t) > 0 if x ∈ Ωliquid, (2.3c)

where Ωgas and Ωliquid represent air or fluid phases, respectively, and Γ denotes the
interface. The movement of the interface is expressed in a pure advection equation of
the following form:

∂φ

∂t
+ u · ∇φ = 0. (2.4)

A multi-phase transition zone is accomplished via a Heaviside function to handle the
numerical instabilities resulting from the density and viscosity discontinuities across the
interface. In addition, the re-initialization technique proposed by Sussman, Smereka &
Osher (1994) is employed to maintain |∇φ| = 1 as time proceeds. A fifth-order weighted
essentially non-oscillatory (WENO) scheme is chosen to discretize (2.4) to ensure stability
and minimize numerical dissipation for this pure advection equation. The validity of the
LSM in the current code has been shown previously for various applications including
open-channel flow over cubes and square bars (McSherry et al. 2017, 2018), and for
open-channel flows past bridge abutments (Kara et al. 2015b; Kara, Stoesser & Sturm
2015a).

Spatial-decomposition-based standard message passing interface (MPI) is used to
accomplish the communications between pre-allocated computational subdomains.
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Figure 1. Sketch of the computational domain.

Such a technique is necessary to manage and balance the computational load to provide
sufficiently fine grids in LES (Ouro et al. 2019).

Figure 1 shows the flow domain for the large-eddy simulation. In the simulation,
the downstream water depth is three times the step height h, and the upstream water
depth is 2h leading to an expansion ratio Er = h2/h1 = 1.5, where h2/h1 is the
downstream-depth-to-upstream-depth ratio. The flow has a moderate Reynolds number
(based on step height and upstream mean velocity) of Re = 4380 and the Froude number
(based on downstream mean velocity and water depth) is Fr = 0.19. The computational
domain consists of a streamwise length of Lx = 30h, which includes a length 8h upstream
to reduce any potential inlet artefacts, and a section of 22h downstream of the step
to ensure full flow recovery. The spanwise width of the domain is Ly = 9h, which is
confirmed by several preliminary tests to be wide enough to not lock-in spanwise vortices
or surface waves as a result of a lateral periodic boundary condition. The wall-normal
height of the domain is Lz = 4h which includes the air phase above the water. No-slip
boundary conditions are applied at the channel bed and step surfaces. A realistic inlet
boundary is achieved by providing instantaneous velocity data from a fully developed
precursor channel flow with equivalent grid and temporal resolution at the domain inlet.
The precursor simulation is validated with data of the direct numerical simulation of
turbulent channel flow by Moser, Kim & Mansour (1999). For brevity, this is not shown
here but can be found in Cevheri et al. (2016). Aider, Danet & Lesieur (2007) examined
different inlet conditions for backward-facing step flow. One condition is to prescribe a
mean turbulent profile perturbed by white noise while the second condition is the same as
the one used in this study. Their results demonstrate the adequacy of this treatment and the
necessity of imposing realistic time-dependent inlet conditions.

The computational domain is discretized using a uniform grid of 480 × 144 × 128
(= 8.8 × 106) points in the streamwise, spanwise and wall-normal directions, and the
grid has an aspect ratio of 2 : 2 : 1. The maximum near-wall grid spacing, 	z+

max, which
is found in the region of the fully recovered boundary layer downstream of the step, is
approximately 3.5. The time step in LES is fixed at 0.00243h/Umax, where Umax is the
maximum streamwise velocity observed at location x/h = −1 and z/h = +2.8. Collecting
of instantaneous flow quantities starts after 1123h/Umax has elapsed (i.e. 25 flow through
periods), and continues for a duration of 476h/Umax (i.e. more than 10 further flow
through periods) to ensure that the turbulence statistics are well converged. The data set of

966 A18-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.350


Q. Luo, G. Dolcetti, T. Stoesser and S. Tait

instantaneous quantities for subsequent analysis is extracted from x/h = −1 to x/h = 20,
with spatial resolution of 	x = 0.125h, 	y = 0.125h, 	z = 0.0625h and at a time interval
	t = 0.06075h/Umax. Only simulation results of the water phase are presented in the
following sections.

2.2. Water surface dynamics
The interaction between the turbulent flow and the water surface involves a multitude of
scales and multiple nonlinear processes that can be difficult to identify. The approach
followed here is to decompose the water surface deformation (with respect to the
time-averaged profile) into various types of waves according to their dispersion or velocity
of propagation.

Surface deformations induced locally by rising turbulent eddies are believed to travel
at the same speed as the forcing, following the eddy that advects downstream. Assuming
that only turbulent structures close to the water surface are able to cause a significant
deformation, forced deformations should propagate approximately at the surface velocity
U0 = U(z = d). Applying a Fourier decomposition to the surface fluctuations, the
non-dimensional frequency of the terms with wavenumber vector k (where |k| = k =
2π/λ and λ is the wavelength) would be

h
Umax

ΩF(k) = (kh) · U0

Umax
, (2.5)

as demonstrated experimentally by Savelsberg & van de Water (2009) and Dolcetti et al.
(2016), where f = ΩF(k)/2π is a frequency in Hz.

Gravity waves propagate relative to the flow velocity, potentially in all directions.
The calculation of the speed of gravity waves in a vertically sheared viscous flow with
a variation in the channel cross-section is not trivial, and is limited to circumstances
of gradually varying water depths (e.g. Li & Ellingsen 2019). For the purposes of
the interpretation of LES results in this study, it is deemed sufficient to use gravity
wave equations derived for an inviscid and irrotational flow. Accordingly, the speed of
propagation of a wave relative to the flow velocity (also called the intrinsic wave speed) is

ci =
√

g
k

tanh(kd). (2.6)

In a fixed frame of reference, the frequency of water surface fluctuations due to a gravity
wave with wavenumber vector k that propagates over a flow with average surface velocity
U0 is f = Ω±(k)/2π, where

h
Umax

Ω±(k) = (kh) · U0

Umax
± kh

ci

Umax
= kh

[
k · U0

kUmax
± 1

Fmax

√
d
h

tanh(kd)

kd

]
, (2.7)

where Fmax = Umax/
√

gh (Fmax = 0.5486 in this work) is the maximum Froude number
based on the maximum average flow velocity and the step height. Equations (2.5) and
2.7 are represented in figure 2 in grey. The two signs of (2.7) identify two types of
gravity waves, which are denoted GW− and GW+, respectively. GW+ waves can also
be separated into two groups: GW+d waves with a positive streamwise wavenumber
component kx > 0, which propagate downstream; and GW+u waves with kx < 0, which
propagate upstream.

The contribution of each type of water surface deformation can be identified by filtering
the water surface signal in the frequency-wavenumber space. The filtering is performed
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Figure 2. Decomposition of the frequency-wavenumber spectrum of the water surface fluctuation. The grey
lines represent the dispersion relation of gravity waves and of forced water surface deformations. The dashed
black lines identify the boundaries of the different types of waves.

by means of an inverse Fourier transform in space and in time, applied to portions of the
complex surface spectrum.

