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We present a systematic study on the effects of small aspect ratios Γ on heat transport in
liquid metal convection with a Prandtl number of Pr = 0.029. The study covers 1/20 ≤
Γ ≤ 1 experimentally and 1/50 ≤ Γ ≤ 1 numerically, and a Rayleigh number Ra range of
4 × 103 ≤ Ra ≤ 7 × 109. It is found experimentally that the local effective heat transport
scaling exponent γ changes with both Ra and Γ , attaining a Γ -dependent maximum value
before transition-to-turbulence and approaches γ = 0.25 in the turbulence state as Ra
increases. Just above the onset of convection, Shishkina (Phys. Rev. Fluids, vol 6, 2021,
090502) derived a length scale � = H/(1 + 1.49Γ −2)1/3. Our numerical study shows
Ra�, i.e. Ra based on �, serves as a proper control parameter for heat transport above
the onset with Nu − 1 = 0.018(1 + 0.34/Γ 2)(Ra/Rac,Γ − 1). Here Rac,Γ represents the
Γ -dependent critical Ra for the onset of convection and Nu is the Nusselt number. In the
turbulent state, for a general scaling law of Nu − 1 ∼ Raα , we propose a length scale
� = H/(1 + 1.49Γ −2)1/[3(1−α)]. In the case of turbulent liquid metal convection with
α = 1/4, our measurement shows that the heat transport will become weakly dependent
on Γ with Ra� ≡ Ra/(1 + 1.49Γ −2)4/3 ≥ 7 × 105. Finally, once the flow becomes
time-dependent, the growth rate of Nu with Ra declines compared with the linear growth
rate in the convection state. A hysteresis is observed in a Γ = 1/3 cell when the
flow becomes time-dependent. Measurements of the large-scale circulation suggest the
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hysteresis is caused by the system switching from a single-roll-mode to a double-roll-mode
in an oscillation state.

Key words: Bénard convection, turbulent convection

1. Introduction

Thermal convection in liquid metal occurs widely in geophysical, astrophysical systems
and industrial processes (Lohse & Shishkina 2023), such as the outer core of the Earth
(King & Aurnou 2013) and blanket design of nuclear fusion reactors (Salavy et al. 2007).
The most salient feature of liquid metal is its Prandtl number Pr = ν/κ being much
smaller than unity, resulting in faster diffusion of heat than momentum. Here, ν and κ are
the fluid’s kinematic viscosity and thermal diffusivity, respectively. To study the various
thermal convection phenomena, the Rayleigh–Bénard convection (RBC) system is usually
employed (for reviews, see e.g. Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010;
Chillá & Schumacher 2012; Xia 2013). In RBC, a horizontally infinite fluid layer confined
between two plates is heated from below and cooled from above. This system is governed
by two control parameters, namely, the Rayleigh number Ra = αg�TH3/(νκ) and Pr,
where α, �T and g denote the thermal expansion coefficient, the applied temperature
difference across the fluid layer and the gravitational acceleration constant, respectively.
In addition, the aspect ratio Γ = D/H for a given cell geometry is used to characterize the
effect of spatial confinement with H and D being the height and diameter for a cylindrical
cell. Understanding the heat transport mechanism remains one of the central issues in
the study of thermal convection. Much progress has been made regarding heat transport
in fluids like water/air with Pr ∼ O(1). A great success is the good agreement of the
Nusselt number Nu between the prediction of the theory proposed by Grossmann & Lohse
(Grossmann & Lohse 2000; Stevens et al. 2013) (GL theory) and various experimental and
numerical measurements in cells with Γ ∼ 1 (see, e.g. Ahlers et al. 2009, and references
therein). Here, the Nu number characterizes the ratio between the heat flux transported by
the system to that by thermal conduction alone, which is usually expressed in terms of a
power law with Ra, i.e. Nu ∼ Raα .

