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Inthiswork,weanalysewall-boundedflowsinthecontinuumtotransitionregimewiththehelp
ofhigher-ordertransportequations(super-setoftheNavier–Stokesequation).Towardsthis,we
incorporatesecond-orderinKnudsennumberaccuratetermsinthesingle-particledistribution
function, and with this complete representation, we first derive the second-order accurate
extended-OBurnett (EOBurnett) and third-order accurate super-OBurnett (SOBurnett)
equations. We then demonstrate that these newly derived equations exhibit unconditional
linear stability. We finally validate the equations by solving for plane Poiseuille flow and
derive closed-form analytical solutions for the pressure and velocity fields. The pressure
and velocity results thus obtained have been compared with direct simulation Monte Carlo
(DSMC) data in the transition regime. The results from both the EOBurnett and SOBurnett
equations are found to yield better agreement with DSMC data than that obtained from the
Navier–Stokesequations.This improvedagreement is attributed to thepresenceofadditional
terms in the proposed equations, which effectively capture the effect of the Knudsen layer
near the wall. The obtained higher-order transport equations and the closed-form solution
presented in this work are novel. The ability of the equations to describe the flow in the
transition regime should form the basis for conducting further realistic analytical studies
of wall-bounded flows in the future.

Key words: Navier–Stokes equations, general fluid mechanics, non-continuum effects

1. Introduction

The improvement of manufacturing technology and computational capacity has led to
increasing attention to the importance of rarefied gas flows in various practical applications
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such as high-speed hypersonic flows (Ivanov & Gimelshein 1998), miniaturized
microchannel flows (Agrawal, Kushwaha & Jadhav 2020; Akhlaghi, Roohi & Stefanov
2023) and rarefied flow conditions (Akintunde & Petculescu 2014). In such flow situations,
the Knudsen number (Kn = λ/H), which is the ratio of the mean free path (λ) to the
characteristic length scale (H), plays a crucial role in governing the flow physics. For the
case of a microchannel, the flow generally spans the slip (10−3 < Kn < 10−1) or transition
(10−1 < Kn < 10) regimes for which the well-known Navier–Stokes (N-S) equations
based on the continuum formulation fail to predict the primary variables correctly
(García-Colín, Velasco & Uribe 2008; Agrawal et al. 2020). Further, several analytical
and numerical studies have demonstrated that the N-S equations do not capture, even
qualitatively, non-equilibrium phenomena occurring in the plane Couette and Poiseuille
flows and lid-driven cavity problems in the slip flow regime (Tij & Santos 1994; Mansour,
Baras & Garcia 1997; Zheng, Garcia & Alder 2002; Benzi, Gu & Emerson 2010, 2013).
However, the N-S equations can capture the flow physics in the early-slip flow regime
by employing a Kn-dependent slip and temperature jump boundary conditions (Agrawal
et al. 2020); such modifications still yield inaccurate predictions of the pressure drop,
shear stress, heat flux and mass flow rate in the late-slip and transition flow regimes. Thus,
improved flow modelling capabilities are needed to accurately describe flows, particularly
in the transition flow regime.

Among the available analytical approaches to describe late-slip/transition flow regimes,
the kinetic theory-based Boltzmann equation describes the non-equilibrium dynamics
of dilute gaseous flows most effectively. However, due to the complicated nonlinear
integro-differential nature of the collision integral, it is exceptionally challenging, if
at all possible, to solve the Boltzmann equation for even simple flow configurations.
The Boltzmann equation is, more often than not, made tractable by incorporating
kinetic models such as the Bhatnagar–Gross–Krook (BGK) model (Bhatnagar, Gross
& Krook 1954). Indeed, the simplified Boltzmann–BGK equation has been used to
numerically solve the simple isothermal pressure-driven Poiseuille flow problem and has
demonstrated the ability to quantitatively capture the experimentally observed Knudsen
minima phenomenon (Cercignani & Daneri 1963). Similarly, Xu (2003) solved the
force-driven plane Poiseuille flow problem by employing the BGK–Burnett and the
O(Kn3) BGK–super-Burnett schemes in the Boltzmann equations and demonstrated better
results than those obtained using the N-S equations. An alternate way of solving the
Boltzmann–BGK equation directly is through the lattice Boltzmann method (LBM) route;
recent attempts to employ LBM schemes to solve high-Kn flows have been detailed
in Jonnalagadda, Sharma & Agrawal (2023). More recently, the ability of higher-order
transport equations to address canonical wall-bounded flows in the slip and transition
regimes has been investigated. It should be noted that several higher-order transport
equations with different degrees of accuracy and complexity have been proposed based
on the single-particle distribution function obtained from either of the following three
approaches: the Chapman–Enskog expansion (Chapman & Cowling 1970; Cercignani
1975), moment-based methods (Grad 1949) or equations incorporating principles of
non-equilibrium thermodynamics (Singh & Agrawal 2016; Singh, Jadhav & Agrawal 2017;
Jadhav, Yadav & Agrawal 2023).

The first category of higher-order transport equations, namely that of the Burnett-type
equations, originated from the original Burnett equations (Burnett 1936). However, due
to their complicated and cumbersome nature, the original Burnett equations did not gain
widespread adoption; indeed, numerical studies using the original Burnett equations were
only recently conducted for the Couette flow problem (Lockerby & Reese 2003; Singh,
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Gavasane & Agrawal 2014). In order to make the original Burnett equations more tractable,
Chapman & Cowling (1970) presented an alternate form, namely the conventional Burnett
equations, wherein the material derivatives appearing in the second-order distribution
function were replaced by the spatial gradients described by the Euler equations. These
modifications resulted in significantly simplified representations of the stress tensor and
heat flux vector, and consequently, a wider use of the conventional Burnett equations
followed. Note that both the original and conventional Burnett equations are O(Kn2)
approximations of the Boltzmann equation. Uribe & Garcia (1999) numerically solved the
conventional Burnett equation for the Poiseuille flow problem in the transition regime at
Kn = 0.1 and obtained good agreement for most conserved and non-conserved quantities
with direct simulation Monte Carlo (DSMC) results. Fang (2003) numerically investigated
the plane Poiseuille flow with the conventional Burnett equations at Kn = 0.02 with two
slip models. Later, Bao, Lin & Shi (2007) employed the conventional Burnett equations
and reported that, in contrast to the N-S equations, convergent results could be obtained
for the plane Couette flow problem at any Knudsen number. Similarly, analytical solutions
for the pressure fields were presented for the pressure-driven Poiseuille flow problem
using the conventional Burnett equations by employing a perturbation analysis (Rath,
Singh & Agrawal 2018) and exactly solving the third-order partial differential cross-stream
momentum equation (Rath, Yadav & Agrawal 2021). Several wall-bounded flow studies
were also conducted using O(Kn2) BGK–Burnett equations. Aoki, Takata & Nakanishi
(2002) employed an asymptotic analysis to obtain a numerically solvable form of the
BGK–Burnett equations for the force-driven plane Poiseuille unidirectional flow problem
in the slip regime. For microchannel flows, Xu & Li (2004) demonstrated that the pressure,
velocity and mass flow rate obtained using the BGK–Burnett equations quantitatively
agree with experimental and DSMC results. Further, using O(Kn3) augmented Burnett
equations, which introduced certain super-Burnett terms into the original Burnett
equations to improve numerical stability, Agarwal, Yun & Balakrishnan (2001) solved
the plane Poiseuille flow problem numerically by employing Beskok’s and Langmuir’s
boundary conditions for an inlet Knudsen number of Kn = 0.088. Bao & Lin (2008) used
the augmented Burnett equations to numerically solve the plane Poiseuille flow problem by
employing a relaxation method on the boundary values, in line with that previously used
by Lockerby & Reese (2003) to present comparisons of the velocity and pressure fields
against experimental and DSMC data. More recently, the linearized form of the O(Kn3)
super-Burnett equations (Shavaliyev 1993) was solved analytically for the Couette flow
problem in the transition regime (Singh et al. 2014). It should also be noted that, despite
widespread use and success, the above-mentioned Burnett variants are associated with
several limitations (Bobylev 1982; Shavaliyev 1993; Uribe & Garcia 1999; García-Colín
et al. 2008; Dadzie 2013) which have prompted the development of additional Burnett-like
variants. These variants include the thermo-mechanically consistent Burnett equations
(Dadzie 2013) and the simplified Burnett equations (Zhao, Chen & Agarwal 2014).

More recently, a separate class of Burnett-like equations, namely the OBurnett
equations, have been derived from the perspective of linear irreversible non-equilibrium
thermodynamics (Singh et al. 2017). It is evident that the OBurnett equations and the
Burnett equations diverge in their foundational principles and origins. Consequently, the
OBurnett equations are not plagued by the specific limitations inherent to the Burnett
equations (Bobylev 1982; Comeaux et al. 1995; Uribe, Velasco & Garcia-Colin 2000;
García-Colín et al. 2008; De Groot & Mazur 2013; Agrawal et al. 2020), as confirmed
in Singh et al. (2017), Agrawal et al. (2020), Jadhav & Agrawal (2020b, 2021) and
Jadhav et al. (2023). Readers are directed to the above-mentioned studies for a more
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detailed exploration of the differences and advantages of the OBurnett equations relative
to the Burnett equations. This set of equations has been validated for several canonical
problems involving non-equilibrium flow conditions (Jadhav, Singh & Agrawal 2017;
Singh et al. 2017; Jadhav & Agrawal 2020b, 2021; Yadav & Agrawal 2021); a consolidated
account of the different validation cases can be found in Jadhav et al. (2023). Specifically,
the validation of the OBurnett equations for the force-driven Poiseuille flow problem
(Jadhav et al. 2017) is particularly relevant in the context of wall-bounded flows in the
late-slip/transition regime. However, as is the case with a large portion of the existing
literature employing Burnett-type higher-order transport equations for this problem,
Jadhav et al. (2017) employ numerical methods to solve the resulting system of equations.

In this work, we employ an alternative approach to express the second-order
approximation of the distribution function in terms of an iterative refinement expression
of the Chapman–Enskog multiscale expansion technique that is further modified to
ensure compliance with the additive invariance property. With this approach, we derive
a more generalized form of the distribution function which encapsulates the formulations
previously obtained by Singh et al. (2017) and Yadav, Jonnalagadda & Agrawal (2023).
Using these representations of the distribution function, constitutive relationships for the
stress tensor and heat flux vector are obtained at the Burnett and super-Burnett levels.
It is noteworthy that this derivation procedure yields constitutive relationships, which
include several additional linear terms, which are necessary to accurately account for
near-wall non-equilibrium effects (Taheri, Torrilhon & Struchtrup 2009). Further, due to
the additional linear terms, the linearized form of the proposed equations differs from the
N-S equations and thus could provide better representations of wall-bounded flows in the
transition regime. We demonstrate that the proposed equations are unconditionally linearly
stable against any spatial disturbances for two-dimensional (2-D) plane wave flows. Apart
from linear stability analysis, analytical solutions for rarefied long microchannel flow
can be extremely instructive. Hence, one of the primary objectives of the present work
is to present the complete analytical solution of the 2-D isothermal, pressure-driven
plane Poiseuille flow problem using newly derived extended-OBurnett (EOBurnett) and
a third-order accurate super-OBurnett (SOBurnett) equations. For this purpose, we obtain,
for the first time, the mathematical expression for the pressure and velocity by analytically
solving the axial and normal momentum equations using the perturbation method. This
analytical solution is obtained under the assumption of low Mach and Reynolds numbers
relevant to long microchannels and are shown to demonstrate better agreement with
DSMC data as compared with those obtained from the N-S equations. In summary, the
contributions of this work are threefold: (i) we derive new sets of higher-order continuum
transport equations, namely the O(Kn2) EOBurnett equations and O(Kn3) SOBurnett
equations, (ii) perform a 2-D linear stability analysis of the proposed equations and (iii)
derive the analytical solution for the 2-D plane Poiseuille flow problem.