The following types of surface deformations are identified:

(i) low-frequency fluctuations, including all terms with

fh/Umax < 0.051; (2.8)

(ii) forced surface deformations, including all terms with

(Ω−(k) + ΩF(k))/4π < f < (Ω+(k) + ΩF(k))/4π; (2.9)

(iii) GW− gravity waves, with

Ω−(k)/2π + (Ω−(k) − ΩF(k))/4π < f < (Ω−(k) + ΩF(k))/4π; (2.10)

(iv) GW+u gravity waves, with

(Ω+(k) + ΩF(k))/4π < f < Ω+(k)/2π + (Ω+(k) − ΩF(k))/4π, kxh < 0;
(2.11)

(v) GW+d gravity waves, with

(Ω+(k) + ΩF(k))/4π < f < Ω+(k)/2π + (Ω+(k) − ΩF(k))/4π, kxh > 0.

(2.12)

The corresponding areas of the streamwise frequency-wavenumber spectra are displayed
in figure 2.

The non-dimensionalized group velocity of gravity waves (i.e. the velocity of the
‘envelope’, or of a packet of waves) is

cg

Umax
= ∇kΩ±

Umax
= U0(x)

Umax
± 1

2Fmax

√
d
h

tanh(kd)

kd

[
1 + 2kd

sinh(2kd)

]
k
k
. (2.13)

For k ‖ U0, the condition cg = 0 corresponds to a relative maximum of Ω±(kx), which
can be seen for kx < 0 in figure 2. It indicates a group that is locked in space. In the short
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waves limit kd � 1, this is satisfied by a wave with wavenumber kg, equal to

kgh ≈ 1
4F2

max

U2
max

U2
0

. (2.14)

A group of waves with cg = 0 remains fixed at a certain location, however, the crests of
each wave within the group keep propagating, with the frequency

fgh
Umax

= h
Umax

|Ω−(kgh)|
2π

≈ 1
8πF2

max

Umax

U0
, (2.15)

which is inversely proportional to the local value of the surface velocity U0.
Stationary waves, however, satisfy the condition Ω±(k) = 0. Considering only waves

with the front perpendicular to the step, their wavenumber ks in the short waves limit is

ksh ≈ 1
F2

max

U2
max

U2
0

= 4kgh. (2.16)

Surface tension effects are not accounted for in the simulations. These effects are
expected to become significant at Bond numbers B < 1, where B = ρg/k2γ , ρ is the
water density, g is the acceleration due to gravity and γ is the surface tension coefficient,
i.e. at wavenumbers k > 367 rad m−1 (kh > 7.3). Most surface features observed in this
study have a wavenumber smaller than kh = 3 (B = 6), with the dominant waves with
zero-group velocity having kgh ≤ 1.8 (B ≥ 17). These values suggest that the inclusion
of surface tension effects would not significantly modify the simulation results used to
investigate the behaviour of the water surface in this study.

2.3. Validation of the LES
The large-eddy simulation method is validated using laboratory data from Nakagawa &
Nezu (1987) to confirm the suitability of the selected discretization schemes, the mesh
size, subgrid-scale model as well as boundary conditions. Case ST1 of Nakagawa &
Nezu (1987) is selected for validation of the turbulence statistics and of the time-averaged
water surface elevation. In the ST1 experiment, a h = 2 cm backward-facing step was
placed 6.8 m downstream of an 8 m long, 30 cm wide rectangular channel followed by a
long outlet channel downstream of the step. Velocity profiles were measured at several
downstream locations along the channel centreline using a laser Doppler anemometry
(LDA) system and the water surface elevation was measured by a moving manual point
gauge.

Profiles of LES-computed time- and spanwise-averaged streamwise velocity, streamwise
and wall-normal velocity fluctuations, as well as the Reynolds shear stresses at selected
centreline locations are plotted in figure 3. Overall, the LES results show convincing
agreement with measured data (open circles) for time-averaged streamwise velocities
at a range of locations downstream of the step. Flow acceleration above and reverse
flow inside the recirculation zone is predicted particularly accurately, as seen from the
streamwise velocity distributions, and so is the recovering boundary layer downstream
of the time-averaged reattachment point. Long dashed lines in figure 3 denote the
time- and spanwise-averaged dividing streamline (i.e.

∫ h2
0 〈u〉 dz = 0). The reattachment

length is therefore estimated to be 6.15h, which agrees well with the experimental
data. Kuehn (1980), Nadge & Govardhan (2014) and Nakagawa & Nezu (1987)
have demonstrated that the reattachment length increases with a decrease in relative

966 A18-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.350


Water surface deformation BFS

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10 11–1

0 1 2 3 4 5 6 7 8 9 10 11–1

0 1 2 3 4 5 6 7 8 9 10 11–1

0 1 2 3 4 5 6 7 8 9 10 11–1

x/h

z/h

z/h

z/h

z/h

1.0

0.2

0.2

0.2

Step

Step

Step

Step

〈u〉/Umax

〈u′2〉0.5/Umax

〈w′2〉0.5/Umax

〈–u′w′〉/U2
max(×10)

(a)

(b)

(c)

(d )

Figure 3. Profiles of the time- and spanwise-averaged streamwise velocity, streamwise and wall-normal
velocity fluctuations, as well as Reynolds shear stresses at various locations along the streamwise direction.
Open symbols, experimental data from Nakagawa & Nezu (1987) (circles) and Jovic & Driver (1995)
(triangles); solid lines, LES data corresponding to the experiment of Nakagawa & Nezu (1987); dashed lines,
LES time- and spanwise-averaged dividing streamline; dash–dotted lines, LES corresponding to the experiment
of Jovic & Driver (1995).

submergence (downstream-depth-to-step-height ratio, h2/h). In addition, De Brederode
(1972) and Nadge & Govardhan (2014) suggested that the channel-width-to-step-height
ratio, Ar, has an impact on the reattachment length. It is noteworthy here that the Ar is 15
in the experiment and infinite in the LES, inferring that the reattachment length observed
in the experiment or the simulated value in LES is affected by the secondary structures
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generated by the sidewalls (De Brederode 1972). Jovic & Driver (1995) demonstrated
that the reattachment length increases with an increasing step height Reynolds number
while keeping the boundary-layer-thickness-to-step-height ratio unchanged, where the
Ar is sufficiently large in all their experiments to ensure essentially two-dimensionality
in the separated region. Furthermore, as the upstream boundary layer is fully turbulent
in the current case, the reattachment length is not considered to be affected by the
upstream boundary layer thickness (Adams & Johnston 1988). Figure 3 presents profiles of
streamwise and wall-normal velocity fluctuations and Reynolds shear stresses normalized
by Umax at various locations downstream of the step. Overall, the agreement between
the LES and experimental observations regarding the normal stresses is quite satisfying
(except for 〈u〉′ very close to the water surface). However, the LES results overpredict
the Reynolds shear stress from x/h = 10 onwards. These discrepancies are most probably
due to the presence of secondary currents induced by the sidewalls in the experiment. As
described by Nezu & Nakagawa (2017) and quantified by Nikora et al. (2019), secondary
currents can contribute significantly to streamwise momentum, thereby reducing the
contribution of the turbulent Reynolds shear stress to the total stress. Secondary currents
are non-negligible in narrow open channel flows where the channel-width-to-water-depth
ratio is less than 6. The channel-width-to-downstream-water-depth ratio in the experiment
is approximately 5, whereas the ratio is infinity in LES due to the use of periodic boundary
conditions in the spanwise direction. The use of a periodic boundary condition in the
spanwise direction ensures that water surface deformations are caused only by the step. To
support the aforementioned statement that the Reynolds stress discrepancies are primarily
due to the sidewall effect, an additional backward-facing step flow simulation is performed.
The results of this LES are also plotted in figure 3(d) together with the experimental data
of the wind tunnel experiment conducted by Jovic & Driver (1995). In the experiment
of Jovic & Driver (1995), the channel-width-to-step-height ratio was twice that of the
experiment of Nakagawa & Nezu (1987), hence secondary currents are expected to be less
significant. As can be seen, the LES indeed matches the measured Reynolds shear stress
profiles quite accurately. Regardless of the aspect ratio, the turbulent fluctuations and shear
stresses are markedly higher above the recirculation zone, e.g. at x = 1h and z ≈ 1h, and
display a distinct maximum around the dividing streamline. The peaks in the profiles decay
only slowly in the downstream direction and indicate significant and persistent shear-layer
turbulence.