As a sidewall is unavoidable in experimental set-ups, Γ for a given cell geometry is also
important. Owing to the demand for achieving, as large as possible, the Ra for a given
D, slender cells with Γ < 1 are usually preferred. For the onset of convection, Shishkina
(2021) theoretically showed that the critical Rayleigh number for the onset of convection
is Rac,Γ = (2π)4(1 + 1.49/Γ 2)(1 + 0.34/Γ 2), and the heat transport just above the
onset of convection is predicted to be Nu − 1 ∼ (1 + 1.49/Γ 2)−1Ra . Experimental
measurements of Rac,Γ have confirmed the above Γ -dependence of Rac (Zhang & Xia
2023; Ren et al. 2024). However, the predicted heat transport relation has yet not been
tested. In the turbulent state, studies on the effects of Γ < 1 mainly focus on fluids with
Pr ∼ 4.3. Two-dimensional direct numerical simulation (DNS) shows that small Γ has
more profound influences on the heat transport in fluids with Pr = 0.7 when compared
with that with Pr = 4.3 (Van der Poel, Stevens & Lohse 2011). In rectangular cells, it is
shown that reducing Γ in one direction leads to the condensation of coherent structures
and the emergence of an optimal heat transport state (Huang et al. 2013; Xia et al. 2023).
In cylindrical cells, the heat transport depends weakly on Γ with the maximum difference
being ∼ 2 % for 4 × 109 ≤ Ra ≤ 1011 in cells with 1/3 ≤ Γ ≤ 1 (Xi & Xia 2008;
Weiss & Ahlers 2011), despite that the large-scale circulation (LSC) changes from a
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Heat transport in liquid metal convection

double-roll-mode (DRM) dominated state to a single-roll-mode (SRM) dominated state
when Γ changes from 1/3 to 1. The insensitive heat transport to the LSC mode is partially
due to the thermal boundary layer (BL) being protected by the viscous BL in fluids with
Pr > 1. Thus, the changes in the LSC mode cannot directly impact the thermal BL that
controls the heat transport efficiency.

Compared with the large body of knowledge accumulated on the effects of small Γ in
working fluids with Pr ≥ 0.7, studies on the effects of small Γ in liquid metal convection
with Pr ∼ 10−2 remain scarce. Early studies in liquid metal convection mainly focus on
the regime with Γ ≥ 1 and found that Nu ∼ Ra0.25 (Rossby 1969; Takeshita et al. 1996;
Cioni, Ciliberto & Sommeria 1997; Horanyi, Krebs & Müller 1999; Aurnou & Olson
2001; King & Aurnou 2013; Scheel & Schumacher 2016; Zürner et al. 2019; Ren et al.
2022). In cells with Γ = 1 and 1/2, it is found that the LSC exhibits different structures
depending on the cell geometry and the Ra range. For example, in a Γ = 1/2 cuboid cell
for 105 < Ra < 107, the LSC evolves from a twisted LSC state to a LSC state, and the
heat transport of the latter is approximately 35 % larger than that of the former when
they coexist (Chen et al. 2023). The SRM LSC usually observed in cylindrical cells
with Γ = 1 are found to collapse in a cell with Γ = 1/2 when Ra > 2 × 108 (Schindler
et al. 2022). After a correction to the experimental data first published in Schindler et al.
(2022), the heat transport in the Γ = 1/2 cell is found to be systematically larger (up
to 30 %) than that in the Γ = 1 cell (Schindler et al. 2023). For even smaller Pr, i.e.
liquid sodium with Pr ∼ 0.009, the heat transport scaling α is found to depend strongly
on Γ , i.e. α = 0.40 in a Γ = 1/5 cell for 6.50 × 108 ≤ Ra ≤ 1.25 × 109 (Frick et al.
2015) and α = 0.76 in a Γ = 1/20 cell for 2.02 × 1010 ≤ Ra ≤ 4.56 × 1010 (Mamykin
et al. 2015), highlighting the significance of Pr on heat transport in slender cells. Apart
from heat transport, it is also found that spatial confinement facilitates the transition
to turbulence in liquid metal convection due to the formation of multiple vertically
stacked rolls and frequent transitions between them in the small Γ regime (Ren et al.
2024). The above analysis suggests our understanding of the effects of Γ < 1 on heat
transport in liquid metal convection remains incomplete, which motivates the present
study.

In this paper, combing experimental measurements and DNS, we will show that
just above the onset of convection, in the range of 1/50 ≤ Γ ≤ 1, the Nu grows
linearly with Ra with Nu − 1 = 0.018(1 + 0.34/Γ 2)(Ra/Rac,Γ − 1). If the flow becomes
time-dependent when Ra increases beyond Rac,Γ , the slope of the linear growth will
decline. Extending the theory by Shishkina (2021), we propose a length scale in the
turbulent state, i.e. � = H/(1 + 1.49Γ −2)1/[3(1−α)]. We will show that once this new
length scale is employed, the heat transport efficiency in turbulent liquid metal convection
with α = 1/4 in cells with 1/3 ≤ Γ ≤ 1 will collapse for Ra� ≥ 7 × 105.

