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GROUPS WITH THE SUBNORMAL JOIN PROPERTY 

HOWARD SMITH 

1. Introduction and some preliminary results, A group G is said to have 
the subnormal join property (s.j.p.) if the join of two (and hence of finitely 
many) subnormal subgroups of G is always subnormal in G. Following 
Robinson [6], we shall denote the class of groups having this property by 
@. A particular subclass of @ is @, consisting of those groups G in which 
the join of two subnormals is again subnormal in G and has defect 
bounded in terms of the defects of the constituent subgroups (for a more 
precise definition see Section 7 of [6] ). 

In [16], Wielandt showed that groups which satisfy the maximal 
condition for subnormal subgroups have the s.j.p. Many further results on 
groups with the s.j.p. were proved in [6] and [7]. In Sections 2 and 3 of this 
paper, it will be shown that several of these results can be exhibited as 
corollaries of a few rather more general theorems on the classes @, @. At 
the same time, many new subclasses of @ and © are discovered. An 
example of a result in this area is Theorem 2.2, which states that an 
extension of a group having finite rank by a group in @ is again in @. 

Since the publication of Robinson's papers in 1965, some important 
theorems have appeared on both the derived series and lower central series 
of a join of subnormal subgroups ( [11], [15], [4] ) followed by [5] which 
utilises these results to give a sufficient condition for a join J of two 
subnormal subgroups of a group G to be subnormal in G, namely that JI J' 
has finite rank. In [13] and [17], this hypothesis is weakened somewhat. By 
using Roseblade's theorem and these more recent results we are able here 
to improve on several of the existing theorems on groups with the s.j.p. 

The following useful lemma, due to Lennox and Stonehewer and based 
on a result of P. Hall, is to date unpublished and a proof is therefore given 
here. 

LEMMA 1.1. Let H be a subgroup of the group G and suppose that there is 
an integer d such that, for every finitely generated subgroup FofH, there is a 
subgroup XofG with X <d G and F ^ X ^ H. Then H <d G. 

Proof For a subgroup S of the group G, let St denote the zth term of the 
normal closure series of S in G (see, for example, [6] ) and suppose the 
hypotheses of the lemma are satisfied. We show that, for any integer /, if A 
is a finitely generated (f .g.) subgroup of Ht, then there is a f .g. subgroup B 
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2 HOWARD SMITH 

of H such that A ^ Bt. Then, setting / = d we obtain the result since, for 
f.g. A contained in Hd, there exist B, X such that A â Bd ^ Xd = X ^ H 
and so H = 7/^. 

The case / = 1 is easily seen to be true. Suppose / > 1 and let A be a f.g. 
subgroup of Ht = HH' ]. Then there are f.g. subgroups //"*, T̂ of Hy Ht_x 

respectively such that A % (H*)K. By induction, we may suppose 
K ^ £ ; - i , for some f.g. subgroup L of / / . Writing B = (//*, L), we 
have 

^ ^ //*[#, 7/*] ^ £ [ £ z _ b 5 ] = £,, 

as required. 

When attempting to discover whether a given class of groups has the 
s.j.p. we shall usually be able to assume that the groups in question are 
soluble; this is because of our "reduction lemmas" (2.1 and 3.1) which 
utilise Roseblade's theorem [11] on derived series. It is then a short step to 
reduce to the case where our group G is a split extension A ] / , where A is 
abelian and / ^ Aut A is a join of two subgroups H and K which are 
subnormal in G. Then proving that / is subnormal in G entails showing 
that J is nilpotent and hence that G is nilpotent. Since HA and KA are in 
any case nilpotent, this would certainly be the case if G had the property 
that the join of two subnormal nilpotent subgroups of G were always 
nilpotent. We are thus led in Section 4 to define a class 3tx of groups with 
this property and to consider how it is related to @. It is easily proved that 
£j Q @ and, generally, classes shown to lie in @ are also seen to be 
contained in ?£x. No example is known of a group in (S which does not lie 
in X], but it is not conjectured here that the two classes coincide. (A 
similar problem remains with regard to the classes @ and @.) 