Figure 4 presents computed and measured profiles of the time-averaged water surface
along the streamwise direction as well as the theoretical profile proposed by Nakagawa
& Nezu (1987). To the best of the authors’ knowledge, the study of Nakagawa & Nezu
(1987) is the only experimental open-channel backward-facing step flow study in which
velocity data and the surface elevation were measured. The measured streamwise increase
in time-averaged water depth from upstream to downstream of the step is modest at
approximately 1 mm. Figure 4 illustrates that the LES successfully captures the overall
increase in time-averaged water depth in the downstream direction. The LES-predicted
water surface profile matches with the theoretical profile quite well; however, the match
just downstream of the step is not as good. Manual point gauges do not provide a time
series of the water surface elevation, the estimation of the time-averaged elevation by
Nakagawa & Nezu (1987) could have been affected by observational bias that scales
with the water waves’ amplitudes, and this may explain the discrepancies observed in
the time-averaged water levels just downstream of the backward step. This argument is
supported by the contemporaneous comments of Nakagawa & Nezu (1987) stating that
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Figure 4. Time- and spanwise-averaged water surface elevation as a function of streamwise distance from the
step. The theoretical line (dotted) is derived from the energy gradient as demonstrated by Nakagawa & Nezu
(1987).
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Figure 5. Frequency-wavenumber spectra of the water surface in the (a) streamwise and (b) spanwise direction
(in dB). Dashed lines, dispersion relation of gravity waves, (2.7); dash–dotted line, frequency of forced surface
deformations with speed U0, (2.5).

‘Although the accuracy of the point gauge was 1/20 mm it was very difficult to accurately
measure the elevation of the free surface because of the fluctuations of water waves.’

3. Water surface deformation characteristics

Figure 5 shows the frequency-wavenumber power spectral density (PSD) of the water
surface fluctuations downstream of the step. The spectrum is calculated for intervals of
121.5h/Umax duration, with a Hann window in time and with 50 % overlap, resulting
in six degrees of freedom. The quantities shown in figure 5(a,b) are plotted for the two
cross-sections with ky = 0 and kx = 0, corresponding to spectra in the streamwise and in
the spanwise direction, respectively. The large values of the spectra at kx = ky = 0 in both
figures are due to the definition of surface fluctuations, which is based on removal of the
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Figure 6. Streamwise variation of the frequency PSD spectrum of the water surface elevation (in dB). Dashed
line, fh/Umax = 0.05; dash–dotted line, fh/Umax = 0.1; dotted line, gravity waves with zero group-velocity,
(2.15).

temporal average at each location (rather than of the spatial average at each time step), and
to the non-periodicity of the water surface elevation in the streamwise direction.

The dashed lines represent the dispersion relation of gravity waves, (2.7), and are
calculated based on the streamwise averaged surface velocity 〈U0〉 = 0.823Umax. Gravity
waves propagating in all directions are observed. The four types of waves (GW−, GW+u,
GW+d and forced deformations) can be identified by comparison of figure 5(a) with
figure 2. Both lines in figure 5(b) correspond to GW+ waves which are propagating along
the spanwise direction with kx = 0. Another large peak of the streamwise spectrum in
figure 5(a) is found along a horizontal line with frequency fh/Umax ≈ 0.05, with broad
wavenumber content.

Figure 6 shows how the spanwise-averaged frequency PSD of the surface fluctuations
calculated in time vary along the streamwise direction. The spectral density distributions
are characterized by a broadband background and three peaks. The background decreases
rapidly with frequency and is almost independent of the location. The first two peaks occur
at a frequency of fh/Umax ≈ 0.05 and at its first harmonic, fh/Umax = 0.1. The peaks
disappear briefly at x/h ≈ 4 and at x/h ≈ 10. The frequency of the third peak, instead,
increases along x proportionally to 1/U0(x), matching well with the frequency fgh/Umax of
the waves with a stationary wave group (dotted line in figure 6) calculated as a function of
the time-averaged local surface velocity U0(x) according to (2.15). The apparent deviation
from (2.15) observed at x/h ≥ 11 can be explained considering the range of variability of
U0 in time.

The water surface fluctuations are subsequently decomposed into the types of waves
proposed in § 2.2 by means of an inverse Fourier transform applied to portions of the
complex frequency-wavenumber spectrum identified according to figure 2. The original
water surface deformation together with its decomposed constituents at an arbitrary
instant in time are presented in figure 7. In accordance with the frequency spectra shown
in figure 6, low-frequency fluctuations (figure 7b) are dominant. They correspond to
quasi-one-dimensional large-scale depth variations along the streamwise direction, with
a strong periodicity in time. Other constituents are smaller in amplitude, therefore they
are shown with a different scale in figure 7(c– f ). All constituents exhibit alternating
bands aligned along the transverse direction, where the water surface appears rougher and
dominated by smaller scales of deformation (e.g. at 6 < x/h < 9 and at 15 < x/h < 18 in
figure 7), separated by relatively smooth regions (9 < x/h < 14 in figure 7). The rougher
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Figure 7. Decomposed instantaneous fluctuation of the water surface relative to the time-averaged surface
shape at an instant in time, normalized by h: (a) unfiltered water surface elevation; (b) low-frequency surface
fluctuations; (c) forced surface fluctuations; (d) GW− gravity waves; (e) GW+u gravity waves; ( f ) GW+d
gravity waves. Arrows indicate the spanwise-median streamwise position of the instantaneous points of
maximum |∂ζ ′/∂x|.

bands include the instantaneous maxima of the modulus of the water surface slope in the
streamwise direction, |∂ζ ′/∂x|, indicated by arrows. The upstream gravity-waves (GW−,
figure 7d and GW+u, figure 7e) appear to be mostly one-dimensional, and dominated by
waves the crests of which are perpendicular to the flow. GW+d (figure 7 f ) and forced
surface deformations (figure 7e) appear more isotropic. The forced deformations include
small approximately round depressions that also tend to align in bands but are stronger
further downstream of the step.