2. The experimental and numerical set-ups

2.1. The experiments
The experiments were carried out in cylindrical convection cells with the aspect ratio
varied in the range of 1/20 ≤ Γ ≤ 1 and the Ra in a range of 4 × 103 ≤ Ra ≤ 7 × 108.
To achieve such a wide range of Ra, three sets of cells with diameter D = 20.14 mm,
40.37 mm and 103.91 mm were constructed. They are referred to as sets A, B and C,
respectively. Figure 1(a) shows the range of Γ and Ra for each set of cells. To vary Γ

for each set, sidewalls with respective height H corresponding to the designed Γ were
used. In total 11 convection cells were used. The design and construction of the cells
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Figure 1. The Γ − Ra parameter space for (a) experiments and (b) DNS with Pr = 0.029.

are similar and can be found in Ren et al. (2022). We mention here only their essential
features. Each convection cell consists of a top cooling copper plate, a bottom heating
copper plate and a Plexiglas sidewall. The surface facing the fluid is coated with a thin
layer of nickel. The Plexiglas sidewall was sandwiched between the two copper plates.
A fluorine rubber O-ring was employed between the ends of the sidewall and the plates
to prevent the leakage of gallium–indium–tin (GaInSn). The bottom plate was heated by a
nichrome wire heater, while the top plate was cooled by circulating temperature-controlled
water. The temperature boundary condition at the bottom plate is a constant heat flux and
that of the top plate is a constant temperature, nominally. The respective temperatures
of the top (bottom) plate were measured using four (five) thermistors inserted into blind
holes drilled from their sides with a distance of 3 mm from the plate–fluid interface.
A digital multimeter was used to measure the resistance of the thermistors, which were
then converted to temperatures using calibrated parameters. The sampling rate of the
temperature measurement is 0.35 Hz. By measuring the voltage V and current I applied to
the heater using a four-wire method, the applied time-averaged heat flux q = 4VI/(πD2)
and thus the Nu = qH/(χ�T) can be obtained. Here χ = 24.9 W (mK)−1 is the thermal
conductivity of GaInSn. The experimental conditions of sets A and B can be found in the
appendix of Ren et al. (2024). For the set C cells, �T varies in the range of [0.48, 23.69] K
and [0.61, 19.54] K for Γ = 1/2 and 1/3, respectively. For high-precision heat transport
measurements, side and bottom temperature-controlled thermal shields were installed. We
refer to Ren et al. (2022) for more details on the experimental procedure. The liquid
metal alloy GaInSn was used as the working fluid. Its physical properties are documented
in Ren et al. (2022). Its Pr was fixed at Pr = 0.029 with a mean fluid temperature
of 35 ◦C.

2.2. Direct numerical simulations
Direct numerical simulations were conducted in a cylindrical domain with 1/50 ≤ Γ ≤ 1
and in the Ra range of 3.7 × 103 ≤ Ra ≤ 6.9 × 109. Figure 1(b) shows the range of Γ and
Ra for DNS. The non-dimensional governing equations with the Oberbeck–Boussinesq
approximation, cf. (2.1), were numerically solved using a fourth-order finite-volume
method on staggered grids, and the time marching is done using the Euler-leapfrog scheme
(Chong, Ding & Xia 2018),

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr
Ra

∇2u + Tẑ; ∂T
∂t

+ (u · ∇)T =
√

1
RaPr

∇2T; ∇ · u = 0, (2.1)
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where u, T and p are, respectively, the dimensionless velocity, temperature and pressure;
êz is the unit vector in the vertical direction. Equations (2.1) have been made dimensionless
using the cell height H, the temperature difference across the cell �T , the free-fall
velocity uff = √

αg�TH and the free-fall time scale τff = H/uff . All boundaries satisfy
the no-penetration and no-slip velocity boundary conditions. The top/bottom plates are
kept isothermal and the sidewalls are kept adiabatic.

The accuracy of the DNS is verified through the two well-known exact relations
in RBC (Ahlers et al. 2009), i.e. Nu = Nuεu = NuεT . Here Nu = 1 + √

RaPr 〈uzT〉V,t,
Nuεu = 1 + √

RaPr 〈εu〉V,t and NuεT = √
RaPr 〈εT〉V,t, where 〈· · · 〉V,t denotes averaging

over the entire simulation domain and the statistical time. Here Nu, Nuεu and NuεT are the
directly calculated Nusselt number, the Nusselt number calculated based on the viscous
dissipation rate εu and the thermal dissipation rate εT , respectively. For simulations just
above the onset of convection, the difference between three Nu values is within 0.1 %, and
that of the turbulent state is within 4 %. Each simulation case was started from a state
with a linear temperature profile and zero velocity plus a small perturbation. Details of the
simulation can be found in the Appendix.