The paper is organized as follows: § 2 presents the derivation of the distribution
function, which satisfies the additive invariance property and is consistent with Onsager’s
reciprocity principle. In § 3, the distribution function derived in § 2 has been used to
evaluate the constitutive relationships. We further obtain a more generalized form of the
second- and third-order accurate transport equations in this section. Section 4 presents a
stability analysis, and we further show that the proposed second- and third-order equations
are unconditionally stable to small disturbances in a 2-D flow. In § 5, we present the
complete analytical solution for the 2-D pressure-driven plane Poiseuille flow problem.
The solution has been derived using the perturbation method. Further, the first-, second-
and third-order solutions of pressure and velocity are compared with DSMC results for
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flow in the transition regime under low Reynolds and Mach number conditions. Section
6 compares the proposed equation with the existing variants of the Burnett equations and
highlights the important findings concerning the significance, novelty and benefit of the
present work. Section 7 summarizes the important contributions made in this work.

2. Derivation of complete second- and third-order Burnett-level representations of
the distribution function

The OBurnett equations (Singh & Agrawal 2016), which are obtained as the O(Kn2)
approximation to the Boltzmann equation, require the O(Kn2) representation of the
single-particle distribution function, f (x, c, t), where x, c, t are the position vector,
molecular velocity and time, respectively. This O(Kn2) distribution function can be
expressed as

f2 = f0 + f̄1 + f̄2, (2.1)

where f0 is the Maxwell–Boltzmann equilibrium distribution function

f0 = ρ

m

(
β

π

)3/2

exp [−β(|c − u|)2], (2.2)

with β = 1/(2RT) and where u is the macroscopic velocity, ρ is mass density, R is specific
gas constant and T is absolute temperature. The remaining symbols have their usual
meaning. The first (N-S) order correction to f0 is obtained from the following relationship
(Mahendra & Singh 2013):

f̄1 = −
∑

j

Υj � Xj = tr( j)

[
∂f0
∂t

+ ∂

∂xj
(cjf0)

]
Xi=0, ∀i /= j

, j ∈ {τ, q}, (2.3)

where the quantities Xj and Υj correspond to the destabilizing thermodynamic forces and
fluxes, respectively, while the subscripts τ and q correspond to irreversible viscous and
thermal thermodynamic processes, respectively (McCourt et al. 1991; Mahendra & Singh
2013; Singh & Agrawal 2016; Yadav et al. 2023). The symbol � represents a complete
tensorial contraction of tensors of the same order.

For monatomic gasses, simplifying (2.3) yields,

Υi = −f0tr(i)Ῡi, (2.4a)

where

Ῡ τ = −
[

C ⊗ C − 1
3
|C|2δ

]
, (2.4b)

Ῡ q = −
(

5
2β

− |C|2
)

C, (2.4c)

and

Xτ = β[∇ ⊗ u + (∇ ⊗ u)T], (2.4d)

Xq = ∇β. (2.4e)

The quantity δ and symbol ⊗ represent the Kronecker delta and the outer product,
respectively. The peculiar velocity is defined as C = (c − u). Here, we bring to the
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reader’s attention the use of different relaxation times for momentum (tr(τ ) = μ/p) and
energy transport (tr(q) = κ(γ − 1)/(Rγ p) = tr(τ )/Pr) which not only serves to separate
the viscous and thermal time scales but also intrinsically ensures the correct value of
Prandtl number Pr for gases. The dynamic viscosity and thermal conductivity are treated
as temperature-dependent functions and have the functional forms μ(T) = μ0(T/T0)

ϕ and
κ(T) = κ0(T/T0)

ϕ , respectively. Here, μ0 and κ0 are the dynamic viscosity and thermal
conductivity at a reference temperature T0, and ϕ is the interaction potential between two
gaseous molecules. The quantities γ and p appearing in tr(q) are the adiabatic index and
thermodynamic pressure, respectively.

For the second-order correction to f0, f̄2 a detailed account of the derivation procedure
was recently presented along with the observation that the additive invariance constraint
imposed on f̄2 can yield several non-unique forms for f2 (Yadav et al. 2023). One
realization of the O(Kn2) representation was reported as (Yadav et al. 2023)

f̄2 = [(Υ ′
ττ � Xτ ) � Xτ ] + [(Υ ′

qq � Xq) � Xq], (2.5)

where

(Υ ′
ττ � Xτ ) = (Υττ � Xτ ) + t2r(τ )f0

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cl

[
Ci

∂uj

∂xl
+
(

Cj
∂ui

∂xl

)T
]

−
[

1
3β

(C ⊗ C) : Xτ

]
δij

−Ῡτ (Ῡτ : Xτ ) −
(

1 + 1
ϕ

)
Ῡτ

(
ϕ

β
Cl

∂β

∂xl

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (2.6a)

and

(Υ ′
qq � Xq) = (Υqq � Xq) + t2r(q)f0

{
−
(

1 + 2
ϕ

)
Ῡq

ϕ

β
Cl

∂β

∂xl

}
. (2.6b)

Here, the terms Υττ � Xτ and Υqq � Xq are, respectively, defined as

Υττ � Xτ = t2r(τ )f0

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Cl

[
Ci

∂uj

∂xl
+
(

Cj
∂ui

∂xl

)T
]

︸ ︷︷ ︸
ω1

+ 1
2β

[
Ci

∂g
∂xj

+
(

Cj
∂g
∂xi

)T
]

︸ ︷︷ ︸
ω2

−

⎡
⎢⎢⎢⎣ 1

3β
Ck

∂g
∂xk︸ ︷︷ ︸

ω3

− 1
3β

(C ⊗ C) : Xτ︸ ︷︷ ︸
ω4

⎤
⎥⎥⎥⎦ δij + Ῡτ [Ῡτ : Xτ︸ ︷︷ ︸

ω5

+ Ῡq · Xq︸ ︷︷ ︸
ω6

]

+Ῡτ

⎡
⎢⎢⎢⎣2ϕ − 5

3
∂ul

∂xl︸ ︷︷ ︸
ω7

+ ϕ

β
Cl

∂β

∂xl︸ ︷︷ ︸
ω8

+ Cl
∂g
∂xl︸ ︷︷ ︸

ω9

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(2.7a)
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and

Υqq � Xq = t2r(q)fo

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ῡq[Ῡτ : Xτ + Ῡq · Xq]︸ ︷︷ ︸
ξ1

−Ci

⎡
⎢⎢⎢⎣ 1

β
Cl

∂g
∂xl︸ ︷︷ ︸

ξ2

− 1
β

(C ⊗ C) : Xτ︸ ︷︷ ︸
ξ3

⎤
⎥⎥⎥⎦

−Ci

⎡
⎢⎢⎢⎣ 5

3β

∂uk

∂xk︸ ︷︷ ︸
ξ4

+ 5
2β2 Cl

∂β

∂xl︸ ︷︷ ︸
ξ5

⎤
⎥⎥⎥⎦+

(
5

2β
− |C|2

)⎡⎢⎢⎢⎣ 1
2β

∂g
∂xi︸ ︷︷ ︸

ξ6

− Cl
∂ui

∂xl︸ ︷︷ ︸
ξ7

⎤
⎥⎥⎥⎦

+Ῡq

⎡
⎢⎢⎢⎣2ϕ − 5

3
∂ul

∂xl︸ ︷︷ ︸
ξ8

+ ϕ

β
Cl

∂β

∂xl︸ ︷︷ ︸
ξ9

+ Cl
∂g
∂xl︸ ︷︷ ︸

ξ10

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.7b)

The advantage of the form presented in (2.5)–(2.7) is that, in addition to satisfying the
compatibility conditions, this realization also adheres to Onsager’s symmetry principle.
Furthermore, building upon (2.5)–(2.7), this work extends and presents linearly stable
macroscopic higher-order continuum transport equations, a property that the conventional
Burnett and super-Burnett equations do not admit.

Similarly, the O(Kn3) additive invariant representation of the viscous and thermal
corrections appearing in f̄2 was obtained as (Yadav et al. 2023)

f̄
′
2 = [(Υ ′′

ττ � Xτ ) � Xτ ] + [(Υ ′′
qq � Xq) � Xq], (2.8)

where

(Υ ′′
ττ � Xτ ) = (Υ ′

ττ � Xτ ) + t2r(τ )f0

{
−Ῡτ

[
4β2

3ρ
Ω

(
3

2β
− C2

l

)
− 2βCl

ρ

∂σNS
lk

∂xk

]

+ Ῡτ

[
(ϕ − 1)

4β

3ρ
Ω

]
+
[

1
ρ

∂σNS
ik

∂xk
Cj + 1

ρ
Ci

∂σNS
jk

∂xk
− 2

3
Ck

1
ρ

∂σNS
kl

∂xl
δij

]}
, (2.9a)

and

(Υ ′′
qq � Xq) = (Υ ′

qq � Xq) + t2r(q)f0

{
−Ῡq

[
4β2

3ρ
Ω

(
3

2β
− C2

l

)
− 2βCl

ρ

∂σNS
lk

∂xk

]

+ Ῡq

[
(ϕ − 1)

4β

3ρ
Ω

]
+
[

Ci

(
− 10

3ρ
Ω − 2

ρ
Ck

∂σNS
kj

∂xj

)
+
(

5
2β

− |C|2
)(

1
ρ

∂σNS
ij

∂xj

)]}
,

(2.9b)

where Ω , σNS
ij and qNS

i are, respectively, defined as

Ω =
[

∂qNS
l

∂xl
+ σNS

lk
∂ul

∂xk

]
, (2.10)
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σNS
ij = σ

O(Kn1)
ij = 〈C〈iCj〉, f̄1〉 = −2μ

(
1
2

[
∂ui

∂xj
+ ∂uj

∂xi

]
− 1

3
∂ul

∂xl
δij

)
= −2μ

∂u〈i
∂xj〉

,

(2.11a)

qNS
i = qO(Kn1)

i = 1
2
〈|C|2Ci, f̄1〉 = −κ

∂T
∂xi

. (2.11b)

The terms (Υkj � Xk) appearing in equations (2.7a) and (2.7b) are obtained using the
relation (Mahendra & Singh 2013)

Υkj � Xk = tr( j)

[
∂Υj

∂t
+ ∂

∂xm
(cmΥj)

]
Xj=0, ∀j /= k

, (2.12)

which was proposed as a modification to the iterative refinement procedure for obtaining
the second-order correction to the distribution function through the Chapman–Enskog
multi-scale expansion procedure given as

f̄2 = tr

[
∂

∂t
+ cm

∂

∂xm

]
f̄1. (2.13)

Note that (2.13) contains a single relaxation time for both the viscous and thermal
processes. In this work, we revert back to the original iterative representation of
the multi-scale Chapman–Enskog expansion procedure, i.e. (2.13), and incorporate the
individual relaxation times that separate the time scales associated with each irreversible
thermodynamic process. This modification amounts to replacing tr with tr( j) given as

f̄2 = tr( j)