The spatial spectra of the surface fluctuations are evaluated by means of a Morlet
wavelet transform (Grossmann & Morlet 1984). The transform is applied in space, along
the streamwise direction, to identify the characteristic spatial scales, which can be linked
directly to the wavelength, allowing for a direct comparison with the Fourier spectrum
(Meyers, Kelly & O’Brien 1993). The approach has been used by various authors for the
analysis of surface wave data (e.g. Donelan, Drennan & Magnusson 1996; Massel 2001;
Dolcetti & García Nava 2019; Gakhar, Koseff & Ouellette 2022). Figure 8 presents the
time- and spanwise-averaged absolute wavelet spectra of each term of the decomposed
surface fluctuations. Low-frequency fluctuations (figure 8c) show a predominance of long
waves with kh ∼ 1, as well as a peak at the wavenumber of the stationary waves, ksh
(2.16, dotted line in figure 8). The other terms of the surface decomposition appear to
be linked to the wavenumber and frequency of the waves with cg = 0: kg and fg ((2.14)
and (2.15)). The wavelet spectrum of GW− waves (figure 8b) has a peak in the region
6 ≤ x/h ≤ 15, at a wavenumber of (1 + √

2)2kgh ≈ 6kgh. The wavelet spectra of GW+u
waves (figure 8d) and GW+d waves (figure 8 f ) are dominated by longer waves, with
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Figure 8. Average spatial wavelet spectrum of the decomposed water surface fluctuation along the streamwise
direction: (a) unfiltered water surface elevation; (b) GW− gravity waves; (c) low-frequency surface
fluctuations; (d) GW+u gravity waves; (e) forced surface fluctuations; ( f ) GW+d gravity waves. Solid line,
kh = kgh (2.14); dashed line, kh = 2kgh; dash–dotted line, kh = (1 + √

2)2kgh; dotted line, kh = ksh = 4kgh
(2.16).

wavenumber ≈ kgh. Forced surface deformations (figure 8e) appear to be shorter and to
have a peak in the region 10 ≤ x/h ≤ 15, at the wavenumber kh ≈ 2kgh. According to (2.7)
and (2.5), these wavenumbers yield the frequencies Ω−((1 + √

2)2kgh)/2π = fg (GW−),
Ω+(−kgh)/2π = fg (GW+u), Ω+(kgh)/2π = 3fg (GW+d) and ΩF(2kgh)/2π = 2fg
(forced deformations).

Figure 9 summarizes the streamwise wavenumber and frequency coordinates of the
peaks observed in the wavelet spectra of the surface deformations (figure 8). As a possible
explanation for the appearance of these peaks, it is noted that GW+u and GW+d waves
with wavenumber kg can form a resonant triad with a forced wave with wavenumber 2kg
and frequency 2fg. Three waves with wavenumbers k1, k2 and k3, and with frequencies f1,
f2 and f3 are said to constitute a resonant triad when k1 ± k2 ± k3 = 0 and f1 ± f2 ± f3 = 0
(e.g. Phillips 1960). Here, the pair of GW+ waves and forced deformations satisfy

kg + kg − 2kg = 0, (3.1)

and

Ω+(kgh) − Ω+(−kgh) − ΩF(2kgh) = 3fg − fg − 2fg = 0, (3.2)

therefore exchange of energy among these waves is possible. An interaction between two
gravity waves with the same wavenumber modulus but different direction of propagation,
and a shorter non-dispersive disturbance, has been described by Zakharov & Shrira (1990),
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Figure 9. Coordinates of the peaks of the wavelet spectra of the surface deformations. The wavenumber
and frequency axis are non-dimensionalized based on the point of zero group velocity, (2.14) and (2.15),
respectively.

with the forced-wave replaced by a perturbation of a sheared flow at the critical layer.
The same mechanism was suggested to allow a transfer of energy between stationary
waves, turbulence and freely propagating gravity waves in turbulent open channel flows
over rough beds (Dolcetti & García Nava 2019), or between gravity waves and vorticity
waves (Drivas & Wunsch 2016) or internal waves (Thorpe 1966). Here, it is suggested that
the same mechanism allows the exchange of energy between a pair of counter-propagating
gravity waves and a forced surface deformation, specifically for a case where one of the
gravity waves has cg = 0.

Figure 10 presents the surface variance in the streamwise direction and demonstrates
how each constituent of the surface decomposition contributes to the water surface
deformation (figure 10a) and of its first- (figure 10c) and second-order streamwise
gradient (figure 10e). The lines in figure 10(b,d, f ) show the variance of each term of
the decomposition normalized by the variance of the unfiltered surface fluctuations. These
plots quantify the contributions of each constituent of the water surface variance along
x. The apparent strong effect of the normalization is due to relatively large variations of
the unfiltered variance in space. Close to the step, the variance of the surface elevation
fluctuations < ζ ′2 > /h2 (figure 10a,b) initially decreases with x/h, for x/h < 4. Then, it
has a first peak in the region between x/h = 4 and x/h = 10, which corresponds to the
region where the average depth gradient is larger (see figure 4). A second peak is found at
x/h ≈ 17. The variance of ζ ′ is dominated by the low-frequency terms, which contribute
to between 20 % and 80 % of the unfiltered variance. The second largest contribution is
due to GW+u waves, and it is between 10 % and 50 %. The variance of ζ ′

x (figure 10c),
instead, has a peak at x/h ≈ 10 and it shows a more balanced contribution from the
different terms of the surface decomposition (figure 10d). Low-frequency fluctuations,
GW−, and GW+u terms are larger in the region between x/h = 3 and x/h = 15, while
forced fluctuations are larger between x/h = 10 and x/h = 20. As a result, GW+u terms
are predominant (between 30 % and 50 %) for x/h < 11, while the contribution of forced
fluctuations dominates the region further downstream. The variance of the second spatial
derivative ζ ′

xx represents the effect of the shortest scales of the water surface. Its spatial
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Figure 10. Streamwise distribution of the variance of the water surface fluctuations. Each line represents a
different constituent of the water surface deformation. (a,c,e) Non-dimensionalized variance. (b,d, f ) Variance
of the filtered surface normalized with the variance of the unfiltered surface. (a,b) ζ ′; (c,d) ζ ′

x; (e, f ) ζ ′
xx.

distribution (figure 10e) has a marked peak at x/h = 13, which is caused mostly by the
contribution of forced fluctuations and GW− terms (figure 10 f ).