General results are obtained for the class %x which compare with those 
deduced in Sections 2 and 3 for the class @. There is one problem 
unsolved for @, however, which we are able to deal with in the case of %x. 
This is the question as to whether the class is closed with respect 
to forming finite direct products, and we shall see (Theorem 4.12) that 
X v X X 
tX i y\ «x i — CK i . 

The final section provides an example of a group which possesses a 
rather strong "finiteness property" but which does not lie in @. The 
construction is based on that of the examples of Zassenhaus and Hall (see 
[18] and [6] ). It is proved that this condition, however, is sufficient to 
ensure that a join of two subnormal subgroups is ascendant. 

Notation. Class notation will be employed where applicable. Thus 9Î, 3t 
denote the classes of nilpotent, abelian groups respectively, and %r 

consists of those groups having finite (Prufer) rank. @ and @ are as 
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defined above, and other classes are defined as required. The notation for 
class products is the familiar one. Thus, for example, 9̂ 51 denotes the class 
of groups which are nilpotent-by-abelian. Since the formation of products 
is a non-associative operation, bracketing is frequently required. If, in a 
particular instance there is associativity then brackets are of course 
omitted. Both of these cases are illustrated in the statement of Theorem 
2.7. 

The closure operations sn-, Q- are also used here. Thus for a given class 
36 of groups, sn£ (resp. QX) denotes the class of groups which are 
subnormal subgroups (resp. homomorphic images) of 36-groups. Standard 
notation is also adopted elsewhere, including that for the upper and lower 
central series, derived series and "repeated commutator subgroups" such 
as [Km H\. 

This work consists of material included in the author's Ph.D. thesis, 
"Subnormality in Infinite Groups" (University of Wales, 1982). 

Thanks are due to Drs. J. C. Lennox and S. E. Stonehewer for 
permission to include the result stated here as Lemma 1.1. 

2. The class @. We begin this section with a reduction lemma which will 
prove to be very useful. 

LEMMA 2.1. Suppose X = sn3c = Q3E is a class of groups such that soluble 
^-groups are in @. Then de Q @. 

Proof. Suppose H, K are subnormal subgroups of defects m, n 
respectively in the £-group G. We must show that J = (H, K) is 
subnormal in G, and we proceed by induction on m. The case m = 0 is 
trivial, and if m = 1 we have 

H < G and / = HK <n G. 

So we suppose m > 1 and assume the appropriate inductive hypothesis. 
For each /, let Ht denote the zth term of the normal closure series of 

H in G. Then 

L = Hm_x<T-'G 

and, by induction, J0 = (L, K) is subnormal in G and therefore lies in 36. 
Let P be the permutizer of K in L. Then 

HK = HPK < (H, PK) = / l 5 

say, and so / = H K is subnormal in Jx. 
By Corollary Bl and Lemma 5 respectively of [11], there is an integer a 

such that IS""* ^ P and an integer b such that 

j(b) g L(a)K ç pK g j ^ 

By [12, Lemma 3] and [6, Lemma 2.4], PK is subnormal in J0. Then, since 
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J0/JQ ^ e 36, /] is subnormal in J0 and the lemma is proved. 

It is clear that the class © is itself both sn- and Q-closed. Let max-sn 
(resp. min-sn) denote the class of groups G which satisfy the maximal 
(resp. minimal) condition for subnormal subgroups. Then 

Wl = P(max-sn U min-sn) 

denotes the class of groups G which have a finite series each of whose 
factors satisfies either max-sn or min-sn. Robinson [7, Theorem 6.2] has 
proved that 3ft@ = @. Since soluble groups with max-sn or min-sn have 
finite rank, which is an "extension-closed" property, we may apply 
Lemma 2.1 to deduce that this result is a corollary of 

THEOREM 2.2. g,.® = @. 

Recall that a group G is a Baer group if every finitely generated 
subgroup is subnormal in G. That Baer groups are locally nilpotent is well 
known, as is 

LEMMA 2.3. A group G which is generated by subnormal nilpotent 
subgroups is a Baer group. 

Proof of Theorem 2.2. Suppose G e Sr@. By 2.1, we may suppose G is 
soluble. Let TV < G be such that TV has rank r and G/N e @, and let A be 
the penultimate term of the derived series of N. Then A < G, and by 
induction on the derived length of N we may suppose G/A e @. 

