INVARIANT SUBSPACES IN THE BIDISC AND WANDERING SUBSPACES

TAKAHIKO NAKAZI

(Received 26 September 2005; accepted 4 October 2006)

Communicated by A. L. Pryde

Abstract

Let M be a forward-shift-invariant subspace and N a backward-shift-invariant subspace in the Hardy space H^2 on the bidisc. We assume that $H^2 = N \oplus M$. Using the wandering subspace of M and N. we study the relations between M and N. Moreover we study M and N using several natural operators defined by shift operators on H^2 .

2000 Mathematics subject classification: primary 47A15, 46J15; secondary 47A20. Keywords and phrases: invariant subspace, two variable Hardy space, wandering subspace.

1. Introduction

Let Γ^2 be the torus, that is, the Cartesian product of two unit circles Γ in \mathbb{C} . Let p = 2or $p = \infty$. The usual Lebesgue spaces, with respect to the Haar measure *m* on Γ^2 , are denoted by $L^p = L^p(\Gamma^2)$, and $H^p = H^p(\Gamma^2)$ is the space of all f in L^p whose Fourier coefficients

$$\hat{f}(j,\ell) = \int_{\Gamma^2} f(z,w) \bar{z}^j \bar{w}^\ell \, dm(z,w)$$

vanish if at least one of j and ℓ is negative. Then H^p is called the *Hardy space*. As $\Gamma^2 = \Gamma_z \times \Gamma_w$, $H^p(\Gamma_z)$ and $H^p(\Gamma_w)$ denote the one-variable Hardy spaces. Let P_{H^2} be the orthogonal projection from L^2 onto H^2 . For ϕ in L^{∞} , the *Toeplitz*

operator T_{ϕ} is defined by

$$T_{\phi}f = P_{H^2}(\phi f)$$
 for all $f \in H^2$.

A closed subspace M of H^2 is said to be *forward-shift-invariant* if $T_2 M \subset M$ and $T_w M \subset M$, and a closed subspace N of H^2 is said to be backward-shift-invariant if

© 2008 Australian Mathematical Society 1446-7887/08 \$A2.00 + 0.00

This research was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

T. Nakazi

 $T_z^*N \subset N$ and $T_w^*N \subset N$. Let P_M and P_N be the orthogonal projections from H^2 onto M and N, respectively. In this paper, we assume that $M \oplus N = H^2$, that is, $P_M + P_N = I$ where I is the identity operator on H^2 . Let

$$A = P_M T_z P_N$$
 and $B = P_N T_w^* P_M$.

For ϕ in H^{∞} ,

$$V_{\phi}f = P_M(\phi f)$$
 for all $f \in M$ and $S_{\phi}f = P_N(\phi f)$ for all $f \in N$

Suppose that

$$\mathcal{V} = V_z V_w^* - V_w^* V_z$$
 and $\mathcal{S} = S_z S_w^* - S_w^* S_z$.

It is known [4] that $AB|_M = \mathcal{V}$ and $BA|_N = \mathcal{S}$. Guo and Yang [3] showed that AB is Hilbert–Schmidt under some mild conditions. In this paper, we study M or N when A, B, AB or BA is of finite rank. Izuchi and Nakazi [4] described an invariant subspace M or N with A = 0 or B = 0. Mandrekar [6], Ghatage and Mandrekar [2] and Nakazi [7, 8] described an invariant subspace M with AB = 0. Izuchi and Nakazi [4] and Izuchi *et al.* [5] described an invariant subspace N with BA = 0.

For a forward-shift-invariant subspace M, put

$$M_1 = \ker V_z^*$$
, $M_2 = \ker V_w^*$ and $M_0 = M_1 \cap M_2$.

These are called *wandering subspaces* for *M*. In this paper, [·] denotes the closed span. For a backward-shift-invariant subspace *N*, with $M = H^2 \ominus N$, put

$$N_1 = [T_z^* M_1], \quad N_2 = [T_w^* M_2] \text{ and } N_0 = N_1 \cap N_2.$$

These are called wandering subspaces for N.