4. Statistics of the flow field

The average PSD of the streamwise (a–d), spanwise (e–h) and wall-normal (i–l) velocity
fluctuations at selected streamwise and wall-normal locations are presented in figure 11.
In many of the spectra of the streamwise and wall-normal velocity components, a peak
at the frequency fh/Umax = 0.05 is observed. This peak is followed by a power-function
decay of ∼f −5/3. The peak at fh/Umax = 0.05 is observed at z = h, just downstream of
the step. Inspecting the variation of the frequency spectra along the streamwise direction
at each z-level (not shown), it is found that the peak dominates in a region with length
≈ 13h along x, which is shifted downstream as the distance from the bed increases, from
3 ≤ x/h ≤ 16 at z/h = 0.5 to 5 ≤ x/h ≤ 18 at z/h = 2.69. This suggests the presence of a
large, energetic turbulence structure that is shed periodically at a low frequency from the
step and is subsequently being advected in the streamwise direction and towards the water
surface by the flow. The spectra of the spanwise velocity fluctuations do not exhibit such a
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Figure 11. Spanwise-averaged PSD of the velocity fluctuations at different streamwise locations and distance
from the bed: (a–d) streamwise velocity; (e–h) spanwise velocity; (i–l) wall-normal velocity. The colour scale
indicates the distance from the bed z/h. Each line has been shifted vertically by an amount equal to 10 × z/h (in
dB). The dash–dotted line is proportional to f −5/3. The black solid line in panels (i–l) represents the frequency
spectrum of the time-derivative of the water surface elevation, ζt.

distinct peak, it is rather weak, suggesting a quasi-2-D turbulence structures, owed to the
quasi-2-D geometry. The spectrum of the wall-normal velocities has an additional peak
at the harmonic fh/Umax = 0.1, while the spectrum of spanwise velocities has a peak at
a lower frequency, fh/Umax = 0.03. In figure 11(i–l), the spectrum of the time-derivative
of the water surface fluctuations, ζt, is also plotted. Expanding the kinematic boundary
condition at a distance ε + ζ below the water surface (e.g. Tsai 1998, (2.3)),

w ≈ ζt + (uζ )x + (vζ )y − wzε, (4.1)

therefore the spectra of ζt are expected to bear a similarity with those of w, at least within
a limited range of frequencies. The energy in ζt decays with ∼ f −5/3 in the frequency
range 0.2 < fh/Umax < 2. At higher frequencies for shorter waves, the expansion of the
boundary condition loses validity, the link between the spectra of the wall-normal velocity
and those of the surface gradient weakens, and the PSD of ζt decays faster. At lower
frequencies, a peak is observed at fh/Umax = 0.05, matching the frequency peak in the
velocity signal and at x/h = 20 a distinct secondary peak is found.
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Figure 12. Snapshots of the instantaneous vorticity magnitude at the centreline in spanwise direction.

Figure 12 presents contours of the instantaneous vorticity magnitude in the centreplane
at selected time steps together with the dividing streamline of the recirculation zone
behind the step. The plots reveal different phases of the recirculation zone: a compact
recirculation eddy (tUmax/h = 61 and tUmax/h = 82), its growth and maximum extent
(tUmax/h = 67 and tUmax/h = 88), and its breakdown with subsequent shedding of a
secondary vortex (tUmax/h = 73 and tUmax/h = 94). This process has been reported
previously by Hu et al. (2016). Levels of high vorticity are also found in the shear
layer around the dividing streamlines (e.g. at tUmax/h = 88) and link with the shear
layer’s flapping motion, e.g. tUmax/h = 94. The latter appears to cause the initiation of
additional elongated turbulent structures that stretch obliquely towards the water surface.
These structures, easily observable from the snapshot at tUmax/h = 82, may be so-called
kolk-boil vortices (Rodi, Constantinescu & Stoesser 2013), or could correspond to the legs
of hairpin vortices. In figure 12, they do not seem to be able to reach the water surface.
Instead, isolated patches of high vorticity very close to the surface (e.g. at x/h ≈ 5 and
at x/h ≈ 14 at tUmax/h = 82) appear to be disconnected from other high-vorticity regions
and limited to a thin sub-surface layer of depth ≤ 0.5h.

Cross-sections of the frequency-wavenumber spectra of velocity fluctuations on the
plane ky = 0 evaluated at selected x–y planes (z/h = 1, 2 and 2.69) are shown in figure 13.
These are calculated as in figure 5(a), with a Hann window to reduce spectral leakage due
to the non-periodicity along x. All spectra peak around the straight line that corresponds to
the advection frequency ΩF(k). The scatter around this line is significant, which indicates
substantial velocity variations either in time or in space. Compared with the line ΩF(k),
which is based on the mean flow velocity at the surface, the gradient of the line followed
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Figure 13. Cross-sections of the frequency-wavenumber PSD of the velocity fluctuations, at different
elevations. (a,d,g) Streamwise velocity; (b,e,h) spanwise velocity; (c, f,i) wall-normal velocity. (a–c)
z/h = 2.69; (d– f ) z/h = 2.00; (g–i) z/h = 1.00. The dashed lines indicate the theoretical dispersion relation
of gravity waves, (2.7). The dash–dotted line indicates the advection frequency ΩF/(2π) based on the average
surface velocity 〈U0〉, (2.5). The colour scale is in dB.

by the spectra is smaller at lower depths, because of the lower mean velocity near the bed.
A small portion of the spectra also lies along the expected dispersion relation of gravity
waves. The effect is seen more clearly in the spectra of the streamwise and wall-normal
velocity fluctuations, especially closer to the water surface (figure 13a,c), where both
GW+u and GW+d can be identified but also at z/h = 2 (figure 13d, f ), at a considerable
distance from the water surface level. These contributions represent a perturbation of the
flow field that is distinguished from turbulence and is instead linked with the fluctuation of
the water surface in accordance with an inviscid gravity wave theory. The relative amount
of spectral energy directly attributable to gravity waves is quantified by integrating the
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Figure 14. Relative energy contributions and power spectrum of the temporal coefficients ξ k of the kth POD
mode.

frequency-wavenumber PSD of the flow velocity fluctuations within the regions identified
in figure 2. Gravity waves are associated with 2 % and 6 % of the variance of the horizontal
and wall-normal velocity fluctuations, respectively, at z/h = 2.69.

5. Large-scale turbulence–water-surface interactions

5.1. Links between flow reattachment, large-scale structures and water surface
deformation

With the aim to reveal the flow structures containing the most energy and to visualize
the impact of the step-generated vortices on the water surface deformations, a set of
instantaneous flow fields are reconstructed by the method of snapshot proper orthogonal
decomposition (snapshot POD). The methodology of snapshot POD is provided in
Appendix A. The energy distribution amongst the 151 modes suggests that the first 20
modes capture more than 50 % of the turbulent kinetic energy of the flow, whilst the
first six modes capture more than 30 % of the total energy. Further investigation of
the corresponding flow patterns indicates that the first six modes are associated with
large-scale motions, whilst the first 20 modes reconstruct a flow field that includes
numerous small-scale motions. Therefore, velocities reconstructed from the first six modes
are presented. The power spectra of the temporal coefficient ξ k corresponding to the kth
(k = 1, 2, . . . , 6) mode from a x–z plane in the centreline of the spanwise direction are
given in figure 14(b–d). The streamwise components ξ k

u show a dominant frequency at
approximately fh/Umax = 0.05 for the first six modes. The same peaks are also found in
the first two modes of the wall-normal components ξ k

w, whilst they are barely visible in
the rest of the modes. This dominant frequency is absent in the spanwise component ξ k

v ,
underlining that the large-scale motions are predominantly two-dimensional.