Let H, K be subnormal in G and put J = (H, K). We show that J is 
subnormal in G. 

Since J A is subnormal in G, we may assume G = J A. We may 
further assume that J is core-free in G and thus that Cj(A) = 1. Then 
G = A ] / , J ^ Aut A and it follows that H and K are nilpotent (see [2] ). 
G is thus a Baer group (by 2.3). 

Let P be the maximal periodic subgroup of A. Then P is characteristic in 
A and thus normal in G, and A/P is torsion-free. Using [9, Lemma 6.37], 
we deduce that [A r G] ^ P. Then [A r JP] ^ JP and so / P <f G. Replacing 
G by JP we may thus assume that A is periodic. 

Let //0 , KQ be arbitrarily finitely generated (f.g.) subgroups of 7/, AT 
respectively and set J0 = (H0, KQ). Also, for an arbitrary prime p, let Ap 

denote the/^-component of A. Since every f.g. subgroup of / is contained 
in some subgroup of the form /0 , it suffices to show that, for some integer 
J, independent of the choice of H0, KQ or p, 

[Ap,dJ0] = I-

Further, since (a, J0) is nilpotent for each a e Ap, (a)J° is finitely 
generated and we may therefore assume that A is finite (since the 
intersection of all characteristic subgroups of finite index in (a)"'0 is 
trivial). 
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Let C = Cj(A ) . Then J0 = J0/C is a finite /?-group which may be 
viewed as a subgroup of Aut A , (action being of course by conjugation by 
elements of / 0 ) . Hence, by [9, Lemma 7.44], J0 has bounded rank. 

Since H and K are subnormal in G and nilpotent, H0 and K0 each have 
bounded defect in G and hence in J0. By [5, Theorem A], therefore, JQ has 
bounded nilpotency class/, say. Also, for bounded integers Z>, c, we have 

[AphH0] = [ApMK0] = 1 

and so 

[AphH0] = [Ap^K0] = 1. 

Thus 7/0 and K0 have defects at most H / , c + / respectively in A ] / 0 , 
and, again by Theorem A of [5], J0 has suitably bounded defect d in 
Ap]J0. 

Thus [A dJ0] = 1, as required. 

Using Lemma 2.1, we may now state 

COROLLARY 2.4. 

P(max-sn U min-sn) @ = @. 

Also, denoting by ©sn the class of groups G in which every subnormal 
subgroup is finitely generated, we have 

COROLLARY 2.5. ®sn© = @. 

Now the main result on @ from [6] is Theorem 5.2, which states that 
@@sn = @. in view of 2.2 above, it is reasonable to ask whether @$ r = @. 
Although a similar result will be seen to hold for the (probably) more 
restricted class @, this question will remain unanswered here. 

For our next theorem we need to define another subclass of @. 

Definition. Let @°° denote the class of groups G in which the join of an 
arbitrary collection of subnormal subgroups is always subnormal. 

Then it is not difficult to show that @°° is properly contained in © [6]. 
Also easily proved is 

LEMMA 2.6. [9, Lemma 7.41]. Every subgroup of a group G is subnormal 
in G if and only if G is a Baer group in the class @°°. 

The next result is then 

THEOREM 2.7. ®°°(5r8lSr) £ @-

Among the many consequences of this theorem, we note the follow
ing. 

COROLLARY 2.8. [6, Theorem 8.5]. (B°°% Q @. 
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COROLLARY 2.9. @°°Sr Ç @. 

COROLLARY 2.10. @°°P(max-sn U min-sn) Q @. 

The proof of Theorem 2.7 is postponed until Section 4. 
Finally, it may be worth remarking here that g r is not contained in @°°. 

For example, denoting the nth prime by pn, for each integer n, let 

Hn = (a, b\ap» = tf"~X = \, ab = ax+p») 

and define G to be the direct product of all such Hn. Then each Hn is 
metacyclic and nilpotent of class exactly n, and so G is a non-nilpotent 
Baer group of rank 2. However, it is easily shown that G has subgroups 
which are not subnormal. 