3. Results and discussions

3.1. General features of the heat transport
We first take an overview of the heat transport data. Figure 2(a) plots Nu as a function
of Ra obtained experimentally as open symbols and numerically as solid stars in cells
with 1/20 ≤ Γ ≤ 1. The green solid line marks the theoretical prediction of the GL
theory for Γ = 1 (Grossmann & Lohse 2000) with modified prefactors taking into account
new measurements at Pr = 0.029 from Ren et al. (2022). Firstly, it is seen that the
experimentally measured Nu and the Nu obtained from DNS in a cell with Γ = 1 for
Ra = 107 and in a cell with Γ = 1/2 for Ra = 5 × 107 overlap with each other within
∼ 3 %, suggesting that the finite conductivity effects (Verzicco 2004) in the studied
parameter range is small. One also observes that the agreement between measurements
and DNS data near the onset of convection is not good. This point will be discussed in
§ 3.2. For large enough Ra, Nu in cells with 1/3 ≤ Γ ≤ 1 all approach the prediction of
the GL theory, suggesting that the system will become Γ -independent when Ra is larger
than a Γ -dependent critical value. This observation is different from the results reported
by Schindler et al. (2023) within a similar range of Ra and the same Pr, where they observe
a ∼ 30 % difference in Nu between measurements in two cylindrical cells with Γ = 1 and
1/2 (see figure 5c).

We now study measurements in the Γ = 1 cells. Figure 2(a) shows that Nu numbers
measured in three sets of cells overlap well with each other when there is an overlap in
Ra. The flow evolves from the conduction state at Ra ≈ 5 × 103 to a turbulent state for
Ra > 105. Let us denote the Nu measured experimentally in the conduction state as
aΓ . Note aΓ should be 1, independent of Γ by definition. However, due to unknown
parasitic heat leakage, figure 2(a) shows that aΓ is slightly larger than 1 and increases with
decreasing Γ . Before the transition-to-turbulence state, i.e. Ra smaller than the vertical
dashed lines, which mark the critical Rayleigh number for the transition-to-turbulence state
reported in Ren et al. (2022, 2024), the local effective heat transport scaling exponent γ of
Nu versus Ra, i.e. γ = d log Nu/d log Ra, changes continuously, as shown in figure 2(b).
Here γ is obtained by fitting the data using a sliding window covering approximately half a
decade in Ra. In the turbulent state, we observe an Nu ∼ Ra0.25 scaling, in good agreement
with the prediction of α = 1/4 obtained from the GL theory (Grossmann & Lohse 2000),
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Figure 2. (a) Measured Nu versus Ra from experiments (open symbols) and DNS (solid symbols) for
different Γ . The green solid line is the prediction of the GL theory with Γ = 1 (Grossmann & Lohse 2000).
(b) The local effective heat transport scaling exponent γ versus Ra. The vertical dashed lines mark the
transitional Ra when the system becomes turbulent.

experimental measurements (Cioni et al. 1997; Glazier et al. 1999; Zürner et al. 2019; Ren
et al. 2022) and numerical simulations (Verzicco & Camussi 1997; Scheel & Schumacher
2016).

In the cells with Γ = 1/2 and 1/3, the Nu measured in different sets of cells but
the same Γ also overlap with each other when there is an overlap in Ra. The system
starts from the conduction state and evolves into a turbulent state when Ra is larger
than the critical values marked by the vertical dashed lines in figure 2(b). Similar to the
case with Γ = 1, the local effective heat transport scaling exponent γ increases with Ra
before the system becomes turbulent, and it decreases with Ra in the turbulent state. For
sufficiently large Ra, γ approaches 0.25 as marked with a long-dashed horizontal line
in figure 2(b).