[
∂

∂t
+ ∂

∂xm
cm

]
f̄1 = tr( j)

[
∂

∂t
+ ∂

∂xm
cm

]⎧⎨
⎩∑

j

Υj � Xj

⎫⎬
⎭

=
⎧⎨
⎩∑

j

[
tr( j)

(
∂Υj

∂t
+ ck

∂Υj

∂xk

)
� Xj

]

+
∑

j

[
tr( j)Υj �

(
∂Xj

∂t
+ ck

∂Xj

∂xk

)]⎫⎬
⎭

Xi=0, ∀i /= j

=⇒ f̄2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
∑

j

[Υkj � Xk � Xj]

︸ ︷︷ ︸
f̄2,1

+
∑

j

[
tr( j)Υj �

(
∂Xj

∂t
+ ck

∂Xj

∂xk

)]
︸ ︷︷ ︸

f̄2,2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Xi=0, ∀i /= j

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

Here, we remark that (2.14) contains (2.12) and includes additional analytically obtained
O(Kn2) terms. Form (2.8), we can further define f̄2,1 as

f̄2,1 = [(Υττ � Xτ ) � Xτ ] + [(Υqq � Xq) � Xq]. (2.15)
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Derivation of EOBurnett and SOBurnett equations

Equation (2.15) is the original form of (2.8), represented here as

f̄
′
2,1 = [(Υ ′′

ττ � Xτ ) � Xτ ] + [(Υ ′′
qq � Xq) � Xq]. (2.16)

The term f̄2,2 is now expanded below as

f̄2,2 =
∑

j

[
tr( j)Υj �

(
∂Xj

∂t
+ ck

∂Xj

∂xk

)]
Xi=0, ∀i /= j

, (2.17a)

=⇒ f̄2,2 = [Υτ � (Xττ � Xτ )] + [Υq � (Xqq � Xq)]. (2.17b)

In order to obtain the explicit expression represented in (2.17b), we first represent (2.17a)
in terms of the material derivative D/Dt and the peculiar velocity as

f̄2,2 = tr( j)Υj �
[

DXj

Dt
+ Ck

∂

∂xk
(Xj)

]
Xi=0, ∀i /= j

. (2.18)

To further simplify (2.18), the material derivative present in (2.18) can be expressed in
terms of spatial derivatives using the Euler and N-S equations.

Upon using the Euler equations to represent the material derivatives, we obtain

Xττ � Xτ = tr(τ )

⎛
⎜⎜⎜⎝
[

1
β

∂β

∂xj

∂g
∂xi

− ∂

∂xj

∂g
∂xi

]
︸ ︷︷ ︸

ω10

−2β
∂ui

∂xk

∂uk

∂xj︸ ︷︷ ︸
ω11

+ 4
3
β

∂ul

∂xl

∂ui

∂xj︸ ︷︷ ︸
ω12

+ Cl

⎡
⎢⎢⎢⎣2β

∂

∂xl

∂ui

∂xj
+ 2

∂β

∂xl

∂ui

∂xj︸ ︷︷ ︸
ω13

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ , (2.19)

and

Xqq � Xq = tr(q)

⎛
⎜⎜⎜⎝2

3

[
∂β

∂xi

∂ul

∂xl
+ β

∂

∂xi

∂ul

∂xl

]
︸ ︷︷ ︸

ξ11

− ∂β

∂xk

∂uk

∂xi︸ ︷︷ ︸
ξ12

+ Cl

[
∂

∂xl

∂β

∂xi

]
︸ ︷︷ ︸

ξ13

⎞
⎟⎟⎟⎠ . (2.20)

With (2.19) and (2.20), we now have a complete O(Kn2) extended representation of
the distribution function. Upon checking if this representation satisfies the constraint
of additive invariance, we find that only terms ω13 and ξ13 do not satisfy the last
two compatibility conditions, and thus require modification. Following previous works
(Balakrishnan, Agarwal & Yun 1999; Agarwal et al. 2001; Yadav et al. 2023), we represent
(2.19) and (2.20) as

〈c, f̄2,2〉 + tr(τ )

( 13∑
i=10

αi〈ci, Υτ � ωi〉
)

+ tr(q)

( 13∑
i=11

βi〈ci, Υq � ξi〉
)

= 0, (2.21)

and〈 |C|2
2

, f̄2,2

〉
+ tr(τ )

( 13∑
i=10

αi

〈 |C|2
2

, Υτ � ωi

〉)
+ tr(q)

( 13∑
i=11

βi

〈 |C|2
2

, Υq � ξi

〉)
= 0,

(2.22)
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where the running index i represents each term appearing in (2.19) and (2.20), and αi and
βi are moment closure coefficients. Note that, similar to the equations presented in Yadav
et al. (2023), (2.21)–(2.22) form an unconstrained system of algebraic equations and can
therefore result in multiple acceptable solutions. One solution is evaluated as follows:

αi =
{

Ψ1|C|2β + Ψ2 if i = 13
0 otherwise,

(2.23)

and

βi =
⎧⎨
⎩

−1
ζc

(
ζ1

7
2β

− ζ2|C|2 + ζ3
|C|√

β

)
if i = 13

0 otherwise,
(2.24)

where Ψ1 = −2
7 (Ψ2 + 1), ζc = (|C|2 − 5/2β), ζ1 = −8ζ3/21

√
π − 5

7 and ζ2 = 8β3/

15
√

π − 1.
Consequently, based on the additive invariance condition and stability criteria, we

take Ψ2 = −1 and ζ3 = 27
√

π/2, resulting in α13 = −1 and β13 = (1/ζc)(31C2/5 −
27

√
πC/2

√
β + 41/2β), and then obtain the modified forms of the O(Kn2)

representations of (2.19) and (2.20) as

X
′
ττ � X τ = X ττ � X τ + tr(τ )

⎛
⎜⎜⎜⎝Cl

[
2β

∂

∂xl

∂ui

∂xj
+ 2

∂β

∂xl

∂ui

∂xj

]
︸ ︷︷ ︸

ω13

⎞
⎟⎟⎟⎠α13, (2.25a)

X
′
qq � X q = X qq � X q + tr(q)

⎛
⎜⎜⎜⎝Cl

[
∂

∂xl

∂β

∂xi

]
︸ ︷︷ ︸

ξ13

⎞
⎟⎟⎟⎠β13. (2.25b)

We note that, by replacing the material derivatives appearing in (2.18) using the N-S
equations, we obtain O(Kn3) representations of f̄2,2, which are given as

X
′′
ττ � X τ = X

′
ττ � X τ + tr(τ )

{
2β

∂

∂xj

(
− 1

ρ

∂σNS
ik

∂xk

)
+ 8β2

3ρ
Ω

∂ui

∂xj

}
, (2.26a)

X
′′
qq � X q = X

′
qq � X q + tr(q)

{
∂

∂xi

(
4β2

3ρ
Ω

)}
. (2.26b)

Summation of (2.26a) and (2.26b) results in the final form as

f̄
′
2,2 = X

′′
ττ � X τ + X

′′
qq � X q. (2.27)

This completes the derivation of the complete second- and third-order representations of
the distribution function at the Burnett level, which final form of mathematical expression
has been obtained by summation of (2.2), (2.3) along with (2.16) and (2.27) as

f2 = f0 + f̄1 + f̄
′
2,1 + f̄

′
2,2. (2.28)

In summary, we presented the generalized form of a single-particle distribution function
(2.28) by employing the iterative refinement technique. This distribution function core lies
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Derivation of EOBurnett and SOBurnett equations

in the principles of non-equilibrium thermodynamics and satisfies the required physics
(Singh & Agrawal 2016; Singh et al. 2017; Yadav et al. 2023). Therefore, we combined
both the Chapman–Enskog expansion (Chapman & Cowling 1970; Cercignani 1975) and
Onsager’s reciprocity principle (Onsager 1931a,b) for the first time. This function will
be used to evaluate the super-Burnett-level stress tensor and heat flux vector to close the
governing equations in the subsequent section.

3. Higher-order closure of governing equations

The distribution function derived in § 2 will now be used to obtain the higher-order
constitutive relationships for the stress tensor and heat flux vector appearing in the mass,
momentum and energy conservation equations given below

∂ρ

∂t
+ ∂ρuk

∂xk
= 0, (3.1)

ρ
∂ui

∂t
+ ρuk

∂ui

∂xk
+ ∂p

∂xi
+ ∂σik

∂xk
= ρGi, (3.2)

ρ
∂ε

∂t
+ ρuk

∂ε

∂xk
+ ∂qk

∂xk
+ p

∂uk

∂xk
+ σij

∂ui

∂xj
= 0, (3.3)

where ε = (3/2)RT represents the internal energy for monatomic gases, Gi is the external
body force and p is the pressure. Here, we evaluate the required constitutive relationships
for the stress tensor and heat flux vector accurate up to O(Kn3) using the final form of the
single-particle distribution function presented in (2.28). The kinetic theory definition of
the non-conserved stress tensor and heat flux vectors are given as

σij = m
∫

C〈iCj〉f dc, (3.4)

qi = m
2

∫
|C|2Cif dc. (3.5)

Upon solving the integrals, explicit constitutive relationships for the stress tensor and heat
flux vector are obtained as

σ
O(Kn3)
ij = −2μ

∂u〈i
∂xi〉

+ t2rτ 2p
[(

5
3

− 2ϕ

3

)
+ 2

3

]
∂u〈i
∂xj〉

∂uk

∂xk
− t2rτ 2R

∂T
∂x〈i

∂p
∂xj〉

− t2rτ 2pRT
∂

∂x〈i
1
p

∂p
∂xj〉

− t2rτ 2p
∂uk

∂x〈i
∂uj〉
∂xk

+ η

(
t2rq

4pR
9

−1
2

∂

∂x〈i
∂T
∂xj〉

)

+ η

(
t2rq

4ρR2

9
∂T
∂x〈i

∂T
∂xj〉

)
+ t2rτ 2p

{
∂

∂xj〉

(
− 1

ρ

∂σNS
〈ik

∂xk

)}
︸ ︷︷ ︸

O(Kn3)

, (3.6)
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qO(Kn3)
i = −κ

∂T
∂xi

− t2rτ 2RT
∂p
∂xk

∂u〈k
∂xi〉

+ t2rτ 4ρR2T
(

7
4

− qc1

2

)
∂T
∂xk

∂u〈k
∂xi〉

+ t2rq

7ρR2T
2

∂uk

∂xi

∂T
∂xk

+ t2rq
ρR2T

∂ui

∂xk

∂T
∂xk

− 4ρR2Tt2rq

(
10ϕ − 1

24
+ 5

8

)
∂T
∂xi

∂uj

∂xj

+ t2rτ qc22ρR2T2 ∂

∂xk

∂u〈i
∂xk〉

− t2rq

10pR2T2

3
∂

∂xi

(
β

∂uj

∂xj

)

− t2rq
5pR2T2

{
∂

∂xi

(
1

3pRT
Ω

)}
︸ ︷︷ ︸

O(Kn3)

, (3.7)

where terms with angular brackets represent trace-free symmetric tensor quantities and

η = 9(35
√

πβ1 − 35
√

πβ2 + 32β3 − 10
√

π)

10
√

π
, (3.8a)

qc1 = qc2 = 7
2

(
9Ψ1

2
+ Ψ2 + 1

)
. (3.8b)

The coefficients η and qc1 = qc2 depend upon the values of Ψ1 and Ψ2 as mentioned in
§ 2. The first terms in (3.6)–(3.7) are of O(Kn) while those appearing at the end are of
O(Kn3); the remaining terms are of O(Kn2). Note that the stress tensor (3.6), similar to
heat flux (3.7), includes both relaxation times corresponding to the momentum and energy
transport, respectively. These constitutive relationships have several linear terms of the
second- and third-order, which is not true in the case of the OBurnett equations (Singh
et al. 2017). In (3.7), nonlinear third-order terms are also present. Due to the extreme
complexity, these nonlinear terms will not be considered in the stability and validation
analysis presented in subsequent §§ 4–5; a similar consideration was employed earlier by
Shavaliyev (1993), in which only linear terms of O(Kn3) have been considered in the
constitutive relationships.