Hence, by 2.6, G is not in @°°. 

3. Groups with bounding functions. Let @ be defined as in [6] (see 
Section 1 above). Then the main result on @ from [6] (Theorem 7.2) states 
that an extension of an ©-group by a group in which every subnormal 
subgroup is generated by at most n elements (for some fixed n ) is again in 
@. Since we shall be proving a reduction lemma which serves for © as 
Lemma 2.1 did for @, this result will be seen to follow from Theorem 3.6 
below, which states that @gr = @. It may indeed be the case that 
@^r = © also, but perhaps the discovery of an ©-group which is not in @ 
would also shed some light on this problem. 

For each integer d, let us denote by 21 the class of soluble groups of 
derived length at most d. Then, as a companion result to Lemma 2.1, we 
have 

LEMMA 3.1. Suppose H = sn3E = Q3E is a class of groups such that, given 
an arbitrary group G G 36 n % and subnormal subgroups H, K oj defects m, 
n respectively in G, there exists f = f(m, n, d) such that J = (H, K) is 
subnormal in G with defect at most f Then H Q @. 

What we are saying here is that, in order to prove that a suitable class H 
lies in @, we may assume that a given 36-group G is soluble and that the 
derived length of G is a "permissible" parameter in attempting to bound 
the defect of / in G. 

To see that Lemma 3.1 holds, we need only follow through the proof of 
2.1, with suitably amended induction hypothesis, and note that bounds 
exist at the appropriate stages (as indicated in [6], [11] and [12] ). 

Now @ is itself sn- and Q-closed [6, Lemma 7.1] and an examination of 
the proof of Theorem 2.2 shows that all integers arising may be bounded. 
Hence we may state immediately 

THEOREM 3.2. gr@ = @. 
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COROLLARY 3.3. P(max-sn U min-sn)@ Q @. 

COROLLARY 3.4. @sn(g = @. 

A class of groups easily shown to lie in © is 9̂ 21, that is, those groups G 
with G nilpotent. (This is proved in [6].) 

So a particular case of 3.2 is 

COROLLARY 3.5. If G is a group such that G' has a normal subgroup TV of 
finite rank with G'/N nilpotent, then G e @. 

In the opposite direction from 3.2 we may also prove 

THEOREM 3.6. @gr = @. 

_ Proof Suppose H <m G, K <n G, J = <//, K), where G has a normal 
©-subgroup TV with G/N of rank r. By Lemma 3.1, we may suppose G is 
soluble of derived length d, say, and a further reduction (as in the proof of 
2.2) allows us to assume that // , K are nilpotent of (bounded) class a, b 
say. 

We proceed by induction on m. If m = 0, then H = G, and if m = 1, 
J <f G. So suppose m > 1 and assume the appropriate inductive 
hypothesis. 

Let F be an arbitrary finitely generated (f.g.) subgroup of H . Then 
there are elements kt of K such that 

F ^ HiKnN)(kx...,kr)^ 

which by [8, Lemma 3.21] is contained in 

LK™[H,n+bK] = LK™, 

where L is generated by at most / = t(r, n, b) conjugates of H by elements 
of K. Since each of these conjugates has defect m — 1 in H , we may 
employ the inductive hypothesis and a further induction on / to deduce 
that L is subnormal of bounded defect in FT and hence in G. Now 

LKHN <^L9K n N) = (K n N)LL 

and so, by [6, Lemma 2.4], we need only bound the defect of (K n N)L in 
G (and apply 1.1). But L/L n TV has rank at most r and so we may proceed 
as before, considering an arbitrary f.g. subgroup of (K n 7V)L. Since each 
conjugate of K n N lies in TV e @, we deduce that the join M of a 
bounded number of such conjugates has bounded defect in G. Then 

MLnN < (M, L O TV) ^ TV G @ 

and the result follows. 

As one immediate consequence of this theorem we have 
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COROLLARY 3.7. $l%r Q @. 

Also of course there is 

COROLLARY 3.8. (i) ©^(max-sn U min-sn) = @. 
(ii) @®sn = @. 