In Section 2 we decompose and study M and N using the wandering subspaces M_1 , M_2 , N_1 and N_2 . In Section 3 we study M and N when A or B is of finite rank. For an operator K, r(K) denotes the rank of K. In Section 4 we show that $r(AB) = \dim N_1 \cap N_2$ in general, and $r(BA) = \dim M_1 \cap M_2$ under some mild conditions.

In this paper, for a bounded linear operator X on H^2 , $\operatorname{ran} X = XH^2$ and $\ker X = \{f \in H^2 \mid Xf = 0\}$.

2. Wandering subspaces

Let *M* be a forward-shift-invariant subspace, and *N* be a backward-shift-invariant subspace with $H^2 = M \oplus N$. Put

$$M_z^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in M \mid \overline{z}^n f \in M \} \text{ and } M_w^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in M \mid \overline{w}^n f \in M \},$$

and

[3]

$$N_z^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in N \mid z^n f \in N \}$$
 and $N_w^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in N \mid w^n f \in N \}.$

In the case of one variable, $M_z^{\infty} = N_z^{\infty} = [0]$. In the case of two variables, M_z^{∞} is also always [0] but N_z^{∞} may not be [0]. In fact, if $N \supset q_1 H^2(\Gamma_z)$ then $N_z^{\infty} \supset q_1 H^2(\Gamma_z)$ where $q_1 = q_1(z)$ is an inner function of one variable.

THEOREM 1. Let N be a backward-shift-invariant subspace and $M = H^2 \ominus N$.

(1)
$$M_z^{\infty} = M_w^{\infty} = [0] \text{ and } M = \sum_{n=0}^{\infty} \oplus T_z^n M_1 = \sum_{n=0}^{\infty} \oplus T_w^n M_2.$$

(2) $N = [\bigcup_{n=0}^{\infty} T_z^{*n} N_1] \oplus N_z^{\infty} = [\bigcup_{n=0}^{\infty} T_w^{*n} N_2] \oplus N_w^{\infty}.$

PROOF. (1) is well known. To prove (2): if $f \in N_z^{\infty}$, then by definition $z^n f \in N$ for any $n \ge 1$, and hence f is orthogonal to $[\bigcup_{n=0}^{\infty} T_z^{*n} N_1]$. Conversely, suppose that f is orthogonal to $\bigcup_{n=0}^{\infty} T_z^{*n} N_1$. Since $f \perp N_1$, zf is orthogonal to $M_1 + zM$ because $N_1 = T_z^* M_1$ and $f \in N$. Hence $zf \in N$. Since $f \perp T_z^* N_1$, $z^2 f$ is orthogonal to $M_1 + zM$ because $T_z^* N_1 = T_z^{*2} M_1$ and $zf \in N$. Hence $z^2 f \in N$. By repeating the same argument, we can show that $z^n f$ belongs to N for any $n \ge 1$. This implies (2). \Box

COROLLARY 2. Let N be a backward-shift-invariant subspace.

- (1) $N = N_z^{\infty}$ if and only if $N = H^2(\Gamma_z) \otimes (H^2(\Gamma_w) \ominus q_2 H^2(\Gamma_w))$ where $q_2 = q_2(w)$ is an inner function of one variable.
- (2) $N = [\bigcup_{n=0}^{\infty} T_z^{*n} N_1]$ if and only if for each nonzero f in N there exists $n \ge 1$ such that $z^n f \notin N$.

PROOF. (1) If $N = N_z^{\infty}$ then $N_1 = 0$ and so $T_z^* M_1 = 0$. Hence $M_1 \subset H^2(\Gamma_w)$, so $M_1 = q_2 H^2(\Gamma_w)$ by a well-known theorem of Beurling [1]. Thus $M = q_2 H^2$, and so

$$N = H^2(\Gamma_z) \otimes (H^2(\Gamma_w) \ominus q_2 H^2(\Gamma_w)).$$

Conversely, if $M = q_2 H^2$ then $M_1 = q_2 H^2(\Gamma_w)$, and so $N_1 = T_z^* M_1 = 0$. Part (2) is clear by (2) of Theorem 1.