Substituting the obtained expressions of the SOBurnett stress tensor (3.6) and heat flux
vector (3.7) in (3.1)–(3.3) closes and completes the proposed governing set of SOBurnett
equations. In the subsequent section, we analyse the linear stability properties of these
equations.

4. Linear stability analysis of the derived equations

In this section, we perform the linear stability analysis of the derived equations, which
is an important exercise because it was noted in Uribe et al. (2000), Bobylev (2006)
and Welder, Chapman & Maccormack (1993) that the linearized forms of governing
equations become unstable as the mesh size gradually reduces. This instability was noticed
during numerical simulations of rarefied flow in the continuum–transition regimes, which
stems from additional terms added to the constitutive relationships. The earlier equations,
therefore, fail to capture the thermodynamic aspect of the flow accurately. As a result,
the newly derived equations in the present work, having several additional terms in the
constitutive relationships, must undergo a linearized stability analysis before being used to
analytically solve the pressure-driven plane Poiseuille flow problem in §,5.

For this purpose, we first simplify the governing equations (3.1)–(3.3) by substituting
constitutive relationships in the 2-D form from (A1)–(A2). In the second step, for the
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Derivation of EOBurnett and SOBurnett equations

linearized and non-dimensionalized equations (3.1)–(3.3), we substitute these variables

ρ = ρo(1 + ρ̄), T = To(1 + T̄), p = ρoRTo(1 + p̄), u =
√

RToū,

v =
√

RTov̄, x = Hx̄, y = Hȳ, t = H√
RTo

t̄,

⎫⎪⎬
⎪⎭ (4.1)

where subscript ‘o’ represents the variable at the equilibrium state, H represents the
characteristic length scale and superscript ‘̄’ denotes small perturbations around the
equilibrium (rest) state. Finally, only linear terms are considered for the analysis because
the perturbations have been assumed to be small, thereby simplifying the analysis
to a great extent. This simplification results in the following reduced linearized and
non-dimensionalized equations:

∂ρ̄

∂ t̄
+ ∂ ū

∂ x̄
+ ∂v̄

∂ ȳ
= 0, (4.2)

3
∂T̄
∂ x̄

− 4
∂3T̄
∂ x̄3 + 3

∂ρ̄

∂ x̄
− 4

∂3ρ̄

∂ x̄3 + 3
∂ ū
∂ t̄

− 4
∂2ū
∂ x̄2 + 16

3
∂4ū
∂ x̄4 − 3

∂2ū
∂ ȳ2 − 4

∂3T̄
∂ x̄∂ ȳ2 − 4

∂3ρ̄

∂ x̄∂ ȳ2

− ∂2v̄

∂ x̄∂ ȳ
− 8

3
∂4v̄

∂ x̄∂ ȳ3 = 0,

(4.3)

3
∂T̄
∂ ȳ

− 4
∂3T̄
∂ ȳ3 + 3

∂ρ̄

∂ ȳ
− 4

∂3ρ̄

∂ ȳ3 + 3
∂v̄

∂ t̄
− 3

∂2v̄

∂ x̄2 − 4
∂2v̄

∂ ȳ2 + 16
3

∂4v̄

∂ ȳ4 − 4
∂3T̄

∂ x̄2∂ ȳ
− 4

∂3ρ̄

∂ ȳ∂ x̄2

− ∂2ū
∂ ȳ∂ x̄

− 8
3

∂4ū
∂ x̄3∂ ȳ

= 0,

(4.4)

18
∂T̄
∂ t̄

− 45
∂2T̄
∂ x̄2 + 675

4
∂4T̄
∂ x̄4 − 45

∂2T̄
∂ ȳ2 + 675

4
∂4T̄
∂ ȳ4 + 12

∂ ū
∂ x̄

− 45
∂3ū
∂ x̄3 + 12

∂v̄

∂ ȳ
− 45

∂3v̄

∂ ȳ3

− 45
∂3ū

∂ ȳ2∂ x̄
− 45

∂3v̄

∂ ȳ∂ x̄2 = 0.

(4.5)

Note that super-Burnett-level terms, denoted by the underlined terms, have also been
considered in (4.2)–(4.5). We now apply the method of normal modes to the perturbation

ρ̄ = ρA exp (ωt̄ + ikx̄ + ikȳ), ū = uA exp (ωt̄ + ikx̄ + ikȳ),

v̄ = vA exp (ωt̄ + ikx̄ + ikȳ), T̄ = TA exp (ωt̄ + ikx̄ + ikȳ),

}
(4.6)

where k, ω and subscript A represent the wavenumber, wave frequency and complex
amplitude of the plane wave, respectively. The substitution of these solutions in (4.2)–(4.5)
results in a relation between k and ω, known as the dispersion relation, as

162ω4 +
(

7227κ4

2
+ 1566κ2

)
ω3 + (11 184κ8 + 29 727κ6 + 10 296κ4 + 540κ2)ω2

+ (7200κ12 + 58 872κ10 + 77 136κ8 + 27 459κ6 + 2700κ4)ω

+ (43 200κ12 + 60 120κ10 + 25 110κ8 + 3240κ6) = 0. (4.7)
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Figure 1. Stability curve for the 2-D proposed (a) SOBurnett equations (4.7) and (b) EOBurnett equations
(4.8).

0
–10

–8

–6

–4

–2

0

0.5 1.0 1.5

Kn
2.0 2.5 0

–4

–3

–2

–1

0

0.5 1.0 1.5

Kn
2.0 2.5 3.0

ωr

(a) (b)

Figure 2. Variation of attenuation coefficient with Knudsen number for (a) SOBurnett equations (4.7) and
(b) EOBurnett equations (4.8).

Additionally, following similar steps as mentioned above and neglecting super-Burnett-order
terms gives the dispersion relation for the EOBurnett equations as

162ω4 + 1566ω3κ2 + (11 232κ6 + 10 296κ4 + 540κ2)ω2

+ (22 464κ8 + 19 944κ6 + 2700κ4)ω + (8640κ8 + 3240κ6) = 0. (4.8)

Equations (4.7)–(4.8) are fourth-order polynomials in ω and give four roots having both
real and complex parts. Using the solution of (4.7)–(4.8), we now test the stability of the
proposed equations for a disturbance in space. Since we consider disturbance in space,
the wavenumber is real, and the complex frequency is given by ω = ωr(k) + iωi(k). The
stability of the solution requires ωr(k) ≤ 0 so that the local amplitude of primary variables
decreases with an increase in time.

Figure 1 demonstrates that the obtained results satisfy the stability condition, which
requires that the solutions always have a negative real part. Similar to Balakrishnan et al.
(1999), we further consider the definition of the Knudsen number as Kn ≈ k for a given
wavelength. Consequently, we present the variation of the attenuation coefficient (ωr)
against the Knudsen number in figure 2, showing that all four roots of the solutions remain
negative, unlike the conventional and super-Burnett equations (Bobylev 1982).
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poutpin u(x, y)
H

y

x
z

L

Figure 3. Microchannel schematic showing the x-y axis, streamwise velocity for steady 2-D and isothermal
flow.

From stability analysis, we demonstrate that the equations derived in this study are
unconditionally stable for disturbances in space. This stability is a crucial characteristic
that will be utilized in § 5 to address the pressure-driven plane Poiseuille flow problem to
validate these equations in the transition flow regime.

5. Analytical solution of pressure-driven Poiseuille flow

In this section, we investigate the long micro-channel gas flow problem (see figure 3) using
the derived sets of both EOBurnett and SOBurnett equations.

We assume that the flow is steady, two-dimensional, isothermal and free of any external
body force. These assumptions simplify the present problem so that an analytical solution
can be obtained. Consequently, we first provide the simplified form of the governing
equations (3.1)–(3.2) by employing the aforementioned assumptions, which is followed by
a discussion on the boundary conditions applied. Subsequently, the analytical solutions
of the pressure and velocity fields have been obtained using the simplified governing
equations, which are finally validated against DSMC data.

5.1. Simplified governing equations
Similar to Rath et al. (2018, 2021), we first substitute 2-D expressions of the stress
tensor from (A1) upon applying the aforementioned assumptions in (3.1)–(3.2) and then
non-dimensionalize the same equations using x̄ = x/L, ȳ = y/H, ū = u/uout, p̄ = p/pout
and ρ̄ = ρ/ρout, where L is length and H is the height of the microchannel and ‘out’
represents the reference location considered at the microchannel’s exit. Additionally,
the reference velocity uout and reference pressure pout are utilized to normalize the
pressure and velocity, respectively. Next, a smallness parameter ε = H/L has been defined.
Further, the assumptions and parameters mentioned above have been used to express the
governing equations in terms of the Mach number (Ma) and Reynolds number (Re) given
in (A4)–(A5). While preserving the Knudsen number at order unity, we study gaseous
flow under low Mach number (O(ε)) and low Reynolds number (O(ε)) conditions. These
crucial assumptions have been further applied to the continuity and momentum equations
(A4)–(A5) to eliminate terms of order larger than ε, resulting in the following simplified
stream and cross-stream momentum equations, respectively:

Ma2γ

Re2p̄2
∂4ū
∂ ȳ4 − 4ε

3Rep̄2
∂3p̄

∂ x̄∂ ȳ2
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+ 2ε

3Rep̄3
∂ p̄
∂ x̄

∂2p̄
∂ ȳ2 + 14ε

3Rep̄3
∂ p̄
∂ ȳ

∂2p̄
∂ x̄∂ ȳ

− 4ε

Rep̄4
∂ p̄
∂ x̄

(
∂ p̄
∂ ȳ

)2

+ Reε
Ma2γ

∂ p̄
∂ x̄

= ∂2ū
∂ ȳ2 , (5.1)

− 4
3Rep̄2

∂3p̄
∂ ȳ3 + 16

3Rep̄3
∂ p̄
∂ ȳ

∂2p̄
∂ ȳ2 − 4

Rep̄4

(
∂ p̄
∂ ȳ

)3

+ Re
Ma2γ

∂ p̄
∂ ȳ

= 0. (5.2)

The coupled equations presented in (5.1)–(5.2) involve two variables, namely ū and p̄,
with the presence of a fourth-order derivative of velocity and third-order derivative of
pressure. As a result, four and three integration constants are produced while solving for
the velocity and pressure, respectively. These integration constants need to be evaluated
using appropriate boundary conditions, as discussed in the subsequent subsection.