The reconstructed velocities from the first six modes are used to determine the
instantaneous dividing streamline of the recirculation zone downstream of the step,
defined by the relation

∫ h2
0 u dz = 0. Figure 15 shows snapshots of POD-filtered velocity

fluctuation vectors and contours of the dividing streamline in the x–z centre plane
together with corresponding profiles of the three dominant constituents of the decomposed
water surface (forced deformations, GW− and GW+u). The instantaneous reattachment
location can be determined as the intersection between the dividing streamline and the
bed. In case of multiple recirculation regions (e.g. figure 15d) the most downstream
reattachment point is considered. The snapshots shown in figure 15 cover a period of
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Figure 15. Snapshots of the POD-filtered velocity fluctuation field and water surface fluctuations, in the
centreplane. Vectors indicate the streamwise and wall-normal velocity fluctuation. The solid light blue lines
show the dividing streamline. The black arrow indicates the point of flow reattachment. The three water surface
lines represent the exaggerated constituents of the water surface deformation. Red, GW− gravity waves; black,
turbulence-generated fluctuations; blue, GW+u gravity waves. The red arrows indicate the maxima of the water
surface slope fluctuation.

the dominant eddy, ≈ 20h/Umax. Three distinct regions downstream of the step can be
distinguished: a near region (0 ≤ x ≤ 5) occupied by the recirculation for most of the time;
an intermediate region (5 ≤ x ≤ 10) where the recirculation is present intermittently; and
a far region (x ≥ 10) without recirculation. These regions correspond to the three peaks
of the variance of the low-frequency surface deformations (figure 10a). The dominant
frequency of break-down of the recirculation zone takes place at a Strouhal number of
St = fh/Umax ≈ 0.05, which is comparable to the ones reported by Le, Moin & Kim (1997)
and Wee et al. (2004).

The cross-sections through the POD-filtered velocity field also show a succession of
horizontal vortices, with a streamwise spacing of approximately 9h, and with dimensions
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Figure 16. Time series of average streamwise locations of the point of flow reattachment behind the step
(blue circles) and maxima of the water surface slope as a function of distance from the step. The colour scale
indicates the average water surface slope at the maximum; right triangles indicate spanwise-averaged locations
of the centres of clockwise y-vorticity (rollers), while the left triangles indicate the clockwise rotating rollers.

comparable to the water depth (figure 15a at x/h = 4 and x/h = 13, and figure 15b at
x/h = 6 and x/h = 15). The vortices are advected downstream and can be tracked until
the end of the domain. The peaks of the absolute streamwise water surface slope |∂ζ/∂x|
(red arrows in figure 15) seem to move with the vortex, but they precede it by a distance of
between h and 2h. These peaks correspond to the rougher water surface bands observed in
figure 7, and they are due to a succession of narrow spatially localized groups of gravity
waves and forced surface deformations, with a group length of approximately 3h. Smooth
surface bands appear above large anti-clockwise vortices (e.g. figure 15c between x/h = 11
and x/h = 15), in regions of negative streamwise velocity fluctuation.

5.2. Surface deformation by large-scale turbulence structures
The POD-filtered streamwise and wall-normal instantaneous velocities were used to
identify vortex cores by matching regions of large vorticity in which components of the
instantaneous velocity change sign. Time series of average streamwise locations of the
core of each vortex are shown in figure 16, along with spanwise-averaged positions of the
location of flow reattachment point and the maxima of the absolute streamwise slope of
the water surface as a function of distance from the step. The reattachment locations and
the peaks of the surface slope show a clear periodicity with a period of 21.4h/Umax that
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Figure 17. Snapshots of (a–c) the POD-filtered streamwise velocity near the water surface and (d–l) the
decomposed water surface fluctuations, at various time steps. The dash–dotted lines indicate the median
streamwise position of the centre of the clockwise (yellow) and anti-clockwise (blue) y-vorticity rollers. (d– f )
GW+u gravity waves; (g–i) GW− gravity waves; ( j–l) turbulence-generated surface fluctuations.

matches well the peak frequency of the frequency spectra, fh/Umax = 0.05. The position
of the point of reattachment fluctuates between x/h ≈ 5 and x/h ≈ 10, while the maxima
of the water surface slope extend from x/h ≈ 5 to the end of the domain, with the peak
amplitude typically in the range of 7 ≤ x/h ≤ 15, in accordance with the distribution of
the slope variance shown in figure 10(c). Although low-frequency fluctuations have a
minor influence on the surface slope variance (see figure 10b), the maxima of the surface
slope seem to be modulated at the same frequency of the dominant flow structures. By
inspection, the water surface slope’s maxima are found between pairs of clockwise and
anti-clockwise vortices, generally one or two step heights downstream of the centre of the
clockwise vortex.

Figure 17 shows snapshots of the GW−, GW+ and forced water surface fluctuations,
and of the streamwise POD-filtered velocity fluctuations near the water surface (on the
horizontal plane at z = 2.69h). The median location of the centres of the clockwise
and anti-clockwise quasi-2-D vortices are also indicated by the blue (anti-clockwise
rotation) and yellow (clockwise rotation) lines. The water surface pattern correlates with
the distribution of the streamwise velocity, which in turn is related to the presence
of the spanwise rollers under the surface. GW− and GW+u waves are found slightly
downstream of the centre of the clockwise vortices. GW− waves appear in narrow
groups of 3–4 waves, with their front approximately parallel to the step (figure 17g–i).
The groups of GW+u waves have longer wavelength and typically comprise only a
crest and a trough (figure 17d– f ). They occur slightly upstream compared with the
GW− waves group, roughly occupying the region with positive downstream velocity
fluctuations (figure 17a–c) above the clockwise vortex. Forced water surface deformations,
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Figure 18. Space–time evolution of the water surface fluctuations along the centreline in the spanwise
direction. Each plot represents a different component of the decomposed water surface fluctuations. (a)
Unfiltered surface fluctuations; (b) low-frequency components; (c) forced water surface fluctuations; (d) GW−
gravity waves; (e) GW+u gravity waves; ( f ) GW+d gravity waves. The yellow dots indicate the instantaneous
position of the centre of the y-vorticity clockwise roller. The dotted lines exemplify the trajectory of points
that move at the depth- and spanwise-averaged velocity 〈U〉yzt (x). The colour scale is ζ ′/h. Note the different
scaling in panels (a,b).

however, are observed slightly downstream, between the clockwise and anti-clockwise
vortices (figure 17 j–l), and they have a stronger 3-D appearance. A similar banded
distribution of the water surface deformations linked to the presence of horizontal vortices
was observed by Mandel et al. (2017, 2019) for flows above a canopy. Mandel et al.
(2019) suggested that a peak in the streamwise distribution of the amplitude of surface
deformations accompanies a transition from 2-D to 3-D vortices. However, the lower
spatial resolution in their experiments did not allow them to distinguish between different
types of waves at scales smaller than those of the dominant vortices.