By (1) of Theorem 1, both M_1 and M_2 are cyclic subspaces for T_z and T_w : that is,

$$\left[\bigcup_{(n,m)\geq (0,0)} T_z^n T_w^m M_j\right] = M \quad \text{for } j = 1, 2.$$

It may happen that

$$\left[\bigcup_{(n,m)\geq(0,0)}T_z^nT_w^mM_0\right]=M,$$

where $M_0 = M_1 \cap M_2$. By (2) of Theorem 1, if $N_z^{\infty} = [0]$ or $N_w^{\infty} = [0]$ then N_1 or N_2 is a cyclic subspace for T_z^* and T_w^* : that is,

T. Nakazi

$$\left[\bigcup_{(n,m)\ge(0,0)} T_z^{*n} T_w^{*m} N_j\right] = N \text{ for } j = 1, 2.$$

In general, N_0 may not be a cyclic subspace because $N_0 = [0]$ may happen. We can ask whether $T_z^*M_0$ or $T_w^*M_0$ is a cyclic subspace for T_z^* and T_w^* because $N_1 \supset T_z^*M_0$ and $N_2 \supset T_w^* M_0$. However, this is not true. If $M = z H^2$ then $N = H^2(\Gamma_w)$ and $M_0 = [z]$. Then $T_{w}^{*}M_{0} = [0]$ and $T_{z}^{*}M_{0} = [1]$.

EXAMPLE 1. Let $N = H^2(\Gamma_z) + H^2(\Gamma_w)$. Then the following hold.

- (1) $N_1 = w H^2(\Gamma_w), N_2 = z H^2(\Gamma_z)$ and $N_0 = [0]$.
- (2) $[\bigcup_{n\geq 0} T_z^{*n} N_1] = w H^2(\Gamma_w), \quad [\bigcup_{n\geq 0} T_w^{*n} N_2] = z H^2(\Gamma_z) \text{ and } [\bigcup_{(n,m)>0} T_z^{*n} N_2] = z H^2(\Gamma_z)$ (3) $N_{z}^{*m} \overline{N_{0}} = H^{2}(\Gamma_{z})$ and $N_{w}^{\infty} = H^{2}(\Gamma_{w})$.

EXAMPLE 2. Let $N = \mathbb{C}$ and $M = zH^2 + wH^2$. Then the following hold.

(1) $N_1 = N_2 = N_0 = \mathbb{C}$. (2) $[\bigcup_{n\geq 0}T_z^{*n}N_1] = [\bigcup_{n\geq 0}T_w^{*n}N_2] = [\bigcup_{(n,m)\geq (0,0)}T_z^{*n}T_w^{*m}N_0] = N.$ (3) $N_z^{\infty} = N_w^{\infty} = [0].$

EXAMPLE 3. Let

370

$$N = (H^{2}(\Gamma_{z}) \ominus q_{1}H^{2}(\Gamma_{z})) \otimes (H^{2}(\Gamma_{w}) \ominus q_{2}H^{2}(\Gamma_{w}))$$

and $M = q_1 H^2 + q_2 H^2$, where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are inner functions of one variable.

- (1) $M_1 = q_1(H^2(\Gamma_w) \ominus q_2 H^2(\Gamma_w)) \oplus q_2 H^2(\Gamma_w)$ and $M_2 = q_2(H^2(\Gamma_z) \ominus q_1 H^2)$ $(\Gamma_z)) \oplus q_1 H^2(\Gamma_z).$
- (2) $N_1 = (T_z^* q_1)(H^2(\Gamma_w) \ominus q_2 H^2(\Gamma_w)), \ N_2 = (T_w^* q_2)(H^2(\Gamma_z) \ominus q_1 H^2(\Gamma_z))$ and $N_0 = \langle (\tilde{T}_z^* q_1)(T_w^* q_2) \rangle.$
- (3) $[\bigcup_{n\geq 0} T_z^{*n} N_1] = [\bigcup_{n\geq 0} T_w^{*n} N_2] = [\bigcup_{(n,m)>(0,0)} T_z^{*n} T_w^{*m} N_0] = N.$