We now introduce yet another family of groups which are known to 
have the subnormal join property, namely the class © of groups having 
bounded subnormality indices. Thus a group G is in S if, for some integer 
/, every subnormal subgroup of G has defect at most / in G. 93 is contained 
in ®°° (see [9, Vol. 1, p. 176] ) and in @. We shall now see that, if we 
replace @°° by 93 in the statement of Theorem 2.7, we obtain a subclass of 
®. In view of 3.6 above, (a result for which we recall we have no parallel 
for the class @), it suffices to establish 

THEOREM 3.9. 93(5r3l) Q @. 

Proof. Suppose G is a group with a normal subgroup M contained in G' 
such that G'/M has rank r and M G ^ (that is, every subnormal subgroup 
of M has defect at most s). Let H <m G, K <f G,J = (H, K). We require a 
bound for the defect of / in G. By a now familiar argument we may 
suppose that G is a Baer group and thus, by Lemma 2.6, 

J n M <s M. 

For each z, let Mt denote the /th term of the normal closure series of 
/ n M in M. Since Mt = (J n M)[M t(J n M) ], it follows that each Mi is 
normalized by / , and so there is a chain of subgroups 

J ë /M 5 _! ^ . . . ^ JMX ^ JM. 

By Theorem 3.6, G/M G @ and so JM is subnormal of bounded defect in 
G. It suffices to prove, therefore, that for each /*, JMi+l is subnormal of 
bounded defect in JMt. 

Now 

JMl + x n Ml = Ml + x(J n Mf.) = Mz + 1 

and so, using bars to denote factor groups modulo Mz-+1, we have 

^ = Wi\J. 

By [13, Theorem 1], / is subnormal in JMt and has bounded defect, and 
the theorem is proved. 

Clearly, Theorems 3.2, 3.6 and 3.9 may be combined to produce (using 
Lemma 3.1) quite a number of subclasses of @. 

Finally, on the class 33, we remark here that Theorem 4.16 below tells us 
that the direct product of two 33-groups is again in 93. 
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4. Joins of subnormal nilpotent subgroups. 

Definition 4.1. We say that a group G has property ^ if the join of any 
two subnormal nilpotent subgroups of G is nilpotent, and a group G has 
property ^ 2 if the join of any two subnormal nilpotent subgroups of G is 
subnormal in G. 

Now each of the properties ^ , ^ 2 *s clearly inherited by subnormal 
subgroups. However, neither passes to homomorphic images, for, while 
there are groups with neither property (see e.g. the Hall example in [6] ), 
free groups possess both @x and ^ 2

 m a rather trivial way. 
To ensure the required closure properties, we introduce 

Defintion 4.2. 9E] (resp. 3E2) is the largest (sn, Q)-closed class of groups 
G which have the property ^ ( resp . ^ 2 ) . (Thus 3E7- is the so-called 
(sn, Q)-interior of the class of groups with property ^ ) . 

Trivially, ©-groups have property ^ 2 . Following our reduction method 
of Section 2 we may even state 

THEOREM 4.3. (i) 36] Q @. 

(ii) dc2 = @. 

Defining &x (resp. ^ 2 ) in a similar fashion to &x (resp. ^ 2 ) , with the 
additional requirement that the nilpotency class (resp. subnormal defect) 
of the join is bounded in terms of the nilpotency classes and defects of the 
constituent subgroups, we may introduce the classes dix and 3^, in an 
analogous way to 4.2, and state 

THEOREM 4.4. (i) dc} Q @. 

(ii) ^2 = @. 

Our interest here is with the classes £1? 3Ej. In addition, a proof 
outstanding from Section 2, namely that of Theorem 2.7, will be given, 
using some of the results obtained for the class £ j . 

The proofs of many of the theorems in this section are similar to some 
earlier ones. As a rule, therefore, sketch proofs only will be given. 

The following rather obvious result is quite useful. 

LEMMA 4.5. Suppose dc = sn3E = QX is a subclass of& (resp. (3). Then, to 
prove that de Q Xj (resp. 9^) it suffices to show that a join of two subnormal 
nilpotent di-groups is nilpotent (of suitably bounded class). 