In the strongly confined regime with Γ = 1/10 and 1/20, the system starts from the
conduction state and becomes turbulent very quickly after the onset of convection (Ren
et al. 2024). The local effective heat transport scaling exponents γ show similar behaviour
as those in cells with 1/3 ≤ Γ ≤ 1, i.e. they increase to a maximum value γmax and then
start to decrease in the turbulent state. In these two cases, we observe γmax = 0.75. We
note that a similar observation, i.e. an increased local effective scaling exponent γ with
decreasing Γ was reported in strongly confined rectangular cells with water (Pr = 4.38)
as the working fluid (Zhang & Xia 2023). However, the γ in water is much larger
than in the present study with liquid metal. For example, Zhang & Xia (2023) reported
γmax = 4.30 and 8.49 from the experiment and DNS in a cell with Γ = 1/20, respectively.
The difference may be attributed to the difference in Pr or the cell geometry, highlighting
the sensitive dependence of the heat transport on the control parameters and cell geometry
in the severely confined RBC. Finally, we note that there are discontinuities in the Nu ∼ Ra
curve beyond the onset of convection in cells with Γ = 1/2 and 1/3, marked by the
two black rectangles in figure 2(a). The reason for the discontinuities will be discussed
in § 3.3.

3.2. Length scale in confined turbulent RBC
Shishkina (2021) predicts that near the onset of convection, the heat transport is

Nu − 1 = C(1 + cuΓ
−2)−1Ra (3.1)
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with cu = 1.49 and C being a undetermined prefactor. Thus, the relevant length scale near
the onset of convection is � = H/(1 + cuΓ

−2)1/3. Assuming there is a power law relation
between Nu and Ra, i.e. Nu − 1 ∼ Raα , following Shishkina (2021), let us define a function
f ≡ (Nu − 1)Ra−α . Then (3.1) transforms into

f ≡ (Nu − 1)Ra−α ∼
[

Ra
(1 + cuΓ −2)1/(1−α)

]1−α

. (3.2)

In the classical turbulent regime, the heat transport scaling Nu − 1 ∼ Raα holds with the
scaling exponent α depending on the flow regime (Grossmann & Lohse 2000) but weakly
depend on Γ . Following Shishkina (2021), we further assume that the expression inside
the square bracket of (3.2) near the onset of convection also holds in the classical turbulent
regime and denote it as Ra�. We then obtain a α-dependent length scale � = H/[(1 +
cuΓ

−2)1/[3(1−α)]]. For turbulent liquid metal convection, our measurements in cells with
1/3 ≤ Γ ≤ 1 (see figure 2b) and previous studies in cells with Γ = 1 (Takeshita et al.
1996; Cioni et al. 1997; Glazier et al. 1999; King & Aurnou 2013; Zürner et al. 2019; Ren
et al. 2022) suggest α approaches 1/4 with increasing Ra, which is also predicted by GL
theory for small Pr and not too large Ra (Grossmann & Lohse 2000). Plugin α = 1/4 into
� and Ra�, we have

� = H/(1 + cuΓ
−2)4/9 Ra� ≡ Ra/(1 + cuΓ

−2)4/3, (3.3)

for turbulent liquid metal convection. We are now in a position to test the above length
scales using the heat transport data just above the onset of convection and in the turbulent
state. As we will show next, (3.1) and (3.3) hold near the onset of convection and in the
turbulent state in liquid metal convection, respectively, suggesting that the proposed length
scales are justified.

Just above the onset of convection, the experimentally measured Nu is not accurate
(see figure 2a) due to unknown parasitic heat leakage. Thus, the following discussion
about heat transport just above the onset of convection is mainly based on the DNS
data. Details of the DNS data just above the onset of convection can be found in the
Appendix.

Figure 3(a) plots Nu − 1 versus Ra/Rac,Γ − 1 just above the onset of convection
obtained numerically. Here Rac,Γ is the Γ -dependant critical Rayleigh number for the
onset of convection reported in Ren et al. (2024). The horizontal grey dashed line marks
Nu − 1 = 0, i.e. the conduction state. A linear function, i.e. Nu − 1 = A(Ra/Rac − 1),
is used to fit the data for different Γ with the fitting results shown as solid lines in the
figure. It is seen that with decreasing Γ , the slope of the linear curve becomes larger,
suggesting a steeper growth of Nu with Ra/Rac,Γ for smaller Γ . Figure 3(b) shows
(Nu − 1)/A versus Ra/Rac,Γ − 1. It is seen that data for different Γ now collapse onto
a single master curve with a slope of 1, suggesting that the proposed length scale near
the onset of convection, i.e. � = H/(1 + cuΓ