PROOF. (2) and (3) follow from (1). It is known [4] that

$$M = q_2 H^2 \oplus q_1 (H^2 \ominus q_2 H^2) = (H^2(\Gamma_z) \otimes q_2 H^2(\Gamma_w))$$
$$\oplus \{q_1 H^2(\Gamma_z) \otimes (H^2(\Gamma_w) \ominus q_2 H^2(\Gamma_w))\}.$$

Hence (1) follows.

3. $r(A) < \infty$ or $r(B) < \infty$

Recall that $A = P_M T_z P_N$ and $B = P_N T_w^* P_M$ (see Introduction). In this section, we are interested in the case when A or B is of finite rank. We know a characterization

[4]

of A = 0 or B = 0 (see [3]). In fact, A = 0 if and only if $N = H^2$ or $N = H^2 \ominus q H^2$ where q = q(w) is an inner function of one variable, and B = 0 if and only if M = [0]or $M = q H^2$ where q = q(z) is an inner function of one variable. In one-variable Hardy space, either A is of rank one for any N or B is of rank one for any M.

LEMMA 3. Let M be a forward-shift-invariant subspace of H^2 and $N = H^2 \ominus M$.

- (1) $[\operatorname{ran} A] \subseteq M_1$ and ker $A = \{f \in N \mid T_z f \in N\} \oplus M$.
- (2) $[\operatorname{ran} A^*] = N_1 \text{ and } \ker A^* = \{ f \in M \mid T_z^* f \in M \} \oplus N.$
- (3) $M_1 = [\operatorname{ran} A] \oplus \{\ker A^* \ominus (T_z M \oplus N)\}.$
- (4) $M = [\operatorname{ran} A] \oplus (\ker A^* \ominus N) \text{ and } N = [\operatorname{ran} A^*] \oplus (\ker A \ominus M).$

PROOF. (1) By the definitions, $[ran A] = [P_M T_z N] \subseteq M_1$ because $T_z N$ is orthogonal to $T_z M$ and

$$\ker A = \{ f \in N \mid T_z f \in N \} \oplus M.$$

(2) Since $T_z^*M = T_z^*M_1 \oplus M$, $[ranA^*] = [T_z^*M_1] = N_1$. By definition,

$$\ker A^* = \{ f \in M \mid T_z^* f \in M \} \oplus N.$$

(3) is clear from (1) and the fact that $H^2 = [\operatorname{ran} A] \oplus \ker A^*$. (4) is clear from (1), (2) and the fact that $H^2 = [\operatorname{ran} A^*] \oplus \ker A$.

LEMMA 4. Let M be a forward-shift-invariant subspace of H^2 and $N = H^2 \ominus M$.

- (1) $[\operatorname{ran} A] = M_1 \ominus (M_1 \cap \ker T_z^*).$
- (2) ker $A^* = (M_1 \cap \ker T_z^*) \oplus T_z M \oplus N$.

PROOF. (1) Since $T_z N \perp \ker T_z^*$, $T_z N \perp M_1 \cap \ker T_z^*$, so $P_M T_z N \perp M_1 \cap \ker T_z^*$. Hence, by (1) of Lemma 3, $[\operatorname{ran} A] \subseteq M_1 \ominus (M_1 \cap \ker T_z^*)$. If $f \in M_1$ and $f \perp \operatorname{ran} A$, then $f \perp T_z N$ and so $T_z^* f \perp N$. Hence $T_z^* f \in N \cap M$, because $T_z^* M_1 \perp M$. Hence $T_z^* f = 0$. (2) follows from (1), by (2) of Lemma 3.