5.2. Boundary/initial conditions
It is crucial to specify accurate boundary and/or initial conditions to evaluate the
integration constants. To describe these conditions, a model for the interaction between the
fluid and the solid wall is needed, which is still unknown even for the Burnett equations
(García-Colín et al. 2008). In such a case, Uribe & Garcia (1999) has demonstrated a
method to deal with the scatter in DSMC data and obtain these unknown conditions
that are useful for both initial and boundary value problems. Therefore, instead of getting
bogged down by the unavailability of accurate boundary conditions, treating the problem
as an initial value problem has been suggested in the literature (Singh et al. 2014, 2017;
Jadhav et al. 2017; Rath et al. 2018, 2021; Yadav et al. 2023). This helps to bypass the
unknown boundary conditions when initial conditions are known from the DSMC method.
Therefore, we follow the same approach demonstrated in these references for evaluating
the integration constants using DSMC data. This is both logical and essential in the present
case since the derivation of boundary conditions is beyond the scope of the present work.
However, we have also included a few results for the case when the present problem has
been treated as a boundary value problem.

There are several advantages to considering the current problem as an initial value
problem. First, the solution should automatically capture the DSMC data near the wall in
the Knudsen layer, as we do not assume anything about the slip model. Second, measuring
any quantity at the centre is easier than near the wall in an experiment. Therefore, this
justifies the approach adopted in our present study and helps us to test the proposed
equations for the problems considered in the present work, which otherwise would not
be possible. Consequently, all integration constants coming from (5.2) are being obtained
using initial conditions ∂ p̂/∂ ȳ|ȳ=0 = 0, p̂|ȳ=0 = p̂c(x̄) and ∂2p̂/∂ ȳ2|y=0 = â(x̄), where p̂c
is the centreline pressure and â is the curvature of the pressure at the centreline. Similarly,
integration constants coming from (5.1) have been obtained using initial conditions
∂ ū/∂ ȳ|ȳ=0, ū|ȳ=0, ∂2ū/∂ ȳ2|ȳ=0 and ∂3ū/∂ ȳ3|ȳ=0 at the centre of a channel from DSMC
data. These initial conditions will be used in the subsequent subsection presenting the
pressure and velocity field profiles in the transition flow regime.

5.3. Derivation of analytical solution
To solve the coupled nonlinear partial differential equations (5.1)–(5.2) for the pressure and
velocity fields, we use the perturbation method to simplify these two equations further, as
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Derivation of EOBurnett and SOBurnett equations

demonstrated in Rath et al. (2018). As a result, we perturb pressure (p̄) around p̄NS(x̄)

p̄(x̄, ȳ) = p̄NS(x̄) + p̂(x̄, ȳ), (5.3)
where p̂(x̄, ȳ) is the perturbed pressure term, which is small in magnitude. This suggests
that p̂/p̄NS  1, which is true in the case of microchannel flow (Zheng et al. 2002; Xu
2003; Xu & Li 2004; Rath et al. 2018, 2021). We further substitute the pressure in terms of
a perturbed quantity using (5.3) in (5.1)–(5.2) and then consider only the first-order term
of the perturbed pressure p̂ and neglect any nonlinear term involving the derivative of
both pressure and velocity with respect to the normal direction, as followed in Rath et al.
(2018). These assumptions are reasonable in the case of microchannel gaseous flow when
the flow is not far from equilibrium and the perturbed terms are rather small. Utilizing
these assumptions finally results in a simplified version of the momentum equations

Ma2γ

Re2p̄2
∂4ū
∂ ȳ4 − ∂2ū

∂ ȳ2 − 4ε

3Rep̄2
NS

∂3p̂
∂ ȳ2∂ x̄

+ 2ε

3Rep̄3
NS

dp̄NS

dx̄
∂2p̂
∂ ȳ2

+ Reε
Ma2γ

dp̄NS

dx̄
+ Reε

Ma2γ

∂ p̂
∂ x̄

= 0, (5.4)

− 2κ̂2

3p̄2
NS

∂3p̂
∂ ȳ3 + 1

γ

∂ p̂
∂ ȳ

= 0, (5.5)

where κ̂2 is 2Ma2/Re2 (= 4Kn2/(πγ )). The solution of the cross-stream momentum
equation (5.5) is first obtained as

p̂ = D1 + D2 exp(−Aȳp̄NS) + D3 exp(Aȳp̄NS), (5.6)

where A =
√

3/(2κ̂2γ ) and D1(x̄) − D3(x̄) are integration constants, which have been
evaluated using initial conditions as discussed in § 5.2. The substitution of these
integration constants in (5.6) then results in a closed-form expression of the pressure as

p̂ = p̂c + â exp(Aȳp̄NS)

2A2p̄2
NS

− â

A2p̄2
NS

+ â exp(−Aȳp̄NS)

2A2p̄2
NS

. (5.7)

Upon obtaining the solution of p̂, substituting the result of (5.7) into (5.4) gives an
analytical expression of the streamwise velocity, which read as

ū = ȳC2 + 1
2

(
−4ε exp(Aȳp̄NS)

3A2Rep̄4
NS

− 4ε exp(−Aȳp̄NS)

3A2Rep̄4
NS

− Reεȳ2

A2Ma2γ p̄2
NS

+ Reε exp(Aȳp̄NS)

A4Ma2γ p̄4
NS

+Reε exp(−Aȳp̄NS)

A4Ma2γ p̄4
NS

)
dâ
dx̄

+ 1
2

(
−4εȳâ exp(Aȳp̄NS)

3ARep̄4
NS

+ 4εȳâ exp(−Aȳp̄NS)

3ARep̄4
NS

+ 10εâ exp(Aȳp̄NS)

3A2Rep̄5
NS

+ 10εâ exp(−Aȳp̄NS)

3A2Rep̄5
NS

+ 2Reεȳ2â

A2Ma2γ p̄3
NS

+ Reεȳâ exp(Aȳp̄NS)

A3Ma2γ p̄4
NS

−Reεȳâ exp(−Aȳp̄NS)

A3Ma2γ p̄4
NS

− 4Reεâ exp(Aȳp̄NS)

A4Ma2γ p̄5
NS

− 4Reεâ exp(−Aȳp̄NS)

A4Ma2γ p̄5
NS

)
dp̄NS

dx̄

+ C1 + Reεȳ2

2Ma2γ

dp̂c

dx̄
+ Reεȳ2

2Ma2γ

dp̄NS

dx̄
, (5.8)

where SOBurnett-order terms have not been considered, and C1–C2 are integration
constants appearing due to the integration of the second-order differential equation.
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In contrast, considering SOBurnett-order terms present in (5.4) yields (B1), which is
presented in Appendix B due to its long expression.

To find the integration constants (C1–C2) in (5.8) and additional integration constants
(C3–C4) in (B1), we have employed the inherent symmetry ∂ ū/∂ ȳ|ȳ=0 and other initial
conditions such as ū|ȳ=0, ∂2ū/∂ ȳ2|ȳ=0 and ∂3ū/∂ ȳ3|ȳ=0 at the centre of the channel, as
discussed in § 5.2.

5.4. Validation of analytical solution using DSMC data
It is worth noting that the DSMC technique is already established as an essential tool
for addressing rarefied gas flow problems. Akhlaghi, Roohi & Stefanov (2012), Varade
et al. (2015), Goshayeshi, Roohi & Stefanov (2015) and Ebrahimi & Roohi (2017) have
conducted comprehensive studies on the DSMC technique applied to various micro-
and nanochannel flow challenges, as well as the Knudsen pump. Baier et al. (2017)
examined a Knudsen pump design influenced by the Crookes radiometer, utilizing vanes
positioned within a temperature gradient. Additionally, a novel collision scheme, known
as the simplified Bernoulli trial, has been introduced in Stefanov (2011). The DSMC
technique has also been employed in Gavasane et al. (2011, 2017), Jadhav et al. (2017),
Shah, Agrawal & Bhandarkar (2018a), Shah et al. (2018b) and Jadhav, Gavasane &
Agrawal (2021) for different microchannel flow and shock wave problems. That is why
we also resort to DSMC data to validate the analytical solution obtained above. Bird’s
DSMC code (Bird 1994) is used to generate the DSMC data for the present problem,
in which the sample size is 9 700 000. The smallness parameter ε = 1/10, particle
diameter d = 4.17 × 10−10 m, Boltzmann constant kb = 1.3806 × 10−23 J K−1, dynamic
viscosity μ = 2.274333 × 10−5 N s m−2, gas constant for argon R = 208 J kg K−1. The
exit velocity uout, pressure pout and temperature Tout are 122.5951 m s−1, 1.3551 × 104 Pa
and 270.9344 K, respectively. The inlet-to-outlet pressure Pr and temperature Tr ratios
are 4.9466 and 1.0335, respectively. Moreover, the Knudsen number at the exit (Knout)
is 0.4994. Using these DSMC data, we evaluate the pressure and streamwise velocity
for the present problem at two streamwise locations, x/L = 0.1 and x/L = 0.8, where
Kn|x̄=0.1 = 0.1129 and Kn|x̄=0.8 = 0.2578. Moreover, as expected, the centreline pressure
obtained from DSMC data p̄c closely approximates p̄NS, with a difference of less than 1.25
observed at both locations, as indicated by |p̄c−p̄NS|

p̄c
× 100.

Upon evaluating all the required parameters, we first present the comparison of the
perturbed pressure term (p̂) in figure 4 and total pressure (p̄) in figure 5 against DSMC data.
In figures 4(a) and 5(a), â is 0.005898, while in figures 4(b) and 5(b), â is 0.09176. For
figure 4, the value of p̂c is 0.0, while p̄c is 4.6056 and 2.0007, respectively, for figures 5(a)
and 5(b). These conditions have been obtained from DSMC data. Figures 4–5 reveal that
pressure also varies along the normal direction of the microchannel and has a maximum
value at the boundary and a minimum value at the centre, which is consistent with DSMC
data. These results also emphasize that this pressure variation at a high Knudsen number
is beyond the reach of the N-S equations (Arkilic, Schmidt & Breuer 1997; Zheng et al.
2002; Rath et al. 2021).

Figure 6 demonstrates the agreement between the present solution and DSMC
data for the streamwise velocity field. Initial conditions employed for the calculations
are as follows: at x/L = 0.1; ū|ȳ=0 = 0.3086, ∂2ū/∂ ȳ2|ȳ=0 = −1.626, ∂3ū/∂ ȳ3|ȳ=0 =
0.0005694 and at x/L = 0.8; ū|ȳ=0 = 0.6549, ∂2ū/∂ ȳ2|ȳ=0 = −2.32, ∂3ū/∂ ȳ3|ȳ=0 =
−0.005458. These conditions have been obtained from DSMC data. Notably, the
solution incorporating third-order terms exhibits superior performance compared with the
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Figure 4. Comparison of perturbed pressure p̂ against the DSMC results and N-S equations solution across
the microchannel at (a) x/L = 0.1 and (b) x/L = 0.8. The pressure has been normalized by the exit centreline
pressure (pout). Therefore, the value of pressure is not close to unity at the centreline.
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ȳ ȳ
Figure 5. Comparison of total pressure p̄ against the DSMC results and N-S equations solution across the
microchannel at (a) x/L = 0.1 and (b) x/L = 0.8. The pressure has been normalized by the exit centreline
pressure (pout). Therefore, the value of pressure is not close to unity at the centreline.

first-order and second-order solutions. This improvement is evident as both the first-order
and second-order solutions tend to overestimate the velocity in the bulk region under the
same condition, which becomes significant at Kn|x̄=0.8 = 0.2578, as shown in figure 6(b).