−2)1/3, is justified. The fitted coefficient A
versus Γ is shown in figure 3(c). A fitting function in the form of A = C(1 + 0.34/Γ 2)
as proposed by Shishkina (2021) is used to fit the coefficient A obtained from DNS
data, from which we obtain C = 0.018 ± 0.01. Thus, the heat transport just above the
onset of convection follows Nu − 1 = 0.018(1 + 0.34/Γ 2)(Ra/Rac,Γ − 1). The inset of
figure 3(c) plots A versus 1/Γ 2, which now becomes a straight line. It is
seen that the numerically obtained A is in good agreement with the fitting
curve.
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Figure 3. Numerically obtained heat transport just above the onset of convection. (a) Here, Nu − 1 versus
Ra/Rac,Γ − 1. The horizontal dashed line marks the conduction state. The solid lines are linear fitting to
the data just above the onset of convection, i.e. Nu − 1 = A(Ra/Rac,Γ − 1). (b) Here, (Nu − 1)/A versus
Ra/Rac,Γ − 1. (c) The prefactor A of the linear fitting versus Γ . Red circles and black squares represent the
DNS and experimental (EXP) data, respectively. The red solid line is a fit of A = 0.018(1 + 0.34/Γ 2) to the
DNS data. The inset shows A versus 1/Γ 2.
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Figure 4. Experimentally obtained heat transport just above the onset of convection. (a) Here, Nu − aΓ versus
Ra/Rac,Γ − 1. The horizontal dashed line marks the conduction state. The solid lines are linear fitting to
the data just above the onset of convection, i.e. Nu − aΓ = A(Ra/Rac,Γ − 1). (b) Here, (Nu − aΓ )/A versus
Ra/Rac,Γ − 1.

The experimentally measured Nu just above the onset of convection is shown in
figure 4(a,b). It can be seen that the data also follow the linear trend (the solid lines)
with the slope of the linear fitting increasing with decreasing Γ . However, a noticeable
difference between A obtained numerically and experimentally can be observed, see
figure 3(c). The possible reason might be twofold. First, figure 3(a) shows that the
range of the linear trend shortens as Γ decreases. For example, the linear growth range
is within 0 < Ra/Rac,Γ − 1 < 0.05 in a cell with Γ = 1/5 and it shortens to within
0 < Ra/Rac,Γ − 1 < 0.01 in a cell with Γ = 1/20. The Nu data go below the linear trend
with increasing Ra, resulting in lower A if one cannot make measurements very close
to the onset. It is very difficult to make measurements very close to Rac,Γ in cells with
Γ ≤ 1/10. Thus, the experimentally measured A in this range is underestimated. Secondly,
to reduce Γ for fixed D in the experiment, we increased the cell height H. In this case,
the Oberbeck–Boussinesq approximation may not hold in these slender geometries due to
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Figure 5. Data from the present study: (a) compensated plot of Nu versus Ra obtained experimentally (open
symbols) and numerically (solid symbols) for different Γ ; (b) compensated Nu versus Ra�, i.e. a Rayleigh
number based on the length scale �, for the same data as in (a). Comparison of the present data with those
published in the literature: (c) compensated plot of Nu versus Ra and (d) compensated plot of Nu versus Ra�.

the pressure work that cannot be ignored in the energy equation (Shishkina 2021; Lohse
& Shishkina 2024; Weiss, Emran & Shishkina 2024), which may also contribute to the
difference between DNS and experiment.

The measured Nu − aΓ versus Ra in the turbulent state in cells with Γ = 1, 1/2 and 1/3
is shown as a compensated plot in figure 5(a). The green solid line marks the prediction of
the GL theory in a Γ = 1 cell (Grossmann & Lohse 2000; Stevens et al. 2013). Although
Nu in the Γ = 1 cell agrees well with the GL prediction, we see Nu data in cells with
Γ = 1/2 and 1/3 deviate from the Γ = 1 data and the GL prediction. As discussed
previously, the appropriate length scale and Rayleigh number in turbulent liquid metal
convection are � = H/(1 + cuΓ