LEMMA 5. Let M be a forward-shift-invariant subspace of H^2 . If $[ran A] \neq M_1$, then $M_1 = [ran A] \oplus q_2 H^2(\Gamma_w)$.

PROOF. By Lemma 4, $M_1 \ominus [\operatorname{ran} A] = M_1 \cap \ker T_z^*$ and $M_1 \cap \ker T_z^* \subset H^2(\Gamma_w)$ because ker $T_z^* = H^2(\Gamma_w)$. Hence $w(M_1 \cap \ker T_z^*) \perp zM$, and so

$$w(M_1 \cap \ker T_z^*) \subseteq M_1 \cap \ker T_z^*.$$

By a theorem of Beurling [1], $M_1 \ominus [\operatorname{ran} A] = q_2 H^2(\Gamma_w)$ for some one-variable inner function $q_2 = q_2(w)$.

T. Nakazi

THEOREM 6. Let M be a nonzero forward-shift-invariant subspace.

(1) If $r(A) < \infty$, then there is a one-variable inner function $q_2 = q_2(w)$ such that

$$M_1 = \operatorname{ran} A \oplus q_2 H^2(\Gamma_w) \quad and \quad M = q_2 H^2 \oplus \left\{ \sum_{j=0}^{\infty} \oplus (\operatorname{ran} A) z^j \right\}$$

where $q_2 = q_2(w)$ is a one-variable inner function.

(2) If $r(B) < \infty$, then there is a one-variable inner function $q_1 = q_1(z)$ such that

$$M_2 = \operatorname{ran} B^* \oplus q_1 H^2(\Gamma_z)$$
 and $M = q_1 H^2 \oplus \left\{ \sum_{j=0}^{\infty} \oplus (\operatorname{ran} B^*) w^j \right\}$

where $q_1 = q_1(z)$ is a one-variable inner function.

(3) If $r(A) < \infty$ and $r(B) < \infty$ then there exist two inner functions $q_1 = q_1(z)$ and $q_2 = q_2(w)$ such that $q_1H^2 + q_2H^2$ is a closed forward-shift-invariant subspace, $M \supseteq q_1H^2 + q_2H^2$, and

$$\dim\{M_1 + M_2\}/\{q_1 H^2(\Gamma_z) + q_2 H^2(\Gamma_w)\} \le r(A) + r(B).$$

PROOF. Since dim $M_1 = \infty$ by [7, Theorem 3], if $r(A) < \infty$ then $[\operatorname{ran} A] \neq M_1$, and so by Lemma 3, $M_1 = [\operatorname{ran} A] \oplus q_2 H^2(\Gamma_w)$ for some one-variable inner function $q_2 = q_2(w)$. This implies (1). If $r(B) < \infty$, then $r(B^*) < \infty$. Since $B^* = P_M T_w P_N$, (1) implies (2). If $r(A) < \infty$ and $r(B) < \infty$, (1) and (2) imply (3) because it is known [4] that $q_1 H^2 + q_2 H^2$ is closed.

COROLLARY 7.

- (1) If A = 0, then M = [0] or $M = q_2 H^2$ for some one-variable inner function $q_2 = q_2(w)$.
- (2) If B = 0, then M = [0] or $M = q_1 H^2$ for some one-variable inner function $q_1 = q_1(z)$.

COROLLARY 8.

- (1) If $0 \le n \le \infty$ and $0 \le m \le \infty$, then there exist invariant subspaces M and N such that r(A) = n and r(B) = m.
- (2) If r(B) = 0, then r(A) = 0 or $r(A) = \infty$. If r(A) = 0, then r(B) is 0 or ∞ .

PROOF. (1) Let $1 \le n < \infty$ and $1 \le m < \infty$. Suppose that $M = z^m H^2 + w^n H^2$. Then

$$M_1 = w^n H^2(\Gamma_w) + [1, w, \dots, w^{n-1}] z^m \text{ and} M_2 = z^m H^2(\Gamma_z) + [1, z, \dots, z^{m-1}] w^n.$$

By (1) and (2) of Theorem 6, r(A) = n and r(B) = m.