The temporal evolution of the various elements of the decomposed water surface
is shown in figure 18. Light and dark striations in figure 18 indicate the position of
wave crests and troughs at consecutive instants. Their slope corresponds to their phase
speed. The trajectory of points that move at the depth- and spanwise-averaged flow
velocity 〈U〉yzt (x) is shown for reference with dotted lines in figure 18. The speed of
the vortices is initially slow, then (for x/h ≥ 5) it approximates the depth-averaged flow
velocity. The passage of clockwise vortices in the region 2 ≤ x/h ≤ 10 is associated
with a low-frequency large-scale depression of the water surface elevation observed in
figure 18(b). Low-frequency surface deformations follow the vortex only up to x/h =
10, therefore they are associated with the periodic elongation and contraction of the
recirculation zone. GW− waves have a positive but slow (relative to the flow speed)
phase velocity, while GW+u waves have a negative phase velocity. The time series
of the unfiltered water surface deformations (figure 18a) reveal a discontinuous spatial
variation of the phase speed in the vicinity of the vortex location, which results in a
double-chevron pattern. Waves with negative velocity (GW+u) are found approximately
at the same location of the vortex, while waves with positive but slow velocity (GW−) are
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Figure 19. A schematic of the water surface response to the vortical structures in the flow as suggested by
the comparison of POD analysis and Fourier analysis results. The shaded areas indicate regions of elevated
vorticity.

located slightly downstream. Forced waves are bounded further downstream by the centre
of the next anti-clockwise vortex. In between the centres of the anti-clockwise vortices and
the following clockwise vortices, the surface seems to be dominated by GW+d waves.

6. Discussion

The observation of the shape and dynamic behaviour of the different constituents of
the water surface fluctuations, and the analysis of coherent turbulent structures by
means of the POD analysis, have highlighted two main features: (1) a clear linkage
between the characteristic temporal and spatial scales of the water surface fluctuations
and the frequency and wavelength of gravity waves with zero group velocity; and (2) a
correlation between a strong periodic spatial modulation of the water surface texture
and the periodic and spatially distributed horizontal vortices originating behind the step.
The latter is exemplified schematically in figure 19: the cyclic elongation and breaking
of the recirculation region behind the step is accompanied by the production of a pair
of counter-rotating horizontal vortices; elongated turbulent structures tilted towards the
water surface originate at the point of reattachment behind the step; bands of steep surface
deformations form on the downstream side of the clockwise vortex, in regions of negative
surface velocity gradient and of convergence of the streamwise velocity components;
these deformations are predominantly gravity waves in the region closer to the step and
predominantly forced waves further downstream; a thin region of stronger vorticity near
the water surface is also observed in the same regions.

The predominance of gravity waves with zero group velocity is predicted by a
simple model of gravity-capillary waves in a spatially decelerating flow proposed by
Longuet-Higgins (1996): considering a gravity wave with wavenumber k = kx and
frequency f that propagates in a flow with streamwise gradient ∂U0/∂x � 2πf , the
conservation of phase yields

f = k(x) [U0(x) ± ci(k(x))] /2π = f0 = const., (6.1)

which indicates how the wavenumber k changes in space as a function of the local surface
velocity U0(x). For given values of f0 and U0, and without surface tension effects, (6.1)
admits up to four solutions for the wavenumber k (two for GW+u waves, one for GW+d
waves and one for GW− waves). Assuming short waves, kd � 1, these are given by

k(x)h = 1
4F2

max

U2
max

U2
0(x)

[
1 ±

√
1 ± 8πf0U0(x)

g

]2

= kg(x)h

[
1 ±

√
1 ± f0

fg(x)

]2

, (6.2)
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where kg(x) and fg(x) are given by (2.13) and (2.14), and the ± sign within the square
root reflects the choice of Longuet-Higgins (1996) to consider only positive wavenumbers
based on the symmetrical form of the dispersion relation, f (k) = −f (−k). The two GW+u
waves solutions coincide when k = kg, which corresponds to cg(x) = 0. In this case,
assuming steady conditions and a constant velocity gradient, Longuet-Higgins (1996)
identified a singularity of the wave energy density. According to Longuet-Higgins (1996),
the singularity could be removed by including higher order terms in the surface elevation
expansion, but larger amplitudes of the wave density at the location where cg(x) = 0 would
still be expected.

To exemplify the role of the group velocity, consider an initial surface perturbation
(a wave group) with centre-frequency f0, such that minx(U0)/g ≤ 8πf0 ≤ maxx(U0)/g,
in a flow that decelerates in space along x. The wave group is initially infinitesimal in
amplitude, and it is located at a streamwise position x, where the flow velocity is U0(x).
The two GW+u solutions of (6.2) will correspond to two values of k, one with |k| ≤ kg
and one with |k| ≥ kg. The latter solution has cg ≥ 0, therefore the wave group will move
downstream to a region with a lower flow velocity. Since the frequency is conserved,
the wavenumber k will increase according to (6.2), therefore the waves will become
shorter. The group velocity will also vary, but it will remain > 0, and the perturbation
will remain infinitesimal while moving downstream without singularities. Instead, the
solution with |k| ≤ kg has cg ≤ 0, therefore the wave group will tend to move upstream,
towards a region with a higher flow velocity. As the wave group moves upstream, the
wavenumber modulus and the wave energy density increase, while the modulus of the
group velocity decreases. As a result, k becomes asymptotically close to kg while the group
velocity becomes close to zero, until the wave group effectively stops. The location where
cg = 0 depends on the initial wave frequency. Therefore, infinitesimal perturbations with
the same initial frequency will cluster at the same location, where they will approach a
singularity. Assuming perturbations with a broad spectrum of frequencies, the singularity
can be expected at all locations that admit a zero of the group velocity. However, without
considering the variations of the velocity field in time, these wave groups should remain
confined to a single location in space, which contrasts with the observations in figure 18(e)
where packets of waves are seen moving at a speed comparable to the speed of the flow.

In the case under investigation, the time-averaged flow velocity decreases in the region
3 ≤ x/h ≤ 17 downstream of the step. The streamwise velocity gradient at the surface
varies between 0.017Umax/h and 0.037Umax/h, with the higher value observed at x = 5h.
As shown in figure 17, the sheet of spanwise vortices that forms behind the step is
associated with bands of positive and negative streamwise velocity fluctuations near the
surface. These fluctuations combine with the decelerating mean velocity field to produce
a quasi-periodic negative-mean velocity gradient field that moves downstream at the
speed of the mean flow. Assuming that the frequency of the velocity fluctuations is
small compared with fg, the wave groups can be expected to follow the shifting velocity
distribution to maintain their wave group stationary. This could explain why waves in
which the group velocity should be zero are instead seen propagating downstream together
with the main vortex. These GW+u waves are observed downstream of the centre of
the clockwise vortices, where the flow deceleration is maximum, in agreement with this
interpretation.