To elucidate how the present solution varies when considering the boundary value
problem, in contrast to the aforementioned initial value problem, we have illustrated
the variation of pressure and velocity in figure 7. The pressure variation remains
the same as observed in figure 7(a). From figure 7(b), we note that the qualitative
behaviour of the velocity field remains consistent, though there are quantitative differences
compared with when the problem is addressed as an initial value problem. These
quantitative differences are evident in the solutions derived from the N-S and EOBurnett
equations since the integration constants have been obtained at different locations of the
microchannel. However, as anticipated, the solutions from the SOBurnett equations remain
indistinguishable.

6. Discussion

The objectives of this section are: first, to present new insights from our study; second,
to demonstrate the consistency of our results with prior analytical and simulation studies;
third, to comment on the novelty of the work; and finally, to bring out the complexity of
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Figure 6. Comparison of streamwise velocity (ū) obtained using the EOBurnett and SOBurnett equations
against the DSMC results and N-S equations solution across the microchannel at x/L = 0.1 and x/L = 0.8.
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Figure 7. Comparison of (a) pressure and (b) streamwise velocity (ū) obtained using the EOBurnett and
SOBurnett equations against the DSMC results and N-S equations solution across the microchannel at
x/L = 0.8 when the present problem has been treated as a boundary value problem.

higher-order equations. We begin by pointing out the importance of our study regarding the
issue with the conventional Burnett and super-Burnett equations. This includes comparing
our proposed equations with these and the remaining existing equations and highlighting
any differences or improvements. We discuss the stability analysis and compare it with the
reported result of the Burnett and super-Burnett equations. Subsequently, we demonstrate
that our present analytical solution can easily reproduce the solution of the N-S equations,
providing additional analytical validation of our obtained solution. This is followed by a
discussion of the results presented in § 5 and the novelty of the work. Finally, we examine
the usefulness and complexity of the higher-order transport equations.

6.1. Comparison with existing equations
The linear forms of the Wood, conventional and super-Burnett equations are unstable
when the wavenumber is larger than a critical value (Bobylev 1982, 2006; Welder et al.
1993; Agrawal et al. 2020), while the proposed equations are unconditionally stable at
Burnett as well as a super-Burnett level, as shown in § 4. Additionally, in comparison with
one-dimensional flow, the value of the critical Knudsen number for the onset of instability
becomes smaller in the 2-D flow for the original and conventional Burnett equations (Bao
& Lin 2005), whereas there is no such limitation in the proposed equations. Due to the
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stability issue linked with these equations, the augmented Burnett equations were derived
by Zhong, MacCormack & Chapman (1993) by adding some super-Burnett-order terms
in an ad hoc manner to make the conventional Burnett equations stable. In contrast, the
proposed equations are unconditionally stable with and without any third-order terms in
(3.6) and (3.7) because these equations have been derived using first principles based on
the newly proposed Onsager-principle-consistent approach.

It is commonly known that stability concerns arise when dealing with the conventional
Burnett equations due to the additional linear terms. To address this issue, Zhao
et al. (2014) formulated simplified conventional Burnett equations to compute rarefied
hypersonic flows and eliminated two linear terms from the stress constitutive relationship.
The two terms were discarded based on an order of magnitude analysis. From these
two terms, one term, a second-order derivative of pressure that is responsible for the
analytical solution of pressure in the present solution, was also discarded in that analysis.
However, we have observed that introducing this additional linear term does not disrupt
the linear stability of the proposed second- and third-order equations, which is a significant
achievement of the present study. From figure 1, it is clear that the proposed set of
equations satisfies the stability condition and is unconditionally stable for any wavelength
disturbances, even for 2-D flow.

Further, the constitutive relationships for the proposed equations, similar to the
conventional Burnett equations, depend on the interaction coefficient, which varies
according to the type of molecules involved. The results presented in § 5 demonstrate
that the specific type of molecules present in the flow influences the solution of the
microchannel flow problem. This observation holds true for both the conventional and
proposed equations. This implies that the proposed equations, similar to conventional
Burnett equations, apply to monatomic gases regardless of their molecular composition.
Moreover, two different relaxation times have been used in the present work; hence the
proposed set of equations provides the correct Prandtl number for monatomic gases (Singh
& Agrawal 2016), unlike the BGK–Burnett equations.

Unlike the OBurnett equations from Singh et al. (2017), which utilized only the first
three terms of the distribution function, our equations integrate the entire distribution
function (2.28). Furthermore, our methodology employs the N-S equations to replace the
material derivatives within the distribution function, introducing third-order terms in the
Knudsen number. This makes our proposed equations third-order accurate in Knudsen
number, a step above the second-order accuracy of the OBurnett equations. The present
equations form a super-set of the OBurnett equations, containing additional linear and
nonlinear terms in the relationships of the stress tensor and heat flux vector (3.6)–(3.7).
Moreover, neglecting nonlinear terms will result in a simplified set of equations (4.2)–(4.5)
having additional higher-order linear terms, while this is not true in the case of the
OBurnett equations (Singh et al. 2017). Consequently, the linear stability of our proposed
equations also differs from that of the OBurnett equations.

6.2. Comparison of analytical solution
The problem solved using the proposed set of equations in § 5 has been also solved by
Arkilic et al. (1997) and Rath et al. (2018, 2021) using the N-S equations and conventional
Burnett equations, respectively. Arkilic et al. (1997) reported that the pressure field
only depends upon the axial direction, while Rath et al. (2018, 2021) presented a more
generalized form of a solution of the cross-stream momentum equation analytically in
which the pressure field depends upon both the normal and axial directions. In the
same work, Rath et al. (2018, 2021) presented the numerical solution of the streamwise
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velocity field due to the complexity in analytically solving the streamwise momentum
equation. However, the analytical solutions provide a clearer insight into rarefaction
effects. Their generalized nature makes them broader in scope and more time efficient
than DSMC simulations. Therefore, in § 5, we successfully presented the analytical
solution of the streamwise velocity field for both EOBurnett and SOBurnett equations
using the perturbation method. The analytical solution achieved in this study represents
a notable advancement as no prior works exist, to the best of the authors’ knowledge,
regarding an analytical solution for the streamwise velocity field with any variant of
the Burnett equations for the specific problem under investigation. This represents the
complexity of the considered problem with Burnett and super-Burnett-type equations and
the significance of the present solution obtained in this work. In this sense, the present
study is an important progress in the search for accurate higher-order transport equations.

To compare (5.8) and (B1) further with the solution of the N-S equations (Arkilic et al.
1997), we substitute pressure initial conditions to be zero in (5.8) and (B1). As a result, we
obtain a simpler form of the solution for pressure and streamwise velocity as

p̄ = p̄NS (6.1a)

ū = ȳV2 + V1 + Reεȳ2

2Ma2γ

dp̄NS

dx̄
. (6.1b)

It is exciting to note that (6.1) is the same as the solution presented in Arkilic et al. (1997).
This similarity strengthens our confidence in and validates the proposed equations at the
level of the N-S equations.

Upon comparison of (5.1)–(5.2) in the present work with the corresponding equations
in Rath et al. (2018), we have noted two major differences in the streamwise momentum
equation; first, the second term in the streamwise momentum equation is not present
in the corresponding (5.1) in the present work and, second, the presence of an
additional fourth-order derivative term at the super-Burnett level in (5.1). Conversely,
the cross-streamwise momentum equation remains unchanged. Therefore, the solution of
pressure will be the same, while the solution of velocity will be different under the same
assumptions at both Burnett and super-Burnett levels.

Following Rath et al. (2018), the perturbation method has been used to obtain the
analytical solution for pressure from the cross-streamwise momentum in the present work,
while the same equation has been solved in the exact form in Rath et al. (2021). The
comparison of the pressure profile presented in Rath et al. (2021) reveals that the results
obtained in these two studies (Rath et al. 2018, 2021) are almost the same at Kn = 0.1.
This implies that the pressure solution obtained in the present work will also provide the
same result. Conversely, the solution of the velocity is not available in the literature for
Burnett- and super-Burnett-order equations. That is why any comparison with the solution
of existing equations is not possible.

The obtained result has been compared with DSMC data to prove the above claim. In
this context, figure 5 presents a very important outcome of the present work since this
result shows the limitation of the solution of N-S equations, which fail to capture the
variation of pressure in the normal direction of the microchannel. This improvement in the
present solution near the wall can be attributed to the presence of these exponential terms,
which capture the influence of the Knudsen layer and its effect on pressure and velocity.
The present result of pressure matches well with the DSMC data even in the transition
regime (Kn > 0.1), where most of the available equations fail to predict the pressure
profile even in the qualitative sense. In figure 4, we compare the perturbed pressure term
variation against the DSMC data to emphasize the explicit effect of perturbed pressure
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term variation over the solution while figure 5 presents the variation of total pressure
against the DSMC results. These two results show that the curvature of the pressure is the
same in both figures when the Knudsen number is the same. Moreover, the perturbed
and total pressures also have the same qualitative variations across the microchannel
cross-section. This pressure variation in the normal direction is critically important since
it is the contribution of additional correction terms added to the constitutive relations of
the N-S equations.

From figure 6, it is evident that the discrepancies between the results of DSMC and (B1)
are less than those with (5.8) and (6.1b) in the Knudsen layer near the wall even though we
have only provided the initial conditions at the centre of the channel. This discrepancy
in result becomes significant at a higher Knudsen number, as shown in figure 6(b),
which implies that the velocity results obtained from the N-S equations show the largest
discrepancy. On the other hand, the SOBurnett equations exhibit the smallest deviation
from the DSMC data, which proves the supremacy of this set of equations’ solution in
the transition regime. Hence, the obtained solutions are more generalized and supposed to
work at a wide range of Knudsen number even in the transition regime of flow.

As a result, the present result is more consistent with the DSMC result and more
accurate than the N-S equations’ solution across the microchannel, as shown in figures 4–6.
However, some discrepancies near the wall can be observed, which might be due to the
constant viscosity or isothermal assumption. Perhaps for the first time, we are presenting
agreement of any theory with DSMC data in the transition regime.

6.3. Significance, novelty and benefit of the present work
In the present work, we introduced a novel single-particle distribution function derived
through an iterative refinement technique in which the core is grounded in non-equilibrium
thermodynamics. Therefore, it uniquely combines the Chapman–Enskog expansion and
Onsager’s reciprocity principle for the first time, underscoring its novelty and significance
in the field. We then introduced the EOBurnett and SOBurnett equations (3.6)–(3.7),
derived from the novel distribution function, consistent with Onsager’s reciprocity
principle. These equations contain second- and third-order linear terms, distinguishing
them from the OBurnett equations (Singh et al. 2017), while maintaining linear stability
(figures 1–2). The need for having a linear term of higher order in Knudsen number
motivated Zhong et al. (1993) to propose the augmented Burnett equations. Towards this,
they added a linear term of super-Burnett order in the conventional Burnett equations in
an ad hoc manner, whereas we base our derivation on sound physical principles. This
distinction underscores the significance of our work, as it avoids the need for introducing
extraneous linear terms that cannot be derived from first principles.