(2) If r(B) = 0, then by (2) of Corollary 7, M = [0] or $M = q_1 H^2$ where $q_1 = q_1(z)$ is a one-variable inner function. If M = [0] then r(A) = 0 by definition. If $M = q_1 H^2$

then $M_1 = q_1 H^2(\Gamma_w)$, and so if $r(A) < \infty$ then by (1) of Theorem 6 $M_1 \supset q_2 H^2(\Gamma_w)$ for some one-variable inner function $q_2 = q_2(w)$. This implies that q_1 is constant. Hence $M = H^2$, and so A = 0.

For a finite Blaschke product q, deg q denotes the number of zeros of q counting multiplicity.

COROLLARY 9. If $M = q_1H^2 + q_2H^2$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one-variable inner functions, then

$$[\operatorname{ran} A] = q_1(H^2(\Gamma_w) \ominus q_2 H^2(\Gamma_w)) \quad and \quad [\operatorname{ran} B^*] = q_2(H^2(\Gamma_z) \ominus q_1 H^2(\Gamma_z)).$$

If $r(A) < \infty$ and $r(B) < \infty$, then $r(A) = \deg q_2$ and $r(B) = \deg q_1$.

COROLLARY 10. Let M be a forward-shift-invariant subspace. If M is of finite codimension n, then $r(A) \le n$, $r(B) \le n$, and $M \supseteq q_1 H^2 + q_2 H^2$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one-variable finite Blaschke products.

PROOF. By the definitions of *A* and *B*, it is clear that $r(A) \le n$ and $r(B) \le n$. The second statement follows from (3) of Theorem 6.

PROPOSITION 11. Let M be a forward-shift-invariant subspace. Then $M \supseteq q_1 H^2 + q_2 H^2$ for some one-variable inner functions $q_1 = q_1(z)$ and $q_2 = q_2(w)$ if and only if $[\operatorname{ran} A] \neq M_1$ and $[\operatorname{ran} B^*] \neq M_2$.

PROOF. The 'if' part is clear by Lemma 5. If $M \supseteq q_1 H^2$, then $q_1 H^2(\Gamma_z)$ is orthogonal to wM, and so $q_1 H^2(\Gamma_z) \subseteq M_2$. Hence Lemma 4 implies that $[\operatorname{ran} B^*] \neq M_2$. Similarly we can prove that if $M \supseteq q_2 H^2$ then $[\operatorname{ran} A] \neq M_1$.

PROPOSITION 12. $N_1 = [\operatorname{ran} A^*]$ and $N_2 = [\operatorname{ran} B]$. Hence dim $N_1 = r(A)$ and dim $N_2 = r(B)$.

PROOF. This follows from (2) of Lemma 3.

4. $r(AB) < \infty$ or $r(BA) < \infty$

Let *M* be a forward-shift-invariant subspace and $N = H^2 \ominus M$. Recall the definitions of \mathcal{V} and \mathcal{S} in the Introduction. It is known [4] that $AB|_M = \mathcal{V}$ and $BA|_N = \mathcal{S}$. Then AB = 0 if and only if $\mathcal{V} = 0$, and BA = 0 if and only if $\mathcal{S} = 0$. We know the characterization of an invariant subspace such that AB = 0 or BA = 0. In fact, it is known (see [6–8]) that AB = 0 if and only if $M = qH^2$ for some inner function q. Recently it was proved (see [4, 5]) that BA = 0 if and only if

$$N = (H^{2}(\Gamma_{z}) \ominus q_{1}H^{2}(\Gamma_{z})) \otimes (H^{2}(\Gamma_{w}) \ominus q_{2}H^{2}(\Gamma_{w})),$$

$$N = (H^{2}(\Gamma_{z}) \ominus q_{1}H^{2}(\Gamma_{z})) \otimes H^{2}(\Gamma_{w}), \text{ or }$$

$$N = H^{2}(\Gamma_{z}) \otimes (H^{2}(\Gamma_{w}) \ominus q_{2}H^{2}(\Gamma_{w})),$$

where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one-variable inner functions. In this section, we study invariant subspaces such that $r(AB) < \infty$ or $r(BA) < \infty$.