Now suppose that G = {H, K) is a join of two nilpotent subnormals 
and is contained in a suitable class X. Then G is certainly soluble (from 
[14] or [11] ) and, for some abelian normal subgroup A of G, the action of 
G/A on A may occasionally be shown to be a nilpotent one. This is seen to 
be the case in the proof of Theorem 2.2 (and 3.2). 

Thus we have 
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THEOREM 4.6. (i) g ^ = dcx 

(ii) g^f 1 = Xp 

In the other direction, the method of proof of Theorem 3.6, with 
amended inductive hypothesis and supplemented by Lemma 4.5, yields 

THEOREM 4.7. (i) £x®
sn =jLx. 

(ii) X,g r = #!• 

One particular consequence of Theorems 4.6 (ii) and 4.7 (ii) that we 
shall require later is 

COROLLARY 4.8. S r2ïg r ç f j . 

Next, we show that the class considered in Theorem 3.9 actually lies 
in Xj. 

THEOREM 4.9. 93(gr3t) ç %x. 

Proof. Suppose G = (if, K), where H, K are subnormal in G of defects 
m, « and nilpotent of class a, b respectively. Suppose further that TV < G is 
such that TV e 935, TV ^ G' and G7TV has rank r. By 4.5, it suffices to prove 
that G is nilpotent of bounded class. 

Now G is a Baer group and so, by 2.6 and [10], TV is nilpotent of class at 
m o s t / = f(s). For each / = 1, . . . , / , let yi = yz(TV) and write 

Y/ = Y / V / + 1 -

If Cz = CG(*y))> then TV ̂  Cz and so Gz = G/Cl has derived subgroup of 
rank at most r and acts on yi via conjugation by elements of G. Applying 
[13, Theorem 1] to the semi-direct product Pt = y^]Gz, we deduce that Gz is 
subnormal of bounded defect dt, say, in Pt. Thus [Pz jGz] = 1, that is, 

[yidG] ^ y / + 1 . 

Then [TV̂  G] = 1, where d is the sum of the df. Also, by 4.6 (ii), G/TV is 
nilpotent of bounded class. The result follows. 

With the aid of another lemma we shall be able to tackle the proof of 
Theorem 2.7. (The existence of a bound is given below, but is not 
necessary for our immediate purpose.) 

LEMMA 4.10. Suppose H, K are subnormal subgroups of the group G, with 
defects m, n respectively. Let J = (H, K) be nilpotent of class c, and suppose 
TV < J is such that J/N, TV' have finite rank r, s respectively. Then J is 
subnormal in G, with defect at most d = d(m, n, c, r, s). 

Proof By induction on m. The cases m = 0, 1 are elementary. Suppose 
m > 1 and let F b e a finitely generated subgroup of HK. Using [8, Lemma 
3.21] we have F ^ LKnN, where L is generated by at most t = t(r, c) 
conjugates of H by elements of K. By induction on m and a second 
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induction on /, the defect of L in H and hence in G may be bounded. 
Then 

LKnN <(K n N)LL 

and we need consider only (K D N)L. Using [8, Lemma 3.21] again and 
applying [13, Theorem 1] (and another induction where necessary) to joins 
of subnormal subgroups of G contained in TV, we arrive at a subgroup of 
the form MLnN, where M is in N and has bounded defect in G. Then, 
again by [13, Theorem 1], (M, L n TV) is subnormal and we deduce that 
HK is subnormal, using 1.1. Finally, J = HKK and so the result follows. 

Proof of Theorem 2.7. Suppose M < G is such that 

G/M e= Sr^Sr and M e @°°. 

Reducing to the case where H, K are subnormal nilpotent subgroups of the 
Baer group G, we deduce that J n M is subnormal in M (by 2.6) and then, 
as in the proof of 3.9, form a chain of subgroups 

/ ^ JMt_x ê . . . ^ JMX ^ JM 

for some integer /. Considering two successive subgroups JMi+], JM{ of 
this chain and factoring by Mi+l as before, we arrive at the situation 
where 

J €= grSttgr 

for some image / of / . By Corollary 4.8. / is nilpotent. Lemma 4.10 now 
applies to give us that / is subnormal in JMt. Finally, JM is subnormal 
in G since G/M e @, and the proof is complete. 