We further present an analytical solution for pressure and velocity for the plane
Poiseuille flow problem. The solution is applicable in the transition flow regime and is
consistent with the DSMC data. Recently, only an analytical solution of pressure has been
reported using the conventional Burnett equations by our group (Rath et al. 2018, 2021).
Owing to the well-known limitations and complexity of existing higher-order transport
equations such as the conventional, augmented and super-Burnett equations, a complete
solution including pressure and velocity under isothermal conditions could not have been
derived in the past. In this sense, the present study is an important advancement in the
case of higher-order transport equations. It is noteworthy that the analytical solution of
the pressure adeptly captures the normal pressure variation within the microchannel,
attributed to the presence of an additional term responsible for modelling the Knudsen
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layer. Moreover, the velocity solution also has several additional terms that are responsible
for capturing the Knudsen layer, which becomes important in the transition flow regime.
Description of the Knudsen layer effect, a manifestation of rarefaction, is, however, beyond
the capabilities of the N-S equations (Arkilic et al. 1997; Zheng et al. 2002; Rath et al.
2021). Therefore, deriving these analytical solutions is an important step in the field of
higher-order transport equations. Furthermore, the analytical solutions provide a deeper
understanding of the rarefaction effects. These solutions are not only more comprehensive
but also more time efficient as compared with DSMC simulations. Hence, the current
analytical solution readily enables the comprehension of the variation of conserved field
quantities, non-conserved field quantities and the influence of the Knudsen layer on the
solution.

6.4. Usefulness and complexity of higher-order transport equations
Whereas we here have been able to provide an analytical solution of the EOBurnett and
SOBurnett equations, working with higher-order transport equations remains a challenge.
The issue of boundary conditions remains a longstanding challenge even at the Burnett
level, let alone at the super-Burnett level. Nevertheless, clues may be taken from the work
done for moment-type higher-order transport equations, such as the R13 moment equations
(Torrilhon & Struchtrup 2008), to evaluate the boundary conditions for Burnett-type
equations as well. Similarly, it may be possible to explore data-driven techniques to
estimate the models for the boundaries under such conditions. However, the complexity of
the equations at the Burnett and super-Burnett levels renders the particularly hard question
of obtaining physically accurate descriptions of boundary conditions as an open research
problem.

Notwithstanding the problem of boundary conditions, it is important to note that
such equations find utility and prove indispensable in capturing non-equilibrium effects
for problems such as shock waves (Jadhav & Agrawal 2020b), standing shear waves
(Lockerby & Reese 2008) and Grad’s second problem (Jadhav & Agrawal 2020a),
where explicit boundary conditions may not be required due to the absence of physical
boundaries. With advancements in computational methods and increasing computational
power, it has become feasible to tackle the complexities associated with these equations.
For instance, adaptive mesh refinement techniques can be used to focus computational
efforts in regions where the higher-order terms of the super-Burnett-level equations are
significant. Nonetheless, the theoretical framework presented in this study will attain its
full completeness upon the derivation of boundary conditions. This accomplishment will
extend the applicability of the equations to intricate higher-dimensional flow scenarios.
Consequently, based on the proposed equations, a comprehensive computational fluid
dynamics solver can be developed to tackle rarefied gas flow problems effectively.

7. Conclusions

In this work, we modify the Onsager-consistent distribution function by adding several
additive-invariant-property-consistent correction terms of Burnett and super-Burnett order
by employing the iterative refinement technique. Further, we employ this modified
density function to obtain the constitutive relationships for the stress tensor and heat flux
vector having additional linear and nonlinear terms to close the proposed set of second-
and third-order transport equations. These sets of second- (EOBurnett) and third-order
(SOBurnett) equations have been demonstrated to be unconditionally stable for 2-D
flow for any disturbances in space. We then solve a long microchannel pressure-driven
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Poiseuille flow problem by assuming small Mach and Reynolds numbers to validate the
proposed equations. This resulted in the analytical expression of the velocity and pressure
as functions of both the normal and axial directions for both second- and third-order
equations, which has not been obtained using any Burnett- and super-Burnett-level
equations in the past. We demonstrate that the present solutions quantitatively agree
with existing DSMC results in the transition regime. The present solution for pressure
successfully captures the normal variation of pressure with enough accuracy due to the
added additional term in the constitutive relationships. Due to these terms, the proposed
equations also accurately capture the velocity profile near the wall. Therefore, the proposed
equations successfully capture the Knudsen layer phenomenon in the transition regime of
rarefied flow.

The obtained results demonstrate that the proposed equations are more precise than
the N-S equations and are expected to provide a better description of the flow physics at
a large Knudsen number. Unlike the N-S equations, the proposed equations can capture
the non-Newtonian stress. The proposed equation can also be used on a very fine grid
while applying the numerical method. Although the results demonstrated in the present
work suggest that the model would perform robustly within the transition flow regime,
a comprehensive investigation to determine its precise limits of accuracy in Knudsen
number needs to be undertaken.

In conclusion, the scope of the present work encompasses a wide range of Knudsen
number. We discuss how this work can be employed in the context of issues related to the
conventional, augmented and super-Burnett equations. Moreover, the approach followed
in the present work can also be used to solve the existing higher-order set of equations and
test their validity in the transition regime of gaseous rarefied flow, which has been hindered
due to the complex nature of the equations. These findings have important implications for
accurately predicting fluid flows in microchannels and other rarefied gas systems for their
design.
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Appendix A. Constitutive relations and governing equations

The explicit expressions of the 2-D stress tensor and heat flux vector of third-order
in Knudsen number are required to perform stability analysis and derive the analytical
solution in the present work. Therefore, these expressions obtained from (3.6)–(3.7) are
expressed as follows:

σ11 = μ

27R2T2ρ3 (18R2μ[−2Txx + Tyy]Tρ2 + 18R2μ[2ρ2
x − ρ2

y ]T2
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+ 18R2μ[−2Txρx + Tyρy]Tρ + 18R2[−2ux + vy]T2ρ3 + 6Rμ2[8uxxx + 5uyxy]Tρ

+ 45Rμ2[−2Txxux + Txxvy − 2Tyyux + Tyyvy]ρ + 6Rμ2[−8ρxuxx − 6ρxuyy

− 2ρx + 3ρyvxx + 4ρyvyy + ρy]T + 6Rμ
[− 4u2

xϕ + 8u2
x − 2uxvyϕ + 7uxvy

− 3uyvx + 2v2
yϕ − 4v2

y
]
Tρ2 + 4μ2[−8u3

x + 12u2
xvy − 6uxu2

y − 12uxuyvx − 6uxv
2
x

− 12uxv
2
y + 3u2

yvy + 6uyvxvy + 3v2
xvy + 4v3

y ]ρ) (A1a)

σ21 = μ

18R2T2ρ3 (36R2μρxρyT2 − 18R2μ[Txρy + Tyρx]Tρ − 18R2[uy + vx]T2ρ3

+ 6Rμ2[3uyyy + 5vyxy]Tρ − 45Rμ2[Txxuy + Txxvx + Tyyuy + Tyyvx]ρ

− 6Rμ2[3ρxvxx + 4ρxvyy + ρx + 4ρyuxx + 3ρyuyy + ρy]T

+ 12Rμ[−uxuyϕ + 2uxuy − uxvxϕ + 2uxvx − uyvyϕ

+ 2uyvy − vxvyϕ + 2vxvy]Tρ2 + 4μ2[−4u2
xuy − 4u2

xvx

+ 4uxuyvy + 4uxvxvy − 3u3
y − 9u2

yvx − 9uyv
2
x − 4uyv

2
y − 3v3

x − 4vxv
2
y ]ρ) (A1b)

σ22 = μ

27R2T2ρ3 (18R2μ[Txx − 2Tyy]Tρ2 + 18R2μ[−ρ2
x + 2ρ2

y ]T2

+ 18R2μ[Txρx − 2Tyρy]Tρ + 18R2[ux − 2vy]T2ρ3 + 6Rμ2[−4uxxx − uyxy]Tρ

+ 45Rμ2[Txxux − 2Txxvy + Tyyux − 2Tyyvy]ρ

+ 6Rμ2[4ρxuxx + 3ρxuyy + ρx − 6ρyvxx − 8ρyvyy − 2ρy]T

+ 6Rμ[2u2
xϕ − 4u2

x − 2uxvyϕ + 7uxvy − 3uyvx − 4v2
yϕ + 8v2

y ]Tρ2

+ 4μ2[4u3
x − 12u2

xvy + 3uxu2
y + 6uxuyvx + 3uxv

2
x + 12uxv

2
y − 6u2

yvy − 12uyvxvy

− 6v2
xvy − 8v3

y ]ρ) (A1c)

qx = μ

48RT2ρ3 (−180R2TxT2ρ3 − 1350RTxμ
2(Txx + Tyy)ρ − 675Rμ2ρx(Txx + Tyy)T

− 180Rμ(uxx + 1)T2ρ2 + 16Rμ(−4ρxux + 2ρxvy − 3ρyuy − 3ρyvx)T2ρ

+ 2Rμ(−90Txuxϕ + 287Txux − 90Txvyϕ + 59Txvy + 249Tyuy − 21Tyvx)Tρ2

+ 120Txμ
2(−4u2

x + 4uxvy − 3u2
y − 6uyvx − 3v2

x − 4v2
y )ρ

+ 60μ2ρx(−4u2
x + 4uxvy − 3u2

y − 6uyvx − 3v2
x − 4v2

y )T

+ 120μ2(4uxuxx − 2ux − 2uxxvy + 3uyvxx + 3uy + 3vxvxx + 3vx + 4vy)Tρ)

(A2a)

qy = μ

48RT2ρ3 (−180R2TyT2ρ3 − 1350RTyμ
2(Txx + Tyy)ρ − 675Rμ2ρy(Txx + Tyy)T

− 180Rμ(vyy + 1)T2ρ2 + 16Rμ(−3ρxuy − 3ρxvx + 2ρyux − 4ρyvy)T2ρ

+ 2Rμ(−21Txuy + 249Txvx − 90Tyuxϕ + 59Tyux − 90Tyvyϕ + 287Tyvy)Tρ2

+ 120Tyμ
2(−4u2

x + 4uxvy − 3u2
y − 6uyvx − 3v2

x − 4v2
y )ρ
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+ 60μ2ρy(−4u2
x + 4uxvy − 3u2

y − 6uyvx − 3v2
x − 4v2

y )T

+ 120μ2(−2uxvyy + 4ux + 3uyuyy + 3uy + 3uyyvx + 3vx + 4vyvyy − 2vy)Tρ),

(A2b)

where ()x = ∂/∂x and ()y = ∂/∂y have been used to express the derivative terms in the
more compact and simpler form to avoid the complexity due to the presence of a large
number of terms in the constitutive relationships and equations. Note that the conventional
form of the derivative has been used in the main part of this paper since fewer terms are
present in the reduced equations presented in §§ 4 and 5.