LEMMA 13. Let M be a forward-shift-invariant subspace and $N = H^2 \ominus M$.

- (1) $r(BA) = \dim([P_M T_z N] \cap [P_M T_w N]).$
- (2) $r(AB) = \dim([P_N T_z^* M] \cap [P_N T_w^* M]).$

PROOF. (1) Since $[BAH^2] = [B[\operatorname{ran} A]]$, $r(BA) = \dim((\ker B)^{\perp} \cap [\operatorname{ran} A])$. This implies (1) because $(\ker B)^{\perp} = [\operatorname{ran} B^*] = [P_M T_w N]$ and $[\operatorname{ran} A] = [P_M T_z N]_2$. (2) can be proved similarly.

THEOREM 14. Let M be a forward-shift-invariant subspace of H^2 and $N = H^2 \ominus M$.

- (1) If $M_1 \cap \ker T_z^* = [0]$ and $M_2 \cap \ker T_w^* = [0]$, then $r(BA) = \dim M_1 \cap M_2$.
- (2) $r(AB) = \dim N_1 \cap N_2$.

PROOF. (1) By (1) and (2) of Lemma 3,

$$[\operatorname{ran} A] = [P_M T_z N] \subseteq M_1$$
 and $[\operatorname{ran} B^*] = [P_M T_w N] \subseteq M_2$.

By Lemma 4, if $M_1 \cap \ker T_z^* = [0]$ then $[P_M T_z N] = M_1$, and if $M_2 \cap \ker T_w^* = [0]$ then $[P_M T_w N] = M_2$. Hence, $r(BA) = \dim M_1 \cap M_2$ by Lemma 13.

(2) Since $[P_N T_z^* M] = [P_N T_z^* M_1] = N_1$ and $[P_N T_w^* M] = [P_N T_w^* M_2] = N_2$, by Lemma 13 $r(AB) = \dim N_1 \cap N_2$.

In (1) of Theorem 14, we need the condition $M_1 \cap \ker T_z^* = M_2 \cap \ker T_w^* = [0]$. In fact, $M_1 \cap M_2$ is always nontrivial but *BA* may be zero.

References

- [1] A. Beurling, 'On two problems concerning linear transformations in Hilbert space', *Acta Math.* **81** (1949), 239–255.
- [2] P. Ghatage and V. Mandrekar, 'On Beurling type invariant subspaces of $L^2(\mathbf{T}^2)$ and their equivalence', J. Operator Theory **20** (1988), 31–38.
- [3] K. Guo and R. Yang, 'The core function of submodules over the bidisk', *Indiana Univ. Math. J.* **53** (2004), 205–222.
- [4] K. Izuchi and T. Nakazi, 'Backward shift invariant subspaces in the bidisc', Hokkaido Math. J. 3 (2004), 247–254.
- [5] K. Izuchi, T. Nakazi and M. Seto, 'Backward shift invariant subspaces in the bidisc II', J. Operator Theory 51 (2004), 361–376.
- [6] V. Mandrekar, 'The validity of Beurling theorems in polydiscs', *Proc. Amer. Math. Soc.* 103 (1988), 145–148.
- [7] T. Nakazi, 'Certain invariant subspaces of H^2 and L^2 on a bidisc', *Canad. J. Math.* **40** (1988), 1272–1280.
- [8] _____, 'Invariant subspaces in the bidisc and commutators', J. Aust. Math. Soc. 56 (1994), 232– 242.
- [9] _____, 'Homogeneous polynomials and invariant subspaces in the polydiscs', Arch. Math. 58 (1992), 56–63.

TAKAHIKO NAKAZI, Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan e-mail: nakazi@math.sci.hokudai.ac.jp

374