According to Longuet-Higgins (1996), a singularity of the wave energy density can also
appear in an accelerating flow, in this case due to the accumulation of wave packets with
|k| > kg moving downstream towards regions of faster flow. However, the group velocity
of these wave packets is always less than the flow velocity, therefore they are not able
to follow the motion of the velocity field modulation produced with the spanwise vortex.
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This could explain why the regions of locally accelerated flow behind the centre of the
vortex appear relatively smooth. Despite the asymmetry of the surface corrugation with
respect to the centre of the vortex, the observed characteristics of the water surface seem
comparable to the model developed by Longuet-Higgins (1996) to explain the appearance
of kolk boils in rivers. The kolk boils were defined by Longuet-Higgins (1996) as smooth
planar regions of the surface surrounded by rings of short gravity-capillary waves and
sometimes small circular indentations caused by vertical vortices, where the smooth patch
corresponded to an area of upwelling and horizontal divergence near the surface. The
picture that emerges from the present work can be interpreted as a 2-D version of similar
processes, where the divergence and convergence of the flow near the surface are governed
by the presence of vortical structures (areas of high vorticity) that emerge and propagate
downstream of the step edge. This explains the observed link between the location and
movement of these structures and the behaviour of gravity waves at the surface.

In addition to gravity waves, however, the analysis presented here has also revealed
the presence of forced surface deformations that propagate at a speed comparable to the
speed of the flow. Like the gravity waves, these forced patterns are shown to occur slightly
downstream of the gravity waves, in between pairs of counter-rotating vortical structures.
The exact mechanism that produces these patterns is not clear. Patterns of forced waves
(Teixeira & Belcher 2006) could originate from the fluctuations of the turbulent pressure
field within the vortices and in the recirculation zone immediately downstream of the
step, and could then be interacting resonantly with freely propagating gravity waves as
in Zakharov & Shrira (1990). However, this mechanism would not explain why forced
waves are localized in regions of streamwise flow convergence and why their peak variance
occurs downstream relative to freely propagating gravity waves.

In fact, stronger surface deformations are observed in between clockwise and
anti-clockwise vortices, i.e. in regions of downdraft. This is in contrast to the hypothesis
of kolk boils that rise towards the water surface and deform it by upwelling (Jackson
1976). Instead, long surface indentations (scars) can form as a result of the interaction
of horizontal vortices with a free surface. As discussed by Sarpkaya (1996) and Shen
et al. (1999), as a vortex approaches the water surface, the horizontal vorticity changes
rapidly in the surface layer, the free surface is initially depressed and secondary surface
vorticity which is opposite in sign to the approaching vortex is produced. This process
may explain the isolated regions of high near-surface vorticity seen in figure 12. The
process can become more complex to visualize as the vortex further interacts with the free
surface, while beginning to lose coherence and break-up. Here, secondary whirls spiral out
of unstable horizontal vortices (Sarpkaya 1996), potentially merge with the disconnected
legs of hairpin vortices rising from the bed and connect to the water surface. The resulting
sheets of surface-connected vertical vortices contribute to the dissipation of gravity waves
and their replacement with streaks of quasi-circular surface indentations (‘daisy chains’,
Longuet-Higgins 1996). This description appears to be consistent with the observation of
figure 17(g–l), where the region in between the centre of a clockwise and a anti-clockwise
structure displays a chain of spot-like depressions of the water surface (vortex
dimples).

7. Conclusions

The method of large-eddy simulation was employed to simulate open-channel flow over a
backward-facing step. The simulations reproduced convincingly the spatial and temporal
dynamics of the flow and the deformation of the water surface. Experimental data in terms
of velocity and water level profiles from a previous laboratory experiment were used to
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validate the accuracy of the simulation. Frequency spectra of the velocity components
along the streamwise direction suggest the formation of a strong low-frequency eddy that
is periodically shed from the step and advected downstream and upwards to then interact
with the water surface. Frequency-wavenumber spectra of the velocity fluctuations also
highlighted the presence of weaker flow disturbances induced by surface gravity waves
below the water surface. Proper orthogonal decomposition of the velocity field confirmed
the same low-frequency behaviour and showed a clear periodicity in the streamwise
reattachment location as the strong low-frequency eddy is shed periodically following
elongation and breaking of the recirculation zone behind the step.

The water surface deformations were decomposed into different types of waves
depending on their velocity or dispersive behaviour. In this way, the dynamics of the
large-scale turbulent structures could be linked to the range of waves at different scales.
The water surface exhibits a regular distribution of narrow rougher bands aligned with
the transverse direction, following the advection of the low-frequency eddies. These bands
are confined between pairs of counter-rotating vortical structures in regions of converging
streamwise velocity perturbations and downdraft. Gravity waves are observed where the
local instantaneous flow deceleration is a maximum, which is linked to a singularity of the
wave energy density at the locations where the group velocity of gravity waves is zero. The
coherent turbulent structures generated by the step produce alternating streamwise velocity
fluctuations near the surface and this creates a periodic velocity gradient fluctuation
that advects these waves downstream. The intervening smoother regions reflect regions
of locally accelerating flow, where wave groups are dispersed. Turbulence-forced water
surface deformations that propagate at the same speed of the flow are also observed in
the same regions of negative streamwise divergence and negative vertical velocity. These
deformations may originate from the interaction of low-frequency eddies with the surface.
The presence of bands of quasi-circular small indentations (vortex dimples) on the water
surface further downstream suggests breaking of these eddies as their interaction with the
water surface develops.

The use of frequency-wavenumber spectra has allowed the decomposition of the
water surface dynamics into different types of surface waves. By simulating this
behaviour using the method of LES of flow over a backward-facing step, it has been
possible to clearly link the surface wave behaviour with the presence of fluctuating
low-frequency large-scale turbulent structures. This linkage shows the potential for
detailed hydrodynamic characterization of flows by an interpretation of water level time
series decomposed into gravity and forced surface deformations, which could potentially
be integrated in the future with machine learning techniques (e.g. Gakhar et al. 2020).
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Appendix A. Proper orthogonal decomposition

To perform the snapshot POD method, an M × M correlation matrix C was calculated
from the velocity fluctuation u′(xi, zk, tm) (taking the streamwise velocity fluctuation, for
example), where xi(i = 1, . . . , Nx) and zk(k = 1, . . . , Nz) are streamwise and wall-normal
coordinates, respectively; and tm is the time of the mth snapshot where m = 1, . . . , M:

Cmn =
Nz∑

k=1

Nx∑
i=1

u′(xi, zk, tm) · u′(xi, zk, tn) (A1)

then the eigenvalue was solved and the eigenvalues were sorted in descending order λ1 >

λ2 > · · ·λM:
Cυk = λkυk, (A2)

where υk is an eigenvector with length M corresponding to the λk. Subsequently, the
spatial modes were calculated:

Ψ k(xi, zk) = 1√
λk

M∑
m=1

υk
mu′(xi, zk, tm), (A3)

where υk
m is the m′th element of υk. The temporal coefficients ξ k(t) corresponding to the

k′th mode is then computed as:

ξ k(t) =
Nz∑

k=1

Nx∑
i=1

u′(xi, zk, t) · Ψ k(xi, zk). (A4)

Finally, a decomposed velocity field can be reconstructed from the first k′th modes:

u̇(xi, zk, t) = 〈u〉(xi, zk) +
K∑

k=1

ξ k(t)Ψ k(xi, zk). (A5)

Setting K = M, the instantaneous velocity field from the LES will be fully recovered.
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