Upon substituting the above stress tensor in the momentum, (3.2), the continuity and
(stream and cross-stream) momentum balance can be expressed in non-dimensional form
as

A.1. Continuity equations

ε(ρ̄ū)x̄ + (ρ̄v̄)ȳ = 0. (A3)

A.2. Stream momentum equation

ηx[50Ma4Re(−8ε3ūx̄ūx̄x̄ϕ + 16ε3ūx̄ūx̄x̄ − 5ε2ūx̄ϕv̄x̄ȳ + 13ε2ūx̄v̄x̄ȳ − 2ε2ūx̄x̄ϕv̄ȳ

+ 7ε2ūx̄x̄v̄ȳ − 3ε2ūx̄ȳϕv̄x̄ + 3ε2ūx̄ȳv̄x̄ − 3ε2ūȳv̄x̄x̄ − 3εūx̄ūȳȳϕ + 6εūx̄ūȳȳ − 3εūx̄ȳūȳϕ

+ 6εūx̄ȳūȳ − 3εϕv̄x̄v̄ȳȳ + εϕv̄x̄ȳv̄ȳ + 6εv̄x̄v̄ȳȳ − 2εv̄x̄ȳv̄ȳ − 3ūȳϕv̄ȳȳ + 6ūȳv̄ȳȳ

− 3ūȳȳϕv̄ȳ + 6ūȳȳv̄ȳ)p̄3 + 25Ma4(16ε4ūx̄x̄x̄x̄ + 7ε3v̄ȳx̄x̄x̄ + 25ε2ūȳȳx̄x̄ + 7εv̄x̄ȳȳȳ

+ 9ūȳȳȳȳ)p̄2 + 75Ma4(16ε4p̄2
x̄ ūx̄x̄ + 4ε3p̄2

x̄ v̄x̄ȳ + 3ε3p̄x̄p̄ȳv̄x̄x̄ + 12ε2p̄2
x̄ ūȳȳ

+ ε2p̄x̄p̄ȳūx̄ȳ + 12ε2p̄2
ȳ ūx̄x̄ + 4εp̄x̄p̄ȳv̄ȳȳ + 3εp̄2

ȳ v̄x̄ȳ + 9p̄2
ȳ ūȳȳ) + 25Ma4(−48ε4p̄x̄ūx̄x̄x̄

− 16ε4p̄x̄x̄ūx̄x̄ − 9ε3p̄x̄v̄ȳx̄x̄ − 4ε3p̄x̄x̄v̄x̄ȳ − 12ε3p̄ȳv̄x̄x̄x̄ − 3ε3p̄ȳx̄v̄x̄x̄ − 35ε2p̄x̄ūȳȳx̄

− 12ε2p̄x̄x̄ūȳȳ − 40ε2p̄ȳūx̄x̄ȳ − ε2p̄ȳx̄ūx̄ȳ − 12ε2p̄ȳȳūx̄x̄ + 4εp̄x̄v̄ȳȳȳ − 25εp̄ȳv̄ȳȳx̄

− 4εp̄ȳx̄v̄ȳȳ − 3εp̄ȳȳv̄x̄ȳ − 27p̄ȳūȳȳȳ − 9p̄ȳȳūȳȳ)p̄ + 45Ma2Re2(3Reεūx̄p̄ū + 3Reūȳp̄v̄

− 4ε2ūx̄x̄ − εv̄x̄ȳ − 3ūȳȳ)p̄4 − 540Ma2Reεp̄x̄(ε
2p̄2

x̄ + p̄2
ȳ) + 90Ma2Reε(8ε2p̄x̄p̄x̄x̄

+ p̄x̄p̄ȳȳ + 7p̄ȳp̄ȳx̄)p̄ + 10Ma2Re(20Ma2ε3p̄x̄ū2
x̄ϕ − 40Ma2ε3p̄x̄ū2

x̄ + 10Ma2ε2p̄x̄ūx̄ϕv̄ȳ

− 35Ma2ε2p̄x̄ūx̄v̄ȳ + 15Ma2ε2p̄x̄ūȳv̄x̄ + 15Ma2ε2p̄ȳūx̄ϕv̄x̄ − 30Ma2ε2p̄ȳūx̄v̄x̄

− 10Ma2εp̄x̄ϕv̄2
ȳ + 20Ma2εp̄x̄v̄

2
ȳ + 15Ma2εp̄ȳūx̄ūȳϕ − 30Ma2εp̄ȳūx̄ūȳ

+ 15Ma2εp̄ȳϕv̄x̄v̄ȳ − 30Ma2εp̄ȳv̄x̄v̄ȳ + 15Ma2p̄ȳūȳϕv̄ȳ − 30Ma2p̄ȳūȳv̄ȳ

− 18ε3p̄x̄x̄x̄ − 18εp̄ȳȳx̄)p̄2 + 81Re3εp̄x̄p̄4] = 0. (A4)

A.3. Cross-stream momentum equation

ηy[50Ma4Re(−3ε3ūx̄ϕv̄x̄x̄ + 6ε3ūx̄v̄x̄x̄ − 3ε3ūx̄x̄ϕv̄x̄ + 6ε3ūx̄x̄v̄x̄ + ε2ūx̄ūx̄ȳϕ − 2ε2ūx̄ūx̄ȳ

− 3ε2ūx̄x̄ūȳϕ + 6ε2ūx̄x̄ūȳ − 3ε2ϕv̄x̄v̄x̄ȳ − 3ε2ϕv̄x̄x̄v̄ȳ + 6ε2v̄x̄v̄x̄ȳ + 6ε2v̄x̄x̄v̄ȳ
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− 2εūx̄ϕv̄ȳȳ + 7εūx̄v̄ȳȳ − 5εūx̄ȳϕv̄ȳ + 13εūx̄ȳv̄ȳ − 3εūȳϕv̄x̄ȳ + 3εūȳv̄x̄ȳ − 3εūȳȳv̄x̄

− 8ϕv̄ȳv̄ȳȳ + 16v̄ȳv̄ȳȳ)p̄3(x̄, ȳ) + 25Ma4(9ε4v̄x̄x̄x̄x̄ + 7ε3ūȳx̄x̄x̄ + 7εūx̄ȳȳȳ

+ 16v̄ȳȳȳȳ)p̄2(x̄, ȳ) + 75Ma4(9ε4p̄2
x̄ v̄x̄x̄ + 3ε3p̄2

x̄ ūx̄ȳ + 4ε3p̄x̄p̄ȳūx̄x̄ + 12ε2p̄2
x̄ v̄ȳȳ

+ ε2p̄x̄p̄ȳv̄x̄ȳ + 12ε2p̄2
ȳ v̄x̄x̄ + 3εp̄x̄p̄ȳūȳȳ + 4εp̄2

ȳ ūx̄ȳ + 16p̄2
ȳ v̄ȳȳ)

+ 25Ma4(−27ε4p̄x̄v̄x̄x̄x̄ − 9ε4p̄x̄x̄v̄x̄x̄ − 25ε3p̄x̄ūx̄x̄ȳ − 3ε3p̄x̄x̄ūx̄ȳ + 4ε3p̄ȳūx̄x̄x̄

− 4ε3p̄ȳx̄ūx̄x̄ − 40ε2p̄x̄v̄ȳȳx̄ − 12ε2p̄x̄x̄v̄ȳȳ − 35ε2p̄ȳv̄ȳx̄x̄ − ε2p̄ȳx̄v̄x̄ȳ − 12ε2p̄ȳȳv̄x̄x̄

− 12εp̄x̄ūȳȳȳ − 9εp̄ȳūȳȳx̄ − 3εp̄ȳx̄ūȳȳ − 4εp̄ȳȳūx̄ȳ − 48p̄ȳv̄ȳȳȳ − 16p̄ȳȳv̄ȳȳ)p̄(x̄, ȳ)

+ 45Ma2Re2(3Reεv̄x̄p̄(x̄, ȳ)ū(x̄, ȳ) + 3Rev̄ȳp̄(x̄, ȳ)v̄(x̄, ȳ) − 3ε2v̄x̄x̄ − εūx̄ȳ

− 4v̄ȳȳ)p̄4(x̄, ȳ) − 540Ma2Rep̄ȳ(ε
2p̄2

x̄ + p̄2
ȳ) + 90Ma2Re(7ε2p̄x̄p̄ȳx̄ + ε2p̄x̄x̄p̄ȳ

+ 8p̄ȳp̄ȳȳ)p̄(x̄, ȳ) + 10Ma2Re(15Ma2ε3p̄x̄ūx̄ϕv̄x̄ − 30Ma2ε3p̄x̄ūx̄v̄x̄

+ 15Ma2ε2p̄x̄ūx̄ūȳϕ − 30Ma2ε2p̄x̄ūx̄ūȳ + 15Ma2ε2p̄x̄ϕv̄x̄v̄ȳ − 30Ma2ε2p̄x̄v̄x̄v̄ȳ

− 10Ma2ε2p̄ȳū2
x̄ϕ + 20Ma2ε2p̄ȳū2

x̄ + 15Ma2εp̄x̄ūȳϕv̄ȳ − 30Ma2εp̄x̄ūȳv̄ȳ

+ 10Ma2εp̄ȳūx̄ϕv̄ȳ − 35Ma2εp̄ȳūx̄v̄ȳ + 15Ma2εp̄ȳūȳv̄x̄ + 20Ma2p̄ȳϕv̄2
ȳ

− 40Ma2p̄ȳv̄
2
ȳ − 18ε2p̄x̄x̄ȳ − 18p̄ȳȳȳ)p̄2(x̄, ȳ) + 81Re3p̄ȳp̄4(x̄, ȳ)] = 0, (A5)

where ηx = ηy = 1/(135Ma2Re2p̄4).

Appendix B. Solution for velocity field

Solving the streamwise momentum equation yields the velocity field

ū =
{[

6A4Ma2γ (A2Ma2γ − Re2)(ȳC2 + C1 + C4 exp(Bȳp̄NS))(A4Ma4γ 2

− 2A2Ma2Re2γ + Re4)p̄5
NS exp(ȳ(2A + B)p̄NS)

+ 6A4Ma2γ (A2Ma2γ − Re2)(A4Ma4γ 2 − 2A2Ma2Re2γ

+ Re4)C3p̄5
NS exp(2Aȳp̄NS) + 3A4Reεȳ2(A2Ma2γ − Re2)

(
dp̄NS

dx̄
+ dp̂c

dx̄

)
× (A4Ma4γ 2 − 2A2Ma2Re2γ + Re4)p̄5

NS exp(ȳ(2A + B)p̄NS)

+ Reε(A2Ma2γ − Re2)(4A4Ma4γ 2 − 7A2Ma2Re2γ

− 3A2ȳ2(A4Ma4γ 2 − 2A2Ma2Re2γ + Re4)p̄2
NS exp(Aȳp̄NS) + 3Re4

+ (4A4Ma4γ 2 − 7A2Ma2Re2γ + 3Re4) exp(2Aȳp̄NS))p̄NS exp(ȳ(A + B)p̄NS)
dâ
dx̄

− Reε(18A4Ma4γ 2(A2Ma2γ − Re2) + 4A3Ma2γ ȳ(A4Ma4γ 2 − 2A2Ma2Re2γ

+ Re4)p̄NS − 28A2Ma2Re2γ (A2Ma2γ − Re2) − 6A2ȳ2(A2Ma2γ − Re2)
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× (A4Ma4γ 2 − 2A2Ma2Re2γ + Re4)p̄2
NS exp(Aȳp̄NS) − 3ARe2ȳ(A4Ma4γ 2

− 2A2Ma2Re2γ + Re4)p̄NS + 12Re4(A2Ma2γ − Re2)

+ [18A4Ma4γ 2(A2Ma2γ − Re2) − 4A3Ma2γ ȳ(A4Ma4γ 2

− 2A2Ma2Re2γ + Re4)p̄NS − 28A2Ma2Re2γ (A2Ma2γ − Re2)

+ 3ARe2ȳ(A4Ma4γ 2 − 2A2Ma2Re2γ + Re4)p̄NS

+12Re4(A2Ma2γ − Re2)] exp(2Aȳp̄NS))â exp(ȳ(A + B)p̄NS)
dp̄NS

dx̄

]

× exp(−ȳ(2A + B)p̄NS)

}
1
ζ

, (B1)

where
ζ = [6A4Ma2γ (A2Ma2γ − Re2)(A4Ma4γ 2 − 2A2Ma2Re2γ + Re4)p̄5

NS]

B = Re
√

3/5/Ma,

}
(B2)

and C3–C4 are additional integration constants appearing due to the presence of the
fourth-order derivative term in (5.4).
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