There is one obvious question that remains unanswered here, namely 
whether @°° lies in ?HX. Using Lemmas 2.3, 2.6 and 4.5, we may reformulate 
this as: 

Must a group which is generated by two nilpotent subgroups and in 
which every subgroup is subnormal be nilpotent? 

A further problem, and one which we are able to solve for the class 36] 
but not for @, concerns direct products. Certainly the class @°° is not 
closed with respect to forming direct products, since the class of groups 
having all subgroups subnormal is not thus closed [3]. A partial solution to 
the problem is provided by 

THEOREM 4.11. dc} X (3 = (3. 

Proof Let G = A X B, where A G 3El5 B G @, and suppose H, K are 
subnormal in G, with / = (//, K). We wish to show that / is subnormal in 
G. Now JA and JB are subnormal, and therefore so is the subgroup 

G0 = JA n JB = J(A O JB) = JC, 
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say. We also have 

G0 = J(B n JA) = JD 

and, further, 

JA = (JA n B)A, JB = (JB n A)B 

and so G0 = C X D, where C, D are subnormal in ^4, B and thus lie in 
Xj, @, respectively. 

It suffices to prove that J is subnormal in G0. Now J C\ C < J and 
[JO C, D] = 1 and so 7 n C < G0. Similarly / n D < G0. We may 
therefore assume that 

j n c = \ = J n D . 

We shall show that G0 is nilpotent. Then of course J is subnormal in G0, as 
required. 

Suppose H <m G0. Then 

[Cm H] = l, [Dm H] = 1 

and so [G0 mH] = 1 and / / is nilpotent. Similarly K is nilpotent. Now 

JZ) = < # A KD) = (HD n C, KD n C>£> = <//l9 i ^ > A 

say, where //, - 7/jD/Z) = //£>/£> — # , and Kx ~ K. 
Similarly, J ~ Jx = (Hx, Kx). Since C lies in Xl9 Jj and hence 7 is 

nilpotent. But 

G0 = C ] / = / ) ] / = C X D 

and so C, Z) and / are pairwise isomorphic. 
Thus G0 is nilpotent and the theorem is proved. 

A similar method enables us to establish 

THEOREM 4.12. dcx X dcx = 36j. 

Proof. Let G = A X B, where A, B belong to 3£1? and suppose 7/, K are 
subnormal subgroups of G, with / = (//, K). Let M be a normal subgroup 
of G such that HM/M, KM/M are nilpotent. It suffices to prove that 
JM/M is nilpotent. (We recall that dcx = Q36j.) 

With the same notation as in the previous theorem, we have 

J ^ G0 = JC = JD = C X D, 

where now both C and D are in 3El5 and 

/£> = (Hl9 Kx) X D = Jx X D, 

where Hx, Kx are subgroups of C such that 

Hx ~ HI H n D, Kx ~ K/K n £>. 
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Using bars to denote factor groups modulo M, we see that Hx, Kx are 
nilpotent. Since Jx ~ C, we have that C and, similarly, D are nilpotent. 

So GQ is nilpotent and the result follows. 

Clearly we may also state 

THEOREM 4.13. (i) dix X <B = © 

(n ) X] X X| = Xj. 

We can easily deduce a rather interesting consequence of Theorem 4.12 
(resp. 4.13 (ii) ). Firstly, we require the following (see [1] ). 

Definition 4.14. Let Gx, G2 be given groups, and F their free product. For 
each integer r = 1, 2, . . . , the rth nilpotent product of Gx and G2 is given 
by 

F/[H,Kr_xF]. 

Then we have 

COROLLARY 4.15. For each integer r, the rth nilpotent product G of two 
Hx-groups {resp. dcx-groups) A and B is again in dcx (resp. %x). 

Proof Let G be as stated. Then 

[A9B] ^ Zr_x(G) = N 

and G/[A, B] is a direct product and hence in dcx(£x). 
Let H, K be subnormal nilpotent subgroups of G = G/M, say. Then 

J/N is nilpotent and therefore / is nilpotent, as required. 