−2)4/9 and Ra� ≡ Ra/(1 + cuΓ
−2)4/3, respectively. Thus,

we plot in figure 5(b) (Nu − aΓ )/Ra1/4 versus Ra�. It is seen that once Ra� is adopted,
the Nu data collapse with each other and the GL prediction with the difference between
them being smaller than 5 % for Ra� ≥ 7 × 105, as indicated by the yellow error bar in
figure 5(b). In addition, one observes that this difference in Nu decreases with increasing
Ra�. We note that a similar collapse of Nu data with Ra� for different Γ is found in working
fluids such as gas and water (with α = 1/3) (Shishkina 2021; Ahlers et al. 2022). However,
the functional form of � and Ra� is different due to Nu ∼ Ra1/3 in these two fluids. We
now test the proposed length scale in the turbulent state using data from the literature.
Figure 5(c) plots (Nu − aΓ )/Ra1/4 versus Ra from present study and previous data in cells
with Γ = 1 and 1/2 (Cioni et al. 1997; Glazier et al. 1999; Schindler et al. 2023). From
figure 5(c), it can be seen that the overall trends of Nu versus Ra from different studies are
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Figure 6. Here, Nu versus Ra for (a) Γ = 1/3 and (b) Γ = 1/2. The black dashed line represents a linear
fitting to the Nu versus Ra data in the convection state. The vertical lines mark the transition between different
flow states reported in Ren et al. (2024). Time averaged (c) flow strength 〈δ〉/�T and (d) orientation 〈θ〉 of the
LSC versus Ra in the Γ = 1/3 cell. The open and solid symbols are taken with increasing and decreasing Ra,
respectively. The lower left-hand and upper right-hand insets in (c) are reconstructed SRM and DRM from the
sidewall temperatures.

consistent. When these Nu data are plotted against Ra�, as shown in figure 5(d), we notice
that Nu data in cells with Γ = 1/2 will collapse on the prediction curve of GL theory
with very weak Γ -dependence when Ra� ≥ 7 × 105. One may notice that the data from
Cioni et al. (1997) is systematically lower than the other groups of data, for which we do
not know the exact reason. But it should be noted that different sidewall materials, i.e.
stainless steel in Cioni et al. (1997) and Plexiglas in the present work, were used.

3.3. The two discontinuities
We now study the two discontinuities marked with rectangles in figure 2(a). Close-up
views of the two rectangles are shown in figure 6(a,b) for Γ = 1/3 and 1/2, respectively.
Let us first focus on measurements in the Γ = 1/3 cell. With increasing Ra (open
symbols in figure 6a), the system goes through a Hopf bifurcation, transitioning from the
steady convection state to an oscillatory state (Ren et al. 2024). When time dependency
occurs, we observe a drop in Nu, resulting in it not following the linear trend just above
the onset of convection (the dashed line). Measurement of the LSC structure using the
multi-thermal-probe method (Xie, Wei & Xia 2013) suggests that the LSC is a SRM in
the convection state. This can be seen clearly from the time-averaged flow strength 〈δ〉
and its orientation 〈θ〉 shown as open symbols in figures 6(c) and 6(d), respectively. For
Ra < 2.68 × 105, typical behaviours for a single-roll LSC can be observed, i.e. δ at three
heights with distances H/4, H/2 and 3H/4 from the bottom plates remain close to each
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other and well above zero; and 〈θ〉 at three heights remains close to each other. A snapshot
of the reconstructed SRM using the measured sidewall temperature is shown as an inset
in the lower left-hand corner of figure 6(c). When Ra is increased beyond a critical point,
i.e. 2.92 × 105, we observe a sudden drop of Nu up to 34 %. If we check 〈δ〉 and 〈θ〉
shown in figure 6(c,d), one sees that while 〈δ〉/�T at the midheight of the cell drops
close to zero, 〈δ〉/�T at the top and bottom parts of the cell remains well above zero.
Meanwhile, there is a ∼ π phase difference between the top and bottom parts of the LSC.
These are typical signatures of a DRM of the LSC. The reconstructed structure of the
DRM is shown in the upper right-hand corner of figure 6(c). It thus becomes clear that
this sudden drop in Nu is due to a bifurcation of the LSC from the SRM to the DRM in
the oscillation regime. When Ra is increased further, we only observe oscillation of this
DRM. The bifurcation process discussed above is observed with increasing Ra. What will
happen if we decrease Ra? In figure 6(a), the red solid squares are Nu measured when Ra
is decreased from 3.92 × 105. Interestingly, the data shows hysteresis, i.e. the DRM could
survive at even smaller Ra than the case with increasing Ra. In the convection state, we
see no noticeable difference between increasing/decreasing Ra. The LSC is in the form
of SRM.