We note that an arbitrary normal product of two dcx -subgroups is not 
necessarily contained in %x. Indeed, P. Hall's example of a group not in © 
(see also Section 5 here) may easily be shown to be the product of two 
normal metabelian subgroups, each of which is of course in dcx. 

The final result of this section, and one which is easily obtained using 
the method of proof of Theorem 4.11 is 

THEOREM 4.16. 33 X m = m. 

Proof Suppose G = A X B, where every subnormal subgroup of A, B 
has defect at most r in A, B respectively, and let H be a subnormal 
subgroup of G. We wish to show that the defect of H in G is bounded. 

Now G0 = HB n HA is of the form C X D, where C and D are 
subnormal in A and B respectively and hence share the above property 
with A and B. Also, G0 <

r G. Replacing G by G0, we may further assume 
that 

Hnc=\=HnD. 

Suppose H <m G0. Then 
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[Cm H]=\= [Dm H] 

and so [G0m H] = 1. Thus H is nilpotent. But H ~ C ~ D. Then, by [10], 
C and D have nilpotency class at m o s t / = f(r). The same is true of G0, 
and so 

and the proof is complete. 

5. Groups with finite abelian section rank. In this final section we 
consider briefly a class of groups which in one way is the natural one to 
consider following a discussion of groups of finite rank. A group G is said 
to have finite abelian section rank if, for every abelian section A of G, the 
/^-component of A has finite rank for each prime p and the factor group of 
A by its maximal periodic subgroup also has finite rank. We shall denote 
the class of groups with this property by i$r(ah). 

We shall prove 

THEOREM 5.1. There is a group G in Sr(ab) which *s not in &• 

There is something positive, however, that we can say about such 
groups: 

THEOREM 5.2. The join of two subnormal subgroups of an ^}r^ah)-group G 
is ascendant in G. 

Proof Proceeding exactly as in the proof of Lemma 2.1, with suitably 
amended inductive hypothesis, we reduce to the case where G is locally 
nilpotent. But S r (^^groups which are locally nilpotent are hypercentral 
(see e.g. [9, Corollary to Theorem 6.36] ) and it is well known that every 
subgroup of a hypercentral group is ascendant. 

The question as to whether Theorem 5.2 holds for a join of an arbitrary 
(finite) number of subnormal subgroups is not answered here. 

Proof of Theorem 5.1. Our example is based on those of Zassenhaus [18] 
and Hall [6], the main difference being that we require their basic 
construction for each prime p. 

Let n be a positive integer, p a prime and let ^ be the set {1, . . . , n }. 
For r = 1, . . . , « , let Vr denote the set of r-tuples (v1? . . . , vr) such that 
1 ^ V! < v2 < . . . < vr ^ n. Put 

V = Û Vr. 

Now let A, B be elementary abelian ^-groups with bases {ax\X G K}, 
{bx\X <= V} respectively. 

Suppose X' = (vb . . . , vr) is any sequence of r distinct integers f r o m ^ 
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where 1 ^ /• ^ «, and IT is a permutation which takes ! to I G V, that is, 
77 "orders" the vz. 

Then define 

Further, if X = (vls . . . , vr) and / e ^ define 

**+/ = %,. . . ,v r / ) if no vy- = /, 
= 1 if some v = /. 

Similarly define bx+i. 
Set M = A X B and define automorphisms az-, fit of M by 

<$ = "x> bx = V I + P 

bX = bX> aX = aXbX+r 

for all ax, bx and for each /' = 1, . . . , n. 
Let 

H = (a{\i = 1 , . . . ,*>, tf = <ft|z = l , . . . , w > 

and put 

J = (7/, Ar>, G - M ] / . 

Routine calculations (see [6] ) show that J is nilpotent of class 2 and that 
H and K are each subnormal of defect 3 in G. Further, G has nilpotency 
class exactly n. 

Now construct, for each integer n, a group Gn as above, where/? = p(n) 
is the nth prime in each case. Let G be the direct product of the G}V and 
write H = Dr H„, etc. 

n n 

Then H, K< G, but / = (H, K) is not subnormal in G, else G would be 
nilpotent, which is clearly not the case. 

We note finally that G is periodic and that each/?-component of G is of 
course finite. 
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