Note the transition between SRM and DRM has been reported in Rayleigh–Bénard
turbulence in water (Verzicco & Camussi 2003; Xi & Xia 2008; Weiss & Ahlers 2011).
In addition, hysteresis between different flow structures is observed in Taylor–Couette
turbulence (Huisman et al. 2014). The present study in liquid metal differs from that in
water in two ways. Firstly, the heat transport difference in SRM and DRM in liquid metal
is an order of magnitude larger than that in water. Secondly, the hysteresis is observed in
an oscillation state, not a turbulent state.

In the Γ = 1/2 cell, we observed similar behaviours to that in the cell with Γ = 1/3
(cf. figure 6b). However, the LSC in this cell is always in the SRM. When a Hopf
bifurcation occurs, we observe a slight drop in the linear slope of Nu versus Ra. In addition,
hysteresis is observed when Ra is deceased. Because the structure of the LSC in this cell
does not change, the maximum difference in Nu when hysteresis occurs is only 1.7 %.

The above observation indicates that when time dependency occurs in cells with
Γ = 1/2 and 1/3, the heat transport of the system always decreases. If this time
dependency could be delayed or even suppressed, e.g. by applying rotation or a magnetic
field to liquid metal convection, one can then achieve higher heat transport efficiency,
which will be useful in engineering heat transport management.

4. Conclusion

We have studied the effect of a small aspect ratio Γ on the heat transport in liquid
metal convection with Pr = 0.029. In the range of 1/50 ≤ Γ ≤ 1, the DNS shows that
just above the onset of convection, Nu − 1 = 0.018(1 + 0.34/Γ 2)(Ra/Rac,Γ − 1) which
suggests that the relevant length scale � is � = H/(1 + cuΓ

−2)1/3 with cu = 1.49. The
local effective heat transport scaling exponent γ reaches its maximum before the system
becomes turbulent. In a turbulent state, the measured value of γ approaches the GL
prediction of 1/4 with increasing Ra. Assuming Nu − 1 ∼ Raα in turbulent RBC, we
propose that the length scales in cells with Γ < 1 is � = H/(1 + cuΓ

−2)1/[3(1−α)]. In the
Ra range of the present study, we observe α = 0.25 in turbulent liquid metal convection.
Substituting α = 1/4 into �, one obtains a length scale � = H/(1 + cuΓ

−2)4/9 and
Ra� ≡ Ra/(1 + cuΓ

−2)4/3. Once the Nu is plotted against Ra�, the present study shows
that, for Ra� ≥ 7 × 105, the heat transport in cells with 1/3 ≤ Γ ≤ 1 will collapse with
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Case Nz × Nφ × Nr Ra Nu Nuεu NuεT

Γ = 1 512 × 768 × 256 1.00 × 107 10.90 10.54 10.93
Γ = 1/2 512 × 512 × 128 5.00 × 107 16.34 15.94 16.45

Table 1. Details of the DNS in the turbulent state. Here Γ is the aspect ratio of the cell; Nz, Nφ and Nr are
the number of grid points in the vertical, azimuthal and radial directions, respectively. Here Ra is the Rayleigh
number; Nu, Nuεu and NuεT are the directly calculated Nusselt number, the Nusselt number calculated based
on the viscous dissipation rate and the thermal dissipation rate, respectively.

each other and with the prediction of the GL theory for Γ = 1. In turbulent thermal
convection for Pr > 1 with α = 1/3, the above proposed length scale � replicates the
justified length scale proposed by Shishkina (2021) and Ahlers et al. (2022), i.e. � =
H/(1 + cuΓ

−2)1/2. It is also found that when the flow transitions from a steady state to
an oscillatory state with increasing Ra, the linear growth rate of Nu versus Ra declines. A
hysteresis is observed in cells with Γ = 1/3 in the oscillation state. Measurements of the
LSC suggest that the hysteresis is caused by the LSC switching from a SRM to a DRM.
The SRM is found to be 34 % more efficient in heat transport when compared with that of
the DRM. Since a reduced Γ for fixed D is always employed as an efficient way to achieve
higher Ra, the present study demonstrates quantitatively how a decrease in Γ will affect
the heat transport behaviour just above the onset of convection and in the turbulent state.
It extends the recent theoretical findings by Shishkina (2021) obtained for moderate Pr
to the case of liquid metal with small Pr. It will be interesting to test if Ra� is a proper
control parameter for fluids with large Pr in the Γ < 1 regime and to turbulent liquid metal
convection with even higher Ra where a transition to the ultimate regime is expected.
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Appendix

Table 1 and table 2 provide details on the DNS.
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